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A B S T R A C T   

Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. 
More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient 
bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and 
having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical 
model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic 
drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from 
human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis 
to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we 
show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical 
model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not 
homogeneous events and likely reflect distinct computational processes.   

1. Introduction 

The spectral content and frequency band-specific modulations of 
neural signals have long served as fundamental building blocks for 
theories of how information is processed and propagated in the nervous 
system. Since early descriptions of such signals, activity in the beta 
frequency range (13–30 Hz) has been associated with movement prep
aration and performance (e.g. Jasper and Penfield, 1949; Murthy and 
Fetz, 1992; Pfurtscheller, 1981). In trial-averaged data, beta power 
gradually decreases before a movement, reaches a minimum during 
performance of the movement, and rapidly increases beyond baseline 
level following its completion (Alayrangues et al., 2019; Cassim et al., 
2001; Cheyne, 2013; Donner et al., 2009; Erbil and Ungan, 2007; Hae
gens et al., 2011; Keinrath et al., 2006; Kilavik et al., 2013; Kilner et al., 
2003; Leocani and Comi, 2006; McFarland et al., 2000; Meirovitch et al., 
2015; Miller et al., 2010; Pfurtscheller et al., 1996; Pfurtscheller and da 
Silva, 1999; Pogosyan et al., 2009; Salenius and Hari, 2003; Tan et al., 
2016; Tzagarakis et al., 2010, 2015). This signal has been implicated in a 
variety of motor processes including movement planning and 

preparation (Alayrangues et al., 2019; Bartolo and Merchant, 2015; 
Donner et al., 2009; Haegens et al., 2011; Heinrichs-Graham et al., 2016; 
Rhodes et al., 2018; Tzagarakis et al., 2015), inhibition (e.g. Cheyne, 
2013; Jensen et al., 2005; Khanna and Carmena, 2017; Picazio et al., 
2014; Pogosyan et al., 2009; van Wijk et al., 2009; Wessel and Aron, 
2017; Zhang et al., 2008), and learning (e.g. Boonstra et al., 2007; Fine 
et al., 2017; Houweling et al., 2008; Nakagawa et al., 2011; Pollok et al., 
2014; Reuter et al., 2022; Tan et al., 2014), however the mechanism by 
which beta activity underlies this diverse range of suggested functions is 
not known. 

Based on the temporal pattern of changes in trial-averaged beta 
power, this signal has been assumed to reflect sustained oscillatory ac
tivity in each trial, with movement-related amplitude modulations. 
However, it is becoming increasingly apparent that sensorimotor beta 
activity does not occur as sustained oscillations in single trials, but as 
transient burst events that occur with varying probability in time 
(Cagnan et al., 2019; Diesburg et al., 2021; Feingold et al., 2015; Haufler 
et al., 2022; Howe et al., 2011; Karvat et al., 2020; Kosciessa et al., 2020; 
Little et al., 2019; Lofredi et al., 2019; Sherman et al., 2016; Shin et al., 

* Corresponding author at: Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France. 
E-mail address: maciej.szul@isc.cnrs.fr (M.J. Szul).  

Contents lists available at ScienceDirect 

Progress in Neurobiology 

journal homepage: www.elsevier.com/locate/pneurobio 

https://doi.org/10.1016/j.pneurobio.2023.102490 
Received 17 January 2023; Received in revised form 3 May 2023; Accepted 21 June 2023   

mailto:maciej.szul@isc.cnrs.fr
www.sciencedirect.com/science/journal/03010082
https://www.elsevier.com/locate/pneurobio
https://doi.org/10.1016/j.pneurobio.2023.102490
https://doi.org/10.1016/j.pneurobio.2023.102490
https://doi.org/10.1016/j.pneurobio.2023.102490
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pneurobio.2023.102490&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Progress in Neurobiology 228 (2023) 102490

2

2017; Sporn et al., 2020; Torrecillos et al., 2018; Wessel, 2020). These 
variations in burst probability are reflected in the slow changes in 
average spectral power (Feingold et al., 2015; Howe et al., 2011; Little 
et al., 2019; Rayson et al., 2022; Sherman et al., 2016), but suggest that 
single trial beta activity is more dynamic than classically thought. The 
rate and timing of single-trial beta events are tightly linked to behavior 
(Diesburg et al., 2021; Echeverria-Altuna et al., 2021; Enz et al., 2021; 
Feingold et al., 2015; Haufler et al., 2022; Heideman et al., 2020; Howe 
et al., 2011; Karvat et al., 2020; Khawaldeh et al., 2020; Kosciessa et al., 
2020; Law et al., 2022; Little et al., 2019; Sherman et al., 2016; Shin 
et al., 2017; Sporn et al., 2020; Torrecillos et al., 2018; Walsh et al., 
2022; Wessel, 2020; West et al., 2022), and are more predictive of 
response time and accuracy than average beta amplitude (Enz et al., 
2021; Little et al., 2019). This shift in perspective from trial-averaged 
beta power to transient burst events has thus allowed for more 
fine-grained analyses of their relationship to behavior, but the func
tional role of beta bursts themselves is still unclear. 

Neural field potentials are commonly analyzed using Fourier or 
Hilbert transform-based approaches which assume that the activity is 
stationary, at least within a small time window, and sinusoidal (Cole and 
Voytek, 2017, 2019). Although such approaches are useful for isolating 
activity in different frequency channels, both of these assumptions are 
typically unmet by neural data. Therefore time-frequency (TF) based 
features of band-specific activity, whether based on trial-averaged 
power or bursts, cannot adequately capture nonsinusoidal dynamics in 
the temporal domain. However, recent work has shown that non
sinusoidal waveforms in the theta, alpha, and gamma bands are 
behaviorally (Marshall et al., 2022) and physiologically (Higgins et al., 
2022; Quinn et al., 2021) informative, underscoring the importance of 
analyzing frequency-specific activity in the temporal domain without 
band pass filtering. 

In sensorimotor cortex, beta bursts have a stereotypical wavelet-like 
shape in the temporal domain (Baker et al., 1997; Bonaiuto et al., 2021; 
Brady and Bardouille, 2022; Cagnan et al., 2019; Cole et al., 2017; 
Karvat et al., 2020; Kosciessa et al., 2020; Sherman et al., 2016) caused 
by temporally aligned synaptic drives to deep and superficial cortical 
layers (Bonaiuto et al., 2021; Sherman et al., 2016). The shape of this 
waveform determines the duration, peak amplitude, peak frequency, 
and frequency span of the burst in TF space. A large range of waveform 
shapes can potentially result in a burst with a peak frequency within the 
beta range when Fourier or Hilbert transform analyses are applied 
(Karvat et al., 2020; Sherman et al., 2016). Indeed, while the mean burst 
waveform shape appears highly conserved across studies, subjects, and 
species (Bonaiuto et al., 2021; Brady and Bardouille, 2022; Cagnan 
et al., 2019; Cole et al., 2017; Howe et al., 2011; Karvat et al., 2020; 
Kosciessa et al., 2020; Sherman et al., 2016), there is a large amount of 
variability in individual burst waveforms (Bonaiuto et al., 2021; Howe 
et al., 2011; Karvat et al., 2020; Kosciessa et al., 2020; Sherman et al., 
2016). This waveform shape variability may translate to variability in 
function, potentially reconciling the various views of beta’s functional 
role by decomposing the signal into multiple distinct sources. However, 
the vast majority of previous work has treated beta bursts as being 
entirely homogeneous, and focused on burst rate, timing, or mean 
waveform shape regardless of their varying features in the spectral or 
temporal domain (though see: Duchet et al., 2021; Enz et al., 2021; Zich 
et al., 2020). 

Here, we present a novel adaptive method for single-trial burst 
detection that captures the entire range of burst amplitudes, and apply it 
to high precision magnetoencephalography (MEG) sensor data. In line 
with previous findings, the overall rate of bursts detected with this 
method closely tracks changes in average beta amplitude, but bursts are 
widely diverse in time-frequency space. Using a biophysical model of 
burst generation, we show that variations in the timing, strength, and 
duration of the deep and superficial layer drives all change burst dura
tion, peak amplitude, peak frequency, and frequency span via modula
tions of the cumulative dipole waveform shape generated by the model. 

Burst shape, and thus the underlying generating mechanism, is therefore 
not uniquely identified by features in the TF domain. We then show that 
beta bursts in human MEG data indeed occur in a wide range of wave
form motifs, only some of which are predicted from the model, and 
which deviate greatly from the mean burst waveform. Finally, we show 
that bursts with different waveforms, unpredicted by the model, are 
differentially rate-modulated during a visuomotor task, and therefore 
likely have different functions. These results thus serve as a novel 
demonstration that beta bursts in human sensorimotor cortex are not 
unitary, and that treating them as a homogeneous signal risks over
looking a potentially rich source of information about their mechanisms 
and functional roles. 

2. Method 

2.1. Behavioral task 

Thirty-eight healthy, right-handed, volunteers with normal or 
corrected-to-normal vision and no history of neurological or psychiatric 
disorders participated in the experiment (25 female, aged 20–35 years, 
M = 26.69, SD = 4.11 years). The study protocol was in accordance with 
the Declaration of Helsinki, and all participants gave written informed 
consent which was approved by the regional ethics committee for 
human research (CPP Est IV - 2019-A01604–53). 

Participants completed a cued visuomotor adaptation task in which 
they made rapid, joystick-based reaching movements to a visually pre
sented target. At the start of each trial, subjects were required to visually 
fixate on a small (0.6◦ ⨉ 0.6◦) central target which was a combination of 
a bullseye and crosshairs (Thaler et al., 2013). The joystick controlled 
the position of a small (0.5 ⨉ 0.5◦) square white cursor. Following a 
variable delay (1–2 s), a circular random dot kinematogram (RDK) was 
presented, with coherent motion in either the clockwise or 
counter-clockwise direction. On the outer edge of the RDK, five circular 
potential reach targets appeared in 30◦ increments from − 120–0◦, 
relative to the fixation point. On each trial, one of these targets (either at 
− 90◦, − 60◦, or − 30◦) was larger (3.25◦) and green, indicating that the 
participant would have to reach for that target after the go cue, and the 
others were smaller (1.625◦) and gray colored. The RDK disappeared 
after 2 s, after which only the gray potential reach targets and the green 
instructed target were visible. After a variable delay period (0.5–1 s), the 
gray targets disappeared, leaving only the green instructed target. This 
served as the go cue, instructing the participant to use the joystick to 
rapidly reach for this target. Trials ended once the distance between the 
cursor and the fixation target exceeded that of the center of the 
instructed target (7◦), if the reach was started too early (the distance to 
the fixation point exceeded 1◦ before the disappearance of the gray 
potential targets), or if the reach was not completed quickly enough (1 s 
after the go cue including reaction time and reach duration, with a reach 
duration of less than 500 ms). Each trial was separated by an inter-trial 
interval of random duration (1.5–2 s), during which participants were 
required to bring the cursor back to the fixation target. Once the 
inter-trial interval duration had passed and the cursor was within 1◦ of 
the fixation target, the next trial began. 

Participants were split into 2 groups. On each trial, the RDK con
sisted of various levels of clockwise or counter-clockwise coherent mo
tion, or no coherent motion at all, and the visual location of the cursor 
was rotated by − 30◦, 0◦, or 30◦, depending on the participant group and 
trial condition. For the explicit group (N = 20), the visuomotor rotation 
followed the direction of coherent motion of the RDK (− 30◦ for coun
terclockwise coherent motion, 30◦ for clockwise, and no rotation for no 
coherent motion). Participants therefore could not adapt to the variable 
rotation, but could predict it from the RDK with varying levels of diffi
culty, and thus adjust their motor preparation during the delay period. 
The reaches of the implicit group were rotated by − 30◦ in each trial, 
meaning there was no relationship between the direction of motion 
coherence in the RDK and that of the visuomotor rotation, but that 
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participants could implicitly adapt to the constant rotation. 
The RDK was presented within a 7◦ circular window centered on the 

fixation point with 200, 0.3◦ diameter white dots, each moving at 10◦/s. 
On each trial, a certain percentage of the dots (specified by the motion 
coherence level) moved coherently around the center of the aperture in 
one direction, clockwise or counter-clockwise at a distance between 2◦

and 7◦ from the fixation target. The remaining dots moved in random 
directions, with a consistent path per dot. Dot lifetime was normally 
distributed (M = 416.67, SD = 83.33 ms). The levels were individually 
set for each participant by using an adaptive staircase procedure 
(QUEST; Watson and Pelli, 1983) to determine the motion coherence at 
which they achieved 82% accuracy in a block of 40 trials at the begin
ning of each session. During this block, participants had to simply 
respond with the left or right button to counterclockwise or clockwise 
motion coherence. The resulting level of coherence was then used as 
low, and 150% and 200% of it as medium and high, respectively. 

Participants first completed 1–3 short training blocks of 12 trials, 
during which the RDK had no coherent motion in any direction, and 
there was no visuomotor rotation. During these blocks, the location of 
the joystick-controlled cursor was visible for the entire duration of the 
trial (online feedback), the cursor turned red once the reach distance 
exceeded the extent of the center of instructed target (7◦), and a short 
message was shown for 2 s telling subjects if they began the reach too 
early, did not complete the reach fast enough, or were too far (> 1.625◦) 
from the center of the target. Once participants correctly completed at 
least 75% of the trials within a training block, they performed one block 
of 56 trials which also contained no coherent RDK motion and no 
visuomotor rotation, but the cursor disappeared once its distance from 
the fixation target exceeded 1◦ and reappeared and turned red once it 
reached the extent of the center of the instructed target (endpoint 
feedback). At the end of each trial in this block, a short message was also 
shown for 2 s giving feedback on the timing and accuracy of the reach. 
Each group of participants then completed 7 blocks of 56 trials each with 
visuomotor rotation. In each of these trials, the RDK had zero, low, 
medium, or high levels of coherent motion in the clockwise or coun
terclockwise direction. For the explicit group, the visuomotor rotation 
was 0, − 30, or 30◦, depending on the direction of coherent motion in 
the RDK. For the implicit group, the visuomotor rotation was always −
30◦, regardless of the direction of coherent motion in the RDK. Finally, 
both groups completed one washout block of 56 trials in which there was 
no coherent motion and no visuomotor rotation. For the purposes of this 
study, data were aggregated across participant groups, blocks (except 
for the training blocks), and trial conditions. The task was implemented 
in Psychtoolbox (v3.0.16; Brainard, 1997; Pelli, 1997) and run using 
Matlab R2017b. 

2.2. MRI acquisition and head-cast construction 

Prior to MEG data acquisition, each participant underwent an MRI 
session using a 3 T Siemens Sonata system (Erlangen, Germany). A T1- 
weighted scan was acquired using a magnetization-prepared rapid 
gradient-echo (MPRAGE) pulse sequence with 1 mm isotropic voxel size 
(256 ⨉ 256 ⨉ 256 voxels), a repetition time (TR) of 2100 ms, an echo 
time (TE) of 3.33 ms, inversion time (TI) of 900 ms, and a grappa factor 
of 3. For the co-registration of the MRI and the MEG data, vitamin E 
tablets were placed at the nasion and the left and right ear canals. 

We used the 1 mm T1 MRI volumes of the subjects in order to 
construct an individualized foam head-cast for each participant in order 
to reduce between-session co-registration error and within-session head 
movement (Bonaiuto et al., 2018; Meyer et al., 2017). The scalp surface 
was extracted from the T1 volume using Freesurfer (v6.0.0; Fischl et al., 
2002) and used as a mold for the inner surface of the head-cast, with the 
outer surface defined by a 3D model of the MEG dewar. The surface 
models were then positioned relative to a 3D model of the MEG dewar 
using Rhinoceros 3D (https://www.rhino3d.com) in order to minimize 
the distance between the scalp and the sensors without obstructing the 

participant’s view. The resulting model was then printed using a Raise 
3D N2 Plus 3D printer (https://www.raise3d.com). The 3D printed 
model was placed inside a replica of the MEG dewar, and the space 
between the head model and the dewar replica was filled with poly
urethane foam (Flex Foam-it! 25; https://www.smooth-on.com) to 
create the participant-specific head-cast into which the fiducial coils 
were placed during scanning. 

2.3. MEG acquisition and preprocessing 

MEG data were acquired using a 275-channel Canadian Thin Films 
(CTF) MEG system with superconducting quantum interference device 
(SQUID)-based axial gradiometers (CTF MEG Neuro Innovations, Inc. 
Coquitlam, Canada) in a magnetically shielded room. Participants were 
in the supine position during the recording. A video projector (Propixx 
VPixx, VPixx Technologies Inc., Canada) was used to display visual 
stimuli on a screen with a refresh rate of 120 Hz (~80 cm from the 
participant), and a joystick (NATA Technologies, Canada) was used for 
participant responses. The data collected were digitized continuously at 
a sampling rate of 1200 Hz. Eye movement data was collected using 
Eyelink 2000 eye tracker (SR Research, Ontario, Canada) which tracked 
monocular eye movements at 1000 Hz and was calibrated before the 
start of recording. 

Data preprocessing was performed using the MNE-Python toolbox 
(v0.23.4; Gramfort et al., 2014; python v3.9.7) unless stated otherwise. 
MEG data was downsampled to 600 Hz and filtered (low pass 120 Hz 
zero-phase FIR filter with a Hamming window). Line noise (50 Hz) was 
removed using an iterative version of the Zapline algorithm (de 
Cheveigné, 2020) implemented in the MEEGKit package (https://nbara. 
github.io/python-meegkit/ v0.1.2), using a window size of 20 Hz for 
polynomial fitting and 5 Hz for noise peak removal and interpolation. 
Ocular movement and cardiac related artifacts were isolated by running 
Independent Component Analysis (ICA, InfoMax, 25 components were 
extracted) on a copy of the MEG data (band pass filtered from 1 to 60 
Hz), implemented in the scikit-learn library (v0.24.2; Pedregosa et al., 
2011). The eye tracking data was first cropped and resampled to match 
the MEG signal, and then components containing ocular artifacts were 
identified by correlating each of the 25 components with the horizontal 
and vertical eye movement signals. Blink detection was done by 
thresholding the vertical eye movement beyond the vertical resolution 
of the screen. Each component time course was then correlated (Pear
son’s r) with the horizontal and vertical gaze position signals before and 
after removing blinks. Each component thus had 4 correlation co
efficients, and was classified as an ocular movement artifact if all cor
relation coefficients were above r = 0.15, and the average correlation 
was above r = 0.25. Cardiac artifacts were identified by applying the 
ECG R peak detector (https://github.com/berndporr/py-ecg-detectors; 
Porr and Howell, 2019, v1.1.0) to each component, and choosing the 
one with the lowest inter-peak temporal variance. The component 
choice was manually verified prior to removal from the original (prior to 
band pass filtering) dataset. 

The data were then epoched around two events within each trial, 
between − 1 and 2 s relative to the onset of the visual stimulus (visual 
epochs), and between − 1 and 1.5 s relative to the end of the reaching 
movement (motor epochs). We analyzed data from 11 sensors above the 
left sensorimotor area, contralateral to the hand used to make the 
movement (Fig. 2 A: inlay). 

2.4. Burst detection 

We developed a novel, adaptive burst detection algorithm to ensure 
that all potentially relevant burst events were detected across a wide 
range of beta amplitudes (Fig. 1). The algorithm operates iteratively on 
single trial TF decompositions, and continues until no more bursts are 
detected in the trial. We used the superlet transform (Moca et al., 2021) 
to compute single-trial TF decompositions. The superlet transform is a 
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relatively new method of TF decomposition that more optimally bal
ances time and frequency resolution than other commonly used methods 
like the short-time Fourier transform or continuous wavelet transform, 
making it especially well suited to detect transient bursts in restricted 
frequency bands. We used an adaptive superlet transform based on 
Morlet wavelets with varying central frequency (1–120 Hz) and number 
of cycles (4 cycles) under a Gaussian envelope. The order, which is a 

multiplier of the amount of cycles in the wavelet, was linearly varied 
from 1 to 40 over the frequency range. The TF decomposition was then 
used to calculate the power spectral density (PSD) for each sensor by 
averaging single-trial TF power over time to obtain single trial PSDs, and 
then averaging PSDs over trials within each experimental block (56 
trials; Fig. 1A). We then used the FOOOF algorithm (Donoghue et al., 
2020) to parameterize the PSD of each sensor for each block and thus 

Fig. 1. Iterative burst detection and waveform analysis. (A) The MEG single-trial signal time course was decomposed into the time-frequency (TF) domain using 
superlet transformation. The power spectral density (PSD) was calculated per trial by averaging the TF power over the time dimension, and then averaged over trials. 
A 1/f function was fitted to the averaged PSD to account for aperiodic neural activity. (B) The aperiodic fit was then subtracted from each single trial TF in order to 
isolate bursts with amplitude above that of background neural activity and noise. (C) After removing the aperiodic influence, bursts from each single trial TF were 
detected using an iterative algorithm. During each iteration, the global maximum was identified, defining the peak time and frequency, and a two-dimensional 
Gaussian was fitted to the peak to compute burst duration and frequency span. The Gaussian was then subtracted from the single trial TF, and the following iter
ation operated on the residual. The process terminated when there were no peaks above the noise floor (here set to 2 standard deviations of the single trial TF on each 
iteration). (D) For each burst identified from the single trial TFs, a segment of 260 ms was extracted from the corresponding trial time series, centered on the peak 
time. The peak time was then adjusted to the closest time point with zero phase after band pass filtering within the burst’s frequency span. (E) PCA was then applied 
to the aligned (but not band pass filtered) burst waveforms, resulting in a score for each burst along each of 20 principal components. 
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estimate the aperiodic spectrum using a linear function (log-log space 
equivalent of an exponential function, without a ‘knee’). The estimated 
aperiodic spectrum (Fig. 1A) is then subtracted from each single trial TF 
decomposition (Fig. 1B) and iterative burst detection then operates on 
the residual amplitude (Brady and Bardouille, 2022). On each iteration, 
the algorithm detects the global maximum amplitude in TF space, and 
fits a two-dimensional Gaussian to this peak by computing the sym
metric full-width at half maximum (FWHM) in the time and frequency 
dimensions (Fig. 1C). This 2D Gaussian parametrization thus defines 
burst features in TF space: peak time, duration, peak amplitude, peak 
frequency, and frequency span. The Gaussian is then subtracted from the 
TF decomposition, and the next iteration operates on the resulting 

residual TF matrix. This process continues until there are no global 
maxima above the noise floor remaining (2 standard deviations above 
the mean amplitude over all time and frequency bins, recomputed on 
each iteration). To avoid edge effects near the limits of the beta band, we 
applied the algorithm to TF data between 10 and 33 Hz, but only bursts 
with a peak frequency within the beta band (13–30 Hz) were retained 
for further analysis. 

Based on their peak time, we then extracted the waveform for each 
detected burst from the “raw” time series (unfiltered, except for the 
120 Hz low pass filter applied during preprocessing). To remove the 
effect of slower event-related field (ERF) dynamics on burst waveforms, 
the epochs were first averaged in the temporal domain to compute the 

Fig. 2. Burst dynamics and summary of burst features. (A) The median burst rate (solid line; shaded area shows the SEM) decreased following the onset of the 
visual stimulus, further dropped during the movement, and rebounded following the end of the movement. Burst rate dynamics closely matched those of median beta 
amplitude (dashed line; shaded area shows the SEM). The inset shows the 11 sensors used in this analysis, located above sensorimotor areas contralateral to the hand 
used. (B-E) The distributions of burst peak duration (B), peak amplitude (C), peak frequency (D), and frequency span (E) were similar in the two phases of the task 
(the insets show kernel density estimates of each distribution). (F) The median aligned waveform (thick black line, top) over all detected bursts had a wavelet-like 
shape, but there was great variability in the waveforms of individual bursts (thin colored lines, top). The SNR of burst waveforms was highest around the central 
negative deflection and surrounding peaks, but less than − 20 dB for the first and last 100 ms. 
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ERF, and this was then regressed out of the signal for each trial. To 
determine the width of the time window for waveform extraction, we 
computed lagged coherence over all trials and sensors from 5 to 40 Hz 
and 2.5–5 cycles (Fransen et al., 2015). We used overlapping time 
windows with lag- and frequency-dependent widths, and Fourier co
efficients were obtained for each time-window using a Hann windowed 
Fourier transform. The time window for waveform extraction was then 
defined as the FWHM of lagged coherence averaged within the beta 
band, yielding 5.5 cycles, or 255.81 ms at the mean beta frequency of 
21.5 Hz (Fig. S1), which we rounded up to 260 ms. The time series in 
this 260 ms window centered on the peak time was therefore extracted 
from the trial time series. In order to find the signal deflection corre
sponding to the peak in amplitude, we aligned burst waveforms by band 
pass filtering them within their detected frequency span (zero-phase FIR 
with a Hamming window), computing their instantaneous phase using 
the Hilbert transform, and re-centering the “raw” (prior to band pass 
filtering) waveform around the phase minimum (corresponding to the 
peak or trough) closest to the peak time detected in TF space (Boto et al., 
2022; Fig. 1D). If this time point was greater than 30 ms away from the 
TF-detected peak time, the burst was discarded. The DC offset was then 
subtracted from the resulting waveform. Finally, due to uncertainty in 
the orientation and source location of the dipoles generating measured 
sensor signals, we reversed the sign of burst waveforms in which the 
central deflection was positive (Jones et al., 2009). To determine if there 
were any fundamental differences between mu-alpha and beta activity, 
we also ran burst detection within the mu-alpha frequency band 
(8–13 Hz; within a window from 6 to 15 Hz; Hobson and Bishop, 2017). 
The FWHM of lagged coherence averaged within the mu-alpha band was 
9.4 cycles, or 895.26 ms at the mean mu-alpha frequency of 10.5 Hz 
(Fig. S1), which we rounded up to 900 ms. Open source code for the 
burst detection algorithm is available at https://github.com/dan
clab/burst_detection (v0.1). 

All measures of burst rate and mean beta amplitude over time were 
baseline corrected as the percent change from the mean value from 500 
to 250 ms before the onset of the visual stimulus. The number of bursts 
detected per trial was compared between the visual and motor epochs 
using R (v4.2.0; R Core Team, 2021) with a generalized linear model 
with a Poisson distribution and log link function, with epoch type as a 
fixed effect and subject-specific offsets as random effects (lme4 v1.1.29; 
Bates et al., 2015). The effect of epoch type was then assessed using a 
type II Wald Х2 test (car v3.1.0; Fox and Weisberg, 2018). Burst features 
in TF space (duration, peak amplitude, peak frequency, and frequency 
span) were compared between the visual and motor epochs using 
two-sample Kolmogorov - Smirnov tests (Pratt and Gibbons, 1981). 

2.5. Burst analysis 

To classify the diversity of burst waveform shapes, principal 
component analysis (PCA, 20 components, implemented in the scikit- 
learn library (Pedregosa et al., 2011)) was applied to the aligned 
waveforms, with each waveform time point as a feature (Fig. 1E). The 
principal components (PCs) were computed from a subset of the data, 
consisting of 20% of the waveforms, evenly sampled from each subject, 
block, and epoch, after removing waveforms outside of 10th - 90th 
percentile of median amplitude (N = 2339,211). All detected bursts 
(N = 14,328,947), across subjects, blocks, and epochs, were then pro
jected onto each PC, thus each burst received a score for each component 
representing the shape of its waveform along that dimension (see Fig. S2 
for the distribution of burst scores for each subject). The PCs define a 
coordinate frame with 20 dimensions, with the origin corresponding to 
the mean burst waveform. The waveform shape of each burst is therefore 
represented by a coordinate in this space, given by its score for each PC 
which represents its distance from the mean waveform along that 
dimension. 

To determine how many components were meaningful beyond what 
would be expected by noisy fluctuations of the neural field potential, a 

permutation approach was used (Vieira, 2012). To remove the correla
tion between the features (waveform time points), on each iteration the 
matrix containing the waveforms used for PCA was shuffled by column 
(time point), and PCA was then applied to the shuffled matrix using the 
same parameters as with an unshuffled subset. The p value for each PC 
was then given by the proportion of shuffled PCAs in which the variance 
explained for that PC was lower than for the PCA of the unshuffled data. 
The lower this proportion, the more the original component was mostly 
driven by noise. For each component, 100 permutations were run, using 
an alpha threshold of p = 0.0025 (Bonferroni-corrected for 20 
components). 

We then selected PCs that define dimensions along which the mean 
burst waveform shape varied across the visual and motor epochs. For 
each PC, the mean burst waveform score was calculated at each time 
point of the visual and motor epoch, and the variance of the mean score 
over the time course of each epoch was used for PC selection. Compo
nents with difference in the temporal variance of the mean score be
tween epochs above a threshold of 0.002 were chosen for further 
analysis. 

The mean baseline-corrected rate of bursts across the distribution of 
scores for each selected PC was calculated per subject. We used a one- 
sample cluster permutation test to determine significant deviation 
from the baseline. The family-wise error rate (FWER) was controlled by 
using a non-parametric resampling test with a maximum statistic (taken 
across all data points). As a statistic, the t-test with a variance regula
rization (relative “hat” adjustment (Ridgway et al., 2012), σ = 0.001) 
was chosen to minimize the effect of low variance data points, thus 
limiting spurious results (though in practice, this did not affect any 
comparisons). Threshold Free Cluster Enhancement (TFCE, starting 
threshold = 0, step = 0.2) was used to improve the statistical power of 
cluster detection, by employing an adaptive threshold on the level of a 
single data point (Smith and Nichols, 2009). 

The distributions of burst duration, peak amplitude, peak frequency, 
and frequency span, were compared between bursts with scores from 
each quartile of the selected PCs using Bonferroni-corrected two-sample 
Kolmogorov - Smirnov tests (Pratt and Gibbons, 1981). 

2.6. Biophysical model 

We used the open-source Human Neocortical Neurosolver (HNN) 
software to simulate a biophysical model of a cortical microcircuit 
driven by layer-specific synaptic inputs (HNN-core v0.2; https://hnn. 
brown.edu; Neymotin et al., 2020). This model has been fully described 
in prior publications (Law et al., 2022; Sherman et al., 2016; Shin et al., 
2017). Here we used a slightly modified version of it, which was pre
viously used to simulate beta bursts in the motor cortex (Bonaiuto et al., 
2021). HNN’s underlying canonical neural circuit model simulates the 
generation of electrical currents in layered cortical columns that give 
rise to measurable EEG/MEG signals. These electrical currents (i.e., 
current dipoles), are assumed to be generated by post-synaptic, intra
cellular current flow in the spatially aligned dendrites of a large popu
lation of neocortical pyramidal neurons, and are simulated by HNN via 
the net intracellular electrical current flow in the pyramidal neuron 
dendrites, multiplied by their length (in nano-Ampere-meters). The net 
current dipole output is then scaled to fit the amplitude of recorded MEG 
data. The model contains multicompartment pyramidal neurons (PN) 
and single compartment interneurons (IN), located in infra- and 
supra-granular layers. Neurons receive excitatory synaptic input from 
simulated trains of action potentials in predefined temporal profiles that 
target the proximal apical/basal and distal apical dendrites of the PNs. 

In the simulations described in this paper, we used a modified 
version of the default parameter set distributed with HNN that simulates 
beta bursts. In brief, this simulation contained 100 PNs and 35 INs per 
layer and received a proximal excitatory synaptic drive, simultaneous 
with a distal excitatory synaptic drive. The histogram of spikes from the 
inputs that generated these drives had a Gaussian profile. It has 
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previously been shown that this pattern of inputs can generate bursts 
with the commonly observed beta burst waveform shape as part of the 
more continuous somatosensory mu-alpha rhythm (Jones et al., 2009; 
Sherman et al., 2016), but here, we use the model to generate individual 
beta bursts only. Individual beta bursts occur when broad upward cur
rent flow from proximal inputs is synchronously disrupted by downward 
stronger and faster current flow from distal inputs. Results varied across 
simulations with identical parameters due to the stochastic nature of the 
exogenous proximal and distal drives: the timing of the synaptic drives 
were chosen from a Gaussian distribution. In the base simulations, the 
distribution of proximal drive inputs had a standard deviation of 20 ms, 
whilst that of the distal drive inputs had a standard deviation of 7 ms. 
For the proximal drive, the synaptic weight to supra- and infra-granular 
PNs was 3.5-5 μS, lower than that of the distal drive (6-5 μS). The mean 
delay between the proximal and distal drive was 0 ms. We ran one set of 
simulations to determine if the model was, in principle, capable of 
generating bursts with positive central deflections, by reversing the 
temporal distribution and adjusting relative weights of the proximal and 
distal drives (proximal drive synaptic weight: 2-5 μS; distal drive syn
aptic weight: 3.5-5 μS; proximal drive distribution standard deviation: 
7 ms; distal drive temporal standard deviation: 20 ms). We also ran five 
sets of simulations in order to ascertain how varying the timing, 
strength, and duration of the proximal and distal drives from the base 
simulation parameter values determine the beta waveform shape: 1) 
relative timing of the two drives (from − 25 ms to 25 ms), 2) distal drive 
synaptic weight (from 4.5-5 μS to 8.5-5 μS), 3) proximal drive synaptic 
weight (from 0.5-5 μS to 5.5-5 μS), 4) distal drive duration (from 1 ms to 
15 ms), and 5) proximal drive duration (from 10 ms to 40 ms). These 
parameter ranges were chosen in order to ensure that the resulting burst 
peak frequency was within the beta range, and that the bursts were 
driven by subthreshold dynamics (Jones et al., 2009; Sherman et al., 
2016). Each simulation type was run with 10 different parameter values, 
equally spaced within the range tested, and for 500 trials per value, with 
each trial (200 ms) resulting in a single burst. The superlet transform 
(adaptive, 4 cycles, 100 equally spaced central frequencies between 2 
and 40 Hz) was applied to the burst waveform from each trial, and the 
duration, peak amplitude, peak frequency, and frequency span were 
computed in TF space as per the burst detection algorithm described 
above. Relationships between model parameters and burst duration, 
peak amplitude, peak frequency, and frequency span were evaluated 
using growth curve models implemented in R (v4.2.0; R Core Team, 
2021) using the lme4 library (v1.1.29; Bates et al., 2015). The parameter 
values were modeled with a second-order (quadratic) orthogonal poly
nomial, and polynomial significance was estimated using type II Wald F 
tests (car v3.1.0; Fox and Weisberg, 2018). Burst waveforms generated 
by the model were then scaled to match the bursts detected from the 
human MEG data (scaling factor = 9-16) and projected onto each 
dimension defined by the PCA fit to the human subject data. 

All preprocessing, analysis, and simulation code is available at 
https://github.com/maciekszul/DANC_beta_burst_PC_analysis. 

3. Results 

3.1. Beta bursts are diverse 

We analyzed data recorded from a cluster of left central MEG sensors 
while subjects performed a cued visuomotor task involving presentation 
of a visual stimulus indicating the target location, a variable delay, 
followed by a right-handed reaching movement made with a joystick to 
the target. We detected beta bursts in the 13–30 Hz range using a novel 
burst detection algorithm (see Methods), and extracted burst waveforms 
from two trial epochs: one aligned to the onset of the visual stimulus 
(visual epochs), and one aligned to the offset of the reaching movement 
(motor epochs). In line with previous work (Little et al., 2019), the 
overall burst rate decreased following the onset of the visual cue, further 
decreased during the reaching movement, and increased again following 

the end of the reach, closely matching changes in mean beta power 
(Fig. 2 A). More bursts were therefore detected during the visual 
compared to the motor epoch (visual: M = 477.45, SD = 83.07 bursts per 
subject per trial; motor M = 392.83, SD = 68.92 bursts per subject per 
trial; Х2(1) = 135,479, p < 0.001). Across both epoch types, bursts were 
variable in terms of time-frequency features, but there were no large 
differences between epochs in distributions of burst duration (D =
0.008, p < 0.001), peak amplitude (D = 0.01, p < 0.001), peak fre
quency (D = 0.004, p < 0.001), or frequency span (D = 0.006, 
p < 0.001). In general, bursts were short (overall M = 185 ms, SD =
97 ms; Fig. 2B), burst peak amplitude distributions had a long tail 
(overall M = 18.91, SD = 13.14 fT; Fig. 2 C), burst peak frequency was 
centered around 21 Hz (overall M = 21.35, SD = 4.76 Hz; Fig. 2D), and 
bursts spanned 1–4 Hz in the frequency domain (overall M = 2.01, SD =
0.81 Hz; Fig. 2E). As described previously (Bonaiuto et al., 2021; 
Kosciessa et al., 2020; Little et al., 2019; Sherman et al., 2016), the 
median burst waveform shape was wavelet-like (Fig. 2 F), with a 
prominent central negative deflection, symmetrically surrounded by 
positive deflections on either side. Individual burst waveforms, how
ever, deviated greatly from the median with a relatively low 
signal-to-noise ratio (SNR) outside of this central negative deflection and 
surrounding peaks (overall M = − 27.16, SD = 14.60 dB; Fig. 2 F). The 
fact that the SNR was highest during the central negative deflection is a 
consequence of the method used to align burst waveforms, but the drop 
in SNR outside of the surrounding peaks supports the choice of time 
window used for waveform extraction. In contrast to beta bursts, bursts 
of mu-alpha activity (8–13 Hz) were much longer, had a peak frequency 
distribution centered around 10 Hz, and had waveforms that were 
characterized by at least twice as many cycles as beta bursts, and 
occurring at varying frequencies within the mu-alpha range (Fig. S3). 

3.2. Burst variability can be explained by biophysical model parameters 

One of the most prominent biophysical models of beta burst gener
ation simulates bursts as being driven by temporally aligned proximal 
and distal drives to the deep and superficial cortical layers (Fig. 3 A; 
Sherman et al., 2016). The model predicts that the beta burst waveform 
shape is caused by the aggregate of these two, oppositely oriented, 
current flows. The proximal drive targets the deep layers and consists of 
a temporally dispersed, weak excitatory synaptic input, whilst the distal 
drive targets the superficial layers and is stronger, but briefer. The 
temporal alignment of these drives results in cumulative dipole mo
ments with wavelet-like waveform shapes which match the median 
burst waveform shape observed in the MEG data, but not the variance 
around the median (Fig. 3B). TF decomposition of the cumulative dipole 
moment generated by the model reveals a transient increase in beta 
amplitude, from which the duration, peak amplitude, peak frequency, 
and frequency span can be computed (Fig. 3 C). However, the individual 
burst waveforms generated by the base model have a wide range of 
durations (M = 130.11, SD = 4.10 ms), peak amplitudes (M = 61.68, SD 
= 17.69 nAm), peak frequencies (M = 15.52, SD = 2.34 Hz), and fre
quency spans (M = 8.46, SD = 1.30 Hz; Fig. 3D) in the TF domain. The 
model therefore generates variable burst waveforms which result in 
variability in TF-based features of individual bursts, even with a single 
set of distal and proximal synaptic drive parameter values. 

In order to determine if TF-based burst features could, in principle, 
distinguish between burst waveform shapes, we simulated bursts across 
a range of model parameter values. The most influential model param
eters in generating the stereotypical waveform shape are the relative 
timing, strength, and duration of the two synaptic drives. We therefore 
ran the model using a range of proximal input timing (changing the 
relative timing of the two drives), distal and proximal input strength 
(AMPA synapse weights), and durations (standard deviations of the 
drive timing distribution). Varying the timing of the proximal input 
peak, from 25 ms before to 25 ms after the distal input peak, generated a 
spectrum of waveform shapes that varied in their asymmetry (Fig. 3E). 
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Waveform asymmetry had nonlinear effects on burst duration (linear F 
(1) = 609.84, p < 0.001, quadratic F(1) = 2194.27, p < 0.001; Fig. 3 F), 
peak amplitude (linear F(1) = 150.01, p < 0.001, quadratic F(1) 
= 2624.43, p < 0.001; Fig. 3 G), peak frequency (linear F(1) = 336.66, 
p < 0.001, quadratic F(1) = 2242.49, p < 0.001; Fig. 3H), and fre
quency span (linear F(1) = 68.07, p < 0.001, quadratic F(1) = 1043.28, 
p < 0.001; Fig. 3H). Running the model with a range of distal input 
strengths altered the magnitude of the central negative deflection 
(Fig. 3I), which had a nonlinear effect on burst duration (quadratic F(1) 
= 16.15, p < 0.001; Fig. 3 J), peak amplitude (linear F(1) = 4216.58, 
p < 0.001, quadratic F(1) = 42.01, p < 0.001; Fig. 3 K), and peak fre
quency (linear F(1) = 105.04, p < 0.001, quadratic F(1) = 41.23, 
p < 0.001; Fig. 3 L), and a linear effect on frequency span (F(1) 
= 389.86, p < 0.001; Fig. 3 L). Varying the strength of the proximal 
synaptic drive jointly shifted the magnitude of the central negative and 
surrounding positive burst waveform deflections (Fig. 3 M). This had a 
nonlinear effect on the burst duration (linear F(1) = 36.40, p < 0.001, 
quadratic F(1) = 617.82, p < 0.001; Fig. 3 N), peak amplitude (linear F 
(1) = 458.50, p < 0.001, quadratic F(1) = 408.73, p < 0.001; Fig. 3 O), 
peak frequency (linear F(1) = 867.32, p < 0.001, quadratic F(1) 
= 1299.89, p < 0.001; Fig. 3 P), and frequency span (linear F(1) 
= 4746.92, p < 0.001, quadratic F(1) = 865.55, p < 0.001; Fig. 3 P). 
Differences in the temporal dispersion of the two synaptic drives had 
more complex effects on burst waveform shape. The duration of the 
distal drive changed the amplitude and sharpness of the central negative 
and surrounding positive waveform deflections (Fig. 3Q), which had a 
linear effect on burst duration (F(1) = 149.79, p < 0.001; Fig. 3 R), and 
nonlinear effects on burst peak amplitude (linear F(1) = 3747.90, 
p < 0.001, quadratic F(1) = 53.94, p < 0.001; Fig. 3 S), peak frequency 
(linear F(1) = 310.70, p < 0.001, quadratic F(1) = 7.11, p = 0.008; 
Fig. 3 T), and frequency span (linear F(1) = 876.60, p < 0.001, 
quadratic F(1) = 4.38, p = 0.037; Fig. 3 T). The duration of the proximal 
drive changed the duration of the surrounding positive deflections and 
the magnitude of the central negative waveform deflections (Fig. 3U). 
This had nonlinear effects on duration (linear F(1) = 817.31, p < 0.001, 
quadratic F(1) = 13.12, p < 0.001; Fig. 3 V), peak amplitude (linear F(1) 
= 4112.50, p < 0.001, quadratic F(1) = 166.49, p < 0.001; Fig. 3 W), 
and frequency span (linear F(1) = 3026.30, p < 0.001, quadratic F(1) 
= 40.20, p < 0.001; Fig. 3X), and a linear effect on peak frequency (F(1) 
= 2025.90, p < 0.001; Fig. 3X). Each model parameter tested resulted in 
nonlinear changes in nearly all burst features defined in TF space, thus 
preventing inference of underlying neural circuit dynamics by inspec
tion of TF burst features alone. In order to explore beta burst variability 
with respect to underlying mechanistic models of burst generation, it is 
therefore necessary to analyze burst variability in the temporal, rather 
than TF, domain. 

3.3. PCA-derived waveform motif spectrums reveal shape specific task 
modulation 

Having shown that varying the parameters of the drives to the model 
can result in a range of generated waveform shapes and that these 
waveforms have complex relationships with TF-based burst features, we 
then focused our analysis on the waveforms of bursts extracted from the 
human MEG sensor data. We applied PCA to these waveforms in order to 
identify motifs that explain variance in burst waveform shape, finding 
that 20 components explained 82% of the variance. These components 
define a 20-dimensional space which describes variations in waveform 
shape from the mean burst waveform. Each burst waveform was 
therefore associated with a 20-dimensional vector containing the score 
for that waveform for each component, representing how far that 
waveform varied from the mean along that dimension. There was a very 
high correspondence between components from PCA applied to all burst 
waveforms, and those from PCA applied only to bursts with either 
negative or positive central deflections (before inverting them; Fig. S4). 
We therefore used the global PCA for all following analyses. 

We then ran a permutation test, shuffling the waveforms, in order to 
determine which components significantly contribute to variability in 
the observed waveforms. This revealed 18 significant components 
(p < 0.001; Fig. 4 A). We then further analyzed four components based 
on the temporal variance in mean burst score in the motor compared to 
the visual epoch, thus selecting dimensions along which the mean burst 
shape varied systematically over the course of the trial, and differently 
during the two epoch types. Each of these components defined di
mensions along which the waveform shape varied markedly from the 
median waveform (Fig. 4B-E; see Fig. S5 for all 18 significant compo
nents). In each of these dimensions, the amplitude of peaks surrounding 
the central negative deflection, and that of the central deflection itself 
varied, but the most striking feature of each of the four components is 
that they represent waveforms with additional peripheral peaks. The 
mean burst waveform score for each of these components decreased 
following the onset of the visual stimulus, further decreased during the 
movement for components 8, 9, and 10, and then increased following 
the movement. Therefore, not only does the overall burst rate decrease 
pre-movement and increase post-movement, but the mean burst wave
form shape also systematically changes over the course of the task. 

The movement-related changes in mean burst score for each of these 
components are confounded by burst rate. A reduction in mean burst 
score along any dimension could be due to a change in waveform shape 
with no change in burst rate, or some combination of a reduction in the 
rate of bursts with high scores, and an increase in the rate of those with 
low scores. For each selected component, we therefore examined how 
burst rate changed throughout the task, according to burst waveform 
shape along that dimension. With this aim, we binned bursts according 
to their component score, indicating their waveform shape, and the time 
during the trial in which they occurred. For each component score bin, 
we then baseline-corrected the burst rate using a time period prior to the 

Fig. 3. The biophysical model can generate bursts with different waveform shapes. (A) The biophysical model of beta burst generation consists of a proximal 
(infragranular) drive, and a distal (supragranular) drive. The Gaussians represent the duration of each drive and their polarity represents the direction of intracellular 
current flow. The model consists of multiple-compartment pyramidal neurons (black), and local inhibitory interneurons (orange). (B) The combination of proximal 
and distal drives generates a cumulative dipole moment that closely matches the median burst waveform observed in human MEG data (gray lines are individual 
burst waveforms generated from the base model, black line is the average waveform). (C) The mean TF spectrum over all generated bursts from the base model. The 
time and frequency at which the peak amplitude (black dot) is detected are used to compute the burst frequency span and duration (dashed lines). (D) The model 
generates bursts with a range of durations, peak amplitudes, peak frequencies, and frequency spans. (E) When the peak of the proximal drive is offset between − 25 
and 25 ms, the model generates burst waveform shapes with varying degrees of asymmetry. (F-H) Waveform asymmetry has nonlinear effects on mean burst duration 
(F), peak amplitude (G), peak frequency (H), and frequency span (H). The vertical dashed lines indicate the proximal drive offset in the base model (0 ms). (I) The 
magnitude of the central negative deflection in the burst waveform is modulated by the strength of the distal drive. (J-L) As in F-H, for the strength of the distal drive. 
(M) The strength of the proximal drive jointly shifts the amplitudes of the central negative and surrounding positive deflections of the waveform. (N-P) As in F-H, for 
the strength of the proximal drive. (Q) The duration of the distal drive modulates the amplitude and sharpness of the central negative and surrounding positive 
deflections in the waveform shape. (R-T) As in F-H, for the standard deviation of the distribution of the distal drive timing. (U) The duration of the proximal drive 
modulates the duration of the surrounding positive deflections and the magnitude of the central negative deflection in the burst waveform. (V-X) As in F-H, for the 
standard deviation of the distribution of the proximal drive timing. 
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Fig. 4. PCA reveals a variety of burst waveform motifs. (A) The histogram shows the proportion of the variance explained by each component. The dashed 
vertical red line shows the meaningful components used in further analyses as a result of the permutation analysis. The blue line overlaid on top of the histogram 
shows the variance score, which is the difference in the variance of a mean score time course between visual and motor epochs. The shaded rectangle highlights the 
components with a variance above threshold, which were then subsequently analyzed further. (B-E) For each chosen component, mean burst waveform shapes of 
bursts with a score within the 0–10th (cyan) to 90–100th (magenta) percentile of all burst scores for that component (left panels). The panels on the right show the 
time course of the mean burst score (solid line; shaded region shows SEM) for each component during the visual and motor epochs. 
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onset of the visual cue, and then used a permutation test to determine 
significant deviations from the baseline (Fig. 5; see Fig. S6 for all sig
nificant components, and Fig. S7 for the spatial topography of burst 
rate). Bursts with waveform shapes closest to the median waveform (i.e. 
those with scores close to 0 along each dimension) were the least 
modulated pre- and post-movement. Rather, for each selected compo
nent, bursts with higher scores (those in the fourth quartile) exhibited 
the greatest decrease in rate after the onset of the visual stimulus, fol
lowed by a transient increase, and then the greatest decrease in rate 
during the movement. The rate of bursts with scores in the second 
quartile along PCs 7, 9, and 10 did not change following the onset of the 
visual stimulus. Surprisingly, bursts with scores in the second quartile of 
PC 8 actually increased in rate after the visual stimulus onset and during 
the movement (Fig. 5C-D), and those in the second quartile of PC 10 
increased during movement (Fig. 5G-H). The rate of bursts with scores in 
the first and third quartiles of each component only slightly decreased 
pre-movement and during movement. The post-movement period was 
marked primarily by an above-baseline increase in the rate of bursts 
with scores in the third and fourth quartile of PC 7 (Fig. 5A-B), and the 

first and second quartiles of PCs 8, 9, and 10, and a return to baseline 
rate levels for bursts with scores in the fourth quartiles of PCs 8, 9, and 
10. Bursts with different waveform shapes therefore exhibited diverse 
temporal dynamics, and differentially contributed to the classically 
observed pre-movement beta decrease and post-movement beta 
rebound signals. 

Having demonstrated that specific waveform motifs differentially 
contribute to classic pre- and post-movement sensorimotor beta modu
lations, we then examined the distribution of TF-based features for each 
task-modulated motif. Burst scores for each PC were only weakly to 
moderately correlated with burst duration (PC 7: ρ = 0.12; PC 8: 
ρ = 0.10; PC 9: ρ = 0.04; PC 10: ρ = 0.10; all p < 0.001), peak ampli
tude (PC 7: ρ = 0.22; PC 8: ρ = 0.32; PC 9: ρ = 0.14; PC 10: ρ = 0.25; all 
p < 0.001), peak frequency (PC 7: ρ = − 0.37; PC 8: ρ = 0.08; PC 9: 
ρ = 0.07; PC 10: ρ = 0.17; all p < 0.001), and frequency span (PC 7: 
ρ = 0.04; PC 8: ρ = 0.16; PC 9: ρ = 0.07; PC 10: ρ = 0.17; all p < 0.001; 
Fig. S8). For each of the four selected PCs, the distributions of the TF- 
based features for each score quartile greatly overlapped (Fig. S9). 
While bursts with scores in the 4th quartile each PC had higher mean 

Fig. 5. Burst motifs are differentially task-modulated. (A) The mean waveforms of bursts with scores in each quartile of the range of scores for PC 7 (left panel, 
colored lines) and the mean overall burst waveform (black), and the mean burst rate over time and across the range of PC 7 scores during the visual and motor epochs 
(right panel). The gray overlay obscures the time points and score ranges where the rate did not differ from the baseline rate. The horizontal dashed lines indicate the 
quartile limits. (B) The mean baseline-corrected rate of bursts with scores in each quartile of the range of scores along PC 7 (colored lines, the shaded area indicates 
the SEM) over the course of the visual and motor epochs. The black line represents the mean rate of all bursts (the shaded area indicates the SEM). (C-G) As in A-B, for 
PC 8 (C-D), PC 9 (E-F), and PC 10 (G-H). 
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amplitude than those in the first three quartiles (Table S1), the distri
butions of TF-based features were not different between quartiles for any 
of the task-modulated PCs (Table S2-5). Bursts with waveform shapes 
defined by these components could therefore not be distinguished by TF- 
based features alone. This underscores the utility of our approach, which 
adaptively detects all candidate burst events and then sorts them ac
cording to their underlying waveforms. 

3.4. The biophysical model explains some but all burst waveforms 

Finally, we sought to determine how well the biophysical model 
could capture the waveform variance described by each waveform 
motif. We therefore projected the waveforms generated by the bio
physical model onto the dimensions defined by the PCA run on the 
bursts detected in the human MEG data. This yielded, for each simulated 
burst, a score for each PC which describes its waveform shape along that 
dimension. To evaluate how well the model explained waveform vari
ance along these dimensions, we then correlated the model parameter 
values and PC scores (Fig. 6). Overall, the model was able to explain 
burst motifs defined by the first few PCs, but not those characterized by 
higher frequency dynamics and peripheral waveform peaks. PCs 1 and 3, 
which characterize the temporal asymmetry of burst waveforms around 
the central negative deflection, were very highly correlated (|ρ| ≥ 0.9) 
with the temporal offset between the proximal and distal drives (PC 1: 
ρ = − 0.93, p < 0.001; PC 3: ρ = − 0.90, p < 0.001). Notably, with the 
exception of PC 6, these were the only PCs that this parameter was 
correlated with (Fig. 6 A). These two PCs differed, however, in the 
correlations with other model parameters: whereas PC 1 was addition
ally weakly (0.3 ≤ |ρ| < 0.5) correlated with distal drive strength 
(ρ = − 0.49, p < 0.001), PC 3 was also correlated with distal (ρ = − 0.40, 

p < 0.001) and proximal drive strength (ρ = 0.49, p < 0.001). PCs 2, 4, 
and 6 were highly (0.7 ≤ |ρ| < 0.9) to very highly correlated with distal 
drive strength (PC 2: ρ = 0.74, p < 0.001; PC 4: ρ = − 0.84, p < 0.001; 
PC 6: ρ = 0.77, p < 0.001), proximal drive strength (PC 2: ρ = − 0.71, 
p < 0.001; PC 4: ρ = 0.96, p < 0.001; PC 6: ρ = − 0.72, p < 0.001), 
temporal offset between the drives (PC 4: ρ = 0.71, p < 0.001), and 
distal drive duration (PC 2: ρ = 0.74, p < 0.001). The duration of the 
distal drive, which resulted in concurrent decreases or increases in the 
magnitude of the central negative deflection and surrounding peaks 
(Fig. 3Q), had an impact on more PC scores than any other model 
parameter (Fig. 6 G). The remaining PCs were either highly correlated 
with distal drive duration (PC 8: ρ = − 0.73, p < 0.001; PC 10: 
ρ = − 0.76, p < 0.001; PC 13: ρ = − 0.80, p < 0.001; PC 15: ρ = 0.78, 
p < 0.001; PC 18: ρ = − 0.75, p < 0.001), or had zero to little correlation 
with any model parameter tested (PC 5, PC 7, PC 9, PC 11, PC 12, PC 14, 
PC 16, PC 17). Although the model could generate waveforms that 
varied systematically along some of the motifs detected in the human 
data, no single parameter modulated burst waveform along one unique 
dimension. Moreover, only two of the task-modulated motifs (PCs 8 and 
10) were moderately correlated with any model parameter, and both 
only with the duration of the distal drive. 

For the PCs that were at least moderately correlated with model 
parameters, we then examined the range of scores for model-generated 
bursts over all parameter values in terms of percentiles of bursts detected 
in the human MEG data. This revealed that although the simulated burst 
waveforms varied along these dimensions, the range of the mean model 
waveform component scores was very restricted compared to the human 
MEG data (PC 1: 36th - 54th percentile; PC 2: 48th - 81st percentile; PC 
3: 19th - 70th percentile; PC 4: 19th - 68th percentile; PC 6: 47th - 74th 
percentile; PC 8: 41st - 71st percentile; PC 10: 21st - 68th percentile; PC 

Fig. 6. (A) The correlation (Spearman’s ⍴) between temporal offset of the proximal and distal drives and the score of the simulated burst waveforms for each PC. The 
gray rectangle highlights the selected task-modulated components (7− 10), and the horizontal line represents the threshold adopted for moderate correlation). (B) 
The mean score of the simulated bursts at each level of temporal offset tested (shaded area shows SD), for each PC. The vertical dashed line indicates the value used in 
the base simulations. The histograms show the distribution of scores for each PC for bursts from the human MEG data. (C-J) As in (A-B) for distal drive strength (C-D), 
proximal drive strength (E-F), distal drive width (G-H), and proximal drive width (I-J). (K) The maximum absolute value of the correlation between the simulated 
burst waveform scores and each parameter tested (top; the horizontal line represents the threshold for moderate correlation), and the absolute value of each of the 
correlations (bottom). 
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13: 40th - 77th percentile; PC 15: 34th - 64th percentile; PC 18: 51st - 
72nd percentile; Fig. 6). Because the bursts generated by the model were 
shorter than many of those detected in the human MEG data, we then 
projected each simulated burst waveform onto the dimensions of a 
truncated version of the PCA, using the eigenvectors cropped to only 
cover the central 150 ms of the waveform. This had a negligible effect on 
the relationship between model parameter values and PC scores 
(Fig. S10), suggesting that the lack of peripheral peaks in the model- 
generated burst waveforms limited the ability of the model to account 
for the diversity of bursts in the human data. In summary, whilst the 
model was able to explain some of the waveform variability described by 
some burst motifs, it could not generate waveforms with shapes like 
those whose rate was most modulated pre- and post-movement. 

4. Discussion 

We combined a novel burst detection algorithm, waveform analysis, 
and biophysical modeling to show that sensorimotor beta bursts occur 
with a wide range of waveform motifs which differentially drive 
movement-related changes in beta activity. In accordance with pre
dictions from a biophysical model of somatosensory beta burst genera
tion (Jones et al., 2009; Law et al., 2022; Neymotin et al., 2020; Sherman 
et al., 2016), we show that bursts have a wavelet-like mean shape, but 
individual bursts vary greatly from the mean. Variations in the timing, 
strength, and duration of the superficial and deep layer synaptic drives, 
according to the model, predict variability in bust waveforms that 
cannot be distinguished by TF-based features alone. We then applied 
dimensionality reduction to the waveform shapes of beta bursts detected 
over human sensorimotor cortex, and showed that bursts occur with a 
variety of waveform motifs. Finally, we have shown that the mean burst 
waveform changes systematically pre- and post-movement, and that this 
is caused by changes in the rate of bursts from specific motifs which the 
model is largely unable to account for. Sensorimotor beta bursts are 
therefore not homogeneous events, and as a consequence, burst vari
ability may provide the key to understanding how neural signals with 
TF-based signatures within the same frequency range can underlie the 
plethora of functional roles ascribed to "beta activity" (Engel and Fries, 
2010; Kilavik et al., 2013; Little and Brown, 2014; Pfurtscheller et al., 
1997; Reuter et al., 2022; Salenius and Hari, 2003). 

We found that the mean burst waveform exhibits more deflections 
and cycles than those initially described in the somatosensory cortex 
(Sherman et al., 2016), in accordance with the results of Brady and 
Bardouille (2022). Some of the most rate-modulated burst waveforms in 
our data contain multiple cycles. However, this observation does not 
necessarily undermine the "burst account" of beta activity. Despite the 
presence of longer bursts, they remain brief in relation to the trial 
duration, and our lagged coherence results support this distinction when 
compared to mu-alpha oscillations (Fig. S1). Furthermore, we detected 
bursts in the mu-alpha frequency band and discovered that the identified 
"bursts" contained even more cycles (Fig. S3). This finding bolsters our 
confidence in rejecting the notion that beta is a continuous oscillation 
with slow amplitude modulation. Instead, these results prompt a more 
nuanced perspective, conceptualizing bursts as short-lived and discrete, 
but potentially oscillatory events depending on whether they occur in 
the mu-alpha (Schaworonkow and Voytek, 2021) or beta band. It is 
important to note that the majority of detected beta bursts are brief and 
consist of a few cycles, although these may be the least informative 
regarding the underlying motor-related neural computation. One 
intriguing result was the increase in rate during movement for bursts 
with waveform shapes in the second quartile of PC 8, which were 
characterized by a short duration and few cycles. The implications of 
this finding, whether these bursts reflect task-related computations or 
are simply movement-induced noise, warrant further investigation. 

The strategy employed by our burst detection method deviates from 
those commonly used in the field. A global threshold on beta amplitude 
or power is most commonly used, often based on a centrality measure 

(mean or median beta amplitude), calculated from the whole dataset 
(Bonaiuto et al., 2021; Brady and Bardouille, 2022; Diesburg et al., 
2021; Enz et al., 2021; Feingold et al., 2015; Kehnemouyi et al., 2021; 
Little et al., 2019; Shin et al., 2017; Wessel, 2020; Zich et al., 2023), or a 
percentile of the beta power distribution (Anidi et al., 2018; Cagnan 
et al., 2019; Pauls et al., 2022; Sherman et al., 2016; Tinkhauser, 
Pogosyan, Tan et al., 2017; Torrecillos et al., 2018; Yeh et al., 2020). The 
consequence of these approaches is that only high amplitude burst 
events are detected, neglecting low amplitude, but potentially infor
mative bursts. For the TF data the most common methods are to use 
linear thresholds that are multiples of the mean or median beta ampli
tude, followed by various methods for local maxima detection (Brady 
and Bardouille, 2022; Diesburg et al., 2021; Enz et al., 2021; Shin et al., 
2017; Wessel, 2020). More recently, based on efforts to parameterize 
aperiodic and periodic neural activity (Donoghue et al., 2020), a burst 
detection algorithm using a multiple of the aperiodic activity as a 
threshold has been introduced (Brady and Bardouille, 2022). Rather 
than using a fixed absolute threshold, our approach detects every peak 
above the aperiodic spectrum as a candidate burst event using an iter
ative algorithm to detect all bursts with amplitudes above the noise floor 
(see Fig. S11 for results using a slightly higher adaptive noise floor 
threshold). It can therefore be seen as an extension of power spectra 
parameterization (Donoghue et al., 2020) from one dimensional PSDs to 
two dimensional TF decompositions. The result is that many more bursts 
across a wider range of amplitudes are detected, allowing subsequent 
analyses to determine which ones are functionally relevant. 

Because of its general applicability and interpretability of results, we 
used PCA to characterize burst shapes. However, PCA creates a specific 
categorization of bursts by defining orthogonal components, thus 
yielding a Fourier-like decomposition of time series with components 
that appear as phase-shifted rhythmic deviations from the mean wave
form at different frequencies. Because bursts can have negative scores 
along each dimension, the relationship between components and the 
underlying synaptic drives that generate burst waveforms is not easily 
discernible. This is likely why no model parameter that we tested 
modulated waveforms along one single PC. One alternative to PCA is 
non-negative matrix factorization, but classically this requires the data 
to also be non-negative, an assumption obviously unmet by neural field 
time series. However, formulations of non-negative matrix factorization 
have been proposed which relax this constraint (Wu and Wang, 2014), 
and are a promising approach for future studies. We chose to analyze 
components that defined dimensions along which bursts with different 
shapes were differentially rate-modulated. This resulted in four com
ponents in which bursts with waveforms furthest from the mean 
decreased in rate prior to the movement. However, post-movement in
creases in burst rate occurred in different score quartiles for each of 
these components. Each burst waveform receives a score for each 
component, and therefore the combination of scores for each of the four 
selected components may better classify bursts by their rate dynamics, 
but this depends on the method used to characterize burst waveforms. 

We analyzed human MEG data at the sensor, rather than source level. 
Whereas we found no sensor-level topographic organization in burst 
motif rate dynamics (Fig. S7), it is possible that different types of bursts 
are generated in different cortical regions (Nougaret et al., 2023). The 
complex waveform shapes we observed could also have been caused by 
several temporally overlapping bursts from nearby cortical locations 
which are superimposed in the sensor signal. Finally, we inverted the 
polarity of bursts with positive negative deflections, since they could 
have originated from unknown source locations and dipole orientations. 
However source level analyses also suffer from sign ambiguity, requiring 
laminar LFP data to resolve the true directionality of intracellular cur
rents. Efforts have been made to resolve this inherent source level po
larity ambiguity (Rossi and Van Schependom, 2022; Vidaurre et al., 
2016), and cortical column estimation in MEG source reconstruction 
(Bonaiuto et al., 2020) coupled with biophysical modeling can distin
guish between competing models (Bonaiuto et al., 2021). The model 
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used here is capable of generating beta bursts with positive central de
flections if the relative duration and strength of the proximal and distal 
synaptic drives are altered (Fig. S4A). Future studies should compare 
bursts detected in source space with laminar LFP data in order to 
determine their spatial organization and the relationship between 
waveform polarity and neural circuit current flow. However, the use of 
sensor data is also a strength of this study, as we have shown that beta 
burst waveform motifs can be identified and classified without source 
reconstruction, which is especially promising for EEG studies. 

Whilst the biophysical model was able to generate a few of the 
waveform motifs observed in the human data, it was unable to account 
for the most task-modulated ones. This model was developed to simulate 
the generation of beta bursts in the somatosensory cortex (S. R. Jones 
et al., 2009; Law et al., 2022; Sherman et al., 2016), and may require 
modifications to account for bursts generated in the motor cortex. The 
somatosensory cortex receives its primary inputs from the thalamus 
(Jones, 1998, 2001; Mo and Sherman, 2019; Zhang and Bruno, 2019), 
whereas the primary motor cortex has been recently shown to receive 
strong projections to deep and superficial layers from overlapping 
neural populations within a wide network of other cortical and 
subcortical regions including sensory and premotor cortices and the 
thalamus (Geng et al., 2022). These projections likely contribute to 
different pre- and post- movement computational processes such as 
movement planning and evaluation, and the nonlinear combination of 
these overlapping synaptic drives may thus account for the variable 
rate-varying burst shapes that we observe, especially those with the 
additional peripheral peaks. In our simulations, we focused on a 
restricted range of the model’s parameter space, namely the properties 
of the excitatory exogeneous synaptic drives. Inhibitory interneuron 
activity could be crucial in determining waveform shape, and a modified 
version of the model suggests that somatosensory beta bursts recruit 
supragranular inhibition (Law et al., 2022). Moreover, due to the 
model’s complexity, we systematically varied one parameter at a time. 
Several burst motifs were correlated with multiple model parameters, 
suggesting that specific combinations of parameter values may more 
accurately capture these motifs. It has very recently been demonstrated 
how Bayesian inference can be used to fit detailed neural models, such as 
the one used here, to experimental data (Tolley et al., 2023), and 
therefore a fuller exploration of the model’s parameter space and the 
inclusion of prominent synaptic drives to the primary motor cortex may 
allow the model to reproduce a wider range of the waveform motifs we 
observed. 

In the field of neurodegenerative diseases, especially Parkinson’s 
disease (PD), much effort has been devoted to finding individualized 
biomarkers that can inform appropriate early interventions (Miller and 
O’Callaghan, 2015; Titova and Chaudhuri, 2017). Activity in the beta 
band, bursts in particular, is instrumentally linked to PD symptom
atology (e.g. Little and Brown, 2014; McCarthy et al., 2011). Various 
burst metrics are related to motor impairments (e.g. Anidi et al., 2018; 
Kehnemouyi et al., 2021; Lofredi et al., 2019), response to medication 
(e.g. Duchet et al., 2021; Jackson et al., 2019; Tinkhauser, Pogosyan, 
Tan et al., 2017; Yeh et al., 2020), and effects of deep brain stimulation 
(e.g. Pauls et al., 2022; Schmidt et al., 2020; Tinkhauser, Pogosyan, 
Little et al., 2017). All of these metrics were either derived from TF 
decompositions or band-pass filtered signal amplitude envelopes, and 
we have shown that TF-based burst features do not differentiate the 
underlying waveform in the temporal domain. However, the underlying 
waveform motifs and motif-specific burst rate modulations we observe 
could offer much needed precision in determining PD biomarkers. 
Moreover, the sensitivity of such measures for early diagnosis is likely to 
be far greater than coarser TF-based burst features. Specific waveform 
motifs could be rapidly detected and targeted with deep brain stimula
tion devices to deliver more temporally precise interventions. Template 
matching of waveform motifs in the time domain could potentially 
reduce the lag between burst detection and stimulation, thus increasing 
treatment efficacy. 

The vast majority of non-invasive brain-computer interfaces (BCIs) 
try to identify and characterize single imagined movements using 
temporally averaged power in the mu and beta bands (Brodu et al., 
2011; Herman et al., 2008; Pfurtscheller and Neuper, 2001). Most recent 
advances in the field rely on sophisticated machine learning techniques 
(Barachant et al., 2012; Llera et al., 2014; Lotte et al., 2018; Song et al., 
2013), but we have recently argued that what is needed for further 
predictive power is a more fine-grained approach to feature extraction 
aimed at the temporal signatures of bursts of mu and beta activity 
(Papadopoulos et al., 2022). We have here demonstrated that averaged 
beta power includes many burst motifs that do not change in rate 
pre-movement. By filtering out these events and focusing on 
task-modulated burst motifs, the SNR of the features fed into machine 
learning algorithms for BCI could be greatly increased, improving clas
sification accuracy. Rather than PCA, supervised or semi-supervised 
dimensionality reduction techniques such as demixed PCA (Kobak 
et al., 2016) or a common spatial pattern approach in the time domain 
(CSP; Congedo et al., 2016) could be used to determine burst waveform 
motifs whose rate modulations maximally distinguish between move
ment types. Finally, given a training dataset to define burst motifs and 
their modulations by the task, an online algorithm could be developed 
using template matching to detect bursts with particular waveforms. 

Whilst TF decomposition has proven useful for segregating and 
identifying classes of frequency-specific neural activity, TF-based fea
tures that do not include phase information are ambiguous with respect 
to the underlying temporal waveform shape. Our results demonstrate 
that this information is crucial for determining which bursts drive 
movement-related changes in beta activity. Sensorimotor beta activity 
can therefore be decomposed into distinct burst types which differ in 
their rate-based dynamics, and likely index different computational 
processes. This is unlikely to be unique to the beta frequency band, and 
thus underscores the importance and power of analyzing frequency- 
specific neural activity in the temporal domain. 
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Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 
using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01. 

Bonaiuto, J.J., Little, S., Neymotin, S.A., Jones, S.R., Barnes, G.R., Bestmann, S., 2021. 
Laminar dynamics of high amplitude beta bursts in human motor cortex. 
NeuroImage 242, 118479. https://doi.org/10.1016/j.neuroimage.2021.118479. 

Bonaiuto, J.J., Afdideh, F., Ferez, M., Wagstyl, K., Mattout, J., Bonnefond, M., Barnes, G. 
R., Bestmann, S., 2020. Estimates of cortical column orientation improve MEG 
source inversion. NeuroImage 216, 116862. https://doi.org/10.1016/j. 
neuroimage.2020.116862. 

Bonaiuto, J.J., Rossiter, H.E., Meyer, S.S., Adams, N., Little, S., Callaghan, M.F., Dick, F., 
Bestmann, S., Barnes, G.R., 2018. Non-invasive laminar inference with MEG: 
comparison of methods and source inversion algorithms. NeuroImage 167, 372–383. 
https://doi.org/10.1016/j.neuroimage.2017.11.068. 

Boonstra, T.W., Daffertshofer, A., Breakspear, M., Beek, P.J., 2007. Multivariate 
time–frequency analysis of electromagnetic brain activity during bimanual motor 
learning. NeuroImage 36 (2), 370–377. https://doi.org/10.1016/j. 
neuroimage.2007.03.012. 

Boto, E., Shah, V., Hill, R.M., Rhodes, N., Osborne, J., Doyle, C., Holmes, N., Rea, M., 
Leggett, J., Bowtell, R., Brookes, M.J., 2022. Triaxial detection of the neuromagnetic 
field using optically-pumped magnetometry: feasibility and application in children. 
NeuroImage 252, 119027. https://doi.org/10.1016/j.neuroimage.2022.119027. 

Brady, B., Bardouille, T., 2022. Periodic/Aperiodic parameterization of transient 
oscillations (PAPTO)–Implications for healthy ageing. NeuroImage 251, 118974. 
https://doi.org/10.1016/j.neuroimage.2022.118974. 

Brainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10 (4), 433–436. 
Brodu, N., Lotte, F., & Lécuyer, A. (2011). Comparative Study of Band-Power Extraction 

Techniques for Motor Imagery Classification. 1. https://doi.org/10.1109/CCMB.2011. 
5952105. 

Cagnan, H., Mallet, N., Moll, C.K.E., Gulberti, A., Holt, A.B., Westphal, M., Gerloff, C., 
Engel, A.K., Hamel, W., Magill, P.J., Brown, P., Sharott, A., 2019. Temporal 
evolution of beta bursts in the parkinsonian cortical and basal ganglia network. Proc. 
Natl. Acad. Sci. 116 (32), 16095–16104. https://doi.org/10.1073/ 
pnas.1819975116. 

Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.-L., Defebvre, L., Derambure, P., 
Guieu, J.-D., 2001. Does post-movement beta synchronization reflect an idling motor 
cortex? Neuroreport 12 (17), 3859–3863. 

Cheyne, D.O., 2013. MEG studies of sensorimotor rhythms: a review. Exp. Neurol. 245, 
27–39. https://doi.org/10.1016/j.expneurol.2012.08.030. 

Cole, S., Voytek, B., 2017. Brain oscillations and the importance of waveform shape. 
Trends Cogn. Sci. 21 (2), 137–149. https://doi.org/10.1016/j.tics.2016.12.008. 

Cole, S., Voytek, B., 2019. Cycle-by-cycle analysis of neural oscillations. J. Neurophysiol. 
122 (2), 849–861. https://doi.org/10.1152/jn.00273.2019. 

Cole, S., Meij, R., van der, Peterson, E.J., Hemptinne, C., de, Starr, P.A., Voytek, B., 2017. 
Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s 
disease. J. Neurosci. 37 (18), 4830–4840. https://doi.org/10.1523/ 
JNEUROSCI.2208-16.2017. 

Congedo, M., Korczowski, L., Delorme, A., Lopes da silva, F., 2016. Spatio-temporal 
common pattern: a companion method for ERP analysis in the time domain. 
J. Neurosci. Methods 267, 74–88. https://doi.org/10.1016/j.jneumeth.2016.04.008. 
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2009. Quantitative analysis and biophysically realistic neural modeling of the MEG 
Mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. 
J. Neurophysiol. 102 (6), 3554–3572. https://doi.org/10.1152/jn.00535.2009. 

Karvat, G., Schneider, A., Alyahyay, M., Steenbergen, F., Tangermann, M., Diester, I., 
2020. Real-time detection of neural oscillation bursts allows behaviourally relevant 
neurofeedback. Commun. Biol. 3 (1), 1. https://doi.org/10.1038/s42003-020-0801- 
z. 

Kehnemouyi, Y.M., Wilkins, K.B., Anidi, C.M., Anderson, R.W., Afzal, M.F., Bronte- 
Stewart, H.M., 2021. Modulation of beta bursts in subthalamic sensorimotor circuits 
predicts improvement in bradykinesia. Brain 144 (2), 473–486. https://doi.org/ 
10.1093/brain/awaa394. 

M.J. Szul et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.nbd.2018.09.004
https://doi.org/10.1016/j.nbd.2018.09.004
https://doi.org/10.1111/j.1469-7793.1997.225bo.x
https://doi.org/10.1109/TBME.2011.2172210
https://doi.org/10.1523/JNEUROSCI.4570-14.2015
https://doi.org/10.1523/JNEUROSCI.4570-14.2015
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.neuroimage.2021.118479
https://doi.org/10.1016/j.neuroimage.2020.116862
https://doi.org/10.1016/j.neuroimage.2020.116862
https://doi.org/10.1016/j.neuroimage.2017.11.068
https://doi.org/10.1016/j.neuroimage.2007.03.012
https://doi.org/10.1016/j.neuroimage.2007.03.012
https://doi.org/10.1016/j.neuroimage.2022.119027
https://doi.org/10.1016/j.neuroimage.2022.118974
http://refhub.elsevier.com/S0301-0082(23)00091-6/sbref13
https://doi.org/10.1109/CCMB.2011.5952105
https://doi.org/10.1109/CCMB.2011.5952105
https://doi.org/10.1073/pnas.1819975116
https://doi.org/10.1073/pnas.1819975116
http://refhub.elsevier.com/S0301-0082(23)00091-6/sbref15
http://refhub.elsevier.com/S0301-0082(23)00091-6/sbref15
http://refhub.elsevier.com/S0301-0082(23)00091-6/sbref15
https://doi.org/10.1016/j.expneurol.2012.08.030
https://doi.org/10.1016/j.tics.2016.12.008
https://doi.org/10.1152/jn.00273.2019
https://doi.org/10.1523/JNEUROSCI.2208-16.2017
https://doi.org/10.1523/JNEUROSCI.2208-16.2017
https://doi.org/10.1016/j.jneumeth.2016.04.008
https://doi.org/10.1016/j.neuroimage.2019.116356
https://doi.org/10.1016/j.neuroimage.2019.116356
https://doi.org/10.7554/eLife.70270
https://doi.org/10.7554/eLife.70270
https://doi.org/10.1016/j.cub.2009.07.066
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1371/journal.pcbi.1009116
https://doi.org/10.1371/journal.pcbi.1009116
https://doi.org/10.1101/2021.03.02.433514
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1523/JNEUROSCI.2231-20.2021
https://doi.org/10.1016/j.brainres.2007.07.014
https://doi.org/10.1016/j.brainres.2007.07.014
https://doi.org/10.1073/pnas.1517629112
https://doi.org/10.1073/pnas.1517629112
https://doi.org/10.1016/j.neuroimage.2017.09.026
https://doi.org/10.1016/j.neuroimage.2017.09.026
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1016/S0896-6273(02)00569-X
http://refhub.elsevier.com/S0301-0082(23)00091-6/sbref33
https://doi.org/10.1016/j.neuroimage.2015.06.003
https://doi.org/10.1016/j.neuroimage.2015.06.003
https://doi.org/10.1093/cercor/bhab460
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1073/pnas.1107297108
https://doi.org/10.1073/pnas.1107297108
https://doi.org/10.1152/jn.00106.2022
https://doi.org/10.1016/j.pneurobio.2019.101731
https://doi.org/10.1162/jocn_a_00948
https://doi.org/10.1109/TNSRE.2008.926694
https://doi.org/10.1016/j.neuroimage.2022.119462
https://doi.org/10.1016/j.neuroimage.2022.119462
https://doi.org/10.1098/rsos.160662
https://doi.org/10.1016/j.neuroimage.2008.03.023
https://doi.org/10.1073/pnas.1113158108
https://doi.org/10.1523/ENEURO.0151-19.2019
https://doi.org/10.1007/BF01062488
https://doi.org/10.1016/j.neuroimage.2005.02.008
https://doi.org/10.1016/S0306-4522(97)00581-2
https://doi.org/10.1016/S0166-2236(00)01922-6
https://doi.org/10.1152/jn.00535.2009
https://doi.org/10.1038/s42003-020-0801-z
https://doi.org/10.1038/s42003-020-0801-z
https://doi.org/10.1093/brain/awaa394
https://doi.org/10.1093/brain/awaa394


Progress in Neurobiology 228 (2023) 102490

16

Keinrath, C., Wriessnegger, S., Müller-Putz, G.R., Pfurtscheller, G., 2006. Post-movement 
beta synchronization after kinesthetic illusion, active and passive movements. Int. J. 
Psychophysiol. 62 (2), 321–327. https://doi.org/10.1016/j.ijpsycho.2006.06.001. 

Khanna, P., Carmena, J.M., 2017. Beta band oscillations in motor cortex reflect neural 
population signals that delay movement onset. ELife 6, e24573. https://doi.org/ 
10.7554/eLife.24573. 

Khawaldeh, S., Tinkhauser, G., Shah, S.A., Peterman, K., Debove, I., Nguyen, T.A.K., 
Nowacki, A., Lachenmayer, M.L., Schuepbach, M., Pollo, C., Krack, P., Woolrich, M., 
Brown, P., 2020. Subthalamic nucleus activity dynamics and limb movement 
prediction in Parkinson’s disease. Brain 143 (2), 582–596. https://doi.org/10.1093/ 
brain/awz417. 

Kilavik, B.E., Zaepffel, M., Brovelli, A., MacKay, W.A., Riehle, A., 2013. The ups and 
downs of beta oscillations in sensorimotor cortex. Exp. Neurol. 245, 15–26. https:// 
doi.org/10.1016/j.expneurol.2012.09.014. 

Kilner, J.M., Salenius, S., Baker, S.N., Jackson, A., Hari, R., Lemon, R.N., 2003. Task- 
dependent modulations of cortical oscillatory activity in human subjects during a 
bimanual precision grip task. Neuroimage 18 (1), 67–73. 

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C.E., Kepecs, A., Mainen, Z.F., 
Qi, X.-L., Romo, R., Uchida, N., Machens, C.K., 2016. Demixed principal component 
analysis of neural population data. ELife 5, e10989. https://doi.org/10.7554/ 
eLife.10989. 

Kosciessa, J.Q., Grandy, T.H., Garrett, D.D., Werkle-Bergner, M., 2020. Single-trial 
characterization of neural rhythms: Potential and challenges. NeuroImage 206, 
116331. https://doi.org/10.1016/j.neuroimage.2019.116331. 

Law, R.G., Pugliese, S., Shin, H., Sliva, D.D., Lee, S., Neymotin, S., Moore, C., Jones, S.R., 
2022. Thalamocortical mechanisms regulating the relationship between transient 
beta events and human tactile perception. Cereb. Cortex 32 (4), 668–688. https:// 
doi.org/10.1093/cercor/bhab221. 

Leocani, L., Comi, G., 2006. Movement-related event-related desynchronization in 
neuropsychiatric disorders. In: Neuper, C., Klimesch, W. (Eds.), Progress in Brain 
Research, Vol. 159. Elsevier, pp. 351–366. https://doi.org/10.1016/S0079-6123 
(06)59023-5. 

Little, S., Brown, P., 2014. The functional role of beta oscillations in Parkinson’s disease. 
Park. Relat. Disord. 20, S44–S48. https://doi.org/10.1016/S1353-8020(13)70013-0. 

Little, S., Bonaiuto, J., Barnes, G., Bestmann, S., 2019. Human motor cortical beta bursts 
relate to movement planning and response errors. PLOS Biol. 17 (10), e3000479 
https://doi.org/10.1371/journal.pbio.3000479. 
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