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Multiple Poles of 1
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∫

X |f |2λf̄−hρω ∧ ω̄′

Daniel Barlet∗.

November 22, 2023

Abstract. We give, using higher Bernstein polynomials defined in our paper [2],
a stronger version of our previous result in [1] whose converse is proved in [2] and
we give some complements to the results in [2] which help to compute these higher
order Bernstein polynomials. Then we show some non trivial examples where we
determine the root of the second Bernstein polynomial which is not a double root of
the full Bernstein polynomial and where the main theorem of [2] applies and localizes
where a double pole exists for the meromorphic extension of the (conjugate) analytic
functional given by polar parts of ω′ 7→ |f |2λf̄−hρω∧ ω̄′ when h ∈ N is large enough.
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1 Introduction

The first motivation for this “complement” to the paper [2] is to give some explicit
examples of higher Bernstein polynomials in the case where they have roots which
are not multiple roots of the (full) Bernstein polynomial of the fresco under consid-
eration in loc. cit., for instance in Theorem 8.5.1.
The first remark is that, in general, it is rather difficult to compute the Bernstein
polynomial of the fresco associated to a given pair (f, ω), even in the case where
f has an isolated singularity. Nevertheless, in the case where f is a polynomial in
C[x0, . . . , xn] having (n + 2) monomials, we describe in the article [1] a rather ele-
mentary method to obtain an estimation for the Bernstein polynomial of the fresco
Ff, ω associated to a monomial (n+ 1)-form ω.
Of course, when the full Bernstein polynomial has a root of multiplicity k ≥ 2 then
this root is also a root of the j-th Bernstein polynomial for each j ∈ [1, k] but when
the Bernstein polynomial has only simple roots, the computation of the higher or-
der Bernstein polynomials, even in the special situation of [1], is not obvious. We
present here some examples where we show that the second Bernstein polynomial is
not trivial in cases where the full Bernstein polynomial has no multiple root.
We concentrate here on the case of the function f(x, y, z) = xy3 + yz3 + zx3 + λxyz
where λ 6= 0 is any complex parameter, and where ω = µdx ∧ dy ∧ dz with µ a
monomial in C[x, y, z]. The tools used to estimate the Bernstein polynomial of the
associated fresco Ff,ω are valid for almost all polynomials in C[x0, . . . , xn] having
(n+ 2) monomials, for any n ≥ 1 (see the conditions C1 and C2 in [1]).
The tools used to determine the second Bernstein polynomial in the examples below
are also easy to generalize, at least to obtain information on the smallest root of the
Bernstein polynomial in the previous setting, knowing that this root is, in general,
a root of the k-th Bernstein polynomial of the fresco Ff,ω where k is the nilpotent
order of this fresco.
It seems not difficult, for some colleague fun of computers, to make a program which
produces in such a situation, not only estimates for the (full) Bernstein polynomial
of Ff,ω but also, computing also the polynomial in (a,b) annihilating [ω] in Ff,ω

(described in [1]) to estimate the smallest root of the Bernstein polynomial.

During the computations which lead to the examples presented in Section 4 I re-
alized that some rather easy consequence of the Section 5 in [2] where missing to
enlighten the relationship between asymptotic expansions, themes and higher Bern-
stein polynomials. These results are given in Section 2 and will be add to the second
version of my paper [2] (in preparation).

Another point appears also during this period; the fact that the main result of [2]
is a converse of a statement which is more precise than the main result in [1]. The
reason is that, without the notion of higher Bernstein polynomial of a fresco, this
stronger statement cannot be formulate ! So we add this improved version of the
main theorem of [1] in Section 3 below.
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2 Some useful results to complete [2]

We begin by recalling some facts from [2]. For the definition of a fresco see Definition
5.1.2 or Section 7.1 in [2].

Reminder.

1. Any [α]-primitive fresco F has an embedding in some Ξ
(N)
α ⊗ V thanks to

Theorem 5.1.3 in [2].

2. Remind that, if F is any fresco, for each of its higher Bernstein polynomial,
Bk

F for k ≥ 1, we have

Bk
F =

∏

α

Bk
Fα

where Fα := F
/

F[ 6=[α] is the [α]-primitive quotient of F .

3. If a fresco has the root −α − m for its k-th Bernstein polynomial, where
k := d(Fα), there exists a [α]-primitive rank k quotient theme T of F such
that the k-th Bernstein polynomial of T is (x+ α +m).

4. Conversely, if T is a [α]-primitive quotient theme of rank k of a [α]-primitive
fresco F such that the k-th Bernstein polynomial of T is (x + α + m), then
there exists a root in [−α−m,−α]∩{α−N} for the k-th Bernstein polynomial
of F . Moreover, when d(F) = k, (−α − m) is a root of the k-th Bernstein
polynomial of F

We give now a lemma and a remark which will be added in the second version of [2]
(in preparation).

Lemma 2.0.1 Let F be a [α]-primitive fresco and assume that −α − m is a root
of its k-th Bernstein polynomial. Then for each j ∈ [1, k] there exists an integer
mj ∈ [0, m] such that −α−mj is a root of the j-th Bernstein polynomial of F .

Proof. By definition, if the nilpotent order for F is strictly bigger than k then
the Bernstein polynomial of Sk(F) has a root which is strictly bigger than −α−m.
So it is enough to prove the lemme when k is the nilpotent order of F . Then, by a
descendant induction on j ∈ [1, k − 1] it is enough to prove the case j = k − 1.
Taking the quotient by Sk−2(F) we reduce the question in the case k = 2.
In this case, there exists a quotient theme T with rank 2 whose Bernstein polyno-
mial has the root −α−m as its minimal root. Then the other root −α−m′ of the
Bernstein polynomial of T satisfies −α − m′ ≥ −α − m. Since T is a quotient of
F , −α −m′ is a root of the Bernstein polynomial of F . If it is a root of the first
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Bernstein polynomial of F we are done. If this is not the case, −α−m′ is a root of
the second Bernstein polynomial of F . But in this case m′ < m since the roots of
the second Bernstein polynomial of F are simple. Then we can play the same game
as before, but with the root −α −m′. Since there is only finitely integer in [0, m]
we finally reach a root −α − m” of the first Bernstein polynomial of F such that
m” is in [0, m]. �

Remark. Let T be a [α]-primitive theme with rank k. Then its j-th Bern-
stein polynomial has degree 1 for j ∈ [1, k] and is equal to (x + α + mj) where
−α−m1, . . . ,−α−mk are the roots of its Bernstein polynomial in decreasing order.
So −α−mk is the smallest root of its Bernstein polynomial.

Note that, for any [α]-primitive fresco, the smallest root of the Bernstein polynomial
is always a root of the k-th Bernstein polynomial where k = d(F) is the nilpotent
order of the fresco F . But for a “general” [α]-primitive fresco, we do not know
other relation between the order of the roots of the Bernstein polynomial of F and
the roots of the j-th Bernstein polynomial of F than the fact, given by the Lemma
above.

Proposition 2.0.2 Let F be a semi-simple fresco. Then −λ is a root of the Bern-
stein polynomial of F if and only if there exists a Ã-linear surjective map

π : F → Eλ ≃ Ã
/

Ã(a− λb).

Proof. The existence of π is sufficient because the Bernstein polynomial of a
quotient of F divides the the Bernstein polynomial of F .
Conversely, if λ is a root of the Bernstein polynomial of F , since F is semi-simple,
there exists a Jordan-Hölder sequence for F such its last quotient is Eλ, thanks to
Proposition 7.2.1 in [2]. So the proof is complete. �.

Corollary 2.0.3 Let F be be a [α]-primitive fresco with nilpotent order k. Assume

that F = Ãe ⊂ Ξ
(k−1)
α ⊗ V 1. Let p be the rank of F

/

Sk−1(F). Then there exists p
linearly independent vectors v1, . . . , vp in V such that e may be written

e =

p
∑

j=1

Sj(b)s
α+mj−1(Log s)k−1 ⊗ vj + ψ.

where ψ is in Ξ
(k−2)
α ⊗ V , and where the Sj are invertible elements in C[[b]]. More-

over we may choose the vectors v1, . . . , vp such that m1 < · · · < mp.
When this condition is fulfilled the k-th Bernstein polynomial of F is equal to
∏p

j=1(x+ α +mj).

1This is not restrictive thanks to the results of Section 5 in [2].
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For α = 1 it is convenient to replace Ξ
(k−1)
1 by Ξ

(k)
1

/

Ξ
(0)
1 to consider only the singular

part of the asymptotic expansions. This is the case in the examples computed in
Section 4.

Proof. Since Sk−1(F) = F ∩ (Ξ
(k−2)
α ⊗ V ), it is enough to treat the semi-simple

case. In this case, since each Eα+m is embedded in Ξ
(0)
α we may assume that

e =
∑q

j=1 Sj(b)s
α+µj−1 ⊗ vj where v1, . . . , vq is a basis of V (by definition of semi-

simplicity), where m1, . . . , mq are non negative integers and where Sj are invertible
elements in C[[b]] or vanish identically. Moreover, since the saturation F ♯ is a direct
sum of Eα+m and has the same rank than F , we may assume that the vector vj for
which Sj 6= 0 generate a subspace W of dimension p in V , where p is the rank of F .
If the integer µ1, . . . , µp are pairwise distinct we may order the v1, . . . , vp such that
µ1 < · · · < µp and put mj := µj. If this is not the case, consider m1 the infimum
of the µj and when µj = m1 let w1 = v1 +

∑

cjvj where the sum is on each j ≥ 2
such that µj = m1 and where cj = Sj(0)S1(0)

−1 with µj = m1. Now we obtain a
new expression for e in the basis w1, v2, . . . , vp of W , where m1 is strictly less than
all µ′

j which appear for j ≥ 2. Continuing in this way we obtain that (w1, . . . , wp)
is a new basis of W and m1 < · · · < mp.
Then consider the Ã-linear maps given by the linear forms lj ∈ V ∗ defined by
lj(wh) = δj,h, h ∈ [1, p]. The Ã-linear map id⊗lj for j ∈ [1, p] sends surjectively F
to Eα+mj

and this implies that −(α +mj) is a root of the Bernstein polynomial of
F for each j ∈ [1, p]. But since F has rank p we obtain all the roots of its Bernstein
polynomial since the mj are pair-wise distinct2. This completes the proof. �

Remark. As a consequence of the previous corollary we have the following char-
acterization of the roots of the k-th Bernstein polynomial of a [α]-primitive fresco
with nilpotent order k:

• −α−m is a root of the [α]-primitive fresco with nilpotent order k if and only
if there exists a Ã-linear surjective map of F to a rank k theme Tk such its
k-th Bernstein polynomial is (x+ α+m).

3 A more precise result than [1]

Here is the strengthened version of the main result in [1] announced in the introduc-
tion, which uses the higher order Bernstein polynomials of the concerned fresco. The
reader may remark that the main result of [2] is a precise converse of this theorem.

Theorem 3.0.1 Let α ∈]0, 1] and assume the hypothesis H(α, 1)3 for the germ at
the origin in Cn+1 of holomorphic function f̃ : (Cn+1, 0) → (C, 0). Assume that ω

2Note that the initial µj gives also roots of the k-th Bernstein polynomial of F but they may
not give all the roots.

3Remind that this mean that exp(2iπα) is not a root of the local monodromy of f acting on
the reduced cohomology of the Milnor’s fiber of f at any point outside the origin.
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in Ωn+1
0 has the following property:

there exists an integer h ∈ Z and a form ω′ ∈ Ωn+1
0 such that F ω,ω′

h (λ) has a pole of
order p ≥ 1 at some point ξ ∈ −α− N.
Note ξp = −α −m the biggest among such numbers ξ ∈ −α − N for any choice of
ω′ and h ∈ Z. Then the p-th Bernstein polynomial of the fresco Ff,ω has a root in
[−α−m,−α] ∩ Z.

Proof. Note P := P1P2 the annihilator of the class of [ω] in the [α]-primitive
quotient

Fα := Ff,ω

/(

Ff,ω

)

6=α

of the fresco Ff,ω := Ã[ω] inside the (a,b)-module Hn+1
0 associated to f , where P2

is the annihilator of [ω] in Fα
/

Sp−1

(

Fα
)

. If F ω,ω′

h (λ) has a pole of order at least
equal to p at the point −α −m and if −α −m is not a root of the q-th Bernstein
polynomial of Fα for each q ≥ p, then −α−m is not a root of the (usual) Bernstein
polynomial of the fresco Ã

/

ÃP1 which is isomorphic to Sp−1(F
α). In this situation,

using Corollary 8.2.5 in [2] we see that F P2ω,ω
′

h+p2
(λ) has a pole of order at least equal

to p at −α−m , where k is the rank of the fresco Fα
/

Sp−1

(

Fα
)

. But this is impos-
sible, according to Corollary 8.2.6 in loc. cit. since the nilpotent order of Sp−1

(

Fα
)

is p− 1 and since the image of the class of P2ω in Fα generates Sp−1(F
α).

So there exists integers j ≥ 0 and mj ∈ [0, m] such that the (p + j)-th Bernstein
polynomial of Fα

f,ω has the root −α − mj. Then the p-th Bernstein polynomial of
Ff,ω has a root in [−α −mj ,−α] ⊂ [−α −m,−α] (thanks to the remark following
Lemma 2.0.1). �

The end of Theorem 3.1.2 in [1] is also improved as follows:

Corollary 3.0.2 In the situation of the previous theorem, let, for each integer s in
[1, p], ξs be the biggest element in −α−N for which there exists h ∈ Z and ω′ ∈ Ωn+1

0

such that F ω,ω′

h (λ) has a pole of order at least equal to s at ξs. Then ξs is a root of
some (s+ j)-th Bernstein polynomial of the fresco Fα

f,ω for some j ∈ N.
Moreover, if ξs = ξs+1 = · · · = ξs+p, then there exists at least p distinct values of
j ∈ N such that ξs is root of the (s + j)-th Bernstein polynomial of the fresco Fα

f,ω.

Proof. the proof of the first assertion is analogous to the proof of the theorem
above.
The second assertion is an immediate consequence of the fact that the roots of the
Bernstein polynomial of a semi-simple fresco are simple, applied to the successive
semi-simple quotients

Sd(F
α)
/

Sd−1(F
α)

for d = s+ 1, s+ 2, . . . , s+ p. �
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Remarks.

1. If for ω given in Ωn+1
0 , the maximal order of a pole at some point in −α − N

is equal to d for any choice of ω′ ∈ Ωn+1
0 and any h ∈ Z, then ξd is a root

of the d-th Bernstein polynomial of the fresco Ff,ω, because of the “converse
theorem” proved in [2] (see Theorem 8.5.1).

2. To consider a form ψ ∈ C ∞
c (Cn+1)0,n+1 with small enough support and such

that dψ = 0 in a neighborhood of 0 is equivalent to consider ρω̄′ where ω′ is
in Ωn+1

0 and ρ is a function in C ∞
c (Cn+1) with small enough support which is

identically 1 near the origin.
Indeed any such ψ may be written as ψ = ω̄′ for some ω′ ∈ Ωn+1 near the
origin thanks to Dolbeault’s Lemma, and then ψ − ρω̄′ is identically 0 near
the origin, so replacing ψ by ρω̄′ do not change the poles which may appear in
−α − N for the functions we are looking at (what ever is the choice of h ∈ Z

thanks to our hypothesis H(α, 1)).

4 Examples

It is, in general, rather difficult to compute the Bernstein of the fresco associated to a
given pair (f, ω), even in the case where f has an isolated singularity. Nevertheless,
in the case where f is a polynomial in C[x0, . . . , xn] having (n + 2) monomials, we
describe in the article [1], a rather elementary method to obtain an estimation for
the Bernstein polynomial of the fresco Ff, ω associated to a monomial (n+ 1)-form
ω.
Of course, when the full Bernstein polynomial has a root of multiplicity k ≥ 2 then
this root is also a root of the j-th Bernstein polynomial for each j ∈ [1, k] but when
the Bernstein polynomial has only simple roots, the computation of the higher order
Bernstein polynomials, even in the special situation of [1], is not easy. We present
in below some examples where we show that the second Bernstein polynomial is not
trivial but where the full Bernstein polynomial has no multiple root.

Proposition 4.0.1 Let f(x, y, z) := xy3 + yz3 + zx3 + λxyz where λ 6= 0 is any
complex number which is a parameter, and consider the holomorphic forms

ω1 := dx ∧ dy ∧ dz, ω2 := y3z2ω1, ω3 = y7ω1, and ω4 := xy3ω1.

Then, in each of these cases, the fresco Ff, ωi
is a rank 2 theme and the second

Bernstein polynomial is equal respectively to x+ 1, x+ 4, x+ 5 and x+ 3.
Moreover, for i = 3, 4 the corresponding (full) Bernstein polynomial of the corre-
sponding frescos has only simple roots.

Note that this proposition allows to apply Theorem 8.5.1 in [2] to conclude that for
each i ∈ {1, 2, 3, 4}, there exists some integer h and some germ ω′ ∈ Ω3

0 such that
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the meromorphic extension of

F ωi,ω
′

h (λ) =
1

Γ(λ)

∫

X

|f |2λf̄−hρωi ∧ ω̄
′

has a double pole at the point λi equal to the root of the second Bernstein polyno-
mial of the fresco Ff,ωi

.

The proof of this proposition uses several lemmas and the technic of computation
described in [1] (see paragraph 4.3.2) .

Lemma 4.0.2 Let e be a generator of the rank 2 theme T := Ã/Ã(a − 2b)(a − b)
(which is the unique fresco with Bernstein polynomial (x + 1)2). Assume that we
have three homogeneous polynomials P,Q and R in A of respective degrees 3, 4 and
k with the following conditions

1. P,Q and R are monic in a.

2. Then exists a non zero constant c such that P + cQ kills e in T .

3. The Bernstein polynomial of Q4 is not a multiple of (x+ 1) or of (x+ 2).

4. The Bernstein polynomial of R is not a multiple of (x+ 3)(x+ 2)(x+ 1)

Then Re generates a rank two sub-theme in T .

Proof. First, remark that our hypothesis implies that P = (a−νb)(a−2b)(a− b)
for some ν ∈ C since T is isomorphic to Ã

/

Ã(a− 2b)(a− b). We may realize T in
the simple pole asymptotic expansion module with rank 2 which is isomorphic to T ♯

Θ := Ξ2
1

/

Ξ0
1 ≃ C[[s]](Log s)2 ⊕ C[[s]Log s

where a is the multiplication by s and b is defined by ab− ba = b2 and

b(Log s) = sLog s and b((Log s)2) = s(Log s)2 − 2sLog s.

Then let us prove that image of e in Ξ2
1

/

Ξ0
1 may be written

e = u(Log s)2 + vs(Log s)2 + ws3(Log s)2 + s4C[[s]](Log s)2 + C[[s]](Log s) (@)

where ϕ is in Ξ2
1

/

Ξ0
1 and where uvw 6= 0 are complex numbers.

Remark that the only restrictive condition for writing e as in (@) is the condition
uvw 6= 0. The condition u 6= 0 is easy because we assume that e is a generator of

4By definition BP is defined by the formula

(−b)pBP (−b−1a) = P

where P is in A, is homogeneous in (a,b) of degree p and monic in a. This is the Bernstein
polynomial of the fresco Ã/ÃP .
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T with Bernstein polynomial (x+ 1)2, so writing e as a C[[b]]-linear combination of
the C[[b]]-basis e1 = (Log s)2 and e2 = Log s of T we see that the coefficient of e1
must be invertible in C[[b]].
But the condition (P + cQ)(e) = 0 implies, since the Bernstein element of T is
(a− 2b)(a− b), that we may write5 P = (a− νb)(a− 2b)(a− b).
The annihilator of (Log s)2 in Ξ2

1

/

Ξ0
1 is the ideal Ã(a − 2b)(a − b) so we have

P ((Log s)2) = 0 in T . Since Q((Log s)2) has a non zero term in s4(Log s)2, be-
cause −1 is not a root of BQ, only the term coming from

P (s(Log s)2) =
4− ν

24
s4(Log s)2 modulo C[[s]]Log s

can compensate for this term, in order to obtain the equality (P +cQ)(e) = 0. Then
u 6= 0. implies v 6= 0.
But now, the only term which can kill the non zero term in s5(Log s)2 coming from
Q(vs(Log s)2) (using that BQ is not a multiple of (x + 2)) can only comes from
P (ws2(Log s)2) and this proves that w 6= 0. So the assertion (@) holds true.
Now if R is homogeneous of degree k in (a, b) a necessary condition on R such that
Re has no term in sk+i(Log s)2, for i = 0, 1, 2, is that BR divides (x+1)(x+2)(x+3).
So, when it is not the case Lemma 5.2.4 in [2] implies that Re is a rank 2 theme and
its second Bernstein polynomial has a (unique) root equal to −(k + j) where −j is
the smallest integer among {−1,−2,−3} which is not a root of BR (see Corollary
2.0.3). �

Note that the Lemma above may be easily generalized to many [α]-primitive frescos
provided that the nilpotent order is known and that it has a generator which admits
a enough simple element in its annihilator.

Lemma 4.0.3 In the situation of Proposition 4.0.1, the frescos generated by the
forms

ω1 := dx ∧ dy ∧ dz, ω2 := y3z2ω1, ω3 := y7ω1, and ω4 := xy3ω1

generate rank 2 [1]-primitive themes. Their Bernstein polynomials are respectively
equal to

(x+ 1)2, (x+ 3)2 or (x+ 2)(x+ 3), (x+ 3)(x+ 5) and (x+ 2)(x+ 3)

and their respective 2-Bernstein polynomials are (x+1), (x+3), (x+5) and (x+3).
In the cases i = 3, 4 there is no double root for the Bernstein polynomial of Ff,ωi

.

Proof. The first point is to show that Ff,ω1
has rank 2. Since f has an isolated

singularity at the origin, we have Kerdfn = df ∧ Ωn−1 and then Hn+1/bHn+1 ≃

5In our choice of f and ω1, µ = 3.
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O0/J(f) and Hn+1 has no b-torsion and no a-torsion. Since f is not6 in J(f) the
image of ω1 and aω1 = fω1 in H

n+1 are linearly independent (over C) and then the
rank of Ãω1 is at least equal to 2. Now the computation in [1] (see 4.3.2) shows
that the Bernstein polynomial of this fresco divides (x + 1)3 (see also the detailed
computation below). So it is a theme of rank 2 or 3. But using our main result, the

rank 3 would imply that there exists a pole of order 3 for some F ω1,ω
′

h (λ) which is
impossible7 in C3. So Ff,ω1

is a rank 2 theme with Bernstein polynomial (x + 1)2.
The computation in [1] gives that P3 + cλ−4P4 kills ω1 in Hn+1 where

P3 := (a−3b)(a−2b)(a− b), P4 = (a− (13/4)b)(a− (5/2)b)(a− (7/4)b)a, and c = 44

This is easily obtain by using the technic of the computation of loc.cit. (see the
detailed computation in the Appendix below). Then we may apply Lemma 4.0.2
to see that λm1m2ω1 = λ(a − 2b)(a − b)ω1 generates rank 2 themes in Hn+1. But
the identity λm1m2 = m4y

3z2 shows that ω2 generates also rank 2 in Hn+1 since
m4ω2 = λm1m2ω1 = λ(a−2b)(a−b)ω1 applying Lemma 4.0.2 with R = (a−2b)(a−b)
whose Bernstein polynomial is (x + 1)2. Moreover we see that Re has a non zero
term in s3(Log s)2.
Since m4ω2 generates a rank 2 theme, then ω2 generates a rank 2 theme also (the
rank 3 is again excluded because it would imply that f 2 6∈ J(f) which is impossible
as explained above).
The technic of computation in [1] applied to ω2 gives now that the Bernstein poly-
nomial of the rank 2 theme Ãω2 has to divide8 the polynomial (x+ 2)(x+ 3)2.
But the fact that m4ω2 has a non zero term in s3(Log s)2 (and no term in (Log s)2

or in s(Log s)2) implies, since we have

m4ω2 = 4(a− 2b)ω2

ω2 has a non zero term in s2(Log s)2 and then −3 is a root of the second Bernstein
polynomial of the fresco Ff,ω2

. So the Bernstein polynomial is either (x+ 2)(x+ 3)
or (x+ 3)2.
We know9 that the Bernstein polynomial of Ff,ω3

divides (x + 5)(x + 3)(x + 2).
But we know also that m2

1m4ω1 = λm3ω3 has a non zero term in s5(Log s)2 (as a
consequence of Lemma 4.0.2) and −m3ω3 = (a − 2b)ω3 implies that ω3 has a non
zero term in s4(Log s)2. Then the second Bernstein polynomial of Ff,ω3

is x+ 5.
Note that, in this case, the Bernstein polynomial of the fresco Ff,ω3

has two simple
roots.
The last case is similar, since we know that m1ω1 has a non zero term in s2(Log s)2.
So our assertion is consequence of the estimation of the Bernstein polynomial. �

For the convenience of the reader, we give in the Appndix below some detailed
computations for these four examples.

6This point is not so easy to check directly. But the rank is not 1 since this would implies that
this fresco has a simple pole and the argument used in Lemma 4.0.2 gives then a contradiction.

7This would give an order 4 pole for the meromorphic continuation of |f |2λ !
8This computation gives that Q3+dλ−4Q4 kills ω2 in Hn+1 with Q3 := (a−4b)(a−4b)(a−3b).
9see the computation below.
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5 Appendix: detailed computations

The detailed computation for ω1. The linear system to compute m1, . . . , m4

(we note ω1 by 1) is given by MX = t(a, b, b, b)(1) which gives

0 = (2m1 +m2 − 3m3) and

0 = (3m1 − 2m2 −m3) and so

m1 = m2 = m3 and

m4 = b(1)− 3m1 −m2 = b(1)− 4m1

a(1) = 3m1 + b(1)− 4m1 so m1 = −(a− b)(1) = m2 = m3 and m4 = −(4a− 3b)(1)

The linear system to compute m2
1, . . . , m1m4 is given by MX = t(a, 2b, 4b, b)(m1)

which gives

2b(m1) = (2m1 +m2 − 3m3)m1 and

3b(m1) = (3m1 − 2m2 −m3)m1 and so

m2
1 = m1m2 + b(m1) m1m3 = m1m2 and m1m4 = b(m1)− 4m1m2

a(m1) = m1m2 + b(m1) +m1m2 +m1m2 + b(m1)− 4m1m2 so

−m1m2 = (a− 2b)(m1) and −m2
1 = (a− 3b)(m1) = −(a− 3b)(a− b)(1)

The linear system to compute m2
1m2, m1m

2
2, m1m2m3, m1m2m4 is given by

MX = t(a, 2b, 5b, 4b)(m1m2) which gives

3b(m1m2) = (2m2
1m2 +m1m

2
2 − 3m1m2m3) and

b(m1m2) = (3m2
1m2 − 2m1m

2
2 −m1m2m3) and so

m2
1m2 = m1m

2
2, m1m2m3 = m2

1m2 − b(m1m2), m1m2m4 = 5b(m1m2)− 4m2
1m2

−m2
1m2 = (a− 4b)(m1m2) and −m1m2m3 = (a− 3b)(m1m2).

So the Bernstein polynomial of the fresco Ff,ω1
has to divide the Bernstein polyno-

mial of P := (a− 3b)(a− 2b)(a− b) which is BP = (x+ 1)3.

The linear system to compute m1m
p
4, . . . , m

p+1
4 is given by

MX = t(a, (p+ 1)b, (p+ 1)b, (p+ 1)b)(mp
4) which gives:

0 = (2m1 +m2 − 3m3)m
p
4 and

0 = (3m1 − 2m2 −m3)m
p
4 and so

m1m
p
4 = m2m

p
4 = m3m

p
4 and

mp+1
4 = (p+ 1)b(mp

4)− (3m1 +m2)m
p
4 = (p+ 1)b(mp

4)− 4m1m
p
4 so

mp+1
4 = (4a− 3(p+ 1)b)(mp

4) = 4(a−
3

4
(p+ 1)b)(mp

4).
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So we obtain that

Q = 44(a− 3b)(a−
9

4
b)(a−

3

2
b)(a−

3

4
b) = 44(a−

13

4
b)(a−

5

2
b)(a−

7

4
b)a.

So BQ = x(x+ 1/4)(x+ 1/2)(x+ 3/4).

The detail computation for ω2 := y3z2ω1. Define µ := y3z2. The linear
system to compute m1µ, . . . , m4µ is given by MX = t(a, b, 4b, 3b)(µ) which gives

3b(µ) = (2m1 +m2 − 3m3)µ and

b(µ) = (3m1 − 2m2 −m3)µ and so m1µ = m2µ = b(µ) +m3µ and

m4µ = 4b(µ)− 4m1µ

Then we obtain

−m1µ = −m2µ = (a− 3b)(µ), −m3µ = (a− 2b)(µ)

and also m4µ = 4(a− 2b)(µ) which is also used above.
Then we computem2

1µ, . . . , , m1m4µ given by the systemMX = t(a, 2b, 7b, 3b)(m1µ)
which gives

5b(m1µ) = (2m1 +m2 − 3m3)m1µ and

4b(m1µ) = (3m1 − 2m2 −m3)m1µ and so

(m1 −m2)m1µ = b(m1µ), m1m3µ = m1m2µ− b(m1µ)

m1m4µ = −4m1m2µ+ 4b(m1µ)

Then we obtain

−m1m2µ = (a− 4b)(m1µ),

Finally m2
1m2µ, m1m

2
2µ, m1m2m3µ, m1m2m4µ are given by the system

MX =t (a, 2b, 8b, 6b)(m1m2µ) which gives

6b(m1m2µ) = (2m1 +m2 − 3m3)m1m2µ and

2b(m1m2µ) = (3m1 − 2m2 −m3)m1m2µ and so

m2
1m2µ = m1m

2
2µ, m1m2m3µ = m2

1m2µ− 2b(m1m2µ),

m1m2m4µ = −4m1m2m3µ.

This gives −m1m2m3µ = (a − 4b)(m1m2µ) and so the Bernstein element of the
fresco Ff,ω2

is given by

m1m2m3µ = −(a− 4b)(a− 4b)(a− 3b)(µ) (B)

which implies that the Bernstein polynomial divides (x+ 2)(x+ 3)2. And we know
that it is a rank 2 theme with second Bernstein polynomial x+ 3. In this case it is
not clear if the Bernstein polynomial is (x+ 3)2 or (x+ 2)(x+ 3). �
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The detailed computation for m2
1m4ω1 = λm3ω3. Since we have already

obtained m2
1 = (a− 3b)(a− b)(1) in the first case (computation for ω1), it is enough

to consider the linear system which computes m3
1, . . . , m4m

2
1.

It is given by MX = t(a, 3b, 7b, b)(m2
1) and then

4b(m2
1) = (2m1 +m2 − 3m3)m1 and

6b(m2
1) = (3m1 − 2m2 −m3)m1 and so

m3
1 = m2

1m2 + 2b(m2
1) m2

1m3 = m2
1m2 and

m2
1m4 = b(m2

1)− 4m2
1m2

a(m2
1) = m2

1m2 + 2b(m2
1) +m2

1m2 +m2
1m2 + b(m2

1)− 4m2
1m2 so −m2

1m2 = (a− 3b)(m2
1)

m2
1m4 = b(m2

1) + 4(a− 3b)(m2
1) = (4a− 11b)(m2

1)

So we obtain
m2

1m4 = (4a− 11b)(a− 3b)(a− b)(1).

An the Bernstein polynomial of R := (4a−11b)(a−3b)(a−b) is (x+3/4)(x+2)(x+1)
so we may apply Lemma 4.0.2 and (@) gives that Rω1 = λm3ω3 has a non zero term
in s5(Log s)2.

The detailed computation for ω3 = y7ω1. The linear system to compute
m1ν, . . . , m4ν, (where ν := y7) is given by MX = t(a, b, 8b, b)(y7) which gives:

7b(ν) = (2m1 +m2 − 3m3)ν and

7b(ν) = (3m1 − 2m2 −m3)ν and so

m1ν = m2ν + 2b(ν), m3ν = m2 − b(ν) and

m4ν = −4m2ν + 2b(ν), so −m1ν = (a− 5b)(ν), −m2ν = (a− 3b)(ν),

−m3ν = (a− 2b)(ν) and m4 = (4a− 10b)

Remark that this computation is already enough to see that the Bernstein polyno-
mial of Ff, ω3

divides (x+ 5)(x+ 3)(x+ 2)10. But we know that m2
1m4ω1 = λm3ω3

has a non zero term in s5(Log s)2 and −m3ω3 = (a − 2b)ω3 implies that ω3 has a
non zero term in s4(Log s)2 and then the second Bernstein polynomial of Ff,ω3

is
x+5. The Bernstein polynomial is (x+3)(x+5) because (a− 2b)ω3 cannot have a
non zero term in s(Log s)2 (note that m2

1m4ω1 has a non zero term in s3Log s) since
u 6= 0 and so ω3 has a non zero term in s2Log s).

The detailed computation for ω4 := m1ω1. The linear system to compute
m2

1, . . . , m1m
2
4 is given by MX = t(a, 2b, 4b, b)(m1) is already solved above and it

gives
m2

1 = (a− 3b)(m1).

10because we can compute m1m2m3ν with any order for 1, 2, 3 and then obtain that the P which
estimates the Bernstein element of the fresco Ff,ω3

is right divisible by (a−5b), (a−3) and (a−2b).
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The linear system to compute m2
1m2, . . . , m

2
1m4 is given byMX = t(a, 3b, 7b, b)(m2

1)
which gives:

4b(m2
1) = (2m1 +m2 − 3m3)m1m4 and

6b(m2
1) = (3m1 − 2m2 −m3)m1m4 and so

m3
1 = m2

1m2 + 2b(m2
1), and m2

1m3 = m2
1m2 and

m2
1m4 = 7b(m1m4)− 3m3

1 −m2
1m2 = b(m2

1)− 4m2
1m2 so −m2

1m2 = (a− 3b)(m2
1).

The linear system to compute m3
1m2, m

2
1m

2
2, m

2
1m2m3, m

2
1m2m4 is given by

MX = t(a, 3b, 8b, 4b)(m2
1m2) which gives:

5b(m2
1m2) = (2m1 +m2 − 3m3)m

2
1m2 and

4b(m1) = (3m1 − 2m2 −m3)m
2
1m2 and so

m3
1m2 = m2

1m
2
2 + b(m2

1m2), m
2
1m2m3 = m2

1m
2
2 − b(m2

1m2) and

m2
1m2m4 = 8b(m1)− 3m2

1m2 −m2
1m

2
2 = 5b(m2

1m2)− 4m2
1m

2
2 so

m2
1m2m3 = (a− 4b)(m2

1m2).

Finally we find (a−4b)(a−3b)(a−3b)(m1ω1) = −m1m2m3(m1ω1). So the Bernstein
polynomial of the fresco Ff, ω4

has to divide (x+2)2(x+3). Since m1ω1 = −(a−b)ω1

has clearly a non zero term in s2(Log s)2 this fresco is rank 2 theme and its second
Bernstein polynomial is x+ 3. Then its Bernstein polynomial is (x+ 2)(x+ 3).

6 Bibliography

References

[1] Barlet, D. Algebraic differential equations of period-integrals
Journal of Singularities Volume 25 (2022), pp. 54-77.

[2] Barlet, D. Higher Bernstein Polynomials and Multiple Poles of
1

Γ(λ)

∫

X
|f |2λf̄−hρω ∧ ω̄′ arXiv:2307.04395 math AG, math. CV

For more references see [2].

14


