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Event-triggered Control From Data
C. De Persis, R. Postoyan, and P. Tesi

Abstract—We present a data-based approach to design event-
triggered state-feedback controllers for unknown continuous-
time linear systems affected by disturbances. By an event, we
mean state measurements transmission from the sensors to the
controller over a digital network. By exploiting a sufficiently
rich finite set of noisy state measurements and inputs collected
off-line, we first design a data-driven state-feedback controller
to ensure an input-to-state stability property for the closed-loop
system ignoring the network. We then take into account sampling
induced by the network and we present robust data-driven
triggering strategies to (approximately) preserve this stability
property. The approach is general in the sense that it allows
deriving data-based versions of various popular triggering rules
of the literature. In all cases, the designed transmission policies
ensure the existence of a (global) strictly positive minimum
inter-event time thereby excluding Zeno phenomenon despite
disturbances. These results can be viewed as a step towards plug-
and-play control for networked control systems, i.e., mechanisms
that automatically learn to control and to communicate over a
network.

I. INTRODUCTION

EVent-triggered control is an implementation paradigm,
which consists in transmitting data between the plant and

its controller whenever a state- or output-dependent criterion
is verified. The underlying idea is to generate communications
between the plant and its controller only when this is needed to
achieve the desired control objectives, as opposed to classical
time-triggered (periodic) strategies for which the communica-
tion instants depend on the elapsed time and not on the actual
system needs. Event-triggered control is motivated by resource
aware scenarios where communicating, computing or updating
the control input comes with a certain cost, such as networked
control systems and embedded systems. Since the results in
[1], [2] and the pioneering work in [3], various event-triggered
control strategies have emerged in the literature for a range of
set-ups and control problems, see, e.g., [4], [5].

The vast majority of the literature on event-triggered control
focuses on model-based approaches, in the sense that both the
feedback law and the triggering condition are designed by rely-
ing on a model of the plant dynamics. These results are there-
fore not applicable when first-principle models are not con-
ceivable, or when exact/accurate enough system identification
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R. Postoyan is with Université de Lorraine, CNRS, CRAN, F-54000 Nancy,
France. His work is supported by ANR via grant HANDY, number ANR-18-
CE40-0010. E-mail: romain.postoyan@univ-lorraine.fr.
P. Tesi is with DINFO, University of Florence, 50139 Firenze, Italy. His
work is supported by the European Union under the Italian National Recovery
and Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecom-
munications of the Future” (PE00000001 - program “RESTART”). E-mail:
pietro.tesi@unifi.it.

is impossible because of noisy data. In this case, an alternative
consists in designing the controller directly based on available
input-state/output data, we talk of data-driven control, see e.g.,
[6]–[10] for earlier contributions and one recent survey on
the topic. This paradigm is also appealing as it may ease the
controller design step. Few techniques are currently available
in the literature to design data-driven event-based controllers
see, e.g., [11]–[14], which consider discrete-time systems, and
the recent work in [15] dedicated to continuous-time systems.
In [11]–[13], no disturbances act on the data collected off-line,
which simplifies the learning, in particular, for linear time-
invariant systems, an exact data-based representation can be
obtained in this case under mild conditions [16]. This is not
the case of [14] where the controller and the triggering policy
are designed once and for all with one single batch of noisy
data collected from the system. The idea is that, under certain
conditions, this data batch returns a (non-parametric) system
model. This makes it possible to cast control and triggering
rule design as data-dependent problems, in particular via data-
based linear matrix inequalities (LMI). The authors of [14]
then derive a dynamic event-triggered control policy inspired
by the model-based technique in [17]. However, while off-line
data are noisy, disturbances are ignored when implementing
the controller. In [15], on the other hand, disturbances are
considered both for learning and during closed-loop operation
and a specific triggering strategy is presented to ensure an
L2-stability property.

There is therefore a strong need for general data-based
event-triggered control techniques that are applicable to
continuous-time systems, as many real-life processes have a
continuous-time nature, and that are robust to disturbances
affecting both the data acquisition phase and the closed-loop
operations. In this context, we present a data-based approach to
design state-feedback event-triggered controllers for unknown
stabilizable continuous-time linear systems affected by distur-
bances. Like in [15], noisy data is explicitly accounted both
off-line, when acquiring data, and on-line, when implementing
the designed controller. Noisy data in the acquisition phase
prevent exact system identification, and this calls for control
design routines that are robust to uncertainty. Noise during
the closed-loop operations, on the other hand, is even more
problematic because it may lead to Zeno behavior even with
exact modelling [18], meaning that an infinite number of
transmissions occur in finite time. To address these challenges,
we proceed by emulation and, as a first step, we design a state-
feedback controller that stabilizes the closed-loop system in
absence of sampling, in the sense that an input-to-state stability
(ISS) property holds. We then take into account sampling
induced by the network and we design data-driven triggering
techniques based on the relative threshold technique of [3] that
preserves (approximately) the original stability property of the
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closed-loop system. In particular, we first develop data-driven
mixed absolute/relative threshold event-based policies [18]. In
this case, the closed-loop system is guaranteed to satisfy a
practical ISS property, where the adjustable parameter is the
absolute threshold. Further, we prove the existence of a strictly
positive uniform minimum inter-event time between any two
transmissions and we provide a data-based estimate of it.

To preserve the asymptotic nature of the stability property
of the continuous-time closed-loop system in absence of sam-
pling, we present an alternative triggering rule based on time-
regularization of the relative threshold, see e.g., [19]–[21].
By doing so, we enforce a given strictly positive minimum
inter-event time after which a relative threshold condition
is checked thereby excluding Zeno phenomenon by design.
The maximum value of this enforced minimum time between
any two transmissions is given by an expression, which
depends on the data collected off-line only. While the time-
regularized triggering condition ensures a stronger stability
property compared to the mixed strategy, it may generate
more transmissions as suggested by a numerical example we
provide. From a technical viewpoint, the proposed design
conditions take the form of semi-definite programs (SDP),
in particular feasibility of optimization problems with LMI
constraints. This is appealing because many results on event-
triggered control developed in a model-based context involve
LMI formulations, see [20], [22].

Afterwards, we illustrate the generality of the approach by
designing robust data-based versions of several major trigger-
ing rules of the literature originally developed in a model-
based setting, namely: (i) quadratic triggering policies, e.g.,
[4]; (ii) dynamic event-triggered control [17], [21] where we
consider a more general form compared to [15] (see Remark 9
for more details); and (iii) decreasing threshold on a Lyapunov
function designed ignoring sampling, like in [23], [24]. In
all cases, ISS properties are established and a global (i.e.,
independent of the initial conditions of the system) minimum
inter-event time is guaranteed to exist despite disturbances
acting on the system. In addition, data-based estimates of these
minimum inter-event times are provided. These results can be
viewed as a step towards plug-and-play control for networked
control systems, i.e., mechanisms that automatically learn to
control and to communicate over a network.

The remainder of this paper is as follows. We introduce the
framework of interest in Section II. We then first concentrate
on the noise-free case to put in place the required background
and techniques in Section III. The main results dedicated to
noisy systems are provided in Section IV, where we establish
(practical) ISS properties as well as the existence of a global
minimum inter-event time. The extension to other triggering
policies is presented in Section V. Section VI ends the paper
with concluding remarks, and the appendix contains a couple
of additional technical results.

Notation. N0 :“ t0, 1, 2, . . .u denotes the set of non-negative
integers and N :“ N0zt0u. R stands for the set of real numbers,
Rě0 :“ r0,8q and Rą0 :“ p0,8q. Given a symmetric matrix
M , the notation M ą 0 (M ľ 0) and M ă 0 (M ĺ 0)
means that M is positive and, respectively, negative (semi)-
definite. Given a matrix M , MJ denotes the transpose of M .

The notation I and 0 stand for the identity matrix and the zero
matrix, respectively, whose dimensions depend on the context.
For the sake of convenience, we write rA B

‹ C s for
“

A B
BJ C

‰

where A,B,C are matrices of appropriate dimensions. The
induced 2-norm of a matrix is denoted } ¨ }. Given x P Rn and
y P Rm with n,m P N, we use the notation px, yq to denote
pxJ, yJqJ. Given x, y P Rn with n P N, xx, yy “ xJy is the
dot product. For d : Rě0 Ñ Rn with n P N, the supremum
of d on r0, ts with t ě 0 is }d}r0,ts :“ supsPr0,ts |dpsq|, and
}d}8 :“ suptě0 |dptq|, where | ¨ | denotes the Euclidean norm.

II. FRAMEWORK

Consider the continuous-time linear system

9xptq “ Axptq `Buptq ` dptq, (1)

where xptq P Rn is the state and uptq P Rm is the control
input at time t P Rě0 with n,m P N. Input disturbance
d P Rě0 Ñ Rn is unknown, Lebesgue measurable and
bounded in the sense that }d}8 ă `8. Matrices A and B are
real, constant, unknown and assumed to be such that pA,Bq is
stabilizable. We will not need to directly check stabilizability
of pA,Bq in the sense that this property is necessary for the
feasibility of the design data-based programs that we will
consider.

We investigate the scenario where plant (1) is connected to
its controller via a network. In particular, state measurements1

are sent from the sensors to the controller via a digital channel,
and the controller is directly connected to the actuators.2 Our
goal is to design a state-feedback event-triggered controller to
stabilize, in a sense made precise in the sequel, system (1).
In particular, we aim at designing a linear state-feedback law
with gain K P Rmˆn and a triggering policy that defines the
sequence of transmission (or sampling) instants ttkukPN with
N Ď N0 for each solution to the system. Without loss of
generality, we consider that a transmission occurs at t “ 0 so
that t0 “ 0. We implement the controller using zero-order-hold
devices, which leads to the control input

uptq “ Kxptkq, t P rtk, tk`1q. (2)

The solutions to (1) in closed-loop with (2) are understood in
the Carathéodory sense3, i.e., the solution flows on rtk, tk`1s

and experiences a jump at tk`1 for k, k ` 1 P N . We will
establish later in the paper that, for any k P N , tk`1 ´ tk is
lower bounded by a strictly positive constant independent of k
and of the initial condition so that the tk’s do not accumulate
(i.e., Zeno phenomenon does not occur). Also, by a solution,
we mean a maximal solution, i.e., one that cannot be extended.

Notice that the control law (2) can also be computed at the
sensor node, in which case the sensor directly transmits uptkq
over the network to the actuators. All the results of this paper
apply to this scenario without any modifications.

1Typically, we obtain knowledge of the state variables through physical
considerations, such as in mechanical or electrical systems. More generally,
the results we present could serve as a basis for addressing output-feedback
event-triggered control in the future, as mentioned in Section VI.

2The results in Section V offer consideration for a scenario where the
network is between the controller and the actuators.

3At the exception of the second part of Section V-B as specified there.
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Various solutions to this problem are available in the liter-
ature when A and B are known see, e.g., [3]–[5], [17], [19],
[19]–[21], [23], [25]. Since A and B in (1) are unknown, we
cannot apply these results and the challenge is thus to design
the event-triggered controller directly based on some available
data. In particular, we assume that we are given a set of data
collected off-line

D :“ tuptq, xptq, 9xptq : t P t0, Ts, . . . , pT ´ 1qTsuu , (3)

where Ts ą 0 is a sampling time used for collecting the
data and T ą 0 is the number of samples. Set D consists of
input, state and state derivative data collected from the system
with an experiment. This means we have access to a set of
input-state samples verifying 9xptq “ Axptq ` Buptq ` dptq
for t P t0, Ts, . . . , pT ´ 1qTsu. We consider data collected
periodically only to ease the exposition: this is not required
for the forthcoming results to hold, in other words aperiodic
sampled data can very well be considered.

The problem of interest is to determine, using D, a controller
gain K in (2) and a triggering condition policy that defines
the transmission instants ttkukPN (not necessarily periodic)
for each solution, such that the induced closed-loop system
has suitable stability properties, as formalized in the sequel.
We proceed by emulation for this purpose, in the sense that we
will first design the stabilizing controller gain K in the absence
of sampling. Afterwards, sampled communications due to the
network are taken into account and we will derive triggering
conditions to (approximately) preserve stability. We first focus
on the ideal case of noise-free data to introduce the required
background and techniques in Section III. These results are
then extended to the case where data are noisy in Section IV.
We will explain how the followed approach can be used to
develop various other triggering conditions in Section V.

Remark 1 (Data acquisition phase): The question of the
selection Ts and T is important for the forthcoming results
and we will comment on this point later in the paper. Here,
we remark that the sampling time Ts used for collecting the
data does not need to coincide with those generated by the
triggering policy to be designed. l

Remark 2 (Measurement noise): All the results of this paper
can be extended to the case where the off-line collected data
are affected by measurement noise, i.e., to the case in which
the process output (the measured signal) is z “ x`w, with w a
noise signal. As shown in [26, Section V-A], this case reduces
to input disturbances with suitable manipulations. When the
on-line measurements are corrupted by noise, the problem
remains challenging even in the model-based setting, see, e.g.,
[20], [27]–[29], and is left for future work. l

Remark 3 (State derivative measurements): The off-line
computation of 9x in (3) is error-prone. We can explicitly
account for errors in the computation of 9x by modelling
these errors as a measurement noise. Error bounds when 9x
is computed with Euler discretization are provided in [30].
Alternatively, we can consider an integral version of the
relation 9xptq “ Axptq ` Buptq ` dptq which permits to
construct datasets that do not involve the computation of 9x,
see Appendix A. l

III. LEARNING FROM NOISE-FREE DATA

A. Assumption on set D

We consider throughout this section system (1) with d ” 0
and a noise-free dataset D in (3). We define

U0 :“
“

up0q upTsq ¨ ¨ ¨ uppT ´ 1qTsq
‰

P RmˆT , (4a)

X0 :“
“

xp0q xpTsq ¨ ¨ ¨ xppT ´ 1qTsq
‰

P RnˆT , (4b)

X1 :“
“

9xp0q 9xpTsq ¨ ¨ ¨ 9xppT ´ 1qTsq
‰

P RnˆT . (4c)

We assume a condition on the richness of the data.
Assumption 1: The matrix

“

U0

X0

‰

has full row rank. l

Assumption 1 can be easily checked for a given set D. For
discrete-time systems, when pu, dq is persistently exciting then
Assumption 1 holds [16] (for an extension of this result to
continuous-time systems see [31]). We will elaborate more on
Assumption 1 in the discussion following Theorem 1 and at
the beginning of Section IV.

B. Learning a feedback controller

To design the feedback law, we follow the approach in-
troduced in [26], which gives simple formulas for controller
design and returns a data-based representation of the closed-
loop dynamics that is useful to determine later on the trigger-
ing policy. The next two results are taken from [26]; we recall
them for convenience. We start with an auxiliary result.

Lemma 1: Let Assumption 1 hold and consider any matrix
K P Rmˆn. Then A ` BK “ X1G where G P RTˆn is any
solution to the system of equations

„

K
I



“

„

U0

X0



G. (5)

l

Proof. By Assumption 1, there exists a Tˆn matrix G such
that (5) holds. Hence, A`BK “ rB A srKI s “ rB A sr

U0

X0
sG,

where the second identity follows from (5). The result follows
because the elements of U0, X0 and of X1 satisfy the relation
9xptq “ Axptq ` Buptq, t P t0, Ts . . . , pT ´ 1qTsu, which, in
compact form, gives X1 “ AX0 `BU0. �

We exploit Lemma 1 to design K such that A ` BK is
Hurwitz, despite the fact that A and B are unknown. As a
result, the origin of system (1) with d ” 0 in closed-loop
with the continuous-time controller u “ Kx will be globally
exponentially stable, i.e., there exist c1 ě 1 and c2 ą 0 such
that any solution x satisfies |xptq| ď c1e

´c2t|xp0q| for any t ě
0. We derive for this purpose a convex program, specifically a
SDP. As A and B are unknown, we use the fact that for any
matrix K P Rnˆm, X1G “ A ` BK where X1 and G are
known from D in (3) in view of Lemma 1, to select suitable
K based on U0, X0 and X1 in the next theorem.

Theorem 1: Consider stabilizable system (1) with d ” 0
and suppose Assumption 1 holds. Consider the next SDP in
the decision variable Y P RTˆn

X1Y ` pX1Y q
J ă 0, (6a)

X0Y ą 0. (6b)

SDP (6) is feasible and any solution Y to (6) is such that the
matrix K “ U0Y pX0Y q

´1 renders A ` BK Hurwitz. As a
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result, the origin of system 9xptq “ pA`BKqxptq is globally
exponentially stable. l

Proof. We first show that (6) is feasible. Consider any matrix
K that makes A ` BK Hurwitz, which exists since pA,Bq
is stabilizable. By Lyapunov theory, there exists a symmetric
matrix S ą 0 such that SpA ` BKq ` pA ` BKqJS ă 0.
Furthermore, by Lemma 1 there exists a matrix G that satisfies
rKI s “ r

U0

X0
sG, which implies A`BK “ X1G. Hence, Y :“

GS´1 satisfies both (6a) and (6b) as X0G “ I and X0Y “

S´1 ą 0. This shows that (6) is feasible.
Concerning the second part of the statement, consider any

solution Y to (6) and let G :“ Y S, where we set S :“
pX0Y q

´1. Note that X0G “ I and that K “ U0Y pX0Y q
´1

can also be written as K “ U0G, as (5) holds. By combining
(6a) and (6b), and because G “ Y S and A ` BK “ X1G,
we conclude that SpA ` BKq ` pA ` BKqJS ă 0. Thus
A`BK is Hurwitz as S is symmetric and S ą 0. The global
exponential stability of the origin of 9xptq “ pA ` BKqxptq
then follows, see [32, Theorem 8.2]. �

The decision variable in Theorem 1 is Y (and not G) and
Y pX0Y q

´1 “ G. This change of variable is instrumental
to arrive at a convex formulation of the design program as
shown in the proof of Theorem 1. We also notice from the
proof of Theorem 1 that Assumption 1 is not needed for the
second part of the result, which implies that there might exist
a solution to (6) even though Assumption 1 does not hold.
This fact has been pointed out in the discrete-time case in
[33]. Nevertheless, having

“

U0

X0

‰

full row rank gives certain
advantages as any stabilizing controller can be parametrized
through the data. This is useful when we search for a controller
that satisfies extra desirable properties.

Theorem 1 provides a way to design the state feedback
controller gain K in absence of network (in the noise-free
case). We now move to the next step of the emulation approach
that is to take sampling into account and to design the
triggering condition.

C. Learning a triggering policy

We write the closed-loop system under the control law (2)
as

9xptq “ pA`BKqxptq `BKeptq (7)

where
eptq :“ xptkq ´ xptq, t P rtk, tk`1q, (8)

represents the sampling-induced error, that is the mismatch
between the last value of the state transmitted to the controller
and its current value. As customary in the event-triggered
control literature, the idea is to regard e as a disturbance
to the nominal dynamics 9xptq “ pA ` BKqxptq, which is
then controlled via the triggering condition so that stability is
preserved despite sampling.

We develop a data-based version of the approach proposed
in [3] for this purpose; the extension to other triggering
conditions is addressed in Section V. We introduce for this
purpose the next parameterized matrix and the vector z

Ψpσq :“

„

´σ2I 0
0 I



, z :“

„

x
e



, (9)

with σ ą 0 a design parameter to be determined. The sampling
times are defined as follows: t0 :“ 0 and

tk`1 “

$

’

&

’

%

inftt P R : t ą tk and zptqJΨpσqzptq “ 0u

if xptkq ‰ 0,

`8 otherwise.
(10)

This logic ensures by design that zJΨpσqz ď 0 along the
solutions to (7), (8), (10) as long as they exist; we shall prove
later on that the sequence of sampling instants does not result
in an accumulation point, which guarantees that a solution to
(7), (8), (10) exists for all times (and is unique). This logic
may provide asynchronous and sporadic control updates. In
fact, it owes its popularity thanks to this latter feature besides
its conceptual simplicity.

Closed-loop stability depends on σ, which must be chosen
sufficiently small to control the norm of error e. How small σ
should be is system-dependent in the sense that the matrices
A and B determine which values of σ are allowed, see [3,
Section IV]. Hereafter, we propose a data-based method to
determine σ.

Consider any controller gain K computed via Theorem 1
and let V pxq “ xJSx for any x P Rn with S “ pX0Y q

´1,
which is positive definite by Theorem 1. Function V serves
as a Lyapunov function for the closed-loop system ignoring
sampling. In particular we have, for any z “ px, eq P R2n,

x∇V pxq, pA`BKqx`BKey “ zJ
„

´Q SX1L
pSX1Lq

J 0



loooooooooooomoooooooooooon

“: M

z,

(11)
where

Q :“ ´pSX1Gq
J ´ SX1G, (12)

which is positive definite in view of Theorem 1 and its proof
(recall that X1G “ A`BK by Lemma 1). Matrix L in (11)
is any solution to the system of equations

„

K
0



“

„

U0

X0



L, (13)

which exists under Assumption 1. Note that (13) implies that
BK “ X1L. Recall now that the event-triggering rule (10)
ensures that zJΨpσqz ď 0 along the solutions to (7), (8),
(10). Hence, the global exponential stability of the origin of
closed-loop system (7), (8) is ensured provided we select σ
such that the following implication4 is satisfied for some ε ą 0
and any z P R2n

zJΨpσqz ď 0 ùñ zJMz ď ´ε|z|2. (14)

This implication ensures that V exponentially decreases along
any solution to (7), (8), (10) in view of (11) and the facts that
|x| ď |z| for any z “ px, eq P R2n and that V is a positive
definite quadratic function. This implies that x “ 0 is globally
exponentially stable for system (7), (8), (10) (again, provided

4Relations involving quadratic inequalities are well-known in optimization
and control theory, usually with the term “S-procedure”. Recently, there has
been interest for the S-procedure also in the context of data-driven control,
see [34] for a recent discussion and new results.
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Zeno phenomenon does not occur). The next theorem provides
a data-based condition to select σ in (10) to ensure the desired
stability property.

Theorem 2: Suppose Assumption 1 holds and consider
system (7), (8), (10) with K “ U0Y pX0Y q

´1, Y being any
solution to (6). Let µ, σ ą 0 be such that the next SDP (in
the decision variables µ and σ2) is satisfied

µM ´Ψpσq ă 0, (15)

with S “ pX0Y q
´1 and L as in (13). Then the following

holds.
(a) There exists a global minimum inter-event time, in par-

ticular, for any solution x to the system, the sequence of
transmission times ttkukPN satisfies tk`1 ´ tk ě τpσq
for every k P N “ N0 where τpσq :“ 1

α
σ

1`σ with
α :“ maxt}X1G}, }X1L}u.

(b) The origin of the system is globally exponentially stable.
l

Proof. We first show the feasibility of (15). Let σ :“
a

µ{c with c ą 0 any sufficiently large constant such that
´Q ` I{c ă 0 where Q comes from (12); clearly, this c
exists because Q ą 0. For such a choice of σ, we have
´µQ` σ2I “ µp´Q` I{cq ă 0 for every µ ą 0. Therefore,
for this choice of σ, (15) is equivalent by a Schur complement
to the two conditions

µp´Q` I{cq ă 0 and
´I ` µpSX1Lq

JpQ´ I{cq´1pSX1Lq ă 0
(16)

which are jointly satisfied for µ sufficiently small.
We now prove item (a) of Theorem 2. We follow the same

steps as [3, Section III] adapted to the data-based context of
this work. Let x be a solution to (7), (8), (10). The claim is
trivial when xp0q “ 0. When xp0q ‰ 0, xptq ‰ 0 for any t in
the domain of the solution, see [35, Proposition 4]. Moreover,
we also have from [35, Proposition 1] that the number of
jumps is infinite, i.e., N “ N0. Let k P N0, we have for any
t P rtk, tk`1q,

d

dt

|eptq|

|xptq|
“

eptqJ 9eptq

|eptq||xptq|
´
xptqJ 9xptq|eptq|

|xptq|3
(17a)

ď

ˆ

1`
|eptq|

|xptq|

˙

| 9xptq|

|xptq|
(17b)

ďα

ˆ

1`
|eptq|

|xptq|

˙2

(17c)

with α :“ maxt}X1G}, }X1L}u, where the last inequality is
obtained by recalling that A`BK “ X1G and BK “ X1L,
so that 9x “ X1Gx`X1Le which implies | 9x| ď αp|x| ` |e|q.
Therefore, the time needed for |e|{|x| to reach σ is lower
bounded by τpσq, the time needed for φ to grow from 0
(the value of |e|{|x| right after each jump) to σ, where φ is
the solution to the differential equation 9φ “ αp1 ` φq2. The
expression of τpσq is given by

τpσq :“
1

α

σ

1` σ
. (18)

Thus, tk`1´ tk ě τpσq. Since the solution x and the number
of jump k have been arbitrarily selected, we have proved

that τpσq is a global minimum inter-event time. This property
implies that any solution to (7), (8), (10) is complete, and the
linearity of the flow vector field and (10) ensure the uniqueness
of the solution for each initial condition, see [36].

Finally, as (15) holds, there exists ε ą 0 such that M ă

1{µΨpσq ´ εI . Hence, the satisfaction of (15) implies that
(14) holds. Equation (10) enforces zJΨpσqz ď 0 along the
solutions to (7), (8), (10). Hence, for any solution x to (7), (8),
(10), 9V pxptqq “ zptqJMzptq ď ´ε|zptq|2 for any t ě 0; note
that V pxq is not affected by jumps at the triggering instants.
Since V is quadratic and positive definite, we conclude that
item (b) of Theorem 2 holds by resorting to standard Lyapunov
arguments. �

The condition in (15), which is linear in the decision
variables µ ą 0 and σ2 ą 0, provides a data-based condition
to design σ so that the induced event-triggered controlled
system enjoys a global exponential stability property as well
as the existence of global minimum inter-event time τpσq. We
emphasize that the expression of τpσq in item (a) of Theorem
2 only depends on experimental data. As a result, different
experiments and even different solutions to the SDP in (15)
may lead to a different value for τpσq. This expression of τpσq
can, by the way, be used as a sampling period for periodic
implementations.

Remark 4: Condition (15) may be used to maximize σ,
which may help enlarging the inter-event times thereby re-
ducing the number of transmissions, see [35, Proposition 3]
for further insights on the relationship between the inter-event
times and σ. In particular, we can implement the next SDP in
place of (15) in this case

maximizeµ,σ2 σ2 (19a)
subject to (15). (19b)

In this regard, it is interesting to note that we may achieve
parsimonious sampling while controlling the performance. In
fact, suppose that we replace (15) with µMγ ´ Ψpσq ă 0,
where Mγ is equal to M except for Q, which is replaced
by p1 ´ γqQ where γ P p0, 1q is a design parameter.
Theorem 2 remains valid with the difference that instead of
x∇V pxq, pA`BKqx`BKey ď ´ε|z|2 ď ´ε|x|2 for some
ε ą 0, we will now have x∇V pxq, pA`BKqx`BKey ď
´γxJQx for any z P R2n. In this way, we can maximize
σ while keeping a fixed guaranteed level of performance in
terms of Lyapunov decay along the solutions. l

Example 1: Consider system (1) with d ” 0 and

A “

„

0 0
´1 ´2



, B “

„

1
0



,

which is marginally stable. We collect the data by running
an experiment with input uniformly distributed in r´1, 1s and
initial state within the same interval. The data are collected
by keeping the input constant, in a sample-and-hold fashion,
during each interval riTs, pi` 1qTsq with i “ 0, 1, . . . , T ´ 1
and Ts “ 0.1. We collect T “ 10 samples which is sufficient
for Assumption 1 to hold. Note that theoretically we need
T ě n `m, so that even T “ 3 samples may be sufficient.
We solve SDP (6) and we obtain K “

“

´0.9839 1.7489
‰

.
We then solve (19), which gives σ “ 0.4595. According to
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Fig. 1. Results for Example 1. Left: State trajectories. Middle: Behavior of |eptq| and σ|xptq|; a new sampling is triggered when |eptq| “ σ|xptq|. Right:
Behavior of the inter-sampling times tk`1 ´ tk . The minimum inter-sampling time observed in simulation is 0.1371, which is not much larger than the
theoretical lower bound τpσq “ 0.1184. Interestingly, the inter-sampling times exhibit an oscillatory behavior consistently with [35, Section IV.A].

(18), the minimum inter-event time τpσq is equal to 0.1184,
which is only an estimate of the actual minimum inter-event
times. Figure 1 reports simulations results.

We have not observed critical issues regarding the choice
of the sampling time Ts which is used for collecting the data,
except when it becomes extremely small (Ts ă 0.001). This is
not surprising: in this case the samples xpiTsq and upiTsq are
approximately constant. In particular, (6) becomes infeasible
as soon as X0 (approximately) looses rank. l

IV. LEARNING FROM NOISY DATA

In this section, we consider system (1) with d not identically
equal to 0. With noisy data, the analysis and the design of
the event-triggered controller become sensibly more involved,
and the reason is twofold. First, noisy data prevent us from
obtaining an exact data-based representation of the closed-
loop behavior as in Lemma 1. More generally, noisy data
prevent exact identification of the dynamics, whether it is the
closed-loop dynamics (Lemma 1) or the open-loop dynamics
(matrices A and B). Using the language of set-membership
identification, we can say that we now have a set of dynamics
consistent with the data and we should find a controller that
stabilizes the whole set. In this respect, Assumption 1 makes
sure that this uncertainty set is bounded, cf. [37, Lemma 2].
Second, disturbances impact not only the learning phase but,
subsequently, also the behavior of the closed-loop system. In
particular, Zeno phenomenon may arise in this case with the
triggering rule built in Section III-C even for arbitrarily small
disturbances, as demonstrated in [18].

Because we do not assume that the disturbance d is van-
ishing, we can no longer hope to prove that x “ 0 is globally
exponentially stable for the considered closed-loop system as
in Theorems 1 and 2. We will establish instead a (global)
practical exponential ISS property, i.e., that there exist c1 ě 1,
c2, c3, c4 ą 0 such that any solution x to (1) with input
disturbance d in closed-loop with (2) satisfies

|xptq| ď c1e
´c2t|xp0q| ` c3}d}r0,ts ` c4ν, (20)

where ν ě 0 is an extra tuning parameter we will introduce
to design the triggering rule. When (20) holds with ν “ 0, we
say that the system is exponentially ISS for system (1), (2).

As in Section III, we first design the control law ignoring
sampling and we then present the design of the triggering
policy. Two triggering techniques are presented and discussed

in this section, whether these lead to (practical) exponential
ISS. Again, the extension of the presented results to other
triggering conditions is addressed in Section V.

A. Learning a feedback controller

The first step is to derive an analogue of Lemma 1. Suppose
we perform an experiment on the system, and we collect state
and input samples5 that satisfy 9xptq “ Axptq `Buptq ` dptq,
t P t0, Ts, . . . , pT ´1qTsu. The samples are then grouped into
the data matrices U0, X0, X1 as in (4). Let

D0 :“
“

dp0q dpTsq ¨ ¨ ¨ dppT ´ 1qTsq
‰

(21)

be the unknown data matrix made of the off-line samples of
d. We have the next result.

Lemma 2: Let Assumption 1 hold and consider any matrix
K P Rmˆn. Then A`BK “ pX1 ´D0qG where G P RTˆn

is any solution to the system of equations (5).
Proof. By Assumption 1, there exists a Tˆn matrix G such

that (5) holds. Hence A`BK “ rB A srKI s “ rB A sr
U0

X0
sG,

where the second identity follows from (5). The result follows
because the elements of U0, X0, X1 and D0 satisfy the relation
9xptq “ Axptq`Buptq`dptq, t P t0, Ts, . . . , pT´1qTsu which,
in compact form, gives X1 “ AX0 `BU0 `D0. �

By Lemma 2, the closed-loop dynamics can be written as
9xptq “ pA`BKqxptq “ pX1´D0qG1xptq, which depends on
the unknown matrix D0. As a result, (6) no longer provides
stability guarantees. In fact, the constraint (6a) ensures that
X1G1 is Hurwitz. However, the matrix of interest is now
Φ :“ pX1´D0qG1 in view of Lemma 2, and X1G1 Hurwitz
does not imply that Φ is Hurwitz. To be able to prove an
ISS property for system (1) in closed-loop with u “ Kx
(ignoring sampling), we need to modify (6a) accounting for
the uncertainty induced by D0. An effective way to achieve
this is to ensure that pX1´DqG1 satisfies a Lyapunov equation
with a common (symmetric) Lyapunov matrix Y ą 0 for all
the matrices D in a given set D to which D0 is deemed to
belong, as formalized next. We thus introduce the set

D :“ tD P RnˆT : DDJ ĺ ∆∆Ju, (22)

where ∆ P Rnˆs is a known matrix, and we make the next
assumption.

5See, again, Remarks 2 and 3 for explanations regarding the possible
presence of noise affecting these data.
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Assumption 2: D0 P D. l

The choice of set D reflects our prior information or guess
about disturbance d. For instance, if we know that there exists
δ ą 0 such that }d}8 ď δ like in [15], then we can take
∆ :“ δ

?
TI , where we recall that T is the number of samples.

Stochastic disturbances can also be accounted for (possibly
with other choices of ∆) as advocated in [38], [39].

We aim at enforcing the next inequality instead of (6a)

pX1 ´DqY ` Y
JpX1 ´Dq

J ` Ω ă 0 @D P D (23)

where Ω ą 0 is a free design parameter. By ensuring (23),
we will see that system 9xptq “ pX1 ´ DqGxptq ` dptq is
exponentially ISS given any D P D, and therefore for D “ D0

in view of Assumption 2. Large sets D make the condition
D0 P D easier to hold but make (23) more difficult to satisfy.

Condition (23) cannot be implemented directly as it involves
infinitely many constraints. The next result provides a tractable
(convex) sufficient condition for (23) to hold, thereby extend-
ing Theorem 1 to the case of noisy data.

Theorem 3: Consider stabilizable system (1) and suppose
the following holds.

(i) Assumptions 1 and 2 hold with ∆ given.
(ii) Let Ω ą 0, there exist ε ą 0 and Y P RTˆn such that

«

X1Y ` pX1Y q
J ` Ω` ε∆∆J Y J

Y ´εI

ff

ă 0, (24a)

X0Y ą 0. (24b)

Let K “ U0Y pX0Y q
´1, then 9xptq “ pA`BKqxptq` dptq is

exponentially ISS. l

The proof of Theorem 3 rests on the next result, which we
prove in Appendix B to not overload the exposition.

Lemma 3: Suppose there exist a scalar ε ą 0 and a matrix
Y P RTˆn such that (24a) holds. Then (23) holds. l

Proof of Theorem 3. Let G :“ Y S where S :“ pX0Y q
´1.

Note that X0G “ I and that K “ U0Y pX0Y q
´1 can also be

written as K “ U0G. Accordingly, the identity (5) holds and
Lemma 2 implies that A`BK “ pX1´D0qG. We now prove
that pX1´D0qG is Hurwitz. By Lemma 3, (23) holds and this
implies that SpX1´DqG`G

JpX1´Dq
JS ă 0 for all D P D.

Thus, pX1 ´DqG is Hurwitz for all D P D. As D0 P D by
Assumption 2, we thus have A`BK Hurwitz, which implies
that 9xptq “ pA ` BKqxptq ` dptq is exponentially ISS, see
[40, Example 10.4.1] �

Theorem 3 gives a robust approach to controller design, see
also [34], [41], and [37]. Approaches that explicitly enforce or
prioritize robustness usually outperform certainty-equivalence
design when it comes to ensuring closed-loop stability. This
observation has been made in various instances, e.g. [41], [42].
We refer the interested reader to these papers for numerical and
theoretical comparisons. In the present context, our approach
is particularly effective because it gives us information on the
decay rate of the closed-loop dynamics even in the presence
of uncertainty, see (23). This allows us to determine triggering
policies that ensure a stable and well-defined network imple-
mentation, including a guaranteed minimum inter-event time,
as detailed in the next section.

B. Learning a triggering policy

1) Mixed triggering condition: We now take into account
sampling. The dynamics of the closed-loop system under the
control law (2) becomes

9xptq “ pA`BKqxptq `BKeptq ` dptq, (25)

where we recall that

eptq :“ xptkq ´ xptq, t P rtk, tk`1q. (26)

There are two main obstacles compared to the noise-free case.
First, as we will see shortly, like A`BK depends on D0 in the
data-based representation according to Lemma 2, so do BK
and M in (11). This means that we cannot implement the
inequality (15) used in Section III-C to design the triggering
policy parameter σ. Second, we need to modify (10) in order
to ensure the existence of a global minimum inter-event time.

We start with the last point, and, inspired by the model-
based results in [18], we modify (10) as: t0 “ 0 and

tk`1 “ inftt P R : t ą tk and |eptq| “ σ|xptq| ` νu, (27)

where σ ą 0 is a design parameter to be determined, while
ν ą 0 is an arbitrary constant. Triggering rule (27) is
commonly called mixed (relative-absolute) threshold policy in
the event-triggered control literature [18].

Next we introduce the following quantities in place of (9)
and matrix M in (11), respectively,

Ψpσq :“

„

´2σ2I 0
0 I



, (28)

and

MpDq :“

»

–

´
SΩS

2
SpX1 ´DqL

pSpX1 ´DqLq
J 0

fi

fl , (29)

where S :“ pX0Y q
´1 and Y results from Theorem 3 and

where L is any solution to (13), which exists under Assump-
tion 1.

We are going to show is that, instead of (15), we can
consider the condition µMpD0q ´ Ψpσq ĺ 0, which can be
conveniently cast as a SDP. Consider any solution to (24) and
let V pxq :“ xJSx for any x P Rn with S “ pX0Y q

´1.
Like in the noise-free case, V is an ISS Lyapunov function
for the nominal dynamics, in particular we now have, for any
z “ px, eq P R2n and d P Rn,

x∇V pxq, pA`BKqx`BKe` dy
“ 2 rpA`BKqx`BKe` ds

J
Sx (30a)

“ 2 rpX1 ´D0qGx` pX1 ´D0qLe` ds
J
Sx (30b)

ď ´xJSΩSx` 2 rpX1 ´D0qLe` ds
J
Sx (30c)

“ ´xJ
ˆ

SΩS

2

˙

x` zJMpD0qz ` 2dJSx. (30d)

The second equality follows because A`BK “ pX1´D0qG
and BK “ pX1´D0qL (see (5) and (13)), while the inequality
is a consequence of (23). Finally, the last equality follows from
the definition of MpDq. Since SΩS “ pSΩSqJ ą 0, if we
ensure that zJMpD0qz ď c along the solutions to (25)-(27)
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for some positive constant c (and Zeno phenomenon does not
occur), then we can conclude that (20) holds for system (25)-
(27). This is formalized in the next theorem.

Theorem 4: Suppose the following holds.
(i) Assumptions 1 and 2 are verified with ∆ given.

(ii) Let Ω ą 0, (24) holds and K “ U0Y pX0Y q
´1 is the

resulting controller gain as in Theorem 3.
(iii) There exist µ, ε, σ ą 0 such that

»

—

–

´
µSΩS

2
` 2σ2I µSX1L µS∆

‹ ´I ` εLJL 0
‹ ‹ ´εI

fi

ffi

fl

ĺ 0.

(31)
Then, for any ν ą 0, system (25)-(27):
(a) admits a global minimum inter-event time, in particular

for any solution x with input disturbance d, the se-
quence of transmission times ttkukPN satisfies tk`1 ´

tk ě τpσq for every k P N where τpσq :“ 1
α

σ
1`σ ,

α :“ maxt}X1G} ` }∆}}G}, }X1L} ` }∆}}L}, σδ{νu
and δ :“ }d}8;

(b) is practically exponentially ISS. l

Proof. We first prove item (a) of Theorem 4. We adapt for
this purpose the techniques in the proof of [18, Theorem IV.2]
carried out in the model-based setting. Let x be a solution to
system (25)-(27) with input disturbance d. Let ν :“ ν{σ and
k P N . For any t P rtk, tk`1q

d

dt

|eptq|

|xptq| ` ν
“

eptqJ 9eptq

|eptq|p|xptq| ` νq
´

xptqJ 9xptq|eptq|

|xptq|p|xptq| ` νq2

(32a)

ď

ˆ

1`
|eptq|

|xptq| ` ν

˙

| 9xptq|

|xptq| ` ν
(32b)

ď α

ˆ

1`
|eptq|

|xptq| ` ν

˙2

(32c)

with α :“ maxt}X1G} ` }∆}}G}, }X1L} ` }∆}}L}, δ{νu
where δ :“ }d}8. The last inequality follows from the
identities A` BK “ pX1 ´D0qG and BK “ pX1 ´D0qL,
which imply 9x “ pX1 ´ D0qGx ` pX1 ´ D0qLe ` d. This,
in turn, gives | 9x| ď αp|x| ` |e| ` νq. Hence, the time needed
for |e|{p|x| ` νq to reach σ (the event that triggers a new
sampling) is not smaller than the time denoted τpσq needed
for φ to reach σ, where φ is the solution to the differential
equation 9φ “ αp1`φq2 with initial value φp0q “ 0. This time
is

τpσq :“
1

α

σ

1` σ
. (33)

Hence, tk`1 ´ tk ě τpσq, and item (a) of Theorem 4 holds
as x and k have been arbitrarily selected. We then derive that
any solution to (25)-(27) is complete.

Consider now item (b) of Theorem 4. By a Schur comple-
ment, (31) is equivalent to

µ

«

´
SΩS

2
SX1L

‹ 0

ff

´Ψpσq ` ε

„

0
LJ



“

0 L
‰

`ε´1

„

µS∆
0



“

pµS∆qJ 0
‰

ĺ 0. (34)

By applying Lemma 6 in the Appendix with B “ r
0
LJ s and

C “ r´µS
0
sJ we obtain

µ

«

´
SΩS

2
SX1L

‹ 0

ff

´Ψpσq `

„

0
LJ



DJ
„

´µS
0

J

`

„

´µS
0



D
“

0 L
‰

ĺ 0 @D P D, (35)

which can be compactly written as µMpDq ´ Ψpσq ĺ 0 for
any D P D. Thus, if (31) feasible then µMpDq´Ψpσq ĺ 0 for
any D P D and Assumption 2 implies µMpD0q ´Ψpσq ĺ 0.
Let x be a solution to system (25)-(27) with input disturbance
d and t ě 0. The triggering rule (27) ensures |eptq|2 ď

2σ2|xptq|2 ` 2ν2. Therefore, zptqJΨpσqzptq ď 2ν2. Since
µMpD0q ´ Ψpσq ĺ 0 then zptqJMpD0qzptq ď 2ν2{µ.
Substituting this inequality into (30d) and resorting to standard
Lyapunov arguments lead to the satisfaction of item (b). �

In Theorem 4, we have two LMIs: (24) and (31). The first
one is related to computing the controller, and the second one
is related to computing the triggering law. It can be shown
that if (24) is feasible then (31) is also feasible. Furthermore,
(24) is feasible whenever the noise level is sufficiently small,
which follows because a solution always exists in the noiseless
case (cf. Theorem 1) and the eigenvalues of the matrix in (24)
depend continuously on ∆. These facts are consistent with the
intuition: if the noise level is sufficiently small then we can
find a stabilizing controller (i.e., we can solve (24)), in which
case we can always find an event-triggered implementation of
the control law (i.e., we can solve (31)).

Similarly to σ, the choice of ν involves a trade off between
performance and the number of transmissions: by decreasing
ν, the neighborhood of the origin to which the solutions to
(25), (26), (27) converges to “shrinks” in view of item (ii) of
Theorem 4, which typically leads to more transmissions. In
particular, it follows from the proof of Theorem 4 that, when
d ” 0, the state converges to the ball of Rn centered at the
origin of radius ν

b

2κpSq
ωµ , where κpSq is the condition number

of S and ω is the smallest eigenvalue of SΩS{2. To ensure
an exponential ISS property for the event-triggered controlled
system, and not a practical exponential ISS property as in
Theorem 4, a different triggering rule is needed (see Remark 6
below): this is the purpose of the next section. Before that, we
illustrate the results of Theorem 4 for the system considered
in Example 1, and we provide two remarks on the triggering
rule (27).

Example 2: Consider the same system as in Example 1
but this time a disturbance d affects the system dynamics,
with }d}8 ď δ. As before, we collect the data by running
an experiment with an input uniformly distributed in r´1, 1s,
and with initial state within the same interval. We consider
two cases, δ “ 0.1 and δ “ 0.5. For both cases, we first solve
the SDP (24) with Ω :“ 10I to find K; all the choices of
Ω that we tested in the form Ω “ cI , c P r1, 100s, led to
τpσq of similar magnitude. Then we solve the SDP (31) to
find σ, in particular, like (19), we cast (31) as an optimization
problem where we search for a solution maximizing σ. We
use ∆ “ δ

?
TI in both the SDPs. For δ “ 0.1 we obtain
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Fig. 2. Results for Example 2. Top figures report simulation results for δ “ 0.1 while bottom figures report the results for δ “ 0.5. Left: State trajectories.
Middle: Behavior of |eptq| and σ|xptq| ` ν; a new sampling is triggered when |eptq| “ σ|xptq| ` ν. Right: Behavior of the inter-sampling times tk`1 ´ tk .
The minimum inter-sampling time observed in simulation is 0.0184 for δ “ 0.1 and 0.0021 for δ “ 0.5, which is about one order of magnitude larger than
the theoretical lower bound.

K “
“

´3.1769 1.8145
‰

and σ “ 0.0624. Using the value
ν “ 0.01 in the triggering rule (27) gives the lower bound
τpσq “ 0.0135 for the inter-sampling times. For δ “ 0.5
we have K “

“

´6.8882 1.5924
‰

and σ “ 0.0058. Using
ν “ 0.01 in the triggering rule (27) gives the lower bound
τpσq “ 3.9618e–04. For both the cases, we report simulation
results in Figure 2.

For both values of δ, the sampling is very frequent initially
when the state is far from the origin, and becomes sporadic
as soon as the state gets smaller. Here, ν “ 0.01 gives a good
trade-off between performance and number of samplings. We
note that ν can also be tuned online since its choice affects
neither (24) nor (31), hence it can be chosen after K and σ
are determined. A second remark regards d. The noise level
affects the feasibility of both (24) and (31), which become
infeasible when the noise level becomes too high. In this
example, feasibility is preserved as long as the energy of the
noise remains about half that of u (δ « 0.5, which corresponds
to an input-disturbance signal-to-noise ratio of about 6dB).
Once we find a solution, however, practical exponential ISS
holds irrespective of the noise level. Obviously, for large noise
levels we might need to increase ν in order to reduce the
number of samplings. This is evident from (33) where we
see that increasing δ can make α larger, in which case τpσq
decreases. �

Remark 5: The proof of Theorem 4 shows that we can
consider this triggering rule tk`1 “ inftt P R : t ą
tk and |eptq|2 “ 2σ2|xptq|2 ` 2ν2u instead of (27). This is
clear from the stability analysis in the proof of Theorem 4, and
we also have that, for any given state, the next transmission
time with this rule will occur not before the one generated by
(27) as |e| ď σ|x| ` ν implies |e|2 ď 2σ2|x|2 ` 2ν2 for any
px, eq P R2n. As a result, τpσq is also a global minimum inter-
event time for the above policy. Note also that, since Theorem
4 applies for any ν ą 0, in view of the definition of Ψpσq in

(28), we can equivalently consider the next triggering rule

tk`1 “ inftt P R : t ą tk and zptqJΨpσqzptq “ νu. (36)

This formulation will be convenient when addressing the
generalized triggering conditions of Section V. l

Remark 6: We discuss in this remark two special cases
of (27), which are not covered by Theorem 4. First, when
ν “ 0 in (27), it is not possible to guarantee that the inter-
sampling times remain strictly positive in general as shown
in [18]. Second, when σ “ 0 in (27), we can also prove that
system (25), (26), (27) is practically exponentially ISS for
any ν ą 0, as in item (b) of Theorem 4. However, in this
case, the lower-bound on the inter-event times in item (a) of
Theorem 4 is no longer global but semiglobal, in the sense
that it depends on the ball of initial conditions of the state
(and the supremum of the disturbance on r0,8q) like in [18,
Theorem IV.4]. In fact, for any cx ą 0, any solution x to (25)-
(27) with |xp0q| ď cx and input disturbance d, any k P N and
almost all t P rtk, tk`1s, d

dt |eptq| ď cΦ|xptq|`ce|eptq|`}d}8,
where cΦ :“ }X1G} ` }∆}}G} and ce :“ }X1L} ` }∆}}L}.
By following similar lines as in the proof of Theorem 4 there
exists a constant cx, which depends on cx, ν and }d}8, such
that d

dt |eptq| ď cΦcx ` ce|eptq| ` }d}8 from which we infer
that the time needed for |eptq| to grow from 0 to ν is lower
bounded by 1

ce
ln
´

ceν
cΦcx`}d}8

` 1
¯

, which indeed depends on
the radius of the ball of initial conditions of the state cx and
the supremum norm of d. Note that in this case, i.e., σ “ 0
and ν ą 0, the design of triggering rule directly follows from
Theorem 3 as item (iii) of Theorem 4 always holds when
σ “ 0. l

2) Time-regularized triggering condition: We propose in
this section an alternative triggering condition to ensure an
exponential ISS property, as opposed to practical exponential
ISS as in Section IV-B1, at the price of potentially more
transmissions as suggested by Example 3 provided hereafter.
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Our starting point is the characterization of the Lyapunov
function given in (30), i.e., for any z “ px, eq P R2n and
d P Rn,

x∇V pxq, pA`BKqx`BKe` dy
ď ´xJSΩSx` 2 rpX1 ´D0qLe` ds

J
Sx

ď ´ω1|x|
2 ` ω2|x||e| ` ω3|x||d|,

(37)

with ω1 the smallest eigenvalue of SΩS, ω2 :“ 2}SX1L} `
2}S}}∆}}L} and ω3 :“ 2}S}. From the above expression it
readily follows that a sufficient condition to ensure exponential
ISS is to ensure along any solution to (25), (26) and any t in
the domain of the solution

|eptq| ď σp|xptq| ` }d}r0,tsq (38)

with
σ P p0, ω1{ω2q , (39)

provided Zeno phenomenon does not occur. When (38) holds,
9V pxptqq ď ´pω1 ´ σω2q|xptq|

2 ` pσω2 ` ω3q|xptq|}d}r0,ts
from which exponential ISS follows as ω1 ´ σω2 ą 0 (again,
provided Zeno phenomenon does not occur). We first provide
a model-based condition that ensures (38). This result is a
variant of [19, Lemma 1] in which we consider the logarithmic
norm of A instead of the induced 2-norm considered here. We
consider the induced 2-norm of A because it is somehow easier
to infer from data6.

Lemma 4 ([19], Lemma 1): Let K be any feedback matrix
that makes A`BK Hurwitz and

τmpσq :“

$

’

’

’

’

&

’

’

’

’

%

1

}A}
log

ˆ

σ

1` σ

}A}

maxt}A`BK}, 1u
` 1

˙

if A ‰ 0,

σ

1` σ

1

maxt}BK}, 1u
otherwise.

(40)
Given any triggering policy and any solution x to the corre-
sponding closed-loop system (25), (26) with input disturbance
d, for any k P N and any t P rtk, tk ` τmpσqs X rtk, tk`1s,
|eptq| ď σp|xptq| ` }d}r0,tsq. l

The expression of τmpσq in (40) depends on the model
via the terms }A} and }A ` BK}. A lower bound of τmpσq
can be derived based on the available data in D. We use
for this purpose data-based upper-bounds on }A} and }A `
BK}, as the expression in (40) is monotonically decreasing
in }A} and }A ` BK}. We notice for this purpose that
A`BK “ pX1´D0qG with G satisfying (5), while A satisfies
rB A s “ pX1´D0qr

U0

X0
s: where M : is the right inverse of the

matrix M . Partitioning r U0

X0
s: “ r J0 V0 s with V0 having the

same dimension as A, we thus have A “ pX1´D0qV0. Then,
}A`BK} ď }X1G}`}∆}}G} and }A} ď }X1V0}`}∆}}V0},
and the upper bounds are both computable from data alone.
We then have the next result.

Lemma 5: Let K be any feedback matrix that makes A `
BK Hurwitz and

τdpσq :“
1

cA
log

ˆ

σ

1` σ

cA
maxtcΦ, 1u

` 1

˙

(41)

6The result below holds for arbitrary σ ą 0. Imposing σ ă ω1{ω2 is
needed to make sure that (38) guarantees ISS.

with cA :“ }X1V0} ` }∆}}V0} and cΦ “ }X1G} ` }∆}}G}.
Given any triggering policy and any solution x to the corre-
sponding closed-loop system (25), (26) with input disturbance
d, for any k P N and any t P rtk, tk ` τdpσqs X rtk, tk`1s,
|eptq| ď σp|xptq| ` }d}r0,tsq. l

Proof. The result follows from Lemma 4 and the fact that
τdpσq ď τmpσq. Specifically, for A ‰ 0 the inequality τdpσq ď
τmpσq follows since τmpσq decreases monotonically as }A}
and/or }A ` BK} increase, while for A “ 0 the inequality
τdpσq ď τmpσq follows since logp1` sq ď s for every s ě 0.
�

With this result in hands, we derive the next triggering
policy: t0 “ 0 and

tk`1 “ inf
 

t P R : t ě tk ` τdpσq and zptqJΨpσqzptq ě 0
(

(42)
with Ψpσq and σ as in (9) and (39), respectively. The rule
in (42) is a time-regularized version of (10), which prevents
arbitrary fast sampling by enforcing global minimum inter-
event time τdpσq ą 0 given in (41). We next state the main
result of this section. Afterwards, we discuss pros and cons
of this approach with respect to the one presented in Section
IV-B1.

Theorem 5: Suppose the following holds.
(i) Assumptions 1 and 2 are verified with ∆ given.

(ii) Let Ω ą 0, SDP (24) is feasible and K “ U0Y pX0Y q
´1

is the resulting controller as in Theorem 3.
Let σ and τdpσq as in (39) and (41), respectively, then system
(25), (26), (42) is exponentially ISS. l

Proof. Let x be a solution to (25), (26), (42) with input
disturbance d. We first note that x is complete as it cannot
explode in finite time and there exists a strictly positive
minimum inter-event time τdpσq ą 0, which excludes Zeno
phenomenon. Let k P N . We know from Lemma 5 that
|eptq| ď σp|xptq| ` }d}r0,tsq for all t P rtk, tk ` τdpσqs X
rtk, tk`1s “ rtk, tk ` τdpσqs here in view of (42). Moreover,
if tk`1 ą tk`τdpσq then |eptq| ă σ|xptq| at t “ tk`τdpσq and
thus |eptq| ď σp|xptq|` }d}r0,tsq for all t P rtk` τdpσq, tk`1s.
Therefore, (38) holds for t P rtk, tk`1s. We derive that (38)
holds (with σ in (39)) along x. Since x and d have been chosen
arbitrarily, (37) and (38) hold along solutions and V pxq is not
affected by jumps at the triggering instants, we derive that
system (25), (26), (42) is exponentially ISS. �

Compared with the triggering rule (27), (42) has the merit to
guarantee exponential ISS rather than practical exponential ISS
under the conditions of Theorem 5. Further, this transmission
policy does not require to solve the SDP in (31), thus removing
the question of feasibility related to finding a sampling policy.
On the other hand, the next example shows that this new
triggering rule may have certain disadvantages, as it may result
in many more transmissions.

Example 3: We consider again Example 2 under the same
setting. As before, we consider two levels for the disturbance:
δ “ 0.1 and δ “ 0.5. The control matrices are the same as
before as the design of K relies on (24) also in this case. For
δ “ 0.1 a feasible value for σ is σ “ 0.0933. Using this value
and the estimates cA and cΦ, we find τdpσq “ 0.0197. For
δ “ 0.5 a feasible value for σ is σ “ 0.0046. Using this value
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Fig. 3. Results for Example 3. Top figures report simulation results for δ “ 0.1 while bottom figures report the results for δ “ 0.5. Left: State trajectories.
Middle: Behavior of |eptq| and σ|xptq|; a new sampling is triggered when |eptq| “ σ|xptq| if the next inter-sampling is not smaller than τdpσq and after
τdpσq seconds otherwise. Right: Behavior of the inter-sampling times tk`1 ´ tk . The minimum inter-sampling time observed in simulation is 0.0197 for
δ “ 0.1 and 3.2511e–04 for δ “ 0.5, which is the same as the theoretical lower bound.

and the estimates cA and cΦ we find τdpσq “ 3.2511e–04. We
report simulation results in Figure 3.

We see that the number of transmissions is much higher
that the one obtained with the triggering rule (27). We see in
particular that after an initial phase the triggering rule (42)
eventually becomes almost periodic with tk`1 “ tk ` τdpσq.
Note that in Figure 3, we can have |eptq| ą σ|xptq|. This
is fully consistent with the triggering rule (42) which only
guarantees |eptq| ď σp|xptq| ` }d}r0,tsq along solutions as
shown in the proof of Theorem 5. l

We conclude this section with a remark on the possible
combination of (27) and (42), which will be useful in Section
V.

Remark 7: We can combine triggering rules (27) and (42)
as: t0 “ 0 and

tk`1 “ inf
!

t P R : t ě tk ` τdpσ1q

and |eptq| ě σ2|xptq| ` ν
)

,
(43)

or, in view of (36),

tk`1 “ inf
!

t P R : t ě tk ` τdpσ1q

and zptqJΨpσ2qzptq ě ν
)

,
(44)

with σ1 as in (39) and σ2 given by (31). It is useful to
distinguish parameters σ1 and σ2 used in (27) and (42),
respectively, as these may be assigned to different values. The
existence of a global minimum inter-event time immediately
follows from the fact that τdpσ1q ą 0. Moreover, in this case,
the corresponding closed-loop system (25), (26), (44) or (36)
is practically exponentially ISS for ν ą 0 under the conditions
of Theorem 4; the proof of this property follows similar steps
as those in the proofs of Theorems 4 and 5. l

V. EXTENSION TO OTHER TRIGGERING RULES

The approach presented in the previous section opens the
door to the design of a range of robust data-based versions of
existing (model-based) triggering rules. We illustrate this by
presenting data-based versions of quadratic triggering policies
[4] in Section V-A, of dynamic event-triggered control [17],
[21] in Section V-B, and of the technique, which consists in
imposing a desired (typically decreasing) threshold on V , like
in [23], [24], in Section V-C.

A. Quadratic policies

The triggering rule designed for the noise-free case in
Section III-C, which has then been “robustified” in Section IV,
is a special type of quadratic policies [4]. We can extend these
results to triggering policies based on more general quadratic
forms, which may be advantageous to reduce the number of
transmissions. We first explain how this can be done in the
noise-free case.

The triggering rule in (10) developed when d ” 0 in (1) is
a special type of the general quadratic policy: t0 “ 0 and

tk`1 “

$

’

&

’

%

inftt P R : t ą tk and zptqJrΨzptq “ 0u

if xptkq ‰ 0,

`8 otherwise,

(45)

with rΨ P R2nˆ2n symmetric to be designed. In Section III-C,
we focused on the special case where rΨ “ Ψpσq and Ψpσq
as in (9) but other choices of rΨ are possible as suggested by
the model-based results in, e.g., [3], [4]. To synthesize rΨ P

R2nˆ2n in (45), we follow a similar approach as in Theorem
2, as formalized next.

Proposition 1: Suppose Assumption 1 holds and consider
system (7), (8), (45) with K “ U0Y pX0Y q

´1, Y being any
solution to (6). Let rΨ P R2nˆ2n symmetric, µ, σ ą 0 be such
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that the next SDP (in the decision variables µ, σ2 and rΨ) is
satisfied

µM ´ rΨ ă 0
rΨ ĺ Ψpσq,

(46)

with Ψpσq and M as in (9) and (11), respectively, S “

pX0Y q
´1, and L as in (13). Then the following holds.

(a) The system admits τpσq defined in item (a) of Theorem
2 as global minimum inter-event time with σ as in (46).

(b) The origin of the system is globally exponentially stable.
l

Proof. We first note that (46) is feasible as it is satisfied
with rΨ “ Ψpσq for some small enough σ ą 0 according to
the proof of Theorem 2.

Because of the second inequality in (46), given any solution
x to system (7), (8), (45), at any transmission time tk with
k P N , tk`1´ tk is greater than or equal the time it takes for
zJΨpσqz to grow from pxptkq, 0q

JΨpσqpxptkq, 0q to 0, which
corresponds to the inter-transmission time we would obtain
with (10) starting at xptkq. Item (a) of Theorem 2 ensures the
latter is lower bounded by τpσq in (18). As a consequence,
tk`1´tk ě τpσq and since we have taken an arbitrary solution
x and an arbitrary k P N , item (a) of Proposition 1 holds. The
proof of item (b) of Proposition 1 follows the same steps as the
proof of item (b) of Theorem 2 in view of the first inequality
in (46). �

The conditions in Proposition 1 provide more flexibility
in the design of matrix rΨ compared to Theorem 2, which
becomes a particular case by taking rΨ “ Ψpσq and Ψpσq as
in (9).

For the noisy case, to present the results in a compact way,
we take inspiration from Remark 7, in particular (36), and
consider the next triggering rule, which allows combining the
techniques of Sections IV-B1 and IV-B2 in a unified manner:
t0 “ 0 and

tk`1 “ inf
!

t P R : t ě tk ` τdpσ1q and zptqJrΨzptq ě ν
)

(47)
where σ1 is as in (39), τdpσ1q P t0, τdpσ1qu with τdpσ1q

in (41), ν ě 0 arbitrary, and rΨ P R2nˆ2n symmetric to be
designed. We have the next result.

Proposition 2: Suppose the following holds.
(i) Assumptions 1 and 2 are verified with ∆ given.

(ii) Let Ω ą 0, SDP (24) is feasible and K “ U0Y pX0Y q
´1

is the resulting controller as in Theorem 3.
(iii) There exist µ, ε, σ2 ą 0 and rΨ P R2nˆ2n symmetric such

that
»

—

–

´
µSΩS

2
µSX1L µS∆

‹ εLJL 0
‹ ‹ ´εI

fi

ffi

fl

ĺ

„

rΨ 0
0 0



rΨ ĺ Ψpσ2q,

(48)

with L, ∆ and Ψpσ2q as in (13), (22) and (28), respectively. If
τdpσ1q “ τdpσ1q with σ1 as in (39) or ν ą 0 in (47), system
(25), (26), (47):
(a) admits global inter-event time maxtτdpσ1q, rτpσ2qu with

rτpσ2q “ τpσ2q as in item (a) of Theorem 4 when ν ą 0,
and rτpσ2q “ 0 when ν “ 0;

(b) is practically exponentially ISS when ν ą 0, and is
exponentially ISS when ν “ 0. l

Proof. Item (a) of Proposition 2 is immediate when
τdpσ1q “ τdpσ1q ą 0 and ν “ 0 in view of (47). When
τdpσ1q “ 0, then ν ą 0. In this case, we have that for a given
state at which a transmission occurs, the next transmission will
occur not earlier than the one generated by triggering rule (36)
in Remark 5 as rΨ ĺ Ψpσ2q, see (48). Since system (25), (26),
(36) admits global inter-event time τpσ2q according to item
(a) of Theorem 4, so does system (25), (26), (47) and item
(a) of Proposition 2 holds in this case. The last case where
τdpσ1q “ τdpσ1q and ν ą 0 similarly follows.

To prove item (b) of Proposition 2, we consider a solution
x to (25), (26), (47) with input disturbance d and k P N . Let
t P rtk, tk`1q. If t ď tk ` τdpσ1q, then (38) holds by Lemma
5 and we have from (37)

9V pxptqq ď ´pω1 ´ σ1ω2q|xptq|
2

`pσ1ω2 ` ω3q|xptq|}d}r0,ts,
(49)

with ω1´σ1ω2 ą 0 as σ1 is such that (39) holds. If t P rtk`
τdpσ1q, tk`1s, then zptqJrΨzptq ď ν according to (47). We
deduce that µMpD0q´ rΨ ĺ 0 from the first inequality in (48)
and by following similar developments as in (34) and (35).
Consequently, since zptqJrΨzptq ď ν, µzptqJMpD0qzptq ď ν
and we have from (30d)

9V pxptqq ď ´xptqJ
ˆ

SΩS

2

˙

xptq`ν{µ`2dptqJSxptq, (50)

where we recall that SΩS ą 0.
Based on (49) and (50), we deduce that system (25), (26),

(47) is practically exponentially ISS; recall that V pxq is not
affected by jumps at the triggering instants. Furthermore, when
ν “ 0, system (25), (26), (47) is exponentially ISS. �

Like before, Proposition 2 extends Theorems 4 and 5 to
more general quadratic triggering rules.

Remark 8: In Proposition 2, consistently with Remark 5,
there are parameters σ1, used to design τdpσ1q, and σ2, used
to synthesize rΨ. We can obviously take a single parameter σ
by selecting the minimum value between feasible σ1, σ2. l

B. Dynamic event-triggered control

The triggering rules considered so far are static, in the sense
that they rely on algebraic conditions involving x and e (and
possibly the elapsed time since the last transmission). We can
also add auxiliary variables to define the triggering rules as
advocated in e.g., [5], [17], in order to potentially further
reduce the number of transmissions while preserving stability.
In this section, we show how the results of Section V-A can be
extended to dynamic triggering rules like in [17], [21] where
model-based results are presented.

Consistently with the structure of the paper so far, we first
focus on the noise-free case, before taking into account d in
(1) again. We introduce for this purpose variable η P Rě0,
whose dynamics is, for any t P Rě0,

9ηptq “ ´ληptq ´ zptqJrΨzptq, ηp0q ě 0, (51)

where λ ą 0 is arbitrary and rΨ P R2nˆ2n is symmetric
and has to be designed. The purpose of variable η is to
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filter the quadratic term considered in (45) in Section V-A (in
the noise-free case). Variable η does not experience jumps at
transmission instants. Note that the state vector is now px, ηq
and we will establish that the origin is globally asymptotically
stable for the augmented system, as formalized in Proposition
3 below and discussed afterwards.

The triggering rule is defined as7: t0 “ 0 and

tk`1 “

$

’

’

&

’

’

%

inf
!

t P R : t ą tk and ηptq ´ θzptqJrΨzptq ď 0
)

if pxptkq, ηptkqq ‰ 0,

`8 otherwise,
(52)

where θ P Rě0 is an additional arbitrary tuning parameter. We
have the next result.

Proposition 3: Suppose the conditions of Proposition 1 are
satisfied. Then system (7), (8), (51), (52):
(a) admits τpσq in item (a) of Theorem 2 as a global

minimum inter-event time with σ as in Proposition 1;
(b) is globally asymptotically stable, in particular there exist

c1 ě 1 and c2 ą 0 such that any solution px, ηq satisfies
|pxptq,

a

ηptqq| ď c1e
´c2t|pxp0q,

a

ηp0qq| for any t ě 0.
l

Proof. Let px, ηq be a solution to the corresponding system
(7), (8), (51), (52). We have that ηptq ě 0 for any t in the
domain of the solution by following the same reasoning as
in the proof of [17, Lemma 2.2]. We also have that, given
any k P N , the next transmission will occur not earlier
than the one generated by triggering rule (45) by invoking
similar arguments as in the proof of [17, Proposition 2.3].
Consequently, item (a) of Proposition 3 holds in view of item
(a) of Proposition 1.

Let z “ px, eq P R2n and η P Rě0. We define Upx, ηq “
V pxq ` η{µ with V pxq “ xJSx for any x P Rn as in Section
III-C and µ as in (46). We have from the latter inequality that
there exists ε ą 0 independent of z and η such that

x∇Upx, ηq, p 9x, 9ηqy “ zJMz ´ λη{µ´ 1{µ zJrΨz
ď ´ε|z|2 ´ λη{µ,

(53)

where we write with some abuse of notation 9x “ pA`BKqx`
BKe and 9η “ ´λη ´ zJrΨz. By integrating (53) along the
solutions to (7), (8), (51), (52), noting that Upx, ηq is not
affected by jumps at the triggering instants, and exploiting
the expression of U , we deduce that item (b) of Proposition 3
holds. �

According to Proposition 3, given a matrix rΨ, which
satisfies (46), we can then design a dynamic version of the
triggering condition in Section V-A in the noise-free case.
The convergence of the x-component of the solutions is still
exponential as the time goes to infinity in view of item (b) of
Proposition 3.

In the noisy case, the dynamics of variable η needs to be
modified as, similarly to [21],

9ηptq P ´ληptq ´ ψpt´ tkq
´

zptqJrΨzptq ´ ν
¯

, (54)

7When θ “ 0, triggering instants are only allowed when ηptq ď 0 and
9ηptq ď 0, which can be computed on-line in the noise-free case. We do not
specify this condition in (52) to not overload the corresponding equation. Note
that this extra condition, namely 9ηptq ď 0 when θ “ 0, will not be needed
when doing time-regularization in the noisy case in (55).

with λ ą 0 arbitrary and rΨ symmetric to be designed. Given
τdpσ1q as in Section V-A, namely τdpσ1q P t0, τdpσ1qu,
τdpσ1q as in in (41) and σ1 as in (39), ψ is defined as follows.
When τdpσ1q “ τdpσ1q, ψpsq “ 0 for s P r0, τdpσ1qq,
ψpsq “ 1 for s ą τdpσ1q and ψpsq “ r0, 1s for s “ τdpσ1q.
When τdpσ1q “ 0, ψpsq “ 1 for any s ě 0. In (54), the term
zptqJrΨzptq´ν, which is related to (47), is filtered after τdpσ1q

units of time have elapsed. We note that (54) is a differential
inclusion when τdpσq “ τdpσq because ψ is multi-valued at
τdpσq, and solutions to (54) are understood in the Krasovskii
sense on rtk, tk`1s with k P N in this case, see [43, Chapter
4.5]. The triggering rule becomes: t0 “ 0 and

tk`1 “ inf
!

t P R : t ě tk ` τdpσ1q

and ηptq ´ θpzptqJrΨzptq ´ νq ď 0
)

,
(55)

with arbitrary θ ě 0 and, again, σ1 as in (39). We have the
next result.

Proposition 4: Suppose the conditions of Proposition 2 are
satisfied. If τdpσ1q “ τdpσ1q or ν ą 0, system (25), (26), (54),
(55):
(a) admits global inter-event time maxtτdpσ1q, rτpσ2qu as in

item (a) of Proposition 2;
(b) is (practically) ISS, in particular there exist c1 ě

1 and c2, c3, c4 ą 0 such that any solution px, ηq
with disturbance input d satisfies |pxptq,

a

ηptqq| ď
c1e

´c2t|pxp0q,
a

ηp0qq| ` c3}d}r0,ts ` c4ν. l

Proof. Like in the proof of Proposition 3, we have that η ě 0
along the solutions to (25), (26), (54), (55). Moreover, for any
solution px, ηq to (25), (26), (54), (55) with input disturbance
d, at any k P N , the next inter-transmission time is greater
than the corresponding inter-transmission time generated by
(47) at the same state. We then invoke item (a) of Proposition
2 to derive that item (a) of Proposition 4 holds.

To prove item (b) of Proposition 4, we consider the same
Lyapunov function as in the proof of Proposition 3, namely
Upx, ηq “ V pxq ` η{µ with V pxq “ xJSx for any z “
px, eq P R2n and η P Rě0 with µ coming from (48). Let px, ηq
be a solution to (25), (26), (54), (55) with input disturbance
d, and k P N . We treat the case where τdpσ1q “ τdpσ1q; the
proof follows similar developments when τdpσ1q “ 0.

When t P rtk, tk ` τdpσ1qq, we have from the definition of
τdpσ1q that (38) holds by Lemma 5. Hence, in view of (49)
and (54), (49)

9Upxptq, ηptqq ď ´pω1 ´ σ1ω2q|xptq|
2

`pσ1ω2 ` ω3q|xptq|}d}r0,ts ´ λ{µ ηptq,
(56)

as in this case ψpt ´ tkq “ 0 and ω1 ´ σ1ω2 ą 0 for (39)
holds.

When t P ptk ` τdpσ1q, tk`1q, we have from (37),
9Upxptq, ηptqq ď ´xptqJ

`

SΩS
2

˘

xptq ` zptqJMpD0qzptq
`2dptqJSxptq ´ λ{µ ηptq

´1{µ zptqJrΨzptq ` ν{µ.

We then follow similar developments as in the proof of
Proposition 2 to conclude that

9Upxptq, ηptqq ď ´xptqJ
`

SΩS
2

˘

xptq
`2dptqJSxptq ´ λ{µ ηptq ` ν{µ.

(57)
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When t “ tk ` τdpσq,
9Upxptq, ηptqq “ 9V pxptqq ´ λ{µ ηptq

´cψ{µ pzptq
J
rΨzptq ´ νq,

(58)

with cψ P r0, 1s. If zptqJrΨzptq ě 0, 9Upxptq, ηptqq “
9V pxptqq ´ λ{µ ηptq ` cψ{µ ν ď 9V pxptqq ´ λ{µ ηptq ` ν{µ,

and we invoke (37) and (38) to derive that
9Upxptq, ηptqq “ ´pω1 ´ σ1ω2q|xptq|

2

`pσ1ω2 ` ω3q|xptq|}d}r0,ts
´λ{µ ηptq ` ν{µ.

(59)

If zptqJrΨzptq ď 0, we deduce from (58),
9Upxptq, ηptqq “ 9V pxptqq ´ λ{µ ηptq

´1{µ zptqJrΨzptq ` ν{µ,
(60)

and we proceed as in the case where t P ptk`τdpσ1q, tk`1q to
derive (57). Item (b) of Proposition 4 follows by integration
from (56), (57) and (59), noting that Upx, ηq is not affected
by jumps at the triggering instants. �

Remark 9: Compared to [15], the triggering condition in
(55) is more general as: (i) it involves a general quadratic term;
(ii) θ can be non-zero: (iii) a fixed threshold-like parameter ν is
allowed, which may help reducing the number of transmissions
at the price of a practical ISS property. l

C. Decreasing threshold on the Lyapunov function
We present a last triggering rule, which consists in imposing

a given (decreasing) threshold on the Lyapunov function V
evaluated along the solutions to (1), (2), as suggested in e.g.,
[23], [24] in model-based settings. Exploiting the fact that
the Lyapunov function V can be derived from data as shown
in Sections III and IV, we present “robustified” data-based
versions of these sampling strategies.

In the noise-free case and in absence of network, we have
that V pxq “ xJSx is a Lyapunov function for 9xptq “
pA ` BKqxptq where S “ pX0Y q

´1, Y is a solution to
(6) and K “ U0Y pX0Y q

´1, see Section III-C. We then
have x∇V pxq, pA`BKqxy ď ´ρ1V pxq for any x P Rn,
where ρ1 ą 0 is any (sufficiently small) constant such that
´ρ1S ľ pA`BKqJS`SpA`BKq “ pX1Gq

JS`SpX1Gq.
Note that the condition ´ρ1S ľ pX1Gq

JS`SpX1Gq is data-
based and can thus be exploited to find ρ1 using set D in (3).
Based on this observation, we introduce the threshold variable
η P Rě0, whose dynamics is

9ηptq “ ´ςρ1ηptq, ηp0q ě V pxp0qq, (61)

where ς P p0, 1q is arbitrary. Hence η upper-bounds V pxq
along the solutions to the closed-loop system 9xptq “ pA `
BKqxptq, as ηp0q ě V pxp0qq and 9ηptq ě 9V pxptqq in view
of the comparison principle [44, Chapter 3.4]. The triggering
rule is then given by: t0 “ 0 and8

tk`1 “

$

’

&

’

%

inf tt P R : t ą tk and V pxptqq “ ηptqu

if pxptkq, ηptkqq ‰ 0,

`8 otherwise.

(62)

8Like in footnote 7, triggering occurs when V pxptqq “ ηptq and
9V pxptqq ě 9ηptq, which we do not specify consistently with related model-

based results of the literature and not to overload (62). This extra condition
will not be required in the noisy case in (65) thanks to time-regularization.

We have the next result in the noise-free case.
Proposition 5: Suppose Assumption 1 holds. Let Y be any

solution to (6), S “ pX0Y q
´1, K “ U0Y pX0Y q

´1 and
let ρ1 ą 0 be such that pX1Gq

JS ` SpX1Gq ĺ ´ρ1S.
Furthermore, let L be as in (13), ς P p0, 1q arbitrary, and
µ, σ ą 0 be such that the following SDP (in the decision
variables µ and σ2) is satisfied

µMς ´Ψpσq ĺ 0 (63)

where the matrix Mς is the same as matrix M in (11) with
´Q replaced by ´Q`ςρ1S and Ψpσq is as in (9). Let V pxq “
xJSx, then system (7), (8), (61), (62):
(a) admits τpσq in item (a) of Theorem 2 as global minimum

inter-event time with σ ensuring (63);
(b) is globally asymptotically stable, in particular there exist

c1 ě 1 and c2 ą 0 such that any solution px, ηq satisfies
|pxptq,

a

ηptqq| ď c1e
´c2t|pxp0q,

a

ηp0qq| for any t ě 0.
l

Proof. We first show the feasibility of (63). Let σ :“
a

µ{c
with c ą 0 any sufficiently large constant such that ´Q `
ςρ1S ` I{c ă 0, where Q is defined in (12); clearly, this c
exists because Q ´ ςρ1S ą 0 (as Q ľ ρ1S and ς P p0, 1q).
For such a choice of σ, we have µp´Q` ςρ1Sq`σ

2I ă 0 for
every µ ą 0. Therefore, for this choice of σ, (63) is equivalent
by a Schur complement to the two conditions µp´Q`ςρ1S`
I{cq ă 0 and ´I`µpSX1Lq

JpQ´ ςρ1S´I{cq
´1pSX1Lq ă

0, which are jointly satisfied for µ sufficiently small.
In view of (63), for any z P R2n, zJΨpσqz ă 0 implies

x∇V pxq, pA`BKqx`BKey “ zJMz ă ´ςρ1x
JSx “

´ςρ1V pxq. This implies that for any solution x to (7), (8),
(61), (62), for any t P rtk, tk`1s, as long as zptqJΨpσqzptq ă 0
(which is the case right after a transmission whenever xp0q ‰
0), we have 9V pxptqq ă ´ςρ1V pxptqq and thus V pxptqq ă
ηptq in view of (61) and (62). Hence, as the time it takes for
zJΨpσqz to grow from ´σ2|x| to 0 along (7), (8) is lower
bounded by τpσq in view of item (a) of Theorem 2, the time
it takes for V pxq to reach η, which is the inter-transmission
time generated by (62), is bigger than the former and is thus
also lower bounded by τpσq. Item (a) of Proposition 5 is then
satisfied as when xp0q “ 0 no transmissions ever occur.

The proof of item (b) follows by considering Lyapunov
function Upx, ηq “ maxtV pxq, ηu for any x P Rn and
η ě 0, and exploiting the fact that η upper-bounds V along the
solutions to (7), (8), (61), (62) and strictly decreases outside
the origin. �

We notice that the same type of stability property is stated
in items (b) of Propositions 3 and 5.

In the noisy case, the ISS Lyapunov function is given by
V pxq “ xJSx for any x P Rn with S “ pX0Y q

´1 and Y
a solution to (24), assuming it exists, see Section IV-B. We
modify the dynamics of threshold η in (61) as

9ηptq “ ´ςdηptq ` ν, ηp0q ě V pxp0qq (64)

where ςd ą 0 and ν ě 0 are both arbitrary. We emphasize
that the decay rate of η, namely ςd, can take any value in
Rą0, which was not the case in (61). We then “robustify” the
triggering rule (62) as: t0 “ 0 and

tk`1“ inf tt P R : t ě tk`τdpσq and V pxptqqěηptqu , (65)
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with σ and τdpσq as in (39) and (41), respectively. We consider
τdpσq in (65) and not τdpσq as in the other techniques covered
so far in this section to simplify the exposition; otherwise the
selection of ν would need to depend on some known upper-
bound on }d}8. In view of (65), the existence of a global
minimum inter-event time for system (25), (26), (64), (65) is
immediate and we have the next stability result.

Proposition 6: Suppose the following holds.
(i) Assumptions 1 and 2 are verified with ∆ given.

(ii) Let Ω ą 0, SDP (24) is feasible and K “ U0Y pX0Y q
´1

is the resulting controller as in Theorem 3.
Let V pxq “ xJSx for any x P Rn with S “ pX0Y q

´1 and Y
from (24), then system (25), (26), (64), (65) is (practically)
exponentially ISS, in particular there exist c1 ě 1 and
c2, c3, c4 ą 0 such that any solution px, ηq with disturbance in-
put d, it holds that |pxptq,

a

ηptqq| ď c1e
´c2t|pxp0q,

a

ηp0qq|`
c3}d}r0,ts ` c4ν. l

Proof. We consider the same Lyapunov function as in the
proof of Proposition 5, namely Upx, ηq “ maxtV pxq, ηu for
any x P Rn and η ě 0. Let px, ηq be a solution to (25), (26),
(64), (65) with input disturbance d. The existence of such a
solution is ensured as there exists a minimum inter-event time
τdpσq, thereby excluding Zeno phenomenon, and the involved
dynamics is linear. Let k P N and t P rtk, tk`1s. To differ-
entiate U along px, ηq requires care as U is not differentiable
everywhere, but almost everywhere. A convenient tool in this
context is Clarke’s derivative [45]. To avoid introducing too
many technicalities, we exploit [46, Lemma 1], which states in
our case that the Clarke’s derivative of Upxptq, ηptqq is 9ηptq
when ηptq ą V pxptqq, it is 9V pxptqq when ηptq ă V pxptqq,
and it is less than or equal to maxt 9V pxptqq, 9ηptqu when
V pxptqq “ ηptq. By deriving ISS dissipation inequalities for
9V pxptqq and 9ηptq, we then obtain the desired result by invoking

[47, p.99] and integrating the obtained inequalities as in the
other proofs of this work. We now analyse 9V pxptqq and 9ηptq.

We have that the η-system satisfies a suitable ISS dissipation
inequality by design in view of (64). Regarding 9V pxptqq, if
t P rtk, tk ` τdpσqs, we proceed as before in the paper and
exploit the fact that, by definition of τdpσq and since σ satisfies
(39), (49) holds. If t P rtk`τdpσq, tk`1q, then V pxptqq ă ηptq,
Upxptq, ηptqq “ ηptq and the Clarke’s derivative is given by
9ηptq “ ´ςd ηptq ` ν “ ´ςd Upxptq, ηptqq ` ν. Based on these
properties, and since U is not affected by jumps at triggering
instants along the solutions, the result follows. �

VI. CONCLUDING REMARKS

We have presented an approach to design robust event-
triggered state-feedback controllers for unknown stabilizable
perturbed linear time invariant systems directly based on a
collection of noisy off-line data and not a model of the
dynamics. In particular, we have derived data-based version
of the event-triggered control strategies originally developed
in a model-based settings in [3], [17], [18], [21], [24], [48].

The tools developed in this work may provide foundations
to develop data-based event-triggered control designs for other
control scenarios including when the plant is nonlinear, when
only output measurements (instead of full-state measurements)

are available, and when an ‘online’ learning mechanism is set
to handle plants with time-varying dynamics or to recursively
improve the inter-event times.

APPENDIX

A. Alternative data acquisition scheme

The results presented in this work rest on X1 in (4c). The
computation of X1 can be error-prone as it involves computing
the derivative of x. We briefly discuss a data collection scheme
that can be used when the derivative of x is difficult to
compute. The idea is to consider the integral version of the
relation 9x “ Ax ` Bu ` d, for any τ1 ď τ2,

şτ2
τ1

9xptqdt “
şτ2
τ1
pAxptq ` Buptq ` dptqqdt, which writes equivalently as

xpτ2q ´ xpτ1q “ A

ż τ2

τ1

xptqdt ` B

ż τ2

τ1

uptqdt `

ż τ2

τ1

dptqdt.

We can therefore choose a sampling time Ts ą 0 to obtain

xppk ` 1qTsq ´ xpkTsq
looooooooooooomooooooooooooon

“:ξpkq

“

A

ż pk`1qTs

kTs

xptqdt
loooooooomoooooooon

“:rpkq

`B

ż pk`1qTs

kTs

uptqdt
loooooooomoooooooon

“:vpkq

`

ż pk`1qTs

kTs

dptqdt
loooooooomoooooooon

“:wpkq

(66)
with k ě 0. Defining X1 :“

“

ξp0q . . . ξpT ´ 1q
‰

, X0 :“
“

rp0q . . . rpT ´ 1q
‰

, U0 :“
“

vp0q . . . vpT ´ 1q
‰

, and
D0 :“

“

wp0q . . . wpT ´ 1q
‰

, we get X1 “ AX0`BU0`

D0, which is the integral version of the original relation X1 “

AX0`BU0`D0. We can therefore restate all the results with
U0, X0, X1, D0 replaced by U0, X0, X1, D0.

B. Proof of Lemma 3

Lemma 3 is a direct consequence of the next result.
Lemma 6: Let B P Rnˆp and C P Rqˆn be given matrices.

Then for any ε ą 0 and any D P D with D in (22), we have
BDJC ` CJDBJ ĺ ε´1BBJ ` εCJ∆∆JC. l

Proof. A completion of squares p
?
ε´1B´

?
εCJDqp

?
ε´1B´

?
εCJDqJ ľ 0 gives the result. �
Proof of Lemma 3. Let (24a) hold. By a Schur complement,

this is equivalent to X1Y `pX1Y q
J`Ω`ε´1Y JY `ε∆∆J ă

0. By applying Lemma 6 with B “ ´Y J and C “ I , we
obtain X1Y ` pX1Y q

J ` Ω´DY ´ pDY qJ ă 0 @D P D,
which corresponds to (23). �
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de Lorraine (Nancy, France).
Pietro Tesi received the PhD degree in computer
and control engineering from University of Florence,
Italy, in 2010, where is currently an Associate Pro-
fessor. Before that, he was an Assistant Professor at
the University of Florence, Italy, and the University
Groningen, the Netherlands. His research interests
include adaptive and learning systems, data-driven
control and network systems. Prof. Tesi is a Senior
Editor for the IEEE Control Systems Letters and
a member in the IFAC Technical Committee on
Networked Systems. He is the recipient of the 2021

IEEE Control Systems Letters Outstanding Paper Award.


