
HAL Id: hal-04299349
https://hal.science/hal-04299349v1

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving neighborhood exploration into MOEA/D
framework to solve a bi-objective routing problem

Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, Marie-Eléonore Kessaci

To cite this version:
Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, Marie-Eléonore Kessaci. Improving neighbor-
hood exploration into MOEA/D framework to solve a bi-objective routing problem. International
Transactions in Operational Research, 2023, Developments in Metaheuristics, 30 (2), pp.1179 - 1180.
�10.1111/itor.13223�. �hal-04299349�

https://hal.science/hal-04299349v1
https://hal.archives-ouvertes.fr

Improving Neighborhood Exploration into MOEA/D Framework to
Solve a Bi-Objective Routing Problem

Clément Legranda, Diego Cattaruzzab, Laetitia Jourdana, Marie-Eléonore Kessacia
aUniv. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

bUniv. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
E-mail: clement.legrand4.etu@univ-lille.fr [C. Legrand]; diego.cattaruzza@centralelille.fr [D. Cattaruzza];

laetitia.jourdan@univ-lille.fr [L. Jourdan];marie-eleonore.kessaci@univ-lille.fr [M-E. Kessaci]

Abstract

Local search (LS) algorithms are efficient metaheuristics to solve combinatorial problems. The performance of LS
highly depends on the neighborhood exploration of solutions. Many methods have been developed over the years to
improve the efficiency of LS on different problems of operations research. In particular, the exploration strategy of the
neighborhood and the exclusion of irrelevant neighboring solutions are design mechanisms that have to be carefully
considered when tackling NP-hard optimization problems. A MOEA/D framework including an LS-based mutation
and knowledge discovery mechanisms is the core algorithm used to solve a bi-objective vehicle routing problem with
time windows (bVRPTW) where the total traveling cost and the total waiting time of drivers have to be minimized.
We enhance the classical LS exploration strategy of the neighborhood from the literature of scheduling and propose
new metrics based on customers distances and waiting times to reduce the neighborhood size. We conduct a deep
analysis of the parameters to give a fine-tuning of the MOEA/D framework adapted to the LS variants and to the
bVRPTW. Experiments show that the proposed neighborhood strategies lead to better performance on both Solomon’s
and Gehring and Homberger’s benchmarks.

1. Introduction

With the increasing demand in terms of services (transportation, delivery, storage), comes an explosion of
new challenges that have to be faced. Most of them require taking into account several conflicting aspects
(ecological, economical, societal), each one characterized by an objective function to optimize. When at
least two objectives are optimized simultaneously, we are facing a multi-criterion decision. In some cases,
the decision maker provides a score of interest for each objective, which can lead to a reduction of the
multi-objective problem to a single-objective problem where the different objectives are aggregated. Unfor-
tunately, most of the time, the decision maker does not know precisely how the objectives interact with each
other, which may lead to a bad strategy to solve the problem, and consequently to irrelevant results.

In the context of this paper, we are interested in the Vehicle Routing Problem with Time Windows
(VRPTW). It can be considered a logistic problem, where vehicles have to serve customers within a precise
time interval. This problem has been introduced decades ago, and many objectives have been investigated.

1

However, to the best of our knowledge, only a small subset of these objectives has received enough interest
to have publicly available results. Thus, it is very hard to know if an algorithm or a method is competitive
on the problem itself (independent of the objectives chosen) or if it is only relevant to the objectives studied.
To overcome this lack in the literature, we propose to focus on a bi-objective VRPTW (bVRPTW) where
one objective has been highly studied, that is the total transportation cost, and an objective that has rarely
been studied, that is, the total waiting time incurred when drivers arrive before the opening of the time
window (Castro-Gutierrez et al., 2011; Zhou and Wang, 2014). Using both of these objectives is interesting
in many real-life situations, like food delivery, where the waiting time of a driver impacts the heat of the
meals of the next customers, and consequently customer satisfaction. Another typical situation concerns the
transportation of people, more precisely when a patient has a medical appointment, we do not want that
he/she waits too much.

To solve the problem, we use MOEA/D, a Multi-Objective Evolutionary Algorithm based on Decom-
position (Zhang and Li, 2007) where the mutation step is replaced by a local search, and enhanced with
Knowledge Discovery (KD) (Legrand et al., 2022). Local searches (LS) are known to be powerful algo-
rithms used in evolutionary algorithms to improve their performance (Knowles, 2002). Indeed, LS are able
to intensify the search by focusing on a specific region of the search space. They are based on neighborhood
operators that link solutions together and a neighborhood exploration strategy defines how the neighbors
are explored and when the exploration is stopped. Many LS have been developed, and many operators are
available, for this problem, but most of them only consider a single objective which is the total transporta-
tion cost. Moreover, LS steps are quite time-consuming, which is why different strategies exist to speed up
the search and reduce the time allocated to neighborhood exploration. Indeed, we can explore more or less
the neighborhood according to the strategy used. With a first strategy, the first improving solution met is
kept, allowing a fast exploration of the space but with a relatively long path to a local optimum. While a
best strategy explores the whole neighborhood to apply the best improving move, allowing a smaller path
but the exploration itself is more time-consuming. Since routing problems produce large neighborhoods,
reduction techniques have been designed to avoid irrelevant moves. The most common one is probably the
granular search introduced by Toth and Vigo (2003). It is based on the idea that two distant customers have
a low chance to be served one right after the other in the same route. However, it requires a proper definition
of the distance between customers, which may not be obvious when several objectives are considered and
are not in the same range of values.

The contribution of the paper is to enhance the basic local search used in MOEA/D considering new
neighborhood mechanisms. First, we present a new strategy to explore the neighborhood of bVRPTW solu-
tions inspired by the state of the art for permutation flow-shop scheduling problem Ruiz and Stützle (2007).
The neighborhood is then divided into subsets of neighbors. Contrary to the best strategy that explores the
neighborhood entirely before making a decision or the first strategy that makes a decision for each vis-
ited neighbor, the proposed strategy, called first-best, explores a subset entirely before making a decision.
Second, we define a new metric that considers not only the Euclidean distance between the customers but
also their respective time windows to evaluate the waiting time. With such a metric, we hope to obtain a
more accurate neighborhood, depending on the two objectives optimized. Two variants of the metric are
proposed. One variant aggregates the cost and the waiting time with variable weights, while the other uses
the same weights for the aggregation. These contributions are supported by a rigorous analysis of the dif-
ferent parameters used in the MOEA/D framework, through irace (López-Ibáñez et al., 2016), to highlight
the most influential ones. Therefore, each variant tested is then tuned with irace to keep the configuration
the best adapted for each one. Experiments are conducted on Solomon’s benchmark with instances of size
100, and on Gehring and Homberger’s benchmark with instances of size 200 to evaluate the performance
of each MOEA/D variant and define the best-suited neighborhood mechanisms.

The paper is structured as follows. Section 2 introduces the problem and motivates our choice of ob-

2

jectives to optimize. Concepts related to multi-objective optimization are presented in Section 3. Our con-
tribution concerning the local search, as well as the algorithms compared, are detailed in Section 4. The
experimental setup (i.e., benchmarks, termination criterion, performance assessment, and machines used) is
described in Section 5. Our experimental protocol, concerning the tuning and the evaluation of the perfor-
mances, is presented in Section 6. The tuning is analyzed in Section 7, and the results obtained are discussed
in Section 8. We conclude the paper in Section 9.

2. Description of the Problem

2.1. Vehicle Routing Problem with Time Windows (VRPTW)

The VRPTW (Toth and Vigo, 2014) is defined on a graph G = (V,E), where V = {0, 1, . . . , N} is the
set of vertices and E = {(i, j) | i, j ∈ V } is the set of arcs. It is possible to travel from i to j, incurring
a travel cost cij and a travel time tij . Usually, the cost is computed as the Euclidean distance between the
customers. Vertex 0 represents the depot where a fleet of K identical vehicles with limited capacity Q is
based. Vertices 1, . . . , N represent the customers to be served, each one having a demand qi, a time window
[ai, bi] during which service must occur, and a service time si estimating the required time to perform the
delivery. Vehicles may arrive before ai. In that case, the driver has to wait until ai to accomplish service
incurring a waiting time. Arriving later than bi is not allowed (the time windows are hard). We recall that a
route r is an elementary cycle on G that contains the depot (that is vertex 0) and is expressed as a sequence
of vertices r = (v0, v1, . . . , v|r|, v|r|+1) where v0 = v|r|+1 = 0 and vertices v1, . . . , v|r| are all different. The
cost cr of a route r is then given as the sum of traveling costs on arcs used to visit subsequent vertices, that
is
∑|r|

i=0 cvi,vi+1
. A solution x is represented as a set of K (possibly empty) routes, that is x = {r1, . . . , rK},

and its cost is expressed as:

f1(x) =

K∑
k=1

crk (1)

The VRPTW calls for the determination of at most K routes such that the traveling cost is minimized
and the following conditions are satisfied: (a) each route starts and ends at the depot, (b) each customer is
visited by exactly one route, (c) the sum of the demands of the customers in any route does not exceed Q,
(d) time windows are respected.

2.2. Objectives Related to the VRPTW

A wide range of objectives has already been investigated in the VRPTW context. This section provides a
broad overview of the most common objectives found in the literature. Following the classification of Joze-
fowiez et al. (2008), these objectives are divided into three categories according to the component of the
problem they are associated with the route, the node or arc activity, and the resources.

2.2.1. Objectives Associated to the Route
Among the objectives related to the route, the most common is surely minimizing the cost of the solutions
generated (Schneider et al., 2017). For instance, the cost can be the distance traveled or the time required. It
can also be something more complex, like CO2 emissions. More generally, minimizing cost is linked to an
economic criterion. When the total cost is ignored, the makespan (i.e., minimizing the length of the longest

3

route) is an objective frequently minimized (Zhou and Wang, 2014). These objectives are motivated by the
applications of the problem. For example, if electric vehicles are used, the length of the tours should not
exceed the autonomy of the vehicles.

2.2.2. Objectives Associated to Nodes or Arcs
Concerning the objectives related to the node or arc activity, they often involve time windows, since it is the
most constraining part of the problem in general. When considering hard time windows (i.e., that cannot
be violated), the driver’s waiting time due to earliness can be optimized (Zhang et al., 2019). If we consider
soft time windows (i.e., that can be violated with a penalty), the delay time of drivers is more likely to
be optimized (Zhou and Wang, 2014). More generally, the number of violated time windows can also be
minimized (Geiger, 2003).

2.2.3. Objectives Associated to Resources
The last category of objectives concerns resources. The main resources encountered in the literature are
vehicles and goods. The minimization of the number of vehicles often appears in classical benchmarks and
can be interpreted economically, in that fewer vehicles means less monetary investment. More precisely,
this objective is often minimized first in Solomon’s and Gehring and Homberger’s benchmarks (Solomon,
1987; Gehring and Homberger, 1999), since buying a truck or hiring a driver is the most expensive part.
Finally, some objectives try to erase disparities between tours, to bring a fairness aspect into the problem.
To define a balancing objective it is necessary to define a route’s workload, which can be expressed as the
number of customers visited or the number of goods delivered (Melián-Batista et al., 2014; Baños et al.,
2013).

2.3. Minimizing the Waiting Time of Drivers

When drivers arrive before the opening of a time window they must wait until the opening time. It increases
the time of the route for the driver and may incur satisfaction issues. The total waiting time of drivers is
an objective that has not been highly studied in the literature. In the last decade, Castro-Gutierrez et al.
(2011) studied how this objective was correlated to four other common objectives in the VRPTW context.
In particular, they showed that in Solomon’s instances, the total traveled distance and the total waiting
time were weakly correlated in clustered instances with tight time windows and in random instances with
wide time windows. In addition, the objectives are in harmony (i.e., the minimization of one tends to also
decrease the other) on clustered instances with wide time windows, whereas they are conflicting (i.e., the
minimization of one tends to increase the other) on random instances with tight time windows. The total
waiting time due to early arrival has also been studied by Zhou and Wang (2014), where a five-objective
VRPTW is solved with an objective-wise local search. Moreover, it seems interesting to study together two
continuous objectives (here the total traveled distance and the total waiting time) instead of using a discrete
objective, like the number of vehicles. Indeed, with two continuous objectives, the fronts generated by the
algorithm contain, generally, much more non-dominated solutions, that are relevant when using knowledge
discovery methods.

We formalize the notion of waiting time as follows. The waiting time Wi at a customer i is given as the
maximum between 0 and the difference between the opening of the TW ai and the arrival time Ti at location
i, that is Wi = max{0, ai − Ti}. Note that each route r = (v0, v1, . . . , v|r|, v|r|+1) is associated with a
feasible (i.e., consistent with traveling times and TWs) arrival time vector Tr = (Tv0

, Tv1
, . . . , Tv|r| , Tv|r|+1

)

and the total waiting time Wr(Tr) on route r, with respect to Tr is given by Wr(Tr) =
∑|r|

i=1Wvi
. Thus the

4

total waiting time of a solution x = {r1, . . . , rK} on a graph G, given a time arrival vector for each route
in the solution, i.e.,Tx = (Tr1 , . . . , TrK), is given by the following formula:

f2(x, Tx) =

K∑
k=1

Wrk(Trk) (2)

In the remainder of the paper, the problem considered is a Bi-Objective VRPTW (bVRPTW), where func-
tions f1 (Equation 1) and f2 (Equation 2) are simultaneously minimized, hence forming a multi-objective
problem. Key concepts to understand how to solve a multi-objective problem are given in Section 3.

3. MOEA/D Framework

3.1. Multi-Objective Optimization

A Multi-objective Combinatorial Optimization Problem (MoCOP) is formalized as follows (Coello et al.,
2010):

(MoCOP) =

{
Optimize F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D, (3)

where n is the number of objectives (n ≥ 2), x is the vector of decision variables, D is the (discrete) set
of feasible solutions and each objective function fi(x) has to be optimized (i.e.,minimized or maximized).
In multi-objective optimization, the objective function F defines a so-called objective space denoted by Z .
For each solution x ∈ D there exists a point in Z defined by F (x).

A dominance criterion is defined to compare solutions together: a solution x dominates a solution y, in a
minimization context, if and only if for all i ∈ [1 . . . n], fi(x) ≤ fi(y) and there exists j ∈ [1 . . . n] such that
fj(x) < fj(y). The dominance relation introduces a partial order on the solution: there are indeed solutions
that cannot be compared among each other.

Then a set of non-dominated solutions is called a Pareto front. A feasible solution x∗ ∈ D is called
Pareto optimal if and only if there is no solution x ∈ D such that x dominates x∗. Resolving a MoCOP
involves finding all the Pareto optimal solutions which form the Pareto optimal set. The true Pareto front of
the problem is the image of the Pareto optimal set by the objective function.

Over the years, many metaheuristics based on local search techniques or using evolutionary al-
gorithms (Blot et al., 2018) have been designed to solve multi-objective problems. Moreover, many
tools (Riquelme et al., 2015) have been developed to assess and compare the performance of multi-objective
algorithms. When the results are compared to a Pareto front of reference, it is common to use the gener-
ational distance (GD) metric or the epsilon metric. The GD measures the cumulative (Euclidean) distance
from each solution of the front generated to the closest solution in the reference front. The epsilon metric
finds the smallest value ϵ, so that, if we multiply the objective vector of all the solutions obtained by ϵ, then
the new front strictly dominates the front of reference. However, we do not have access to reference fronts
for the bVRPTW studied, which makes it difficult to use these metrics. That is why, in this paper, we use the
unary hypervolume (uHV) (Zitzler et al., 2003). It is a metric defined relatively to a reference point Zref .
This indicator evaluates the accuracy, diversity, and cardinality of the front, and it is the only indicator with
this capability. Moreover, it can be used without knowing the true Pareto front of the problem. It reflects the
volume covered by the members of a non-dominated set of solutions. Thus, the larger the hypervolume, the
better the set of solutions.

5

3.2. Reference MOEA/D

MOEA/D (Zhang and Li, 2007) is a genetic algorithm that approximates the true Pareto front by decom-
posing the multi-objective problem into M scalar objective subproblems. The scalarization is obtained by
weighting each of the n objectives fk with a weight wk ∈ [0, 1], such that

∑n
k=1wk = 1. Thus the fitness

of a solution x for the subproblem i, defined with a weight wi = (wi
1, w

i
2, . . . , w

i
n), is:

f(x|wi) =
n∑

k=1

wi
k · fk(x) (4)

During an iteration, MOEA/D generates a new solution for the i-th subproblem by breeding solutions
obtained from close (notion defined hereafter) subproblems. The neighborhood, of size m, of a weight vec-
tor wi is defined as the set of its m closest (by means of the Euclidean distance) weight vectors among
{w1, . . . , wM}. Then the neighborhood Nm(i) of the i-th subproblem consists of the m subproblems de-
fined with a weight vector belonging to the neighborhood of wi. Note that each subproblem is associated
with its best solution found during the execution.

At the start of MOEA/D, M uniformly distributed weight vectors are determined and then it proceeds as
described in Algorithm 1. For each subproblem, a random initial solution is generated and evaluated, and
all these solutions form together the population used in the algorithm. Note that, the size of the population
does not change during the execution of the algorithm, and each solution of the population is associated with
exactly one subproblem. Each subproblem’s neighborhood (of size m) is also computed. When optimizing
subproblem i, a random pair of solutions is selected from its neighborhood. The Partially Mapped crossover
(PMX), developed by (Goldberg and Lingle, 2014), is applied with probability ppmx, and only one solution
is randomly kept. Then, a Local Search (LS), described in Section 4, is applied with probability pls. Indeed,
the mutation is frequently replaced by an LS (Knowles, 2002) in genetic algorithms. Finally, the resulting
solution is added to the set S of solutions generated during the iteration, and a few neighbors (at most two in
our case) of the subproblem i are updated. When all subproblems have been considered, S is merged with
the archive A, containing the non-dominated solutions generated during the execution of the algorithm. It
is important to use an external archive since the population may not be able to track all the non-dominated
solutions generated due to the discretization of the objective space. If memory issues are encountered, it
is common to bound the size of A, but here, with the bVRPTW, it was not necessary. If the termination
criterion is reached, the solutions of A are returned, otherwise, a new iteration is started. In the remaining
of the paper, this algorithm is our reference algorithm, called RMOEA/D.

3.3. Hybrid MOEA/D

3.3.1. Description of the Hybrid Framework
Hybridizing machine learning methods and metaheuristics has become quite common to solve combina-
torial problems. In Legrand et al. (2023), MOEA/D is hybridized with a knowledge discovery framework,
where the notion of knowledge groups is described. The fitness space is divided into kG regions each rep-
resenting a knowledge group. Each group is characterized by a vector, the reader is referred to the original
paper for further details. The region of each group is defined using the subproblems of MOEA/D, in particu-
lar, if a solution belongs to the region of a knowledge group, then the knowledge extracted from the solution
is added to that group. For this paper, we consider that each subproblem is associated with one group, be-
ing the closest one, considering the Euclidean distance between the aggregation of the subproblem and the

6

Algorithm 1: Reference MOEA/D Framework (RMOEA/D).

Input: M weight vectors w1, . . . , wM .
Output: The external archive A
/* Initialisation */

1 (A,S)← (∅, ∅)
2 P ← random initial population (xi for the i-th subproblem)
3 for i ∈ {1, . . . ,M} do
4 N (i)← indexes of the m closest weight vectors to wi

5 Obji ← {fk(xi) | 1 ≤ k ≤ n}
/* Core of the algorithm */

6 while stopping criterion not satisfied do
7 for i ∈ {1, . . . ,M} do
8 (i1, i2)← Select (N (i))

9 x← PMX(xi1 , xi2)
10 x← LS(x)
11 S ← S ∪ {x}
12 updateNeighbors(P,N (i), x)

13 A← updateArchive(A,S)
14 S ← ∅
15 return A

vector of each group. Moreover, the framework relies on two mechanisms, being the knowledge extraction
(Kext) and the knowledge injection (Kinj). Here, both mechanisms follow an intensification strategy, mean-
ing that for the extraction (resp. injection) the knowledge extracted (resp. injected) belongs to one group
only. In the context of the bVRPTW, Kext and Kinj are described in Section 3.3.2.

The framework of the hybridization is shown in Algorithm 2. Note that, if lines 3, 11, and 16 are re-
moved, then the algorithm becomes the original MOEA/D described in Section 3.2. At line 3, the procedure
createGroups creates all the knowledge groups. At line 11, the injection procedure Kinj is applied to the
current solution x, with probability pinj , using the knowledge stored in the closest group (intensification
strategy). At line 16, the extraction procedure Kext is used to extract the knowledge from the set of solutions
generated during the iteration. Then it updates the closest group (intensification strategy) of the subproblem
being optimized.

3.3.2. Knowledge Mechanisms for the bVRPTW
In this section, the Kinj and Kext learning mechanisms are defined to suit the bVRPTW. The mechanisms
are inspired by Arnold et al. (2021) who developed PILS, an optimization method relying on frequent
patterns from high-quality solutions to explore vast neighborhoods. PILS has already been integrated into
the Hybrid Genetic Search (HGS) of Vidal et al. (2014) and the Guided Local Search (GLS) of Arnold and
Sörensen (2019) to solve the Capacitated Vehicle Routing Problem (CVRP) with one single objective and
provided good results. Usually, patterns are defined as sequences of consecutive customers. Those with a
size between 2 and sizep, a user-defined parameter, are extracted from generated solutions by Kext. Since the
depot belongs to all routes, it is not considered inside patterns. In particular, a route r = (0, v1, . . . , v|r|, 0),
contains max(|r|−k+1, 0) patterns of size k. The extracted patterns are added to the corresponding group,
where their frequency is incremented. Kinj injects a set of NInj patterns in the solution x provided. Note

7

Algorithm 2: Hybrid MOEA/D Framework (HMOEA/D).

Input: M weight vectors w1, . . . , wM . The number kG of knowledge groups.
Output: The external archive A
/* Initialisation */

1 (A,S)← (∅, ∅)
2 P ← random initial population (xi for the i-th subproblem)
3 G ← createGroups(kG)
4 for i ∈ {1, . . . ,M} do
5 N (i)← indexes of the m closest weight vectors to wi

6 Obji ← {fj(xi) | 1 ≤ j ≤ n}
/* Core of the algorithm */

7 while stopping criterion not satisfied do
8 for i ∈ {1, . . . ,M} do
9 (i1, i2)← Select (N (i))

10 x← PMX(xi1 , xi2)
11 x← Kinj(x,G, i)
12 x← LS(x)
13 S ← S ∪ {x}
14 updateNeighbors(P,N (i), x)

15 A← updateArchive(A,S)
16 G ← Kext(G, S)
17 S ← ∅
18 return A

that, a pattern is kept in the solution only when the solution is improved. To select a pattern, first, its size is
randomly chosen among {2, . . . , sizep}. Hence the selection is not biased towards smaller, more numerous,
patterns. Then the pattern is randomly chosen among the NFrequent most frequent patterns of the same size,
which is also a parameter of the algorithm. When all the NInj patterns have been selected, they are injected
one by one according to the following steps. To inject a pattern, arcs connecting it are removed and the
nodes are reconnected to form a feasible solution. The reconnection is done optimally, but reversed patterns
are not considered due to time windows.

4. Neighborhood Exploration Mechanisms for Local Search

A solution to the problem is represented as a permutation of the customers, and it is evaluated with the
split algorithm provided by Prins (2004). For this study, we consider the same neighborhood as defined
by Schneider et al. (2017). The applied operators are: Relocate, Swap, and 2-opt∗. These operators are
commonly used in local search algorithms for routing problems since they are basic operators and they
are able to produce a large neighborhood. The relocate operator moves one customer to another location
(possibly on the same route). The swap operator exchanges two customers. The 2-opt∗ operator generalizes
the 2-opt (that is an exchange of two arcs in the same route), by involving different routes. The construction
of the neighborhood is similar to the one used in the Randomized Variable Neighborhood Descent (see,
e.g., Subramanian et al. (2013)), where the order of the neighborhood operators is kept during descent but

8

shuffled each time the LS is re-applied.
The exploration strategy of the neighborhood (of an operator) is discussed in Section 4.1. Concerning the

granular search, used to reduce the neighborhood, different metrics are proposed in Section 4.2 to evaluate
how close customers are.

4.1. Exploration of the Neighborhood

In this section, more details are given on how the neighborhood of a solution is explored. In local search,
the two classical neighborhood exploration strategies are the best and the first improvement methods (Hoos
and Stützle, 2004). Both of them start with the current solution and try to find an improving solution in their
neighborhood that is defined by an operator. While the best improvement generates all the neighboring solu-
tions of the current solution to find the neighbor with the best improvement, the first improvement evaluates
the neighboring solutions one by one and stops as soon as it finds one improving neighbor. Obviously, the
best strategy guarantees the best possible progress at each iteration of the local search but the time allotted
to this increases with the size of the problem. On the other hand, the first strategy allows a fast exploration
but many improving neighbors are set aside. In routing problems, the most commonly used neighborhood
exploration strategy is the classical best strategy (Subramanian et al., 2013; Schneider et al., 2017; Accorsi
and Vigo, 2021), where the best neighboring solution found by the application of one operator on the cur-
rent solution is selected. The operators presented above (Relocate, Swap, and 2-opt∗) provide a number of
possible neighbors that depends on the number of customers. Therefore, the neighborhood of a solution
increases with the size of the problem. When considering large problems, it may be necessary to speed up
each neighborhood exploration. However, the first strategy does not consider the best move for a considered
customer. A compromise between these two classical strategies called first-best has been proposed in the
literature for scheduling problems, particularly for permutation flow-shop (Ruiz and Stützle, 2007). Algo-
rithm 3 gives the pseudo-code of the first-best procedure. The procedure requires a neighborhood operator
(e.g., Swap, Relocate, or 2-opt∗), and the solution x which undergoes the LS. For the given operator each
customer (l.5) is tentatively moved to its best location until an improving move is found (l.8). When it is
the case, the customer is moved, and a new iteration starts. The authorized moves are generated by the
procedure generate moves (l.6). The algorithm stops when the whole neighborhood is explored without
finding any improving move.

4.2. Neighborhood Metric

Another way to accelerate neighborhood exploration is the reduction of the neighborhood size. In routing
problems, it is known that most of the arcs in good solutions involve close customers. Therefore, it may
be interesting to consider the closeness between customers when we generate the neighboring solutions
of a solution. The problem is to define this closeness. Indeed, for the classical VRPTW, when minimizing
the total traveled distance, the Euclidean distance between customers seems to be enough to quantify the
closeness between customers. However, when two (or more) objectives are considered, it is not as easy to
define a relevant metric. Once a metric is defined, a natural way to reduce the neighborhood of an operator
is to consider moves including the δ nearest customers for the metric defined. Roughly speaking, this is the
concept behind the granular search that was introduced by Toth and Vigo (2003). Having a method that
restricts the neighborhood to moves that seem relevant, is interesting to spare time and resources during the
LS.

For our study, we compare three different metrics. The first metric, called d1, is the classical metric

9

Algorithm 3: The first-best procedure.
Input: A solution x and a neighborhood operator N
Output: A local optimum

1 improve← True
2 while improve do
3 improve← False
4 customers← shuffle([1 . . . N])
5 for customer ∈ customers do
6 moves← generate moves(customer, N)
7 x′ ← best solution obtained by applying a move from moves
8 if f(x′) < f(x) then
9 x← x′

10 improve← True
11 break

12 return x

used in single-objective routing problems: the closeness between two customers is simply evaluated as the
Euclidean distance between them. The second metric, d2, is an aggregation between two costs, each one
related to one of the objectives. The first cost represents the Euclidean distance between the customers (d1
in fact), and it is related to the total traveled distance objective. The second cost evaluates the waiting time
incurred by going from one customer to another one (not symmetric in general due to the TW). This cost is
related to the total waiting time of drivers. More precisely, each subproblem generated in MOEA/D, with
weight vector w = (w1, w2), has its own metric that is defined as:

dw2 (u, v) = w1 ·
distance(u, v)−MinDistance

MaxDistance−MinDistance
+ w2 ·

WT (u, v)−MinWT

MaxWT −MinWT
(5)

where u and v are two customers, MaxDistance (resp. MinDistance) is the largest (resp. smallest)
distance between two customers, and MaxWT (resp. MinWT) is the largest (resp. smallest) value of
WT between two customers (as defined by Equation 6). These values are used to normalize the distances
and waiting times, and they are computed at the beginning of the execution since they only depend on the
characteristics of the instance. The value WT (u, v) is the waiting time incurred by going to v from u. If
[au, bu] (resp. [av, bv]) is the time window of customer u (resp. v), su the service time of customer u and
tuv the traveling time from u to v, then WT is expressed as follows:

WT (u, v) = max(0, av − (au + su + tuv)) (6)

The third and final metric, d3 is a particular case of d2 where the weights of the two costs are the same (i.e.,
0.5 for both). This metric is interesting because it is independent of the aggregations defined in MOEA/D,
and it can therefore be used in another framework, without defining any aggregations.

The two strategies presented in Section 4.1, and the three metrics defined in this section, lead to six
variants, being fbd1, fbd2, fbd3, bd1, bd2 and bd3, where fb (resp. b) stands for first-best (resp. best)
strategy and dX is the metric. These six variants are generalized through the HMOEA/D framework (see
Algorithm 2), where the exploration strategy and the metric are parameters of the LS. These variants are

10

also compared with the reference algorithm, RMOEA/D, described in Section 3.2.

5. Experimental Setup

5.1. Benchmarks

Solomon’s benchmark (Solomon, 1987) is a set of VRPTW instances, frequently used in the literature to
evaluate the performance of multi-objective algorithms (Ghoseiri and Ghannadpour, 2010; Qi et al., 2015;
Moradi, 2020). Thus, we use this benchmark to evaluate the performance of all seven variants. The bench-
mark contains 56 instances, each with 100 customers, divided into three categories according to the type
of generation used: R (random), C (clustered), or RC (random-clustered). The R category (23 instances)
contains instances where customers are randomly located in a 100 × 100 grid, while the instances of cat-
egory C (17 instances) contain clusters of customers. The category RC (16 instances) contains instances
where half the customers are randomly located and the other half is clustered. Each category is divided into
two classes, either 1 or 2, according to the width of time windows. Instances of class 1 have tighter time
windows than instances of class 2, meaning that instances 1 are more constrained. For our experiments,
the RC instances are discarded, to highlight the differences in the tuning between random instances and
clustered instances.

We also consider bigger instances from the benchmark of Gehring and Homberger (Gehring and
Homberger, 1999). This set extends the Solomon one and considers a larger number of customers. Indeed,
it contains instances of size 200, 400, 600, 800, and 1000. These instances are very similar to the instances
of Solomon since there are the three categories R, C, and RC, and for each category, two classes (1 or
2), depending on the width of the time windows. Contrarily to Solomon’s set, each category of instance is
equally represented (each one contains 10 instances with tight time windows (class 1) and 10 instances with
wide time windows (class 2)) For our experiments, we considered the instances of size 200, without the RC
category.

5.2. Termination Criterion and Performance Assessment

Given the size N of an instance (i.e., the number of customers), we set the termination criterion of all the
variants to 9 ∗ N2/125 seconds. It means that the algorithms are executed during 720 seconds (i.e., 12
minutes) on instances of size 100 and 2880 seconds (i.e., 48 minutes) on instances of size 200. During our
preliminary studies, it was enough to obtain accurate and robust results.

The performance of the solution sets is evaluated using the unary hypervolume (Zitzler et al., 2003)
(uHV), which quantifies the volume of the region dominated by the solutions in the set. Since the true Pareto
front of the problem is unknown, metrics that depend on it (such as epsilon or GD) cannot be utilized.
The normalization points for the objectives of each solution are obtained through experiments and are
updated dynamically when a new point is discovered. Known optimal values concerning the total traveled
distance are available at CVRPLIB. To compute the uHV we normalize the values of the objectives with
the normalization points obtained and then we use the point (1.001, 1.001) as a reference. The experiments
are run on two computers “Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz”, with 24 cores each. The
variants have been implemented using the jMetalPy framework (Benitez-Hidalgo et al., 2019). The code is
available at https://github.com/Clegrandlixon/data itor2023.

11

http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://github.com/Clegrandlixon/data_itor2023

6. Experimental Protocol

6.1. Tuning

The reference MOEA/D (RMOEA/D) uses the following parameters: M , the number of subproblems con-
sidered, and m the size of the neighborhood of each subproblem. The probabilities associated with each
mechanism are ppmx for the crossover and pls for the LS. The granularity parameter δ is used to reduce
the neighborhood during LS (cf. Section 4.2). The exploration strategy S (either best or first-best) and
the metric d (either d1, d2, or d3) are also parameters of MOEA/D, and the choice is left to the tuning.
The hybrid MOEA/D (HMOEA/D) has, in addition, the following parameters: the number of knowledge
groups created kG , the probability of injection pinj , the maximal size sizep of the patterns extracted, and
the number NInj of patterns injected, chosen among the NFrequent most frequent patterns. According to a
preliminary study (Legrand et al., 2023) and existing works (Arnold et al., 2021), we set m = 1/4 ×M
and NFrequent = 5×NInj . We propose a different range of values for the eight remaining parameters (cf.
Table 1) to define the configuration space in irace.

The tuning is decomposed into three main steps. A first tuning is performed on all the variants, with the
whole configuration space defined above. A budget of 2000 is granted to irace, spread between 8 iterations.
We generated a set of 20 instances (of size 100) per category to perform the tuning, following the guide-
lines provided by Uchoa et al. (2017). The generated instances mimic Solomon’s instances. Moreover, we
separate the tuning of the algorithms on instances R and C, since they do not have the same structure.
The tuning of the original MOEA/D allows seeing which neighborhood exploration strategy and metric
are better when not performing learning steps. In addition, the tuning of the hybrid framework grants a set
of good configurations that can be used to analyze the influence of parameters. Moreover, we perform an
additional tuning, where the exploration strategy and the metric are not set in case of learning (i.e., tuning
of HMOEA/D directly), allowing us to compare which strategy and metric are better when the learning
mechanism is used. See Section 7.1 for more details.

Secondly, we analyze the elite configurations returned for the hybrid variants. Each configuration returned
is a local optimum for irace and thus should be the best configuration (statistically) in its close neighbor-
hood. For each configuration, we generate all the possible configurations distant by 1 (with the hamming
distance). More precisely, only one parameter is changed at a time (the possible values are the values avail-
able in Table 1), while keeping the values of the other parameters unchanged. In order to check whether
the configurations returned by irace are good or not, we evaluate the generated configurations on the tuning
instances (like before), with the same seed to be fair with the methodology of irace. The hypervolumes
obtained are compared in Section 7.2.

In the third part, we use the results of the experiment above to adapt and reduce the configuration space.
With the reduction of the space, irace should return more accurate results. Moreover, the number of aggre-
gations (i.e., the number of subproblems) generated is set to 40. By setting this parameter, it is easier to
see the impact of the number of groups on the performances of the algorithms. We perform the new tuning
of the six variants fbd1, fbd2, fbd3, bd1, bd2, and bd3 on the new space. The budget allocated to irace is
reduced accordingly to 1000. The instances are those used for the first tuning. The configurations returned
are discussed in Section 7.3.

6.2. Evaluation of Performances

Through our experiments, we investigate the influence of both the strategy of exploration and the metric
used during the LS. The algorithms are evaluated with the best configuration returned by irace at the end of

12

Table 1: Parameter’s space given to irace. The granularity and the number of patterns injected are expressed
as a percentage of the size of the instance. The parameter representing the number of groups is defined as a
percentage of the number of subproblems (when this parameter is equal to 1, only 1 group is created, since
0 groups is not a valid value). The space contains 388 800 configurations.

Parameter Range

Aggregations: M (20, 40, 60, 80, 100)
Granularity: δ (10%, 25%, 50%, 75%, 100%)
Probability (PMX): ppmx (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)
Probability (LS): pls (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)
Strategy: S {best, first-best}
Metric: d {d1, d2, d3}
Number of groups: kG (1, 10%, 25%, 50%, 75%, 100%)
Maximum size of pattern: sizep (2, 5, 8)
Number of injections: NInj (25%, 50%, 75%, 100%)
Probability (Injection): pinj (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)

the tuning.
In the first experiment, we use Solomon’s instances of size 100 (categories R and C), which represent a

total of 40 instances. Each variant is executed 30 times on the test instances. For each algorithm, the k-th
run of an instance is executed with the same seed, being 10(k − 1), allowing a fair comparison. We recall
that the termination criterion is set to 720 seconds (i.e., 12 minutes) for all variants. For each category of
instance (either R or C), we compute the average uHV obtained over the 30 runs. We perform a Friedman
test on the average uHV, to know if all algorithms are equivalent, and if it is not the case, we apply a pairwise
Wilcoxon test with the Bonferroni correction to know which algorithms are statistically better.

A second experiment is performed on Gehring and Homberger’s instances of size 200 (on categories R
and C too). We keep the same configurations as before (parameters are scaled accordingly, in particular,
the granularity and the number of patterns injected). Again, we perform 30 runs on each instance, and each
algorithm is executed with the same seeds. The termination criterion is now set to 2880 seconds (i.e., 48
minutes). We perform the same statistical tests to compare the average uHV obtained.

7. Tuning and Parameters

7.1. Preliminary Study

For this set of experiments, we recall, that we performed a tuning of all considered algorithms with irace.
The configuration space is given in Table 1. The range of each parameter is chosen to explore various parts
of the space. For more details about the tuning, see Section 6.1. The tuning performed by irace on C (resp.
R) instances led to the elite configurations stored in Table 2 (resp. Table 3). Only the best elite configuration
for each variant is reported (i.e., the configuration of rank 1). The reference algorithm, RMOEA/D, seems
more efficient with the first-best exploration strategy on both categories of instances. The same conclusion
is reached for the hybrid one (HMOEA/D). Moreover, the metric d3 seems more appropriate to C instances,
and d2 to R instances, according to the results obtained for RMOEA/D and HMOEA/D. In fact, C instances
are, in general, more simple to solve. Indeed, the closeness between customers is structurally integrated into
the instance, thus a simplified metric, that is d3, where the waiting time between customers discriminates

13

easily close customers, seems enough to obtain good results. The metric d2 is more relevant for R instances,
less structured, since the weights between the distance and the waiting time vary according to the aggrega-
tion of the subproblem solved. Hence, d2 discriminates customers according to each aggregated objective.
Note that, in neither case the metric d1 is chosen, meaning that d1 does not seem adapted to solve these
instances in a bi-objective context, as expected.

Concerning the other parameters, we remark that the LS is, in most cases, applied with probability 0.10,
which is relatively low, but it is a costly step in terms of execution time. In addition, the granularity remains
high (with a value of the 50% or 75% closest customers considered during the search), and the choice of
the metric does not seem to have a great impact on it. Moreover, the LS is much more impacting at the
beginning of the algorithm, when solutions are bad, thus it may not be interesting to use it too frequently.
On the other hand, the injection is applied with a much higher probability (either 0.75 or 1.00). Indeed,
the injection operator needs fewer resources and is useful (in terms of diversification and intensification)
throughout the execution of the algorithms. During the injection, at least 50 patterns are tentatively injected,
and the maximal size of the extracted patterns is almost always set to 5 (surprisingly, it was set to 8 only for
the fbd2 variant on C instances). The value of 5 was the value chosen by the authors of PILS (Arnold et al.,
2021). The crossover operator is applied with a probability below 0.50 when using the KD mechanism, i.e.,
in the hybrid variants (HMOEA/D, fbd1, fbd2, fbd3, bd1, bd2, and bd3), whereas it is applied in every iter-
ation with the reference MOEA/D. Indeed, in RMOEA/D, the crossover is the only operator that introduces
diversity in the solutions, necessary to escape local optima. It is not the case with the other variants, due to
the presence of the injection operator. The number of aggregations used is coherent with the values used in
general (around 40 aggregations). Only RMOEA/D requires 80 aggregations on R instances to generate bet-
ter and diverse solutions. Finally, the number of knowledge groups used is very variable, but low values are
not used. In particular, strictly more than one groups are created. To be more precise, at least 4 groups are
used for each variant. Our main hypothesis concerning the use of many groups is that the structure between
two solutions (in terms of patterns extracted) in the objective space may vary significantly, even between
solutions with close objective values. As a consequence, many groups are created to somehow reduce the
structural gap between solutions in the same group.

More generally, we observe some differences between the tuning performed for C instances and the tun-
ing performed for R instances. For example, the probability of injection tends to be higher for C instances,
while the number of injected patterns tends to be higher for R instances. It validates our choice to tune sep-
arately the algorithms on instances R and C. Moreover, many configurations are very similar. Indeed most
of them only differ by two or three parameters or use close parameters. In the following, we investigate the
influence of the parameters on a subset of elite configurations, in order to see, if the configurations returned
are truly local optima in the configuration space provided, and if the configurations can be improved by
reducing the space.

7.2. Influence of Parameters on Elite Configurations

Given an elite configuration from Table 2 (resp. Table 3), the set of its neighbors obtained by modifying one
parameter (e.g. the number of aggregations) is evaluated on the 20 generated instances of category C (resp.
R). The same seed is used for all the evaluations, which is similar to a run performed by irace. The results
are reported in Figure 1a (resp. Figure 1b). The (blue) boxplot on the row Initial represents the performances
of the elite configuration as returned by irace. In other words, it is the reference boxplot. Each boxplot on the
rows below represents the performance of the configurations obtained when the corresponding parameter
is modified. We remark that only a few parameters have a noticeable impact on the configuration. The
most impacting parameters are the strategy (S) used during the LS, the probability of the PMX, and the

14

Table 2: Best elite configurations returned by irace when tuning on C instances. The symbol “-” reflects the
absence of the parameter during the tuning.

Parameter RMOEA/D HMOEA/D fbd1 fbd2 fbd3 bd1 bd2 bd3
M 40 40 20 40 40 20 40 40
δ (%) 50 75 50 75 50 75 50 50
ppmx 1.00 0.50 0.50 0.25 0.25 0.50 0.10 0.25
pls 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.10
S first-best first-best - - - - - -
d d3 d3 - - - - - -
kG (%) - 50 25 10 25 100 10 50
sizep - 5 5 8 5 5 5 5
NInj (%) - 100 50 50 75 50 50 75
pinj - 0.75 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Best elite configurations returned by irace when tuning on R instances. The symbol “-” reflects the
absence of the parameter during the tuning.

Parameter RMOEA/D HMOEA/D fbd1 fbd2 fbd3 bd1 bd2 bd3
M 80 40 20 60 40 40 40 20
δ (%) 75 75 50 75 75 50 50 50
ppmx 1.00 0.50 0.50 0.50 0.25 0.50 0.25 0.50
pls 0.10 0.10 0.25 0.10 0.10 0.10 0.10 0.10
S first-best first-best - - - - - -
d d2 d2 - - - - - -
kG (%) - 100 25 100 75 100 10 100
sizep - 5 5 5 5 5 5 5
NInj (%) - 100 75 75 75 75 75 75
pinj - 0.75 1.00 1.00 0.75 0.75 0.75 0.75

probability of injection.
The strategy only takes two values, and according to the results obtained during the tuning, it seems

coherent that changing the best strategy to the first-best strategy improves the results obtained, while the
contrary deteriorates the results. Note that, here, the injection process is activated (all elite configurations
have a nonnegative probability of injection).

The detailed results for the LS probability are shown in Figure 2. For each possible value of the pa-
rameter, the hypervolumes obtained with the corresponding configuration are represented. If nothing really
interesting is observed when the strategy is best, with the first-best one it seems better to consider lower
values (between 0.10 and 0.25).

Similarly, the uHV tends to increase when the probability of PMX increases until a plateau is reached
after the value of 0.75. The influence of the crossover is even more important with the best strategy.

Concerning the probability of injection, the average uHV increases, along with the probability. In partic-
ular, when the injection is disabled (probability 0.0), we retrieve the fact that first-best strategy performs
better than best strategy when no learning is used. Moreover, the injection should be applied with high
probability (above 0.75) in general. For the other parameters, there are almost no variations of the uHV

15

Elite bd1 Elite bd2 Elite bd3

Elite fbd1 Elite fbd2 Elite fbd3

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Probability (Injection)
Number of Injections

Size of Pattern
Number of Groups

Metric
Strategy

Probability (LS)
Probability (PMX)

Granularity
Aggregations

Initial

Probability (Injection)
Number of Injections

Size of Pattern
Number of Groups

Metric
Strategy

Probability (LS)
Probability (PMX)

Granularity
Aggregations

Initial

Hypervolume

P
a

ra
m

e
te

rs

(a) Instances of Category C.

Elite bd1 Elite bd2 Elite bd3

Elite fbd1 Elite fbd2 Elite fbd3

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Probability (Injection)
Number of Injections

Size of Pattern
Number of Groups

Metric
Strategy

Probability (LS)
Probability (PMX)

Granularity
Aggregations

Initial

Probability (Injection)
Number of Injections

Size of Pattern
Number of Groups

Metric
Strategy

Probability (LS)
Probability (PMX)

Granularity
Aggregations

Initial

Hypervolume

P
a
ra

m
e
te

rs

(b) Instances of Category R.

Fig. 1: Performances of elite configurations obtained on (a) C instances and on (b) R instances, when one
parameter is modified. The (blue) boxplot refers to the elite configuration as returned by irace.

when the value of the parameter changes. In theory, it means that we could choose any possible value for
the remaining parameters, without changing the uHV too much. Moreover, it also explains why the set of
elite configurations returned by irace for one variant, contains in general very different values for those
parameters. In particular, considering the number of groups, no value seems more interesting than another
one to obtain good results. It is very dependent on the other parameters (and in particular, the number of
aggregations). We think, that this parameter should also depend on the instance considered since the Pareto

16

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

0.0

0.1

0.25

0.5

0.75

1.0

Hypervolume

V
a
lu

e
 o

f
th

e
 p

a
ra

m
e
te

r

(a) Category C.

Elite bd1 Elite bd2 Elite bd3 Elite fbd1 Elite fbd2 Elite fbd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

0.0

0.1

0.25

0.5

0.75

1.0

Hypervolume

V
a
lu

e
 o

f
th

e
 p

a
ra

m
e
te

r

(b) Category R.

Fig. 2: Influence of the LS probability on instances of (a) category C and (b) category R. The red dot
represents the mean uHV.

Table 4: Reduction of the configuration space. The parameters with a modified range are underlined in red.
The space now contains 1 458 different configurations.

Parameter Range

Aggregations: M (40)
Granularity: δ (25%, 50%, 75%)
Probability (PMX): ppmx (0.25, 0.50, 0.75)
Probability (LS): pls (0.10, 0.20, 0.30)
Number of groups: kG (1, 10%, 25%, 50%, 75%, 100%)
Maximum size of pattern: sizep (2, 5, 8)
Number of injections: NInj (100%)
Probability (Injection): pinj (0.50, 0.75, 1.00)

fronts between two instances can be very different.

7.3. Reduced Configuration Space and Final Tuning

As explained in the former section, some parameters do not have much influence on the hypervolumes
returned. That is why we decided to set the number of patterns injected to 100% of the size of the instance
(i.e., 100 patterns are tentatively injected on instances of size 100). Note that, it was the value chosen
by Arnold et al. (2021) in their own experiments. Moreover, we decided to set the number of aggregations
to 40, in order to see if the number of groups used can be more precisely tuned during the tuning. According
to what has been said in the previous section, we reduced the range of values for the probability of PMX
to (0.25, 0.50, 0.75), and for the probability of injection to (0.50, 0.75, 1.00), being the most interesting
values. Concerning the probability of LS, we changed the range to (0.10, 0.20, 0.30), in order to give more
adapted parameters to irace. Finally, the granularity is also reduced to (25, 50, 75), since extreme values
never belong to elite configurations. All the changes are reported in Table 4.

Using the reduced space of configuration, we performed a new tuning, only on the six variants fbd1, fbd2,
fbd3, bd1, bd2, bd3. Indeed, RMOEA/D already had a small configuration space (it has fewer parameters to
fix), and the elite configurations returned for HMOEA/D were already in the reduced configuration space
defined. The budget allocated to irace is reduced from 2000 to 1000. The best elite configurations are

17

Table 5: Best elite configurations, from the reduced configuration space, returned by irace on instances of (a)
category C, and (b) category R.

(a) Category C.

Param. fbd1 fbd2 fbd3 bd1 bd2 bd3

δ (%) 50 50 50 50 50 50
ppmx 0.50 0.50 0.50 0.50 0.50 0.50
pls 0.10 0.10 0.10 0.10 0.10 0.10
kG (%) 50 50 100 100 100 100
sizep 5 5 5 5 2 2
pinj 0.75 1.00 1.00 1.00 0.75 0.75

(b) Category R.

fbd1 fbd2 fbd3 bd1 bd2 bd3

75 75 75 50 50 25
0.50 0.50 0.50 0.50 0.50 0.50
0.10 0.20 0.10 0.10 0.10 0.10
50 25 50 100 100 50
8 8 8 8 8 2

1.00 1.00 0.75 0.75 1.00 0.75

reported in Table 5. At first, we notice that the differences between the two categories of instance are more
important, considering the granularity parameter (δ), and the maximum size of patterns extracted (sizep).
Indeed, the granularity is always set to 50 on C instances, which seems coherent, since these instances
contain clusters of customers. The granularity tends to be slightly higher on R instances, except for the
variant bd3, which has the lowest granularity. The maximum size of the patterns is now 8 for most of the
variants on R instances, meaning that bigger patterns are interesting when instances are not well structured.
For C instances, the maximum size of the pattern remains coherent, since smaller patterns are enough to
perform interesting moves.

Another major change concerns the number of knowledge groups used during the execution of the algo-
rithms. The variant being set, more groups are generated on C instances than on R instances. In addition,
more groups are generated with strategy best than with strategy first-best.

Concerning the other parameters, the probability of PMX is set to 0.50 for all variants, the probability
of LS is set to 0.10 (except for the variant fbd2 where it is 0.20), and the probability of injection remains
similar to what we saw during the first tuning (see Table2 and Table 3).

8. Experimental Results and Discussion

The first set of experiments is performed on Solomon’s instances of size 100 belonging to categories R and
C. According to the category, we use the corresponding elite configuration in Table 5. The average uHV
obtained through the 30 runs, for each category of instances, is shown in Figure 3 (plot above). The results
obtained with the first-best strategy are slightly more robust, with smaller boxplots, than those obtained
with the best one. Moreover, the variant fbd2 always seems better than the other variants, especially on R
instances. Among the six variants, it is the variant bd3 that returned the worst results.

Table 6 contains the average ranking of the different algorithms on all classes of instances. In this table,
the ranks of statistically best algorithms on a class of instances are put in bold. In particular, the variants
fbd2 and fbd3 are statistically equivalent on C1 instances and are better than the other variants. On C2
instances, the variants fbd1, fbd2, fbd3, and bd1 are equivalent. It is not surprising since C2 instances are
the easiest ones. Moreover, it means that the strategy best with the metric d1, which is usually used in the
literature, returns good results when the problem can be modeled by one objective. In addition, all the hybrid
MOEA/Ds are better than the reference RMOEA/D, which has very low uHV. In fact, RMOEA/D gets easily
stuck in local optima, in particular when there must be only one solution on the final front. On R instances,
statistically, the best overall algorithm is fbd2. However, fbd1 is equivalent to fbd2 on R1 instances. As a

18

consequence, the strategy first-best with the metric d2, seems to be the best combination, considering all the
classes of instances of size 100. This result has already been observed since these parameters were selected
for the configuration returned by irace for HMOEA/D, i.e. when the exploration strategy and the metric were
left as parameters to be tuned (see Table 3). More precisely, the results obtained for all C instances (except
C103 and C104) show that the Pareto front contains only one solution, minimizing both objectives. In all
the other instances the optimal value of the total traveled distance is not reached by our algorithms, however
on some instances (e.g. R101 and R102) it is very close. Concerning the total waiting time, it is always
possible to create a solution without waiting time, and our algorithms find them. In addition, we measured
the correlation between the objectives on the reference fronts obtained. The reference fronts used, and the
associated correlations are available at dataItor2023. Without doing a rigorous analysis of the objective
space of the instances like Castro-Gutierrez et al. (2011), we can not say more than some instances should
be avoided when studying multi-objective optimization. Table 7 and Table 8 show more detailed results
about the convergence of the algorithms fbd2, bd2, and RMOEA/D. We can remark that, as expected, the
final uHV obtained by fbd2 is higher than the one obtained by bd2, and RMOEA/D. Moreover, fbd2 is
able to reach 80% of the uHV of the reference front significantly faster than RMOEA/D and bd2 on many
instances. When the algorithm does not reach 80% of the uHV at the end of the execution, the maximal time
allocated is used instead. It shows that using the learning mechanism with the first-best strategy speeds up
the convergence process.

The second set of experiments is performed on Gehring and Homberger’s instances of size 200. Again,
we kept only the instances of categories R and C. The configurations used are the same as the configurations
used for the instances of Solomon, except that the granularity is doubled, as well as the number of patterns
injected. Indeed, both of these parameters are directly linked to the size of the instance. In Figure 3, we
clearly observe that for the benchmark of size 200, the variants using the first-best strategy are much more
robust than the variants using the best one. Moreover, when the exploration strategy is set, there is almost
no change when the metric is modified. One hypothesis should be that the given values for the granularity
are too high for these instances. Considering the Table 6, the variant fbd3 is statistically better on instances
C1 (with tight time windows), while the variants fbd2 and fbd3 are statistically equivalent on instances
C2 (with wide time windows). Moreover, these two algorithms remain better than all the others. On R1
instances, we do not reach the same conclusion. Indeed, the variant fbd1 is statistically better now. However,
on R2 instances, the three variants fbd1, fbd2, and fbd3 are statistically equivalent and the results returned
by these three variants are very close. It is important to notice that with a specific tuning on instances of size
200, we may have reached different conclusions. That being said, strategy first-best is always better than
strategy best. Concerning the metrics, we finally observe that they have a relatively low impact on instances
of a bigger size. We meet again the result obtained in Section 7.2, where the metrics did not seem to have an
impact on the elite configurations. The reference fronts, the correlations, and additional convergence results
are publicly available at dataItor2023.

9. Conclusion

This paper addresses the bi-objective vehicle routing problem with time windows (bVRPTW), a routing
problem where both the total traveling cost and the total waiting time of drivers have to be minimized.
We chose to solve the bVRPTW with a hybrid MOEA/D (Legrand et al., 2023) where knowledge discov-
ery mechanisms are used to extract patterns, sequences of customers here, and inject them into solutions.
Indeed, MOEA/D is known to obtain pretty good performance when solving a bi-objective combinatorial
optimization problem. This hybrid MOEA/D framework is modular and both strategical components and
parameter values can be fixed. In the mutation step of MOEA/D, local search algorithms are widely used to

19

https://github.com/Clegrandlixon/data_itor2023
https://github.com/Clegrandlixon/data_itor2023

C1 C2 R1 R2

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

bd3

bd2

bd1

fbd3

fbd2

fbd1

Hypervolume

V
a

ri
a

n
ts

C1 C2 R1 R2

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

bd3

bd2

bd1

fbd3

fbd2

fbd1

Hypervolume

V
a

ri
a

n
ts

Fig. 3: Results obtained on the different categories of instances, of (left) Solomon’s benchmark for size 100,
and (right) Gehring and Homberger’s benchmark for size 200.

Table 6: Average ranking of all the algorithms on the different categories of instances. Bold ranks are
statistically equivalent.

Size 100 200

Category C R C R

Class C1 C2 R1 R2 C1 C2 R1 R2

RMOEA/D 7.0 7.0 6.8 5.3 7.0 4.8 6.8 4.0
fbd1 3.7 2.4 2.3 2.3 3.0 2.9 1.1 1.7
fbd2 2.3 2.3 1.4 1.0 1.9 1.4 2.6 1.7
fbd3 2.2 2.9 2.5 2.7 1.1 1.7 2.4 2.6
bd1 3.6 3.3 5.1 4.7 4.0 5.3 6.1 6.5
bd2 4.9 4.2 3.9 5.0 5.3 5.6 5.0 6.5
bd3 4.4 5.9 6.1 7.0 5.7 6.5 4.3 5.0

intensify the search in specific regions and find the best local optimum solutions. While routing problems
generally used a local search with a best improvement strategy (Hoos and Stützle, 2004) and with a distance
metric to reduce the neighborhood size (Schneider et al., 2017), we adapted from scheduling the first-best
improvement strategy and enhanced the distance metric with the waiting time information of customers. Ex-
periments have been conducted on two benchmarks of the literature. We showed that the first-best strategy
was better adapted than the best strategy, in most cases, to solve bVRPTW instances.

These results are supported by a rigorous tuning of the hybrid MOEA/D and a deep analysis of the
influence of its parameters. It emerges from this analysis that only a few parameters are really impacting,
like the probability of injection, the probability of crossover, and the probability of local search. Moreover,
it is unnecessary to consider the interval [0, 1] entirely, but only a subset containing the most interesting
values. The other parameters should either evolve during the execution of the algorithm, in order to adapt
to the instances solved (like the granularity, the number of groups, or the number of patterns injected), or
be directly set (like the number of aggregations and the maximum size of patterns extracted). This study
also allowed us to assess the configurations returned by irace, in particular on the choice of the exploration
strategy and the distance metric. Nevertheless, the granularity value returned is higher than expected. Since
it does not highly impact the performances of the algorithms, we advise using a smaller value (like 0.25 or
0.50 instead of 0.75) to reduce the memory allocated during the execution. Moreover, the analysis of the
neighborhood of elite configurations shows that the configuration space i.e., the values of parameters, was

20

Table 7: Detailed results for algorithms fbd2, bd2, and RMOEA/D on C instances. From left to right: the
average size of the front, the average uHV, and the average time to reach 80% of the reference uHV.

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

C101 1.0 1.002 57.3 1.0 1.002 197.1 1.8 0.354 682.7
C102 1.1 0.988 120.7 1.0 0.980 362.6 3.2 0.033 720.3
C103 1.5 0.984 211.6 2.0 0.712 614.6 5.3 0.000 720.4
C104 1.7 0.905 316.4 2.8 0.588 702.9 4.5 0.000 720.4
C105 1.0 0.989 111.0 1.0 0.989 248.7 1.9 0.068 715.2
C106 1.0 1.002 69.0 1.0 1.002 255.5 1.9 0.208 720.4
C107 1.0 0.972 140.2 1.0 0.962 324.6 1.5 0.013 720.2
C108 1.0 0.971 158.4 1.0 0.925 424.8 1.4 0.001 720.3
C109 1.0 0.944 191.5 1.0 0.802 505.5 1.5 0.000 720.3
C201 1.0 1.002 33.8 1.0 1.002 171.0 1.2 0.948 205.0
C202 1.0 0.994 97.4 1.0 1.002 308.1 1.0 0.743 573.3
C203 1.0 0.937 106.4 1.1 0.890 404.0 1.1 0.704 529.1
C204 1.0 0.849 333.4 1.4 0.664 658.9 1.5 0.450 657.7
C205 1.0 0.990 47.2 1.0 0.973 259.8 1.1 0.865 345.0
C206 1.0 1.002 55.6 1.0 0.978 372.1 1.0 0.821 481.5
C207 1.0 1.002 49.5 1.0 0.970 332.0 1.1 0.749 487.9
C208 1.0 1.002 56.3 1.1 0.987 371.7 1.3 0.751 507.6

well defined since a single parameter cannot significantly change the performance obtained on the tuning
instances.

In future works, we will investigate the adaptive side of the algorithm by automatically updating some
parameters during the execution of the algorithm. Besides, we will tackle different variants of the bVRPTW
to validate or not our conclusions when the objectives are modified.

Acknowledgements

This work has been supported by the French National Research Agency through the AI PhD@Lille program
(ANR-20-THIA-0014). This support is gratefully acknowledged.

References

Accorsi, L., Vigo, D., 2021. A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems.
Transportation Science 55, 4, 832–856.

Arnold, F., Santana, Í., Sörensen, K., Vidal, T., 2021. PILS: Exploring high-order neighborhoods by pattern mining and injection.
Pattern Recognition

Arnold, F., Sörensen, K., 2019. Knowledge-guided local search for the vehicle routing problem. Computers & Operations Research
105, 32–46.

Baños, R., Ortega, J., Gil, C., Márquez, A.L., De Toro, F., 2013. A hybrid meta-heuristic for multi-objective vehicle routing
problems with time windows. Computers & Industrial Engineering 65, 2, 286–296.

Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J., 2019. jmetalpy: A python framework for multi-objective

21

Table 8: Detailed results for algorithms fbd2, bd2, and RMOEA/D on R instances. From left to right: the
average size of the front, the average uHV, and the average time to reach 80% of the reference uHV.

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

R101 72.2 0.915 65.0 70.6 0.911 229.7 47.7 0.907 73.4
R102 45.6 0.923 137.8 45.0 0.911 296.8 27.1 0.876 232.7
R103 23.7 0.937 277.8 23.4 0.899 457.0 20.3 0.724 721.1
R104 6.0 0.915 341.2 6.3 0.881 533.4 6.4 0.499 721.2
R105 12.3 0.941 166.2 13.9 0.906 299.6 7.7 0.862 438.6
R106 6.2 0.894 258.8 8.0 0.878 406.5 5.5 0.763 700.1
R107 6.0 0.851 496.2 5.1 0.828 602.9 6.8 0.524 720.9
R108 1.8 0.880 358.2 1.5 0.851 532.8 2.5 0.389 720.9
R109 1.2 0.915 259.5 1.4 0.877 450.8 1.5 0.727 680.3
R110 1.1 0.843 368.9 1.3 0.849 496.6 1.3 0.637 717.1
R111 1.9 0.850 423.1 1.9 0.809 583.4 2.4 0.517 720.7
R112 1.0 0.845 480.2 1.0 0.804 559.9 1.0 0.387 720.4
R201 52.1 0.854 230.3 52.2 0.843 376.4 33.6 0.814 525.9
R202 44.7 0.857 311.6 42.1 0.849 457.3 25.8 0.824 515.1
R203 34.5 0.859 338.4 31.2 0.819 600.0 21.3 0.797 613.9
R204 13.2 0.806 548.7 11.9 0.752 679.7 8.1 0.719 706.6
R205 20.6 0.839 413.7 22.3 0.833 509.6 14.4 0.798 637.2
R206 22.5 0.867 349.4 22.9 0.839 534.9 13.0 0.821 581.8
R207 19.4 0.828 467.1 16.4 0.805 622.5 10.7 0.776 680.6
R208 5.5 0.808 541.6 6.5 0.790 605.5 3.8 0.720 718.8
R209 12.0 0.808 543.2 12.6 0.776 648.0 10.0 0.755 712.1
R210 20.4 0.855 368.3 20.5 0.830 555.0 12.3 0.791 649.3
R211 1.0 0.786 548.7 1.0 0.768 618.9 1.0 0.732 673.5

optimization with metaheuristics. Swarm and Evolutionary Computation 51, 100598.
Blot, A., Marmion, M., Jourdan, L., 2018. Survey and unification of local search techniques in metaheuristics for multi-objective

combinatorial optimisation. J. Heuristics 24, 6, 853–877.
Castro-Gutierrez, J., Landa-Silva, D., Pérez, J.M., 2011. Nature of real-world multi-objective vehicle routing with evolutionary

algorithms. In 2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE.
Coello, C.A.C., Dhaenens, C., Jourdan, L., 2010. Multi-objective combinatorial optimization: Problematic and context. In Advances

in multi-objective nature inspired computing. Springer, pp. 1–21.
Gehring, H., Homberger, J., 1999. A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows.

In Proceedings of EUROGEN99, Vol. 2, Springer Berlin, pp. 57–64.
Geiger, M., 2003. A computational study of genetic crossover operators for multi-objective vehicle routing problem with soft time

windows. In Multi-Criteria-und Fuzzy-Systeme in Theorie und Praxis. Springer, pp. 191–207.
Ghoseiri, K., Ghannadpour, S.F., 2010. Multi-objective vehicle routing problem with time windows using goal programming and

genetic algorithm. Applied Soft Computing 10, 4, 1096–1107.
Goldberg, D.E., Lingle, R., 2014. Alleles, loci, and the traveling salesman problem. In Proceedings of the first international

conference on genetic algorithms and their applications, Psychology Press, pp. 154–159.
Hoos, H.H., Stützle, T., 2004. Stochastic local search: Foundations and applications. Elsevier.
Jozefowiez, N., Semet, F., Talbi, E.G., 2008. Multi-objective vehicle routing problems. European Journal of Operational Research

189, 2, 293–309.
Knowles, J.D., 2002. Local-search and hybrid evolutionary algorithms for Pareto optimization. Ph.D. thesis, University of Reading,

22

Reading.
Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.E., 2022. Enhancing MOEA/D with learning: Application to routing problems

with time windows. In Proceedings of the GECCO companion, pp. 495–498.
Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.E., 2023. Improving moea/d with knowledge discovery. application to a

bi-objective routing problem. In EMO: 12th International Conference, 2023, Proceedings, Springer, pp. 462–475.
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The irace package: Iterated racing for automatic

algorithm configuration. Operations Research Perspectives 3, 43–58.
Melián-Batista, B., De Santiago, A., Angel-Bello, F., Alvarez, A., 2014. A bi-objective vehicle routing problem with time windows:

A real case in tenerife. Applied Soft Computing 17, 140–152.
Moradi, B., 2020. The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete

learnable evolution model. Soft Computing 24, 9, 6741–6769.
Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & operations research

31, 12, 1985–2002.
Qi, Y., Hou, Z., Li, H., Huang, J., Li, X., 2015. A decomposition based memetic algorithm for multi-objective vehicle routing

problem with time windows. Computers & Operations Research 62, 61–77.
Riquelme, N., Von Lücken, C., Baran, B., 2015. Performance metrics in multi-objective optimization. In 2015 Latin American

computing conference (CLEI), IEEE, pp. 1–11.
Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem.

European journal of operational research 177, 3, 2033–2049.
Schneider, M., Schwahn, F., Vigo, D., 2017. Designing granular solution methods for routing problems with time windows.

European Journal of Operational Research 263, 2, 493–509.
Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations

research 35, 2, 254–265.
Subramanian, A., Uchoa, E., Ochi, L.S., 2013. A hybrid algorithm for a class of vehicle routing problems. Computers & Operations

Research 40, 10, 2519–2531.
Toth, P., Vigo, D., 2003. The granular tabu search and its application to the vehicle-routing problem. Informs Journal on computing

15, 4, 333–346.
Toth, P., Vigo, D., 2014. Vehicle routing: problems, methods, and applications. SIAM.
Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A., 2017. New benchmark instances for the capacitated vehicle

routing problem. European Journal of Operational Research 257, 3, 845–858.
Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2014. A unified solution framework for multi-attribute vehicle routing problems.

European Journal of Operational Research
Zhang, K., Cai, Y., Fu, S., Zhang, H., 2019. Multiobjective memetic algorithm based on adaptive local search chains for vehicle

routing problem with time windows. Evolutionary Intelligence 24, 2, 1–12.
Zhang, Q., Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on

evolutionary computation 11, 6.
Zhou, Y., Wang, J., 2014. A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem

with time windows. IEEE Systems Journal 9, 3, 1100–1113.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G., 2003. Performance assessment of multiobjective optimiz-

ers: An analysis and review. IEEE Transactions on evolutionary computation 7, 2, 117–132.

23

	Introduction
	Description of the Problem
	Vehicle Routing Problem with Time Windows (VRPTW)
	Objectives Related to the VRPTW
	Objectives Associated to the Route
	Objectives Associated to Nodes or Arcs
	Objectives Associated to Resources

	Minimizing the Waiting Time of Drivers

	MOEA/D Framework
	Multi-Objective Optimization
	Reference MOEA/D
	Hybrid MOEA/D
	Description of the Hybrid Framework
	Knowledge Mechanisms for the bVRPTW

	Neighborhood Exploration Mechanisms for Local Search
	Exploration of the Neighborhood
	Neighborhood Metric

	Experimental Setup
	Benchmarks
	Termination Criterion and Performance Assessment

	Experimental Protocol
	Tuning
	Evaluation of Performances

	Tuning and Parameters
	Preliminary Study
	Influence of Parameters on Elite Configurations
	Reduced Configuration Space and Final Tuning

	Experimental Results and Discussion
	Conclusion

