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Abstract. Static Velocity Prediction Programs (VPP) are standard tools in sailing yachts’ design and 
performance assessment. Predicting the maximal steady velocity of a yacht involves resolving 
constrained optimization problems. These problems have a prohibitive computational cost when 
using high-fidelity global modeling of the yacht. This difficulty has motivated the introduction of 
modular approaches, decomposing the global model into subsystems modeled independently and 
approximated by surrogate models (response surfaces). The maximum boat speed for prescribed 
conditions solves an optimization problem for the trimming parameters of the model constrained by 
compatibility conditions between the subsystems’ surrogate solution (e.g., the yacht equilibrium). 
The accuracy of the surrogates is then critical for the quality of the resulting VPP. This paper relies 
on Gaussian Process (GP) models of the subsystems and introduces an original sequential Active 
Learning Method (ALM) for their joint construction. Our ALM exploits the probabilistic nature of the 
GP models to decide the enrichment of the training sets using an infilling criterion that combines the 
predictive uncertainty of the surrogate models and the likelihood of equilibrium at every input point. 
The resulting strategy enables the concentration of the computational effort around the manifolds 
where equilibrium is satisfied. The results presented compare ALM with a standard (uninformed) 
Quasi-Monte Carlo method, which samples the input space of the subsystems uniformly. ALM 
surrogates have higher accuracy in the equilibrium regions for equal construction cost, with improved 
mean prediction and reduced prediction uncertainty. We further investigate the effect of the 
prediction uncertainty on the numerical VPP and in a routing problem. 
 
Keywords: Surrogate Model; Gaussian Process; VPP; Routing; Uncertainty Quantification 
 
NOMENCLATURE 
 

𝐴w Area of flotation plane [m2] 

𝐵wl Beam at the waterline [m] 

𝐶 Co-variance function of a GP [-] 

𝐶mid Midship coefficient [-] 

𝐶p Prismatic coefficient [-] 

𝐷 Displacement [kg] 

𝑓 Flat parameter of aerodynamic model [-] 

𝑔 Acceleration of gravity [m. s−2] 
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𝐺M Initial meta-centric height [m] 

𝒢𝒫(𝑎) GP of aerodynamic model 𝑀(𝑎) [-] 

𝒢𝒫(𝑖) GP model of model 𝑀(𝑖) [-] 

𝒢𝒫(ℎ) GP of hydrodynamical model 𝑀(ℎ) [-] 

𝐻 Vector of hyperparameters [-] 

𝐼𝐶 Infilling criterion [-] 

ℒ Likelihood function [-] 

𝐿cb Longitudinal center of buoyancy (from forward perpendicular) [m] 

𝐿cf Longitudinal center of flotation (from forward perpendicular) [m] 

𝐿wl Length at the waterline [m] 

𝑀 Model of system 𝑆 [-] 

𝑀(𝑎) Model of aerodynamic subsystem [-] 

𝑀(𝑖) Model of subsystem 𝑆(𝑖) [-] 

𝑀(ℎ) Model of hydrodynamic subsystem [-] 

𝑚 Number of subsystems [-] 

𝑛𝑜 Number of observations in GP construction [-] 

𝑝 Probability [-] 

𝑆 Parametrised system [-] 

𝑆(𝑖) Parametrised subsystem (𝑖) [-] 

𝑆dagg Daggerboard surface [m2] 

𝑆sail Sail area [m2] 

𝑇c Draft of canoe body [m] 

𝑇t Total draft [m] 

Tr( ) Trace of a matrix [-] 

𝑉 Boat speed [m.s−1] 

𝑉𝑎 Apparent wind speed [kt] 

𝑉𝑏 Boat speed expressed [kt] 

WSA Wetted surface area [m2] 

𝑥(𝑖) Input of subsystem (𝑖) [-] 

X𝑜 Vector of observation points [-] 

𝑥(𝑖)
+  New observation point for 𝑀(𝑖) [-] 

X∗ Vector of prediction points [-] 

Y𝑜 Vector of model predictions at X𝑜 [-] 

Y∗ GP predictions at X∗ [-] 

𝑍 Vector of compatibility constraints [-] 

𝑍̃ Approximation of 𝑍 from the subsystem of GPs [-] 

𝑍a Aerodynamic vertical center of effort [m] 

𝑍dagg Daggerboard vertical center of effort [m] 

  

𝛽𝑎 True wind angle [°]  

𝛽𝑡 True wind speed [kt] 

𝛾𝑎 Apparent wind angle [°] 
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𝜃 Heel angle [°] 

𝜆 Leeway angle [°] 

𝛬dagg Daggerboard aspect ratio [-] 

𝜇(𝑖) Mean value of 𝒢𝒫(𝑖) [-] 

𝜈𝑤 Viscosity of sea water [m2s−1] 

𝜌𝑎 Density of air [kg m−3] 

𝜌𝑤 Density of sea water [kg m−3] 

𝛴(𝑖)
2  Prediction co-variance of 𝒢𝒫(𝑖) [-] 

𝛺 Input space of 𝑀 [-] 

𝛺(𝑖) Input space of 𝑀(𝑖) [-] 

 

ALM Adaptative Learning Method 

CFD Computational Fluid Dynamics 

ETA Estimated Time of Arrival 

GFS Global Forecast System 

GMT Greenwhich Mean Time 

GP Gaussian Process 

LHS Latin Hypercube Sampling 

QMC Quasi Monte Carlo 

QTVLM Routing software QtVlm 

VPP Velocity Prediction Program 

 

1. INTRODUCTION 

Velocity Prediction Programs (VPP), introduced by Davidson (1936) and again by Kerwin (1975) are 
widely used in modern naval architecture to predict the performance of a yacht, as attested by their 
widespread use in the published literature, see Horel (2022), and are currently still a topic of research 
as shown by the recent developments presented in Melis et al. (2022), and Reche-Vilanova et al. 
(2021). Classically, the VPP provides the maximum boat speed for some weather conditions (wind 
and possibly sea states) by resolving an optimization problem for several "free" parameters defined 
by the designer, such as sails and appendage trimming. The prediction cost of the VPP can vary 
greatly depending on the nature and fidelity of its underlying yacht model. Ideally, one should 
incorporate detailed CFD simulations, see Lindstand et al. (2017) and Persson et al. (2021), with 
large displacement elastic analysis for the sails and appendages. However, this level of modeling 
remains computationally too expensive to be applied at the whole yacht scale, embedded in 
optimization loops, and queried for multiple conditions. 

To circumvent these limitations, VPP models typically divide the yacht model into subsystems (the 
sails, the hulls, the appendages, …), neglecting their interactions. The subsystems can then be 
simulated independently, possibly in parallel. Subsequently, one combines the subsystems to check 
that the whole system is in equilibrium (static VPP) and, if needed, adapt the "free" parameters of 
the subsystems to reach equilibrium. In practice, ensuring the equilibrium demands many iterations, 
and solving the subsystems many times induces a high computational cost. This situation has 
motivated the introduction of surrogate models for the subsystems. Classically, these surrogates 
interpolate the responses of the subsystems evaluated at a grid of input values, resulting in the often-
called response surface models. 
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The present paper tackles the problem of building surrogate models of the yacht’s subsystems most 
efficiently concerning the numerical cost and accuracy of the model’s prediction. The main 
contribution of the present work is the definition of a joint sequential surrogates construction strategy 
motivated by the fact that the models of the subsystems need be accurate only for input values that 
satisfy some compatibility conditions, namely over equilibrium manifolds. The proposed method, 
called hereafter Active Learning Method (ALM), has the following specificities. First, the surrogates’ 
construction does not use a priori grids in their input spaces. Instead, it relies on evaluation points 
sequentially selected following an infilling criterion that exploits the current knowledge of the models. 
Second, the surrogates are not constructed independently: selecting the following evaluation points 
combines predictions from all subsystems and aims to obtain highly accurate surrogates for input 
values achieving equilibrium. Third, the proposed ALM uses Gaussian Process surrogates and 
exploits their probabilistic nature to derive a robust infilling criterion. The final surrogate uncertainty 
can be propagated into the VPP to assess its predictive qualities. 

The organization of the paper is as follows. Section 2 presents the ALM method, with the Gaussian 
Process construction in Section 2.1, the derivation of the infilling criterion in Section 2.2, and a brief 
overview of ALM implementation in Section 2.3. We illustrate the ALM in Section 3, for a yacht model 
detailed in Appendix A with surrogates’ settings described in Section 3.1. Section 3.2 compares the 
convergence of the submodels and their uncertainty for the ALM and a standard QMC sampling 
method. We analyze the resulting VPP (yacht’s polars) and the optimal solution of a routing problem 
in Section 4. These application examples demonstrate the efficiency of the proposed ALM approach 
in terms of accuracy for a given number of model evaluations. Finally, major findings of the present 
work and future extensions of ALM are briefly discussed in Section 5. 

2. JOINT SURROGATES CONSTRUCTION 

This work focuses on predicting the response 𝑀(𝑥) = 𝑦 of a parametrized system 𝑆 when its 

parameters 𝑥 vary in 𝛺 ⊂ ℝ𝑑, 𝑑 ≥ 1. The system’s model 𝑀(𝑥) is too costly to be evaluated 
repeatedly. For instance, computing 𝑀(𝑥) for some given 𝑥 may require solving a complex fluid-

structure interaction problem. Therefore learning directly the mapping 𝑀(𝑥) = 𝑦 over the whole input 
domain 𝛺 is not feasible. To tackle this difficulty, a “divide and simplify” approach is used, which 

consists in splitting the system 𝑆 into a set of 𝑚 subsystems 𝑆(𝑖), each with a model 𝑀(𝑖) that maps 

inputs 𝑥(𝑖) ∈ 𝛺(𝑖) to output 𝑦(𝑖): 

𝑀(𝑖)(𝑥(𝑖)) = 𝑦(𝑖). (1) 

Note that the input space 𝛺(𝑖) of 𝑆(𝑖) is generally not 𝛺 and may have a different dimensionality 𝑑(𝑖). 

This situation occurs when internal variables are needed to describe interactions between the 
subsystems or when some inputs (say wind characteristics) do not impact a submodel (wave 
resistance). The domain 𝛺(𝑖) may also be unknown, and it is assumed that reasonable bounds can 

be defined a priori. In this case, the 𝑀(𝑖)(𝑥) surrogate models can be constructed independently from 

the other. We remark that the evaluation of 𝑀(𝑥) from the submodels 𝑀(𝑖)(𝑥(𝑖)) remains complex 

and calls for iterative techniques to determine the inputs 𝑥(𝑖) not specified by 𝑥 that fulfill the 

equilibrium and coupling conditions. However, the surrogate models make this task computationally 
much less expensive. 

As stated above, while their construction can be carried out independently, the submodels 𝑀(𝑖) have 

dependent inputs and outputs. Consequently, it is not necessary to build accurate surrogates over 
the whole 𝛺(𝑖), but only over the sub-manifolds where the subsystems satisfy coupling constraints, 

called hereafter compatibility conditions and introduced in Section 2.2. The main contribution of this 
paper is a joint infilling strategy to build accurate surrogates over the sub-manifolds where the 
constraints are satisfied. 
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2.1. Gaussian Process Model 

Splitting the system into subsystems 𝑆(𝑖) with simpler numerical models 𝑀(𝑖) makes it possible to 

derive surrogate models. In this work, a Gaussian Processes (GP) model is used, 

𝑀(𝑖)(𝑥(𝑖)) ≈ 𝒢𝒫(𝑖)(𝜇(𝑖), 𝛴(𝑖)
2 ), (2) 

where 𝜇(𝑖) and 𝛴(𝑖)
2  are the mean and covariance matrix of the GP model of 𝑀(𝑖). This GP model is 

determined from submodels’ observations as described below. 

For the sake of readability, the subsystem’s index is dropped in this subsection and we restrict 
ourselves to the case of models with scalar output (𝑦 ∈ ℝ); for a generalization to vector output, 
see Alvarez et al. (2012). Prior to the observations, the GP model assumes zero mean and a 
covariance function 𝐶. The construction of the posterior distribution of the GP model uses 𝑛𝑜 

observations in the form of couples (𝑥𝑘 , 𝑦𝑘 = 𝑀(𝑥𝑘)). The matrix of observation points is  

X𝑜 ≐ [𝑥1 ⋯ 𝑥𝑛𝑜
] and the vector of observation values is Y𝑜 = [𝑦1 ⋯ 𝑦𝑛𝑜

]
𝑇
. Considering new prediction 

points, with matrix X∗ and vector of value Y∗, the observed and predicted values have the a priori 
Gaussian distribution 

[
Y𝑜

Y∗
] ∼ 𝒩 (𝟎, [

K𝑜 K𝑜,∗

K𝑜,∗
𝑇 K∗

]) , (3) 

with the a priori covariance matrices between observation and prediction points K𝑜 = 𝐶(X𝑜, X𝑜),  
K∗ = 𝐶(X∗, X∗) and K𝑜,∗ = 𝐶(X𝑜, X∗). The posterior distribution of the vector of predicted values Y∗, 

conditioned on the observations, is given in Rasmussen and Williams (2006) 

Y∗|Y𝑜, X𝑜 ∼ 𝒩(K𝑜,∗
𝑇 K𝑜

−1Y𝑜, K∗ − K𝑜,∗
𝑇 K𝑜

−1K𝑜,∗). (4) 

From this result, the GP model 𝒢𝒫(𝑖) in Eq.(2) has for mean and variance 

𝜇(𝑖)(𝑥) = 𝐶(𝑥, X𝑜)K𝑜
−1Y𝑜, 𝛴(𝑖)

2 (𝑥) = 𝐶(𝑥, 𝑥) − 𝐶(𝑥, X𝑜)𝑇K𝑜
−1𝐶(X𝑜, 𝑥). (5) 

The mean prediction 𝜇(𝑖)(𝑥) is the best prediction of 𝑀(𝑖)(𝑥), and the posterior variance 𝛴(𝑖)
2 (𝑥) 

characterizes the Gaussian predictive uncertainty. The GP model depends on the prior covariance 
function 𝐶. In this work, the standard squared exponential form for 𝐶 is used: 

𝐶(𝑥, 𝑥′) = 𝜎2exp (−(𝑥 − 𝑥′)𝑇(diag 𝐿)−1(𝑥 − 𝑥′)) + 𝛿(𝑥 − 𝑥′)𝜎𝜖 
2, (6) 

where 𝜎2 is the prior’s variance, and 𝐿 is the vector of correlation lengths along the dimensions of 

model input 𝑥. The last contribution, 𝛿(𝑥 − 𝑥′)𝜎𝜖
2, accounts for the observation noise and using  

𝜎𝜖
2 > 0 ensures that K𝑜 is invertible. The covariance parameters (𝜎, 𝐿, and 𝜎𝜖) are collected in the 

vector of hyper-parameters 𝐻. The choice of 𝐻 is critical for the predictions’ quality. In practice, 𝐻 is 
learned from the observations. In the present work, the hyper-parameters are set by maximizing the 
prior likelihood of the observations: 

𝐻∗ ≐ argmax ℒ(Y𝑜|𝐻),  ℒ(Y𝑜|𝐻) =
1

(2𝜋)
𝑛𝑜
2 √|K𝑜|

exp (−
Y𝑜

𝑇K𝑜
−1Y𝑜

2
) . (7) 

Figure 1 illustrates the GP model construction. Figure 1 a) depicts the quantiles of the prior 
distribution and three random realizations of the GP model drawn from the prior distribution. The plot 
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in Figure 1 b) depicts quantiles and three realizations of the posterior distribution conditioned on the 
observations indicated with the crosses. The plot also shows the exact model (dash line). This 
posterior of the GP model uses the same hyper-parameters as the prior in Figure1 a). It shows that 
the prediction uncertainty increases as one moves away from the observations. The plot in  
Figure 1 c) also depicts the posterior quantiles and three realizations but for the hyper-parameters 
𝐻∗ that maximize the likelihood of the observations. Compared to Figure 1 b) it shows the 
improvement of the prediction and the reduction of the prediction uncertainty resulting from 
optimizing the hyper-parameters. 

   

Figure 1. Illustration of the GP model construction. a) Prior model with mean value (solid 
black line), quantiles in blue contours, and 3 realizations (red lines); b) Posterior model 

updated from the observations (crosses) and true function (black dashed line); c) Optimized 
posterior GP model updated from the observations (crosses) and true function (black 

dashed line). 

 
2.2. Infilling Strategy 

The aim of this work is to construct the most accurate GP model 𝒢𝒫(𝑖) of the submodels 𝑀(𝑖) for the 

lowest cost, measured here by the number of submodel evaluations (e.g., model observations 𝑛𝑜). 

As shown in the previous example, the GP model 𝒢𝒫(𝑖) has lower prediction uncertainty in the 

neighborhood of the observation points and higher variance far away. This suggests that distributing 
the observations over the domain evenly can reduce the overall variance of the model on 𝛺. Uniform 
grids are not an option except for low dimensional input spaces (𝑑 ≤ 4,5) which is why this work 
relies on random sampling methods such as Latin-Hypercube-Sampling (LHS) and Quasi Monte-
Carlo (QMC). This work uses QMC, specifically Halton’s sequences (Halton, 1960), as a baseline 
approach. 

Alternatively, one can exploit the current GP model to decide the next observation point sequentially 
and update the GP model after each new observation is available. The next point should be selected 
to reduce the GP model’s prediction uncertainty effectively. One wants to choose the next 
observation point without evaluating the model (i.e., making the observation). However, it is only 
possible to compute the resulting uncertainty reduction by evaluating the model. This difficulty calls 
for approximations or heuristics. One possibility consists in assuming that the following observation 
will not affect the optimal hyper-parameters of 𝒢𝒫(𝑖). As seen from the expression of the prediction’s 

variance in Eq.(5), the variance of the GP model depends only on the location of the observation 
points for a fixed value of the hyper-parameters. It can be easily updated for a new observation point 
through rank-one updates (Sherman–Morrison–Woodbury formula (Sherman and Morrison, 1950)). 
The following observation point is thus chosen to maximize the predictive variance reduction over 
the input domain. A more straightforward approach involves selecting the next observation point at 
the maximum of the current predictive variance. 
 

a) b) c) 
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A priori methods (LHS, QMC) present the advantage of being easier to implement and are 
embarrassingly parallel. However, they are less efficient than sequential methods and usually need 
more model evaluations (observations) to achieve prediction with the same Mean Squared Error 
(MSE). In the following, the probabilistic nature of the Gaussian processes is leveraged to introduce 
a new infilling strategy that accounts for the compatibility conditions. Specifically, the set of 

submodels’ input 𝑥(𝑖)
+  for the following observations is defined through the generic optimization 

problem 

(𝑥(1), ⋯ , 𝑥(𝑚))
+

= argmax
(𝑥(1),⋯,𝑥(𝑚)) ∈ 𝛺(1)× … × 𝛺(𝑚)

𝐼𝐶(𝑥(1), … , 𝑥(𝑚)), (8) 

 
where the acquisition function, or Infilling Criterion, 𝐼𝐶 defines the specific sequential strategy. In the 

following, we denote 𝑋 = (𝑥(1), ⋯ , 𝑥(𝑚)) the vector of submodel inputs and 𝛺𝑋 its range, such that 

𝐼𝐶: 𝛺𝑋 ↦ ℝ. With this structure of 𝐼𝐶, all submodels’ next evaluation points are generally 

interdependent and determined simultaneously. The definition of 𝐼𝐶 is chosen to select input points 
whose evaluations reduce the models’ variance after the update and satisfy the compatibility 
conditions. It suggests a composite structure for 𝐼𝐶, with a variance and compatibility parts. 

Starting with the compatibility part, we denote 𝑍 the vector gathering all the compatibility constraints. 
The submodel inputs are compatible when ∥ 𝑍(𝑋) ∥= 0, that is, when 𝑋 ∈ Ωeq where Ωeq ⊆ Ω𝑋 is the 

equilibrium manifold. Note that from Ωeq one can derive the equilibrium manifolds Ω(𝑖)
eq

 of the 

submodels. The vector of constraints 𝑍(𝑋) would be too costly to evaluate for given 𝑋 ∈ 𝛺𝑋; which 

is why 𝑍̃(𝑋) its approximation based on the GP models 𝒢𝒫(𝑖) is introduced. The main idea of this 

work is to leverage the probabilistic nature of the GP-based predictions to derive the probability 

distribution of 𝑍̃(𝑋). In this work, only the case of compatibility constraints linear in the submodels is 
tackled. More general situations can be handled via Monte-Carlo sampling or Taylor expansions 
(local linearisations); see, for instance, Sanson et al. (2019). The GP models’ construction is 

separate, so 𝒢𝒫(𝑖) and 𝒢𝒫(𝑗) are independent when 𝑖 ≠ 𝑗. Therefore, in the linear case, the vector 𝑍̃ 

is Gaussian, and one can explicitly derive its mean value 𝜇𝑍(𝑋) and covariance matrix of 𝛴𝑍
2(𝑋) from 

the means 𝜇(𝑖)(𝑥(𝑖)) and covariance functions 𝛴(𝑖)
2 (𝑥(𝑖)) of the GP models. Specifically, for weight 

matrices 𝐴(𝑖) of the linear combination and 𝑍(𝑋) = ∑ 𝐴(𝑖)𝑖 𝒢𝒫(𝑖)(𝑥(𝑖)), it comes 

 

𝜇𝑍(𝑋) = ∑ 𝐴(𝑖)

𝑖

𝜇(𝑖)(𝑥(𝑖)), 𝛴𝑍
2(𝑋) = ∑ 𝐴(𝑖)

𝑖

𝛴(𝑖)
2 (𝑥(𝑖))𝐴(𝑖)

𝑇 . (9) 

 
The approximate vector of constraints thus follows the multivariate normal distribution, 
 

𝑍̃(𝑋) ∼ 𝒩 (𝜇𝑍(𝑋), 𝛴𝑍
2(𝑋)) , (10) 

 

and the density of 𝑍̃ given the input values 𝑋 ∈ 𝛺𝑋 becomes 
 

𝑝𝑍̃(𝑧|𝑋) ∝
1

|𝛴𝑍
2(𝑋)|

1
2

exp (−
1

2
(𝜇𝑍(𝑋) − 𝑧)𝑇 (𝛴𝑍

2(𝑋))
−1

(𝜇𝑍(𝑋) − 𝑧)) . (11) 

 

The density at zero of 𝑍̃ measures the likelihood of the GP model to satisfy the compatibility 

conditions at the input point 𝑋 = (𝑥(1), ⋯ , 𝑥(𝑚)) 

 

ℒ𝑍=0(𝑋) = 𝑝𝑍̃(0|𝑋) ∝
1

|𝛴𝑍
2(𝑋)|

1
2

exp (−
1

2
𝜇𝑍(𝑋)𝑇 (𝛴𝑍

2(𝑋))
−1

𝜇𝑍(𝑋)) . (12) 

 
Now focusing on the variance part of the definition of 𝐼𝐶, the model’s variance reduction over 𝛺(𝑖) 

induced by a new observation at a given point 𝑥(𝑖) is computable, assuming that the hyper-
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parameters remain unchanged. The selection of the new points could involve the integral models’ 
variance reduction weighted by the likelihood of satisfying the compatibility conditions. A Monte Carlo 
method could estimate such an integral, but the procedure would be computationally expensive 
when the likelihood concentrates on the compatibility manifolds. Therefore, a local criterion based 
on the models’ variance at new observation points was chosen. The formulation we chose is to sum 
the (independent) models’ uncertainties to get 
 

𝐼𝐶(𝑋) = [∑ Tr (𝛴(𝑖)
2 (𝑥(𝑖)))

𝑚

𝑖=1

] ℒ𝑍=0(𝑋), (13) 

 

where Tr(𝛴(𝑖)
2 ) is the trace of the predictions’ covariance of 𝒢𝒫(𝑖). The first term of 𝐼𝐶 drives the next 

sampling points in areas where the GP models prediction uncertainties are the highest. The second 
term focuses the sampling in places where the compatibility constraints have a high chance of being 
satisfied. 
 
2.3. Infilling Algorithm 

The construction of the GP models of the subsystems begins with an initialization step, where some 
input points are drawn randomly in the 𝛺(𝑖); the submodels 𝑆(𝑖) are evaluated at these points and the 

GP models 𝒢𝒫(𝑖) are constructed. This step includes the optimization of the hyperparameters 𝐻(𝑖). 

In this work the DIRECT algorithm (Jones et al., 1993) from the NLopt library (Johnson 2023) is 
used. 

After the initialization step, the infilling strategy proceeds to solve 

(𝑥(1), ⋯ , 𝑥(𝑚))
+

= argmax
(𝑥(1),⋯,𝑥(𝑚)) ∈ 𝛺(1)×…×𝛺(𝑚)

[∑ Tr (𝛴(𝑖)
2 (𝑥(𝑖)))

𝑚

𝑖=1

] ℒ𝑍=0(𝑥(1), ⋯ , 𝑥(𝑚)). (14) 

In practice, some submodels share some of their inputs 𝑥(𝑖) with other submodels, and the 

optimization must account for these structures in the inputs. One possibility is to add equality 
constraints to the optimization problem. Alternatively, one can reduce the vector 𝑋 of inputs to 
remove redundancies. The work uses this second approach, solving the optimization problem with 
the NLopt library. Note that any other optimization utility could be used for that purpose. 

When the following input values 𝑥(𝑖)
+  are determined, 𝑀(𝑖)(𝑥(𝑖)

+ ) is evaluated to obtain a new 

observation and update 𝒢𝒫(𝑖) accordingly. After the update of all GP models, the procedure is 

repeated until the computational budget is exhausted or some stopping criteria are met. This 
algorithm presents the advantage of determining the new inputs simultaneously, enabling the parallel 
evaluation of the submodels. In some situations, updating only a few or just one submodel may be 
preferred before reconsidering Eq. (14). For instance, one could decide to update individual models 

using their respective variances Tr(𝛴(𝑖)
2 ). Alternatively, one could consider the numerical cost of the 

models by adapting the multi-fidelity strategy proposed in Pellegrini, et al. (2016). 

3. APPLICATION TO A SAILING YACHT MODEL 

The proposed method is applied to a sailing yacht model to illustrate the efficiency of separated 
surrogates’ construction with the proposed infilling strategy. The assessment of the method includes 
the surrogates error analysis, in Section 3.2, and the induced errors when using these models in a 
Velocity Prediction Program (VPP) and a routing problem, in Section 4. In order to assess these 
errors, a simple and relatively low-cost yacht model that permits the exact VPP computation for 
reference is chosen. 
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3.1. Yacht Model 

The yacht characteristics and its model is fully described in Appendix A. It is split into two submodels 
𝑀(𝑎) and 𝑀(ℎ) (i.e. 𝑚 = 2), predicting respectively the aerodynamic and hydrodynamic forces and 

moments acting on the yacht. Two Gaussian-Processes, 𝒢𝒫(𝑎) and 𝒢𝒫(ℎ) subsequently approximate 

the submodels. As previously discussed, one can construct the submodels’ surrogates separately, 
but it is advantageous to concentrate the construction effort on inputs value that satisfy a 
compatibility condition. In the present yacht model, the compatibility condition expresses the static 
equilibrium of the yacht. For simplicity, only the yacht’s three principal degrees of freedom 
(see Larsson, 1999)), namely the propulsion and drift forces and the heeling moment, are considered 

in this work such that 𝒢𝒫(𝑎,ℎ) ∈ ℝ3 and the compatibility condition writes 

𝑍̃(𝑋) = 𝒢𝒫(𝑎)(𝑋) + 𝒢𝒫(ℎ)(𝑋) = 0. (15) 

Overall, the yacht model uses six input variables (𝑑 = 6) to determine the forces (see Appendix A): 

the boat speed (𝑉𝑏), the heel angle (𝜃), the leeway angle (𝜆), the flat (𝑓) parameter of the sails, the 
true wind angle (𝛽𝑎) and the true wind speed (𝛽𝑡). The inputs of the hydrodynamic model are only 
the first three inputs, whereas the aerodynamic model uses all the inputs. Table 1 reports the (a 
priori) inputs’ range for constructing the surrogates. 

These ranges are deliberately large and involve unrealistic situations that challenge the physical 
validity of some loads’ model. The heel range, for instance, goes from -20 to 90 degrees, when some 
force models implicitly assume small heel angles and negative heel angles may not be feasible at 
equilibrium. Our goal when choosing these large ranges is to demonstrate the robustness of the 
ALM algorithm and its capacity to focus on the equilibrium manifold. 

Table 1. Inputs' range. 

Input V𝑏 [kt] θ [˚] 𝜆 [˚] 𝑓 [-] 𝛽𝑡 [˚] 𝛽𝑎 [˚] 

Lower bound 0.1 -20 -7 0 2 0 

Upper bound 10 90 7 1 22 180 

 

3.2. Sequential Surrogates Construction 

The method described in Section 2 is then applied to this yacht mode, constructing GPs of the 
aerodynamic and hydrodynamic models iteratively. The construction differs slightly from the uni-
dimensional case exposed in Section 2.1, as the models are vector values with components being 
the three loads of interest. At each step, we apply affine transformations to standardize 
componentwise the data (Principal Component Analysis) before the GPs construction. These 
transformations preserve the constraints’ Gaussian structure while balancing the models’ magnitude 
and easing the prescription of hyperparameter ranges. Other strategies were also tested, such as 
those presented in Alvarez et al. (2012). However, we found that, in this problem, these methods 
were not noticeably improving the accuracy while demanding the optimization of significantly more 
hyperparameters. 

In this section and the following, we contrast the predictions of two methods to demonstrate the 
performance of the proposed method. To serve as a reference, we build the GP models on data 
points sampled with the Quasi-Monte Carlo method over the whole domain of the inputs. More 
precisely, we rely on Halton sequences. Besides its sampling qualities, the QMC method enables 
the prolongation of the sequence, a feature exploited to monitor the convergence. Our approach, in 
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contrast, uses the current models to select the new sample point at each step from the infilling criteria 
given by Eq. (14); it then evaluates the aerodynamic and hydrodynamic models at the new point 
before proceeding with the update of the GP models. 

For a quantitative measure of the error, we define the subset of the input space 𝛺𝜖 ⊂ 𝛺𝑋 as the set 
of inputs satisfying the constraints within a tolerance 𝜖: 

𝛺𝜖 = {𝑋 ∈ 𝛺𝑋, ∥ 𝑍(𝑋) ∥≤ 𝜖}. (16) 

We then measure the GP-based prediction (mean value) of the loads and constraints errors using 
the 𝐿2(𝛺𝜖) error. For the constraints, for instance, we define 

∥ 𝑍(𝑋) − 𝜇𝑍(𝑋) ∥𝐿2(𝛺𝜖)
2 = ∫ ∥

𝛺𝜖

𝑍(𝑋) − 𝜇𝑍(𝑋) ∥2 𝑑𝑋. (17) 

In practice, evaluating the integral over the non-explicit domain 𝛺𝜖 uses a uniform Monte-Carlo 
sample set drawn by a standard rejection method over the whole domain 𝛺𝑋. Since the rejection rate 

increases when 𝜖 decreases, we have progressively lowered 𝜖 until the averaged error  
∥ 𝑍(𝑋) − 𝜇𝑍(𝑋) ∥𝐿2(𝛺𝜖)

2 /|𝛺𝜖| becomes 𝜖-independent. The results presented hereafter use 𝜖 = 1,000. 

   

Figure 2. Evolutions with the training set dimension of the 𝐿2(𝛺𝜖) errors on the predicted 
constraints a), aerodynamic forces b), and hydrodynamic forces c). The plots are for the 

proposed method (ALM) and the QMC sampling. 

Figure 2 compares these errors for the QMC and our method, labeled ALM. Figure 2 a) shows the 
errors of the constraints in 𝐿2(𝛺𝜖) norms (normalized by their initial values) as functions of the 
number of sample points in the data basis. The initial models for the two methods use the same 
(QMC) sample set of 20 points. Figure 2 b) shows the evolution of the aerodynamic model errors, 
and Figure 2 c) concerns the hydrodynamic model. The plot of the errors on the constraint shows 
that after an initial stage where the QMC and ALM methods yield comparable errors, the ALM 
method produces much more precise estimations of the constraint when the number of training 

a) b) c) 

D
ow

nloaded from
 http://onepetro.org/JST/article-pdf/8/01/76/3181589/snam

e-jst-2023-05.pdf/1 by guest on 22 N
ovem

ber 2023



 86 

points exceeds 175. Specifically, an error reduction of roughly one order of magnitude is reported 
when 𝑛 > 300. Also, the plots of the errors on the loads highlight that the aerodynamic (Figure 2 b)) 
is the most challenging to construct and quickly exceeds the hydrodynamic error (Figure 2 c)) by 
several orders of magnitude. It is, therefore, the main contributor to the equilibrium error. This 
behavior is explained by more complex dependencies and the highest dimensionality of the 
aerodynamic model, with six input dimensions compared to three for the hydrodynamic model. 
Consistently, the error of the ALM and QMC hydrodynamic models are much closer than for their 
aerodynamic counterparts, denoting that the ALM focuses on reducing the constraints error through 
its principal contributor. 

Figure 3 illustrates the differences in the structure of the training sets generated with the QMC and 
ALM methods. The plot shows the projection of the training points in the (𝑉𝑏 , λ) plan. Also reported 
with red crosses is the projection of points uniformly sampled from 𝛺𝜖 and used to estimate the 

𝐿2(𝛺𝜖) norms. We see that when the distribution of the QMC points (blue) is uniform in the plan, the 
distribution of the ALM points (orange) principally concentrates in areas of low constraint values (𝛺𝜖), 
explaining the improved accuracy in these regions. The plot also highlights that ALM can 
accommodate situations combining very narrow and substantial domains of quasi-equilibrium. For 

instance, we observe a quasi-uniform ALM sampling in the λ direction at low V𝑏. The uniform 

sampling is due to low hydrodynamic and aerodynamic forces at low V𝑏 and β𝑡, which require 

exploring the whole parametric space to sufficiently reduce the prediction variance and confidently 
decide whether the equilibrium is likely. In contrast, when the loads are important (higher V𝑏), a 
comparable prediction variance will not be as critical in the equilibrium assessment far from the 
manifold. ALM then concentrates the samples within narrow domains. 

 
Figure 3. Projection of the sampling points on the (𝑽𝒃, 𝝀) plan. Small red crosses are points 
in 𝜴𝝐, blue dots correspond to QMC sample points, and orange dots are the sampling points 

for the ALM method.  

 
4. APPLICATION TO VPP AND ROUTING 

In this section we exploit the models build in the previous section in two applications: a Velocity 
Prediction Program and routing. 

4.1. Surrogates-based Velocity Prediction Program 

We formulate the VPP problem as follows: given some wind conditions, (𝛽𝑎, 𝛽𝑡), find the maximum 

boat speed V𝑏 and associated trimming parameters (𝜃, λ, 𝑓) within the input domain that satisfy the 

equilibrium of the yacht. Solving the VPP problem for several combinations of (𝛽𝑎, 𝛽𝑡) yields the so-

called yacht’s polar, which characterizes the yacht’s performance in the industry. 
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There are several ways to solve this constrained optimization problem. In the present work, a hybrid 
approach is employed. It combines a pseudo-transient method that computes the terminal 
(stationary) (V𝑏 , θ, λ) values for given 𝑓, with an external optimization loop that determines the FL 

value leading to the highest V𝑏. This approach, like others, requires many evaluations of the 
aerodynamic and hydrodynamic models. For the simple yacht model considered here, it is possible 
to solve the VPP problem directly, i.e., using the exact models. We can then assess the impact on 
the VPP of the GP models when they replace the exact models. 

In Figure 4, we report the yacht’s polar for four values of 𝛽𝑡 (5, 10, 15 and 20 kt) and several  
𝛽𝑎, using the exact models and GP surrogates based on 300 training points with the ALM and QMC 

methods. These experiments use the best GP prediction, i.e., their mean, to replace the exact model. 
We observe that for ALM, the approximation is consistently close to the exact polar. In contrast, the 

QMC-based GP models yield more significant deviations, particularly at low 𝛽𝑡 values (most inner 

polar) and for large 𝛽𝑎. One can better appreciate the differences in the surrogate methods in  
Figure 5, which shows the evolution of the mean squared error (MSE) of the VPP with the size of 
the training set. The ALM has an MSE reduced by roughly two orders of magnitude compared to the 
naive QMC method when the training set size exceeds 300. 

 
Figure 4. comparison of yacht polars computed with the exact (blue), QMC (orange) and 
ALM (green) models, and for 𝜷𝒕 = 5, 10, 15 and 20 kt (the higher the true wind speed, the 

higher the 𝑽𝒃). The GP-based polars use the mean prediction from 300 training points. 

 

 
Figure 5. Evolution with the training set size of the polars’ MSE. 
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Figure 4 showed that the Adaptive Learning method produces more accurate polars than the QMC 
sampling method. It was evidenced by reporting the distance between the mean-based polars and 
their exact model counterparts. However, another critical aspect of the ALM method is that it provides 
a much lower uncertainty level in the prediction. Figure 6 illustrates this characteristic for the ALM 
and QMC methods, respectively; they show 50 random samples of the polars computed using 50 
independent realizations of the aerodynamic and hydrodynamic GP models. These polars are 
generated by solving the VPP problem using correlated samples of the GP models’ posterior 
distributions. One can observe how correlations between the models’ input values translate into 
smooth polar samples. Further, the plots highlight the reduced uncertainty in the polars for the ALM 
approach (Figure 6 a)) compared to the QMC sampling (Figure 6 b)): the sample dispersion is 
significantly less in the former case. Characterizing this spread in the polar prediction is essential to 
estimate the confidence in the constructed model and eventually decide to refine the GP model 
further. 

  

Figure 6. Fifty random samples of the polars for the surrogates constructed with 300 
training point for a) ALM and b) QMC. Polars are shown for true wind speed values  

𝜷𝒕 = 5, 10, 15 and 20 kt corresponding to increasing 𝑽𝒃. 

 
4.2. Routing with Surrogate Models Uncertainty 

We compare the QMC and ALM GP construction on a routing application to complete the 
comparison. Specifically, we selected the course of the next edition of the Fastnet race, which 
departs in the Solent, rounds the Fastnet light-house (southeast of Ireland) and ends in Cherbourg. 
The routing utility is the QTVLM software (see QTVLM (2023)) which computes the isochrone from 
yacht polars and weather data to produce the route to complete the course in shortest time. The 
optimal route depends on the polars of the yacht which are fed to QTVLM. The routing uses the 
weather conditions predicted by the GFS forecast model on the 24th of March, 2023 at 0000 GMT 
for a start of the course on the same day at 1600 GMT. Note that the time resolution of the QTVLM 
software is 5 minutes. 

We perform the routing for the 50 realizations of the polars shown in Figure 6. The resulting routes 
are reported in Figure 7. For ALM, see Figure 7 a), the spread of the routes is limited, except for the 
channel crossing to reach Cherbourg at the end of the course. In contrast, the spread of the routes 
for the QMC approach depicted in Figure 7 b) becomes significant much earlier. One may notice an 
outlier route induced by a very poor model realization in the QMC approach, with an early channel 
crossing at the start and a northern route in the first crossing of the Irish Sea to the Fastnet rock. 
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Figure 7. Route distribution for 50 polar samples using a) ALM (200 training points) and  
b) QMC (300 training points). 

 
We further assess the impact of the models’ uncertainty by reporting the induced statistics of the 
route’s duration or estimated time of arrival (ETA) produced by the routing software.  
 
Table 2 summarizes the statistic of the ETA for the two methods and two training set sizes. The 
second column provides the ETA based on the mean of the GP models (polars of the best model 
predictions). We observe that the mean QMC models overestimate the ETA of the exact model (last 
row of the table) by more than 1.5 h when the mean ALM models are in better agreement with less 
than 40 minutes error. The third and fourth columns provide the average and standard deviation of 
the ETA estimated from the 50 random samples of the polars. The sample averages of the ETA for 
ALM are within 15 minutes of the exact ETA, with a consistent standard deviation of roughly 20 
minutes. In contrast, the sample-averaged ETA for the QMC construction varies from 1.5 to 2 hours, 
with larger standard deviations that are inconsistent. For instance, for QMC with 300 training points, 
an average ETA of 182 hours (short of roughly 2 hours) is predicted, with a standard deviation of 
only 36 minutes, when the ETA for the corresponding mean models is 185.6 hours. These results 
highlight the lack of robustness of the QMC method, whose significant GP models’ uncertainty 
induces high polar variabilities and long-tailed ETA distributions. 
 
Table 2. Estimated ETA for the ALS and QMC methods using two training set sizes (200 and 

300 points). The Table reports the ETA of the mean model (2nd column), the sample 
average, and the standard deviation of the ETA (3rd and 4th column). The ETA for the exact 

model is also reported (last line). 

Method ETA for mean prediction Sample average ETA Standard Dev. ETA 

QMC (200 pts) 185 h 20 min 185 h 27 min 36 sec 1 h 15 min 55 sec 

QMC (300 pts) 185 h 40 min 182 h 00 min 20 sec 0 h 36 min 53 sec 

ALM (200 pts) 183 h 35 min 184 h 04 min 30 sec 0 h 23 min 35 sec 

ALM (300 pts) 183 h 10 min 184 h 02 min 06 sec 0 h 21 min 37 sec 

Exact model 183 h 30 min – – 

 
The spread of the ETA distribution for the different methods can be appreciated from Figure 8. In 
this plot, we have estimated the densities by applying a standard kernel density method on the 
sample sets of 50 ETAs associated with the random samples of the polars. The change in the 
densities for the QMC methods between 200 and 300 training points is striking, especially when 
compared to the two ALM densities. 
 

a) b) 
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Figure 8. Distributions of ETA predicted by ALM and QMC methods using 200 and 300 
training points, as indicated. The densities are estimated using 50 random samples of the 

GP models. The vertical line shows the ETA for the exact models (183.5 h). 

 
5. CONCLUSIONS 

This work presents a new method of constructing surrogate models of complex systems. The key 
ingredients of the proposed methods are 

• partition of the system into simpler subsystems with compatibility conditions 

• sequential construction of the subsystems’ Gaussian Process surrogates, with a progressive 
enrichment of the training sets driven by the current system approximation 

• Adaptive Learning Method aiming to reduce the surrogate errors for input values likely to 
satisfy the compatibility conditions 

The Active Learning method (ALM) relies heavily on the probabilistic nature of Gaussian Process 
surrogates representing the subsystems. We derive an infilling criterion from the probabilistic 
information that targets input values with high prediction variance and a high likelihood of solving the 
compatibility conditions. 

We apply the ALM to a simple yacht model. We show that ALM results in GP surrogates of the 
aerodynamic and hydrodynamic forces that are more accurate in the neighborhood of the compatible 
domain than for non-informed construction methods, such as Quasi-Monte Carlo (QMC) sampling. 
Our tests show that ALM requires significantly fewer submodel evaluations to achieve a prescribed 
prediction accuracy compared to a standard QMC sampling method. This reduction of submodel 
evaluations will directly translate into computational savings, provided that the CPU cost of the 
submodels’ evaluation dominates the cost of solving the sequence of optimization problems for the 
infilling points. ALM targets these situations, which should correspond to most applications involving 
complex CFD codes and structural models. 

The resulting surrogates were applied to solve a VPP problem and compute polars. The polars 
predicted by the mean GP surrogates built with the active learning method can be up to ten times 
more accurate than the polars obtained without the adaptive strategy (QMC). The improvement will 
be even more impressive for more complex yacht models and higher dimensional input spaces. 
However, the improvement may be difficult to quantify if exact polars are unavailable. 

Reductions in the GP surrogates’ prediction uncertainty accompany the gain in accuracy of the mean 
prediction for ALM. This point is particularly relevant as the prediction uncertainty is crucial when 
assessing the surrogate model quality and the confidence in the model prediction. The paper has 
illustrated these aspects by reporting posterior uncertainties in the VPP (polars). We also draw 
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models from their posterior distribution to conduct an ensemble routing analysis and estimate the 
statistical spread of course duration due to model uncertainty. 

The ALM can be improved in several aspects. First, we would like to extend the infilling criterion to 
account for possibly very heterogeneous computational costs of the submodels, along the lines of 
the cost-informed infilling strategies proposed in Pellegrini et al., 2016 and Sacher et al. (2021). 
Similarly, the proposed approach is purely sequential with just one infilling point determined at each 
iteration, and it could be extended to generate a batch of infilling points in order to exploit parallelism 
better. 
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APPENDIX. SAILBOAT MODEL 

In this appendix we detail the sailboat model used in the numerical experiments. This model was 
selected for its simplicity that enable fast computations, and does not aim at reflecting an actual 
yacht. In particular some part of the model may be used for conditions that may lead to non-physical 
prediction (e.g., detached flows) for the range of inputs considered for the construction of the 
surrogates. 

A.1. Yacht Characteristics and Physical Properties 

The input variables of 𝜃 and 𝜆 are defined in a coordinate system given in Figure 9, where the yacht 

is on starboard tack and its direction of travel is along the 𝑥ori vector, the 𝑦ori vector is pointing to 

leeward (port) and the 𝑧ori is directed upwards and normal to the free-surface. The angle 𝜃 
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represents a negative rotation around the 𝑥ori axis, increasing the yacht's righting moment. The angle 

𝜆 represents a negative rotation around the 𝑧ori axis, yielding a drift of the yacht to port. 

 

Figure 9. Reference frame. 

The yacht characteristics are listed in Table 3, while Table 4 reports the physical properties used in 
the model. 
 

Table 3. Yacht characteristics. 

Characteristics Symbol Value Unit 

Length at the waterline 𝐿wl 9.14 [m] 

Beam at the waterline 𝐵wl 3.25 [m] 

Displacement 𝐷 2.8 [m3] 

Longitudinal center of buoyancy (from forward perpendicular) 𝐿cb 4.81 [m] 

Longitudinal center of flotation (from forward perpendicular) 𝐿cf 4.81 [m] 

Draft of canoe body 𝑇c 0.4 [m] 

Total draft 𝑇t 2.0 [m] 

Prismatic coefficient 𝐶p 0.55 [−] 

Midship coefficient 𝐶mid 0.64 [−] 

Daggerboard surface 𝑆dagg 1.125 [m2] 

Daggerboard vertical center of effort 𝑍dagg -0.8 [m] 

Daggerboard aspect ratio 𝛬dagg 2 [−] 

Initial meta-centric height 𝐺M 0.8 [m] 

Wetted surface area 𝑊SA 15 [m2] 

Area of flotation plane 𝐴w 15 [m2] 

Sail area 𝑆sail 55 [m2] 

Aerodynamic vertical center of effort 𝑍a -0.8 [m] 
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Table 4. Physical properties. 

Quantity Symbol Value Unit 

Viscosity of sea water 𝜈𝑤 1e−6 [m2s−1] 

Density of sea water 𝜌𝑤 1,025 [kg m−3] 

Density of air 𝜌𝑎 1.22 [kg m−3] 

Acceleration of gravity 𝑔 9.81 [m s−2] 

 

A.2. Aerodynamic and Hydrodynamic Forces 

The aerodynamic forces are modeled using the ORC VPP documentation (Claughton, et al. 2008). 
They depend on the apparent wind speed 𝑉𝑎  and apparent wind angle 𝛾𝑎 defined by 

𝑉𝑎
2 = (V𝑏 + 𝛽𝑡cos(𝛽𝑎))

2
+ (𝛽𝑡sin(𝛽𝑎))

2
,  𝛾𝑎 = arccos (

V𝑏 + 𝛽𝑡cos(𝛽𝑎)

𝑉𝑎
) . (18) 

The driving force, side force and heeling moment of the sail plan are computed using the following 
formulas (with 𝑉𝑎 in m s-1): 

𝐹𝑥
𝑎 =

1

2
𝜌𝑎Ssail𝑉𝑎

2(𝐶𝑙
𝑎  𝑓 sin(𝛾𝑎) − 𝐶𝑑

𝑎 cos(𝛾𝑎)), (19) 

𝐹𝑦
𝑎 =

1

2
𝜌𝑎Ssail𝑉𝑎

2(𝐶𝑙
𝑎  𝑓 cos(𝛾𝑎) + 𝐶𝑑

𝑎 sin(𝛾𝑎)) cos(θ) , (20) 

𝑀𝑥
𝑎 =

1

2
𝜌𝑎Ssail𝑉𝑎

2𝑍a(𝐶𝑙
𝑎 𝑓 cos(𝛾𝑎) + 𝐶𝑑

𝑎 sin(𝛾𝑎)), (21) 

Where the aerodynamic lift and drag coefficients, 𝐶𝑙
𝑎 and 𝐶𝑑

𝑎, are reported in Table 5 for several 

apparent wind angles. The coefficients are interpolated for other apparent wind angles using a Thin 

Plate Spline method (see Duchon (1977)). The flat parameter 𝑓 takes values in the range [0, 1] to 

emulate strong de-powering (as the lift coefficient of the sail can effectively be reduced to 0) and 
simulate globally the easing and reefing of the sail. 

Table 5. Aerodynamic force coefficients with apparent wind angle. 

𝛾𝑎 [°] 0 7 9 12 28 60 90 120 150 180 

𝐶𝑑
𝑎 0.0431 0.0258 0.0232 0.0232 0.0325 0.1130 0.3825 0.9688 1.3157 1.3448 

𝐶𝑙
𝑎 0.0 0.8620 1.0517 1.1637 1.3469 1.3534 1.2672 0.9310 0.3879 -0.1120 

 

The viscous hydrodynamic drag coefficient of the hull is taken from the classical ITTC-57 formula 
(International Towing Tank Conference 1957), 

𝐶𝑓 =
0.075

(log(𝑅𝑒ℎ) − 2)2
, (22) 
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where 𝑅𝑒ℎ =
𝑉𝐿wl

𝜈𝑤
 is the hull’s Reynolds number, 𝑉 being the boat speed expressed in m s−1. The 

wave resistance 𝑅wav is estimated from the Delft-Series Experiments (Keuning and Katgert 2008), 
through the regression given by Eq. (23): 

𝑅wav

𝜌𝑔𝐷
= 𝑎0 + (𝑎1

𝐿cb

Lwl
+ 𝑎2𝐶p + 𝑎3

𝐷
2
3

𝐴w
+ 𝑎4

𝐵wl

𝐿wl
+ 𝑎5

𝐿cb

𝐿cf
+ 𝑎6

𝐵wl

𝑇c
+ 𝑎7 ⋅ 𝐶mid)

𝐷
1
3

𝐿wl
. (23) 

The coefficients of the regression depend on the hull’s Froude number 𝐹𝑛 = 𝑉/√𝑔𝐿wl. Table 6 

provides these regression coefficients for several Froude values; again a Thin Plate Spline 
interpolation is employed to determine their values at other Froude numbers. 

The wave resistance is corrected for the heel, using an added resistance 𝑅ℎ computed as (Larsson 
1999) 

𝑅h =
𝜋

180
10−3 (6.647

𝑇c

2
+ 2.517

𝐵wl

𝑇c
+ 3.710

𝐵wl

𝑇t
 ) θ. (24) 

The stability of the hull is based on the simple transverse stability model at small angles proposed 
by Larsson (1999), with a righting moment given by 

𝑀stab = 𝜌𝑤𝑔𝐷𝐺M sin(θ) . (25) 

The forces acting on the daggerboard are based on the standard Prandlt theory (Prandtl 1925), with 
lift and drag coefficients expressed as 

𝐶𝑙
dagg

= 2𝜋λ,              𝐶𝑑
dagg

= 0.008 +
(𝐶𝑙

dagg
)

2

0.8 𝜋Λdagg
, (26) 

with the leeway angle, λ, in rad. 

With these expressions, the hydrodynamic driving force, side force and heeling moment acting on 
the yacht are computed as 

𝐹𝑥
ℎ = 𝑅wav + 𝑅h +

1

2
𝜌𝑤𝑉2 (𝑆dagg𝐶𝑑

dagg
+ 𝑊SA𝐶𝑓) , (27) 

𝐹𝑦
ℎ =

1

2
𝜌𝑤𝑆dagg𝑉2𝐶𝑙

dagg
, (28) 

𝑀𝑥
ℎ =

1

2
𝜌𝑤𝑆dagg𝐶𝑙

dagg
𝑍dagg + 𝑀stab. (29)  

Table 6. Wave resistance coefficients with the Froude number. 

𝐹𝑛 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.6 0.65 0.70 0.75 

𝑎0 -0.0005 -0.0003 -0.0002 -0.0009 -0.0026 -0.0064 -0.0218 -0.0388 -0.0347 -0.0361 0.0008 0.0108 0.1023 

𝑎1 0.0023 0.0059 -0.0156 0.0016 -0.0567 -0.4034 -0.5261 -0.5986 -0.4764 0.0037 0.3728 -0.1238 0.7726 

𝑎2 -0.0086 -0.0064 0.0031 0.0337 0.0446 -0.1250 -0.2945 -0.3038 -0.2361 -0.2960 -0.3667 -0.2026 0.5040 

𝑎3 -0.0015 0.0070 -0.0021 -0.0285 -0.1091 0.0273 0.2485 0.6033 0.8726 0.9661 1.3957 1.1282 1.7867 

𝑎4 0.0061 0.0014 -0.0070 -0.0367 -0.0707 -0.1341 -0.2428 -0.0430 0.4219 0.6123 1.0343 1.1836 2.1934 

𝑎5 0.0010 0.0013 0.1048 0.0218 0.0914 0.3578 0.6293 0.8332 0.8990 0.7534 0.3230 0.49763 -1.5479 

𝑎6 0.0001 0.0005 0.0010 0.0015 0.0021 0.0045 0.0081 0.0106 0.0096 0.0100 0.0072 0.0038 -0.0115 

𝑎7 0.0052 -0.0020 -0.0043 -0.0172 -0.0078 0.1115 0.2086 0.1336 -0.2272 -0.3352 -0.4632 -0.4477 -0.0977 
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