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Encoding TLA+ Proof Obligations Safely for SMT

Rosalie Defourné

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
rosalie.defourne@inria.fr

Abstract. The TLA+ Proof System (TLAPS) allows users to verify
proofs with the support of automated provers, including SMT solvers.
To better ensure the soundness of TLAPS, we revisited the encoding of
TLA+ into SMT-LIB, whose implementation had become too complex.
Our approach is based on a first-order axiomatization with E-matching
patterns. The new encoding is available with TLAPS and achieves per-
formances similar to the previous version, despite its simpler design.
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1 Introduction

TLA+ is a specification language based on the Temporal Logic of Actions and
Zermelo-Fraenkel set theory [7,8,16]. It is mostly used in the industry for mod-
elling distributed systems [14], but its expressive language is suited for any kind
of mathematics [10]. The TLA+ Proof System (TLAPS) provides a syntax for
proofs [4]. When a user is satisfied with her proofs, she can invoke TLAPS; the
tool will generate a number of proof obligations which are then sent to back-
end solvers. At this time the solvers available are Isabelle/TLA+ [15], Zenon [2],
the SMT solvers CVC4 [1], veriT [3] and Z3 [5], and finally the LS4 prover for
temporal logic.

Obligations must be encoded into the respective logics of the selected back-
ends. In this context, a good encoding should meet two requirements: soundness
and efficiency. An efficient encoding makes valid obligations easy for backends to
solve. Otherwise users may be forced to reformulate their proofs, which is tedious
and time-consuming. Soundness is even more important, as an unsound encod-
ing will let users believe faulty statements are valid. This is especially important
for TLAPS as the tool does not verify the solvers’ results, with the exception of
Zenon, whose output can be checked by Isabelle.

In this paper, we focus on TLAPS’s encoding for SMT solvers [12]. To achieve
efficiency, the original version of this SMT encoding attempts to simplify away
TLA+ primitives. This process is optionally supported by a type synthesis mech-
anism that assigns sorts to TLA+ subexpressions. Let us illustrate this with the
following example:

assume new n ∈ Nat

prove (0 .. n) ∪ {n+ 1} = 1 .. (n+ 1)



The expression above is a TLA+ proof obligation. The keyword assume precedes
a list of declarations (introduced by new) and hypotheses. Here the hypothesis
n ∈ Nat is directly introduced with the declaration of n. The keyword prove
precedes the goal. Many primitive constructs of TLA+ are standard mathemat-
ical notations. “i .. j” denotes the set of integers between i and j.

Given this obligation, the original SMT encoding will try to produce an
equivalent formula in multi-sorted first-order logic, like this one:

∀nint. n ≥ 0 ⇒ ∀iint. (1 ≤ i ∧ i ≤ n) ∨ i = (n+ 1) ⇔ 1 ≤ i ∧ i ≤ (n+ 1)

Several techniques are used to achieve this result. A powerful type synthesis
mechanism attempts to assign sorts to bound variables—here the builtin sort int
of SMT is assigned to n. The obligation is then preprocessed in an attempt
to eliminate the TLA+ primitives with no counterpart in SMT. Since n is an
integer, both members of the equality are identified as sets of integers, which is
why set extensionality is applied. Further rewritings lead to the result displayed.
In more complex situations, preprocessing may involve additional techniques like
Skolemization of the abstraction of subexpressions.

The original SMT encoding is powerful—in many cases it is able to reduce
obligations to trivial problems. But its implementation is very complex and,
as a result, difficult to guarantee sound or maintain. There are also limitations
inherent to the techniques employed, such as the fact that type synthesis is
undecidable, or that simplification may not terminate in some rare cases.

Motivated by the need for a safer encoding, we sought to redesign the SMT
encoding in such a way that its most sophisticated features could be disabled.
Our original plan was to reimplement type synthesis and simplification, but we
found instead that our encoding could be simply optimized with E-matching
patterns, also known as “triggers” [6, 11, 13]. This feature of SMT-LIB offers to
the user some control over the instantiation of axioms. We claim this is ideal for
our purposes, as triggers do not compromise soundness, and TLA+ is naturally
formalized using axioms. Our encoding also features axioms for linking TLA+’s
integer arithmetic with SMT’s, and implements heuristics to find relevant in-
stances of the axiom of set extensionality.

Starting from a formalization of TLA+’s constant fragment (Section 2), we
will detail the two essential steps of the encoding: a transformation for recovering
formulas (Section 3.2) and then the insertion of axioms (Section 3.3). Our encod-
ing has been implemented in TLAPS, allowing us to compare its performances
with the original version (Section 4). Given the simpler design of our encoding,
we expected it to perform worse, but we found that performances were similar
for the two versions. This suggests that preprocessing TLA+ is not as necessary
as we believed to make the SMT encoding efficient: SMT solvers are able to
handle the same work if they are provided suitable triggers.

2 Formalizing TLA+’s Constant Fragment

Key Principles A proof of correctness is not possible without a formal defini-
tion of TLA+’s semantics. The definition we present is compatible with TLA+’s



reference book [8] and accounts for the addition of lambda-expressions with
the second version of the language.1 We will focus on the constant fragment of
TLA+, which ignores the temporal aspects of the logic. TLAPS reduces obliga-
tions to this fragment during preprocessing. This does not apply to obligations
with temporal modalities but, in the current state of TLAPS, we expect these
obligations to be isolated from the rest and handled by the prover LS4.

The constant fragment, as a logic, is very close to unsorted first-order logic. It
extends the syntax with second-order applications and removes the term-formula
distinction. In our formalism, the primitive operators of TLA+ are excluded from
the core logic; they are instead declared as part of a standard theory and specified
by axioms. This is a convenient way to formalize the underspecified semantics
of TLA+. To take one example, the expression

{∅} ∈ Int ⇒ {∅}+ 0 = {∅}

is valid, regardless of the precise interpretation of {∅}+0. We view this statement
as a mere consequence of the axiom

∀x : x ∈ Int ⇒ x+ 0 = x

Logic without Formulas We define signatures as mappings of operator sym-
bols to types. Types are defined as usual from sorts and a constructor for func-
tional types: the type τ = τ1 × · · · × τn → s characterizes an operator that
takes n arguments and returns an element of sort s. If n = 0 then τ is constant
and we write τ = s. We define the order ord(τ) as 0 in the constant case, else
max(ord(τi))1≤i≤n + 1. If ord(τ) ≤ 1 then n is called the arity of τ .

Definition 1 (Expressions). We note ι the sort of individuals. A TLA+ sig-
nature is a signature Σ such that, for all k, the type Σ(k) has order 2 at most
and only includes the sort ι. Given such a Σ, the syntax of TLA+ expressions
and arguments is defined by the following syntax:

e ::= x | k(f, . . . , f) | e = e | false | e ⇒ e | ∀x : e (Expressions)
f ::= e | k | λx, . . . , x : e (Arguments)

where x is a variable symbol and k an operator symbol in the domain of Σ. We
impose ord(Σ(k)) = 1 if k occurs as an argument. All applications k(f1, . . . , fn)
must be well-formed: the arity of fi must match the arity of the expected type τi.

The grammar above defines a minimal fragment of the syntax. The logical
connectives true, ̸=, ¬, ∧, ∨, ⇔, ∃ may be defined as notations. Note that
lambda-expressions may only appear as arguments to second-order operators.
Note also that the notion of predicate symbol is absent, much like the notion of
formula.

The definition of interpretations is not standard, but still very close to the
traditional one for first-order logic. We introduce it briefly; the full definition
1 http://lamport.azurewebsites.net/tla/tla2-guide.pdf



can be found in appendix A. A domain is a collection D that contains at least
two values ⊤D and ⊥D. An interpretation I consists of a domain and a mapping
k 7→ kI . The evaluation of expressions e and arguments f is defined recursively
such that JeKI is an element of D and JfKI is a function from Dn to D where f
is n-ary. For example, the implication case states:

Je1 ⇒ e2K
I ≜

{
⊤D if Je1K

I ̸= ⊤D or Je2K
I
= ⊤D

⊥D otherwise

The satisfaction relation is defined by I |= e iff JeKI = ⊤D. Remark that this
definition makes e ⇒ e a tautology for all e. The two key ideas of the semantics
are: Boolean connectives and equality always return Boolean values; if e occurs
where a Boolean is expected, JeK is compared with ⊤D to obtain a Boolean.

Primitive Operators TLA+ defines primitive constructs for many kinds of
data including sets, functions, integers and reals. We view all of these constructs
as special cases of the application k(f1, . . . , fn). For instance, the TLA+ expres-
sion x ∈ y will be represented by mem(x, y). The operator mem is declared with
the type ι × ι → ι. Note that the lack of a Boolean sort makes it impossible to
declare mem as a predicate.

Constructs that bind a variable may be represented with second-order ap-
plications. For instance, the set {x ∈ S : e} is represented by setst(S, λx : e),
where setst : ι × (ι → ι) → ι. Again, it is not possible to specify that setst
expects a predicate argument. The other second-order constructs of TLA+ are
the choose expression choose x : e, the replacement set {e : x ∈ S}, and the
explicit function [x ∈ S 7→ e].

The operators of TLA+ are specified by axioms. For instance, the following
schema of comprehension holds for all unary P :

∀a, x : mem(x, setst(a, P )) ⇔ mem(x, a) ∧ P (x)

We do not present the axioms here. They are easy to infer from the reference
book, and most of them are standard (notably the axioms of ZF). For an explicit
presentation of TLA+’s axioms, we refer the reader to our documentation.2 Since
our encoding inserts axioms directly in the SMT problem, the section about
axiomatization will feature examples (Section 3.3).

3 Encoding TLA+ for SMT

3.1 Overview

Let us go back to the example from the introduction. With our formalism, we
might want to rewrite the obligation as follows:

assume new p, mem(p,Nat)

prove cup(range(1, p), enum1(plus(p, 1))) = range(1, plus(p, 1))

2 https://github.com/adef-inr/tlaplus-axioms



Every operator is implicitly assigned a type with the single sort ι. For instance,
enum1 : ι → ι and plus : ι × ι → ι. This applies to the constant operators as
well. Thus we have 1 : ι.

The first step of the encoding is to recover formulas. The sort o is introduced,
and the usual semantics for Boolean connectives is recovered. Equalities are
considered formulas as well. It is sometimes necessary to insert conversions; a
new operator casto : o → ι is introduced in the signature for this. This example
happens to be left unchanged by the transformation, except for the fact that mem
is reassigned the type ι× ι → o.

A simple example of an expression that must be changed is true ∈ boolean.
We consider that true : o in the target logic. But set membership is defined on ι,
so the encoding would insert a cast, resulting in casto(true) ∈ boolean. Here
is a more complex example: in the expression n ∈ Nat ⇒ p[n], the subexpression
p[n] is not clearly Boolean, so it is converted into a formula. The result is the
formula n ∈ Nat ⇒ (p[n] = casto(true)).

The next step, axiomatization, simply inserts explicit declarations and ax-
ioms for the relevant TLA+ primitives. Our method of axiom selection is straight-
forward. Each operator is assigned a set of axioms, which are all inserted after
its declaration. If an axiom features an operator not declared yet, the process is
repeated recursively. For instance, our example features the operator for taking
the union of two sets, cup, which is specified by the axiom

∀aι, bι, xι : {mem(x, cup(a, b))}
mem(x, cup(a, b)) ⇔ mem(x, a) ∨mem(x, b)

Note the expression between curly braces, which is an example of a trigger. It
is a hint for SMT solvers to indicate how to instantiate the axiom. Triggers are
essential in the optimization of the encoding.

Our target logic includes SMT’s builtin sort int. In order to take advantage
of SMT’s reasoning techniques for integer arithmetic, we treat TLA+’s integer
primitives specially. This involves the addition of an injector cast int : int → ι
into the signature. This will be described in more details later; for now, let us
simply mention that the integer constants of TLA+ can be encoded as their
counterparts in int using casts. In our example, 1 is rewritten to cast int(1).

The final result, with types made explicit, may be written:

assume new casto : o → ι, new cast int : int → o,

new mem : ι× ι → o, new cup : ι× ι → ι, new enum1 : ι → ι

. . . (other declarations + axioms with triggers)
new p : ι, mem(p,Nat)

prove cup(range(cast int(1), p), enum1(plus(p, cast int(1))))

= range(cast int(1), plus(p, cast int(1)))

At this point, the obligation can be directly translated to SMT. This short
overview does not cover two difficult points, which are the reduction of second-



order applications to first-order ones, and our support for set extensionality.
These points will be addressed in the section about axiomatization.

3.2 Recovering Formulas

Intuitively, the usual distinction between terms and formulas can be recovered by
inserting appropriate conversions in TLA+ expressions. We define a transforma-
tion Bo from TLA+’s core logic to a logic that features the sort o, interpreted as
the domain of truth values, and enjoy the traditional semantics for Boolean con-
nectives and equality. Using a new operator casto with type o → ι, we describe
two kinds of conversions:

e −→ casto(e) (Injection)
e −→ e = casto(true) (Projection)

Expressions that appear to be formulas but occur in a non-Boolean context
are injected into ι. Conversely, expressions that do not appear to be formulas
but occur in a Boolean context are projected onto o. This is illustrated by the
example below (which is a valid expression):

∀x : (x = false) ⇒ ¬x Bo

−−−→ ∀xι : (x = casto(false)) ⇒ ¬(x = casto(true))

We annotate bound variables with sorts in the target logic. This is mostly to
emphasize the fact that output formulas belong to a different logic. All bound
variables are annotated with ι.

Formal Definition The target logic features the two sorts ι and o. The syntax
is now restricted as usual, for instance false has sort o and e1 ⇒ e2 is well-typed
with o only if e1 and e2 have type o. The interpretation of Boolean connectives is
also the standard one. The sort o is interpreted as the collection whose elements
are ⊤ and ⊥.

Given a TLA+ signature Σ, we define ΣB by adding casto with type o → ι.
All other operators are preserved with their types. The mappings defined below
take their inputs from the core logic of TLA+ under Σ and return terms, formulas
or arguments in the target logic just described, under the signature ΣB.

Definition 2. We define by mutual recursion the mappings Bι and Bo on ex-
pressions and Bf on arguments:

Bι(x) ≜ x

Bι(k(f1, . . . , fn)) ≜ k(Bf (f1), . . . ,Bf (fn))

Bι(e) ≜ casto(Bo(e))

Bf (e) ≜ Bι(e)

Bf (k) ≜ k

Bf (λx1, . . . , xn : e) ≜ λxι
1, . . . , x

ι
n : Bι(e)

Bo(e1 = e2) ≜ Bι(e1) = Bι(e2)

Bo(false) ≜ false

Bo(e1 ⇒ e2) ≜ Bo(e1) ⇒ Bo(e2)

Bo(∀x : e) ≜ ∀xι : Bo(e)

Bo(e) ≜ Bι(e) = casto(true)



The last equations for Bι and Bo are respectively called injection and projection.
They are applied with lowest priority to ensure termination.

The definition above is not obviously inductive, but we may reason by induc-
tion on the construction of any Bι(e), Bo(e) or Bf (f). This is justified by the
fact that an injection can never immediately follow a projection, or vice versa.
If, for example, Bι(e) is obtained by injecting Bo(e) into ι, then Bo(e) can only
be constructed by applying Bι or Bo to subexpressions of e.

It is easy to verify that the three mappings result in well-typed expressions.
Bι results in terms of the sort ι. Bo results in formulas of the sort o. If f has
arity n, then Bf (f) has the n-ary type ι× · · · × ι → ι.

Correctness The main result is the theorem 1 below, which is about how each
mapping preserves evaluation. We only provide a sketch of the proof here; the
full version can be found in appendix A.

For all Σ-interpretation I, we define a ΣB-interpretation IB by adding an
interpretation for casto. The function castI

B

o maps ⊤ to ⊤D and ⊥ to ⊥D. The
domain D is preserved and the interpretations of all operators in Σ as well.

Theorem 1. Let I be a TLA+ interpretation. The following propositions hold
for all expressions e and arguments f :

i) JBι(e)KI
B
= JeKI

ii) JBo(e)KI
B
= ⊤ iff JeKI = ⊤D

iii) JBo(e)KI
B
= ⊥ implies JeKI = ⊥D when Bo(e) is not a projection

iv)
q
Bf (f)

yIB

= JfKI

Proof. The proof is by induction on the construction of the result. For cases
constructing Bι(e), we prove i). For cases constructing Bf (f), we prove iv). For
cases constructing Bo(e), we prove ii) and iii), except in the case of projection,
where only ii) needs to be proved. When an induction hypothesis on Bo(e) must
be invoked, we may only use ii) in general. However, in the case of injections, we
use the fact that the previous rule cannot be a projection, so iii) can be used.

Soundness follows trivially from theorem 1. Completeness also follows if the
mapping I 7→ IB is surjective. This is actually not the case, as we could have a
domain D in the target logic with only one element; D would not be a suitable
domain for TLA+ since we must have ⊤D ̸= ⊥D. We simply exclude this case
with the following axiom, which essentially specifies casto as injective:

casto(true) ̸= casto(false) (B)

Theorem 2 (Soundness and Completeness of Bo). Let e be a TLA+ ex-
pression. Then e is satisfiable iff Bo(e) is satisfiable by a model of (B).

Proof. If I |= e then IB |= Bo(e) by theorem 1. Clearly IB satisfies (B). Con-
versely, if J |= Bo(e) with J model of (B), then we define ⊤D ≜ Jcasto(true)KJ

and ⊥D ≜ Jcasto(false)KJ . Let I be the restriction of J that ignores casto. It
is clear that J = IB, so I |= e by theorem 1. ⊓⊔



Assigning Predicate Types to TLA+ Primitives The encoding Bo just
described preserves the types of all operators with the sort ι. In reality, some
reassignments using the sort o are justified. For example, we give set mem-
bership mem the new type ι × ι → o, and set comprehension setst the type
ι × (ι → o) → ι. We also consider that the axiom schema of set comprehension
should be

∀aι, xι : mem(x, setst(a, P )) ⇔ mem(x, a) ∧ P (x)

for all unary predicate P . In contrast, applying Bo to the original axiom schema
would introduce a number of conversions from and to o.

The justifications for these type reassignments stem from the semantics of
the relevant primitives. Briefly, mem may be assigned a predicate type because
TLA+ specifies that set membership always returns a Boolean value. Our en-
coding actually implements the rules:

Bo(mem(e1, e2)) ≜ mem(Bι(e),Bι(e))

Bι(mem(e1, e2)) ≜ casto(Bo(mem(e1, e2)))

where mem : ι × ι → o in the signature ΣB. The encoding may be adapted
in similar ways, and for similar reasons, to assign predicate types to the subset
relation and all the comparison operators of arithmetic.

For set comprehension, the argument is a little more complex. The following
equality is valid in TLA+ for all e1 and e2:

{x ∈ e1 : e2} = {x ∈ e1 : e2 = true}

But note that this is due to set extensionality, because the expressions e2 and
e2 = true are equivalent. This gives the intuition for why we may project the
second argument as a predicate. The rule we implement is:

Bι(setst(e1, λx : e2)) ≜ setst(e1, λx
ι : Bo(e2))

where setst : ι × (ι → o) → ι in ΣB. The rule and justification for assigning
choose : (ι → o) → ι is analogous, but the principle of extensionality for choice
is invoked instead.

3.3 Axiomatization

The principle of this step is to make explicit declarations for relevant TLA+

primitives and insert their axioms in the final obligation. The vast majority
of axioms are just reformulations of TLA+’s theory. The only exception is our
axioms for integer arithmetic, which introduce the sort int, but it will be clear
that their inclusion does not compromise soundness.

Our method of axiom selection is straightforward. A declaration is inserted
for every primitive that occurs in the obligation. Each primitive may be assigned
a number of axioms (typically 1–3) which are inserted in the problem after the



declaration. The process is recursively repeated if axioms contain primitives that
are not declared yet.

Here is an example of an axiom with a trigger:

∀aι, bι, xι : {mem(x, cap(a, b))}
mem(x, cap(a, b)) ⇔ mem(x, a) ∧mem(x, b)

A trigger is a list of terms annotating the body of a universally quantified for-
mula. We write them between curly braces. Triggers do not affect the seman-
tics of axioms, but SMT solvers may use them to select instances based on
the terms that are known at a given moment. For instance, when a formula
mem(t1, cap(t2, t3)) is found, the match {x 7→ t1, a 7→ t2, b 7→ t3} may be used
to generate an instance of the axiom above. Triggers may include several terms,
in which case all terms must match at the same time. Axioms may include several
triggers, in which case any individual trigger can produce an instance.

Some SMT solvers implement heuristics for generating triggers, but we found
that we could solve more problems by selecting our own triggers cautiously. In the
next part of this section, we illustrate some principles behind our methodology
through an example. We lack the space for a full presentation of the theory, which
includes 80 axioms in total; the complete list can be found in our documentation.3
After this discussion, we present our solutions for handling integer arithmetic,
second-order operators, and set extensionality.

Selecting Triggers for Set Theory For this part, we will use the TLA+

obligation displayed on the left below. The same problem is displayed on the right
using our standard notation; the operators mem and subseteq are predicates, the
constant 1 is SMT’s builtin integer constant and cast int : int → ι.

assume new S, assume new S : ι,

(S ∩ Int) ⊆ ∅ subseteq(cap(S, Int), empty)

prove 1 /∈ S prove ¬mem(cast int(1), S)

When the problem is translated to SMT, the goal is negated; the obligation will
be solved if the SMT solver answers “unsatisfiable”. So we may consider 1 ∈ S
to be an assumption. The objective is to derive a contradiction. The intuitive
proof is that 1 ∈ S and 1 ∈ Int entail 1 ∈ (S ∩ Int), but then 1 ∈ ∅ by inclusion,
and a contradiction is derived.

For this example, we will focus on the axioms for subseteq and cap. The
axiom for empty is not particularly insightful. The axioms for Int and cast int are
discussed later. We may assume that mem(cast int(1), Int) is derived immediately
by SMT and that the contradiction is found when mem(cast int(1), empty) is

3 https://github.com/adef-inr/tlaplus-axioms



derived. Here is a first attempt at an axiomatization:

∀aι, bι : {subseteq(a, b)} (Subseteq)

subseteq(a, b) ⇔ (∀xι : mem(x, a) ⇒ mem(x, b))

∀aι, bι, xι : {mem(x, cap(a, b))} (Cap)

mem(x, cap(a, b)) ⇔ mem(x, a) ∧mem(x, b)

This attempt is natural if one thinks of triggers as a way of implementing rewrit-
ing rules: for both axioms, the left member of the equivalence is given as sole
trigger. In our case, the definition for (S ∩ Int) ⊆ ∅ is generated; this amounts
to inserting the fact

∀xι : mem(x, cap(S, Int)) ⇒ mem(x, empty)

in the problem. The next step is to instantiate this new fact with cast int(1).
But note that the quantifier ∀xι does not have a trigger. As a result, SMT

must find the correct instance by other means. As obligations get larger, it
becomes increasingly harder for SMT to find the right instances without indica-
tions. The solution is to avoid axioms that introduce universal quantifiers in the
problem. The axiom (Subseteq) is easily reformulated by breaking down the
equivalence in two implications, resulting in two new axioms. For one of them,
the universal quantifier can be moved up and a better trigger can be selected:

∀aι, bι : {subseteq(a, b)} (SubseteqIntro)

(∀xι : mem(x, a) ⇒ mem(x, b)) ⇒ subseteq(a, b)

∀aι, bι, xι : {subseteq(a, b),mem(x, a)} (SubseteqElim)

subseteq(a, b) ∧mem(x, a) ⇒ mem(x, b)

The quantifier ∀xι in (SubseteqIntro) is viewed as existential, as it occurs in
a negative context (on the left of an implication). There is no need to assign it
a trigger.

We now need two formulas to trigger (SubseteqElim). The assumption
(S ∩ Int) ⊆ ∅ is again relevant; the second formula we need is 1 ∈ (S ∩ Int). But
we have no way of generating that formula: our axiom (Cap) has one trigger,
which expects exactly the formula we want to generate.

The trigger of (Cap) can only generate the definition of a formula x ∈ (a∩b)
that is already known. If we want to use the axiom to generate the formula
x ∈ (a∩b) instead, we need another trigger. Let us already rule out the candidate

{mem(x, a),mem(x, b)}

That trigger would indeed use the known facts 1 ∈ S and 1 ∈ Int and generate
1 ∈ (S ∩ Int). The problem is that, in general, instantiating axiom (Cap) with
that trigger can introduce a term a ∩ b into the problem. A recurring challenge
when selecting triggers is to prevent situations in which axioms may trigger
each others indefinitely; but this would happen here. Given any formula x ∈ y



known at a given moment, it is clear that (Cap) could keep triggering itself
by matching the same formula twice, producing the formulas x ∈ (y ∩ y), then
x ∈ ((y ∩ y) ∩ (y ∩ y)), and so on.

The correct solution is to add two triggers to the axiom, as follows:

∀aι, bι, xι : {mem(x, cap(a, b))}
{mem(x, a), cap(a, b)}
{mem(x, b), cap(a, b)}

(Cap’)

mem(x, cap(a, b)) ⇔ mem(x, a) ∧mem(x, b)

The second trigger above will match the assumption 1 ∈ S and the known term
S ∩ Int . Equivalently, the third trigger can match the assumption 1 ∈ Int and
the same term, for the same result.

We have now arrived at an axiomatization that allows SMT solvers to prove
the original obligations using only triggers. To summarize the proof: first the
axiom (Cap’) is triggered by mem(cast int(1), S) and cap(S, Int), generating

mem(cast int(1), cap(S, Int)) ⇔ mem(cast int(1), S) ∧mem(cast int(1), Int)

Then the axiom (SubseteqElim) is triggered by mem(cast int(1), cap(S, Int))
and subseteq(cap(S, Int), empty), resulting in

subseteq(cap(S, Int), empty) ∧mem(cast int(1), cap(S, Int))

⇒ mem(cast int(1), empty)

From here the contradiction is obtained using propositional logic.

General Principles for Selecting Triggers We systematically reformulate
the axioms that feature nested quantifier, so that all universal quantifiers can be
moved at the top. This prevents the introduction of quantifiers without triggers
during solving, and usually invites us to select different triggers. In particular,
many axioms feature an equivalence where one member contains a quantifier, in
which case the equivalence is broken down in two implications, resulting in an
introduction and an elimination axiom.

The next important idea is to observe what kinds of terms can be generated
for a given axiom and trigger. When looking at the axiom for cap, we rejected
the trigger than could lead to the generation of more terms a ∩ b, but we kept
the triggers that could only generate set membership statements. This illustrates
our following pragmatic assumption about TLA+ and its usage: even though the
language is very expressive, and obligations may feature complex set expressions,
we assume that all the sets relevant to the proof are already in the obligation.
However, proofs may rely on many set membership facts that are only implicit.
In our example, 1 ∈ (S ∩ Int) was such a fact. The element 1 and the set S ∩ Int
where explicit in the obligation, but their relationship was not.

We have applied a similar principle for functions, only instead of sets, we
assume that obligations never require constructing explicit functions [x ∈ S 7→ e]



or functional sets [a → b] other than the ones already explicit. We do generate
terms like domain f and f [x] for the known functions f and elements x in their
domains. This is illustrated by the axiom below, which is only one component
of the definition of [a → b], also written arrow(a, b). Both triggers need a fact
f ∈ [a → b] and both may generate the fact f [x] ∈ b (where f [x] is written
fcnapp(f, x)). The first trigger may generate a term f [x], while the second may
generate a formula x ∈ a.

∀aι, bι, f ι, xι : {mem(f, arrow(a, b)),mem(x, a)}
{mem(f, arrow(a, b)), fcnapp(f, x)}

mem(f, arrow(a, b)) ∧mem(x, a) ⇒ mem(fcnapp(f, x), b)

Axioms for Integer Arithmetic The construction we describe here was al-
ready present in the previous SMT encoding. Its purpose is to link TLA+’s arith-
metic with SMT’s builtin arithmetic, in order to reason more efficiently on inte-
gers. The intuition is that the predicate n ∈ Int can be made to correspond with
the sort int through a simple construction involving the injector cast int : int → ι.
We specify its left-inverse proj int : ι → int. This is a well-known trick to specify a
function as injective with a simpler axiom. Finally, we specify cast int as a homo-
morphism between the arithmetical symbols of both logics. The example below
includes the necessary axioms for handling the TLA+ primitives Int and +.

cast int : int → ι

proj int : ι → int

∀zint : {cast int(z)} mem(cast int(z), Int) (IntIntro)

∀xι : {mem(x, Int)} mem(x, Int) ⇒ x = cast int(proj int(x)) (IntElim)

∀zint : {cast int(z)} z = proj int(cast int(z)) (IntCast)

∀zint1 , zint2 : {plus(cast int(z1), cast int(z2))}
plus(cast int(z1), cast int(z2)) = cast int(z1 + z2) (IntPlus)

The axioms for all other operators are analogous to IntPlus. For constants, the
axiom is a trivial equality; we simply rewrite the TLA+ constants 0, 1, 2 directly
as cast int(0), cast int(1), cast int(2).

Those axioms are not derived from TLA+’s theory, but extend it conserva-
tively. The soundness of the construction relies on the fact that TLA+’s arith-
metic and SMT’s are assumed to be equivalent. More precisely: from every propo-
sition with ι and int that is valid according to SMT, one obtains a valid TLA+

formula by relativizing all quantifier on int with the predicate n ∈ Int .

Elimination of Second-order Applications Second-order applications are
reduced to first-order ones during this step. The second-order primitives of TLA+

are typically specified by an axiom schema, in which case the higher-order argu-
ments are used to generate the right instance. To take a simple example, consider



the expression {n ∈ Int : n ̸= i} where i is bound by a quantifier. Internally, we
represent this expression as a second-order application setst(Int , λn : n ̸= i).
To make it first-order, we rewrite it as setst•(Int , i), where the new operator
setst• : ι× ι → ι is specified by

∀iι, sι, nι : mem(n, setst•(s, i)) ⇔ mem(n, s) ∧ n ̸= i

Second-order applications where the operator is not a TLA+ primitive are rewrit-
ten in the same way—there is just no axiom schema to instantiate for them.

This method of reduction to first-order logic is simplistic but allows ba-
sic reasoning about the second-order TLA+ constructs—set comprehension, set
refinement, choose-expressions and explicit functions. Its major flaw is that ex-
pressions may come out harder to unify after rewriting. For instance, the simple
goal

∃i : {n ∈ Int : n ̸= i} = {n ∈ Int : n ̸= 0}

results in a problem only provable using set extensionality, because the second
set is rewritten as setst••(Int) where setst•• is specified by another instance
of the comprehension schema. We attempt to detect when a previously intro-
duced operator can be reused for a rewriting, but our implementation is far from
complete.

Heuristics for Set Extensionality It is difficult for SMT solvers to find
relevant instances for the axiom of set extensionality, and there is no obvious
trigger for it. While some proofs may depend on the axiom of extensionality,
they tend to do so in predictable ways. Our support for set extensionality is very
limited, but it is implemented easily and suffices for many cases.

The idea is simply to use a special predicate for the sole purpose of triggering
the axiom of set extensionality:

appext : ι× ι → o

∀xι, yι : {appext(x, y)} (∀zι : mem(z, x) ⇔ mem(z, y)) ⇒ x = y

Note that only one implication is specified by the axiom—the other implication
is trivial and not useful for proofs. It remains to find how relevant instances
of appext(x, y) can be generated.

In most obligations where set extensionality is needed, the relevant equal-
ity occurs explicitly in the obligation. For these, it would suffice to generate a
term appext(x, y) for every x = y in the problem. However, while it is true that
every object is a set in TLA+, attempting to prove a goal like 1 + 1 = 2 by set
extensionality would be clearly misguided. Our heuristic is to consider only the
equalities where at least one member has a set-theoretic top connective. We also
ignore equalities that occur in negative Boolean context, like in x = ∅ ⇒ y ∈ x,
as these equalities can be simplified.

The second problem is that the builtin symbol = cannot be used in a trig-
ger. We circumvent this problem by declaring and defining an equivalent rela-



tion equals.

equals : ι× ι → o

∀xι, yι : {equals(x, y)} equals(x, y) ⇔ x = y

∀xι, yι : {equals(x, y)} appext(x, y)

We rewrite the relevant equalities with equals for the translation. For example,
a goal a = b ⇒ (a∩c) = (c∩b) is encoded as a = b ⇒ equals(cap(a, c), cap(c, b)).
Set extensionality must only be applied for the second equality. The use of equals
triggers a match for the two axioms above; the term appext(cap(a, c), cap(c, b))
is generated, triggering the axiom.

This technique essentially implements set extensionality as a rewriting rule.
In other situations, the relevant instance of extensionality is obvious to the user,
but not explicit in the proof. A common situation involves checking that two
sets S and T are disjoint, which is expressed S ∩ T = ∅. We can automatize
these checks by adding the following axiom to the SMT problem:

∀xι, yι : {cap(x, y)} appext(cap(x, y), empty)

4 Evaluation

Our SMT encoding is implemented in TLAPS and available on GitHub.4 We
now present its evaluation. The main purpose of this evaluation is to compare
our encoding with the original SMT backend.

4.1 Experiment and Results

Our starting data is a collection of TLA+ specifications, taken from three dif-
ferent sources: the library of TLA+ examples,5 the library of examples from
the TLAPS distribution, and a recent specification of Lamport’s Deconstructed
Bakery algorithm [9]. We did not evaluate TLAPS on the specifications them-
selves, but instead used it to generate SMT benchmarks, and then evaluate SMT
solvers on those benchmarks. For every specification, two SMT benchmarks were
generated, one using the old encoding, the other using our version.6

We used the following SMT solvers for the evaluation: CVC4, cvc5, Z3, veriT.
For veriT, we modify the input file by replacing the SMT logic UFNIA by UFLIA,
as veriT only supports linear arithmetic. All solvers are called with a timeout of
5 seconds, which is the default timeout in TLAPS. The experiment was carried
out on a Dell Latitude laptop with an Intel Core i7 processor at 1.90 GHz.
The results, presented in table 1, show how many obligations were solved using
each version of the encoding (top numbers). An obligation is considered solved
4 https://github.com/tlaplus/tlapm
5 https://github.com/tlaplus/Examples
6 The TLA+ specifications and SMT benchmarks generated from them can be found

at https://github.com/adef-inr/SafeTLAEncodingBenchmarks



if it is solved by at least one solver. We also computed the numbers of uniquely
solved obligations (bottom numbers). An obligation is solved uniquely with one
encoding if it is solved while the alternate encoded version is not solved.

Specification Size Old New

TLA+ Examples 1371 1142 1265
35 158

TLAPS Examples 666 583 589
16 22

Deconstructed Bakery 777 652 754
14 116

Total 2814 2377 2608
65 296

Table 1. Obligations solved using the two SMT encodings

4.2 Discussion

Our encoding performed better than the previous one; we solved 92.6% of all
obligations with our version against 84.8% with the old version. Our encoding
solves 296 obligations that were unsolved before, but 65 obligations are not solved
anymore. Note that, for the TLA+ and TLAPS examples, all obligations were
originally solved, but not necessarily by the SMT backend. Many proof steps
made explicit calls to Zenon or Isabelle. We replaced them by calls to SMT, so
our benchmarks contain SMT problems that were not originally solved, which is
why the old encoding does not solve everything.

We should remark on the distribution of uniquely solved obligations, which is
not shown precisely in the table. For individual specifications in the TLA+ and
TLAPS examples, those numbers are very low for both encodings. For very small
files, each encoding solves about 0–4 obligations uniquely; for larger files, that
number is about 5–8. The only exception is the specification Tencent Paxos,
which includes a file on which our encoding solved 132 obligations uniquely.
This anomaly appears to be the result of a bug in the old encoding, as it fails
to produce an output for many obligations. Thus, we may want to account for
this anomaly by ignoring Tencent Paxos, in which case the performances of both
encodings are actually similar on the TLA+ examples.

The original files from Deconstructed Bakery contain 130 explicit calls to
Zenon or Isabelle. The vast majority of the 116 obligations solved uniquely by
our encoding come from this set. It is hard to determine the exact reasons for this
success. The Deconstructed Bakery specification makes an especially advanced



use of TLA+ functions as it involves partial functions and matrices. Sets of
partial functions, for instance, are defined by

PFunc(X,Y ) ≜ union {[XX → Y ] : XX ∈ subset X}

The old encoding would rewrite any formula f ∈ PFunc(X,Y ) into a formula
containing three quantifiers with no triggers. Our solution does not have that
problem, which may be the reason behind its better performances.

Our concern for now is to find explanations for the 65 obligations we do
not solve anymore. We are aware of several areas of improvement. Notably,
our reduction of second-order applications to first-order could be improved to
reuse symbols more often. We are also investigating alternative formulations of
the theory of TLA+ functions; our current axioms do not always infer all the
relevant facts f ∈ [S → T ], which may hinder progress on Deconstructed Bakery
in particular.

5 Conclusion

We presented an encoding of TLA+’s constant fragment into SMT-LIB. Our
approach is based on the view that TLA+ is a standard theory on top of a core
logic without formulas. Proof obligations are encoded into SMT’s logic by first
applying a simple transformation to recover formulas, then inserting declarations
and axioms for all relevant TLA+ primitives. We contrast this approach with the
original SMT encoding, which attempts to simplify away the TLA+ primitives,
but must rely on heavy preprocessing techniques to do so.

Our encoding faithfully translates expressions of TLA+’s untyped set theory.
It is easy to implement, therefore safer to use. We used SMT triggers to optimize
our axiomatization. To our surprise, we were able to achieve performances similar
to the previous version of the encoding with this technique. This runs counter to
the idea that TLA+ obligations must be preprocessed and simplified for SMT.
Solvers can handle the problems of TLA+ despite the absence of types, because
most obligations only require elementary inferences on already explicit sets and
functions, and triggers can model these inferences.
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A Semantics of TLA+ and Proof of Correctness for Bo

We provide details on the semantics of TLA+’s Boolean connectives (Section 2)
and a fuller proof of correctness for our transformation Bo (Section 3.2).

Definition 3 (Interpretations). A TLA+ domain is a collection D that con-
tains at least two distinct values noted ⊤D and ⊥D. We associate a collection Dτ

to every type τ in the expected way.
Let Σ be a TLA+ signature. A Σ-interpretation I consists of a TLA+ domain

and a mapping k 7→ kI from the symbols of Σ such that every kI is an element
of DΣ(k). A valuation is a function of variable symbols to elements of D. For
all valuations θ, variable x and element v of D, we note θxv the valuation that
reassigns x to v.

Given an interpretation I and a valuation θ, the interpretation of expressions
and arguments is defined recursively:

JxKIθ ≜ θ(x)

Jk(f1, . . . , fn)K
I
θ ≜ kI(Jf1K

I
θ , . . . , JfnKIθ )

Je1 = e2K
I
θ ≜ ⊤D if Je1K

I
θ = Je2K

I
θ , otherwise ⊥D

JfalseKIθ ≜ ⊥D

Je1 ⇒ e2K
I
θ ≜ ⊤D if Je1K

I
θ ̸= ⊤D or Je2K

I
θ = ⊤D, otherwise ⊥D

J∀x : eKIθ ≜ ⊤D if JeKIθx
v
= ⊤D for all v in D, otherwise ⊥D

For all v1, . . . , vn in Dn,

JkKIθ (v1, . . . , vn) ≜ kI(v1, . . . , vn)

Jλx1, . . . , xn : eKIθ (v1, . . . , vn) ≜ JeKIθx1,...,xn
v1,...,vn

We admit that the valuation θ does not affect the interpretation of expressions
with no free variables. This justifies the notations JeKI and I |= e. Remark that
the equation for implication above is not the same as

Je1 ⇒ e2K
I
θ ≜ ⊤D if Je1K

I
θ = ⊥D or Je2K

I
θ = ⊤D, otherwise ⊥D

Indeed, for any value v, v ̸= ⊤D does not entail v = ⊥D. A consequence of our
definition is that c ⇒ c is a tautology for all constant c.

We now prove our correctness result for Bo:

Theorem 3. Let I be a TLA+ interpretation. The following propositions hold
for all expressions e, arguments f , and valuations θ:

i) JBι(e)KI
B

θ = JeKIθ
ii) JBo(e)KI

B

θ = ⊤ iff JeKIθ = ⊤D

iii) JBo(e)KI
B

θ = ⊥ implies JeKIθ = ⊥D if Bo(e) is not a projection

iv)
q
Bf (f)

yIB

θ
= JfKIθ



Proof. The proof is by induction on the construction of the result. We treat the
cases of injection and projection, and the case of implication. All other cases are
either straightforward or analogous.

Injection into Bool. Let Bι(e) ≜ casto(Bo(e)). We must prove property i)
for Bι(e). By definition:

JBι(e)KI
B

θ = castI
B

o (JBo(e)KI
B

θ ) =

{
⊤D if JBo(e)KI

B

θ = ⊤
⊥D otherwise

The induction hypothesis applies to Bo(e). If JBo(e)KI
B

θ = ⊤ then JeKIθ = ⊤D

by property ii). If JBo(e)KI
B

θ = ⊥, we deduce JeKIθ = ⊥D from property iii)
and the fact that Bo(e) cannot be a projection. Indeed, by construction of Bι

and Bo, a projection cannot be followed by an injection. In both cases, we have
JBι(e)KI

B

θ = JeKIθ .

Projection onto Bool. Let Bo(e) ≜ Bι(e) = casto(true). Since we are
treating the projection case, the only property we really need to prove is prop-
erty ii). We have the following equivalences:

JBo(e)KI
B

θ = ⊤ iff JBι(e)KI
B

θ = ⊤D (since Jcasto(true)KI
B

θ = ⊤D)

iff JeKIθ = ⊤D (by property i) on Bι(e))

Implication. Let e ≜ e1 ⇒ e2 and Bo(e) ≜ Bo(e1) ⇒ Bo(e2). We must prove
properties ii) and iii). But remark that the former implies the latter immediately,
as JeKIθ ̸= ⊤D implies JeKIθ = ⊥D when e is an implication. Property ii) is proven
by the following series of equivalences:

JBo(e1 ⇒ e2)K
IB

θ = ⊤

iff JBo(e1)K
IB

θ = ⊥ or JBo(e2)K
IB

θ = ⊤ (by the usual semantics of ⇒)

iff Je1K
I
θ ̸= ⊤D or Je2K

I
θ = ⊤D (by property ii))

iff Je1 ⇒ e2K
I
θ = ⊤D (by TLA+’s semantics of ⇒)

⊓⊔


