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Executive function (EF) describes a group of cognitive processes underlying
the organization and control of goal-directed behaviour. Environmental
experience appears to play a crucial role in EF development, with early psy-
chosocial deprivation often linked to EF impairment. However, many
questions remain concerning the developmental trajectories of EF after
exposure to deprivation, especially concerning specific mechanisms. Accord-
ingly, using an ‘A-not-B’ paradigm and a macaque model of early
psychosocial deprivation, we investigated how early deprivation influences
EF development longitudinally from adolescence into early adulthood. The
contribution of working memory and inhibitory control mechanisms were
examined specifically via the fitting of a computational model of decision
making to the choice behaviour of each individual. As predicted, peer-
reared animals (i.e. those exposed to early psychosocial deprivation) per-
formed worse than mother-reared animals across time, with the fitted
model parameters yielding novel insights into the functional decomposition
of group-level EF differences underlying task performance. Results indicated
differential trajectories of inhibitory control and working memory develop-
ment in the two groups. Such findings not only extend our knowledge of
how early deprivation influences EF longitudinally, but also provide support
for the utility of computational modelling to elucidate specific mechanisms
linking early psychosocial deprivation to long-term poor outcomes.
1. Introduction
Executive function (EF) refers to a group of cognitive processes that underlie the
organization and control of goal-directed behaviour. One prominent theory
defines EF as a construct comprising a number of interrelated, but distinct, com-
ponents [1]. These include working memory, inhibitory control and cognitive
flexibility, with some common underlying processes connecting them [2]. EF
develops rapidly between birth and 2 years of age, with steady development
then continuing into early adulthood [3,4]. Such protracted development
suggests continued plasticity of EF, as does the extended developmental trajec-
tory of neural networks supporting EF (e.g. fronto-parietal network) [3,5,6].
Critically, individual differences in childhood EF are related to later social com-
petence, academic performance and occupational functioning [7–9], as well as
risk for interpersonal problems and risky behaviour during adolescence and
adulthood [10,11]. EF deficits are also characteristic of a number of neurodeve-
lopmental disorders, including attention deficit/hyperactivity disorder
(ADHD) and autism spectrum disorders [12–14]. However, despite the clear
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importance of EF for healthy development [15], many ques-
tions remain concerning the factors underlying different
developmental trajectories of EF and thus the individuals
most at risk for poor outcomes.

Evidence is growing for early environmental experience
playing an important role in EF development. Indeed, early
social adversity has been consistently linked to EF impair-
ments in childhood (e.g. [16–18]), with early psychosocial
deprivation, a specific form of early social adversity invol-
ving removal of an infant from their primary caregivers,
having a particularly profound effect on EF components
such as working memory and inhibitory control [19–22].
Relevantly, increased risk for ADHD is also associated with
early psychosocial deprivation [23,24], as is risk for symp-
toms such as disinhibited social engagement and repetitive
and stereotyped behaviour [25]. A lack of complexity and
socio-cognitive stimulation in the early social environment,
along with increased levels of stress, could explain why
early psychosocial deprivation has such a significant impact
on EF. For example, this can lead to excessive and less selec-
tive pruning of synapses in the cortex, including prefrontal
regions implicated in higher cognitive abilities [26]. In sup-
port of this, deprivation has regularly been associated with
a generalized reduction of grey matter in prefrontal, parietal
and temporal cortical regions [27].

The few longitudinal studies conducted on this topic
suggest that poor EF associated with early psychosocial depri-
vation in early life can persist into adolescence and adulthood
[21,24,28,29], but as most studies only evaluated EF at one
time-point [19,20,30,31], many questions about long-lasting
effects on EF and the neural mechanisms underlying this
relationship across time remain unanswered. Longitudinal
research is now essential for enhancing our understanding of
how various aspects of cognition develop in terms of both
typical and atypical trajectories. The tracking of EF across ado-
lescence into adulthood will be a particularly key period of
transition for future examination in studies of psychosocial
deprivation. Adolescence is a period of heightened brain plas-
ticity defined by the significant development of prefrontal
cortex [32,33], as well as important refinements of EF [6]. As
such, adolescence may be a particularly useful target for inter-
ventions aimed at preventing or ameliorating adverse effects of
early deprivation on cognitive development.

The use of a non-human primate model such as rhesus
macaques (Macaca mulatta) could be very helpful to address
outstanding questions about the effects of early psychosocial
deprivation on EF across development. Macaque monkeys
are one of the closest species to humans in terms of genetics,
physiology and behaviour, and have an extended period of
development comprising distinct infant, juvenile (pre-adoles-
cent and adolescent) and adult stages. Like humans, their
early social environment predominantly consists of mother–
infant interactions. Notably, the use of a macaque model
can help address some limitations defining developmental
studies with humans (e.g. lack of control over the early
environment, very long developmental time frames and
difficulty in tracking neural mechanisms underlying
development). Although limited, research focused on EF
development in macaques suggests that it parallels that in
humans [34–37], and in adult macaques, EF relies on the
same cortical networks [38,39]. Limited research focused on
early psychosocial deprivation effects on cognition in infant
macaques have produced mixed findings (e.g. [40,41]), with
research comparing deprived versus non-deprived animals
especially rare. Discrepancies in findings concerning effects
of early psychosocial deprivation on cognitive ability may
stem from differences in age at assessment and use of differ-
ent measures at different time-points, and no studies thus far
have focused on EF specifically.

A classic paradigm used to investigate EF in human
infants and young children is the ‘A-not-B’ task [42–44],
which is thought to measure two EF components: inhibitory
control and working memory [45–47]. Modified versions of
the ‘A-not-B’ task have also been used to investigate EF in
trained adult macaques. Macaque behaviour during the
task is comparable to human performance [45,48]. No pre-
vious research has used an ‘A-not-B’ task to look at
macaque EF development or effects of early psychosocial
deprivation, though a version such as that used with
human infants could offer a valuable way to test EF without
removal of the animals from their home enclosure and exten-
sive training. A data collection approach that requires these
two elements is starting to be adopted by other researchers
[41,49], who argue that it enables a more direct comparison
of cognitive development in macaques exposed to early
psychosocial deprivation versus non-exposed macaques.

Although the ‘A-not-B’ task is assumed to involve both
working memory and inhibitory control mechanisms, it has
been recently argued that these components are difficult to dis-
entangle using classic measures of response accuracy according
to condition [50,51]. Developing tasks that do not rely on
instruction in order to assess specific EF components in infancy
and early childhood [50,51] is very challenging, but another
option to help isolate mechanisms underlying behaviour in
the ‘A-not-B’ task is to use computational modelling. Specifi-
cally, using a computational model of decision making to
functionally decompose choice behaviour into working
memory and inhibitory control mechanisms would enable
both examination of these specific EF components, as well
as a way to evaluate how well previously used ‘A-not-B’
performance measures actually assess these components.

Accordingly, the current study was designed to investigate
the longitudinal effects of early psychosocial deprivation on EF
in rhesus macaques using a computational modelling
approach. We assessed EF in a rare sample of macaques com-
prised two groups that differed in exposure to early
psychosocial deprivation; one mother-reared and one peer-
reared (i.e. exposed to early psychosocial deprivation; separ-
ated from their mothers and other adults at birth and raised
in a nursery of peers by human caretakers); at two time-
points corresponding to adolescence (3.5 years) and early
adulthood (5 years). We used a version of the ‘A-not-B’ para-
digm often used with human infants [47], with animals
completing the task in a section of their home enclosure. The
choice behaviour of each animal at each time-point was fit
with a stochastic computational model of decision making
based on a weighted sum of exponentially decaying working
memory and choice history influences. Choice history corre-
sponds to inhibitory control, the tendency to suppress
previous responses or to repeat them. We then compared the
fitted model parameters between groups and across time, as
well as to previously used performance measures [47,52]. We
predicted that peer-reared animals would perform worse
than mother-reared animals on the task at both time-points,
and that both working memory and inhibitory control
would be poorer in the peer-reared group.
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Figure 1. Task set-up. (a) A frontal view of the test enclosure. (b,c) Two views from above: (b) the wells are closed with the yellow arrows indicating a sliding
mechanism; (c) the wells are open and a piece of food is placed in one of them.
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2. Methods
(a) Subjects
The sample consisted of 21 rhesus macaque monkeys (Macaca
mulatta), of which 11 were mother-reared (five female) and 10
peer-reared (six female). Subjects were aged around 3.5 years at
the first assessment time-point (mother-reared; M = 1368 days,
s.d. = 104 days: peer-reared; M = 1363 days, s.d. = 101 days) and
5 years at the second assessment time-point (mother-reared; M =
1806 days, s.d. = 100 days: peer-reared; M = 1809 days, s.d. = 95
days). Subjects were housed at the Institut des Sciences Cognitives
Marc Jeannerod, CNRS, during the assessment period in mixed
mother- and peer-reared social groups of 5–6 animals (see elec-
tronic supplementary material for rearing protocol). Although
new instances of maternal separation in monkeys’ for research
are largely prohibited, it was decided that further study of this
particular sample of juvenile animals was the most ethical
course of action. Due to the closure of the centre in the USA
where animals were born and lived for the first 2 years of life, it
was agreed that our team at the ISC-MJ would receive these ani-
mals rather than allow them to be euthanized for medical research
whereby effects of their early social experiences would not be con-
sidered, and consequently would fail to maximize the scientific
benefit that could be derived from this existing sample. Every
effort has been made to ensure that these animals now live in
the most enriching environment possible, including their social
environment, and the tasks included in the current study were
designed to be as non-invasive as possible. All housing and pro-
cedures conformed to current guidelines concerning the care
and use of laboratory animals and were approved by the relevant
authorities (see ’Ethics’). All reporting here conforms to the
recommendations in the ARRIVE Guidelines for Reporting
Animal Research.

(b) ‘A-not-B’ task set-up and procedure
Each subject was temporarily separated into the testing area,
which was a section of the home enclosure, an 87 × 100 ×
120 cm area with a clear-panelled front. All equipment required
for the task was installed before separating the subject. Note,
all animals had already been well familiarized with this process
of separation into the testing area and with the task equipment.

The task set-up included two holes in the clear-panelled front
of the testing area which enabled the subject to reach objects
placed on a table outside the enclosure (figure 1). A transparent
board was used to block these holes at times when the subject
was not allowed to reach (i.e. during the hiding and delay por-
tions of the task). A box with two wells and two sliding doors
to cover the wells was positioned centrally on the table in front
of the two holes. The wells were 11.2 cm in diameter and were
positioned 18 cm apart. Two experimenters were present for
the entire task. Experimenter 1 stood facing the subject, while
experimenter 2 stood on one side of the table, with the side
counterbalanced across subjects and sessions.

To begin a trial, experimenter 1 showed a piece of food to the
subject in the centre of their visual field (figure 2a). Once the sub-
ject looked at the food, experimenter 1 placed the food in one of
the wells and closed the two sliding doors to cover both wells.
The trial only proceeded if the subject looked at the food when
it was presented and when it was hidden. As soon as the wells
were covered, a delay period started. During this delay, as well
as physical access to the wells being blocked by the transparent
board, experimenter 2 blocked the subject’s visual access to the
wells with an opaque screen placed between the box and the
enclosure front. At the end of the delay, the opaque screen and
the transparent board were removed, allowing the subject to
reach for the wells. If the subject reached for the correct well,
the experimenter allowed the subject to eat the piece of food
(figure 2b). If the subject reached for the incorrect well, the exper-
imenter opened the correct well to show the position of the food
to the subject (figure 2c). If the subject touched both wells, did
not respond, or the response was unclear, the trial was repeated.
The food was hidden in the same location (left or right well) until
the subject reached for the correct well on two consecutive trials.
After two consecutive correct trials, experimenter 1 changed
locations and hid the food in the other well (i.e. it was a



(a)

(b)

(c)

Figure 2. Task procedure. The series of images illustrates the sequence of a single trial. (a) Experimenter 1 shows the food to the subject, then places it in the well,
and experimenter 2 blocks the vision of the subject during the delay period. (b) A ‘correct’ choice, with the subject reaching for the well where the food was hidden
and then eating the food. (c) An ‘incorrect’ choice, with the subject choosing the well containing no food and experimenter 1 then highlighting where the food was
actually hidden.
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‘change’ trial). After the change trial, the experimenter then
repeated this sequence but on the same side as the preceding
change trial. For the first trial of each session, the delay period
when visual and physical access to the wells was blocked
lasted 2 s, and then depending on the subject’s performance, it
was increased or decreased in subsequent trials. The delay
period was decreased by 2 s if two consecutive trials were incor-
rect, and was increased by 1 s if two consecutive change trials
were correct [47,52]. Each subject completed two testing sessions
at each assessment time-point, with a maximum of 25 trials per
session (i.e. 50 trials total per assessment time-point). During
each session, experimenter 1 live-coded correct and incorrect
trials, and animals were also video recoded throughout the ses-
sion with a camera placed to capture a view of the enclosure
and experimenter 1.

(c) Control task set-up and procedure
At the second assessment time-point, all subjects also completed
a control task to verify that results from the original version of
our ‘A-not-B’ task were not a consequence of the structure of
the task. In the original version, the length of the delay period
depended on the performance of the subject, with poorly per-
forming subjects not being tested at higher delays. Moreover, if
the subjects were always correct, they could have possibly
learned the pattern of the hiding locations (e.g. A, A, B, B, B,
A, A, B). Therefore, while the task set-up was the same as in
the original ‘A-not-B’ task, the procedure was different. In this
new randomized control version of task, the position of the
food hiding location (i.e. left or right well) and the length of
the delay period were pseudo-randomized across trials. The
hiding position could not be the same for more than five con-
secutive trials, and the delay period was maximum of 5 s. All
subjects completed the same number of trials with a specific
delay in a specific location (e.g. 3 s, right well). Each subject
completed two sessions, with a maximum of 24 trials per session
(i.e. 48 trials total). With this version of the task, then, all animals
were tested equally on all the different possible delays (i.e. from a
0 s delay to a 5 s delay).

(d) Video coding
A number of parameters were coded offline from the video
recordings made of each subject during the testing sessions,
including the actual length of delay periods (which may have
varied slightly from the intended delay period) in seconds and
the inter-trial interval (ITI) lengths in seconds (see electronic
supplementary material).
(e) Computational model
A computational model of decision making was fitted to the
decision behaviour of each subject (chosen out of 11 candidate
models based on model comparison; see electronic supplemen-
tary material). The model included two influences on the
decision to choose the left or right side (figure 3). The first influ-
ence was a decaying working memory trace, m, of where the
food was hidden. We modelled this as an exponential decay
function according to the delay on trial t, dt:

mt ¼ w1Ste�l1dt ,

where w1 is the weight of this factor when the delay is 0, St is the
side that food was hidden on in trial t (left =−1, right = 1) and λ1
is the working memory decay rate. The second influence was that
of the previous two choices, p. We assumed that the strength of
this influence would also decrease with time [53], and we there-
fore also modelled this influence as an exponential decay
function according to the ITI before trial t, it:

pt ¼ w2(Rt�1e�l2(itþdt) þ Rt�2e�l2(it�1þdt�1þitþdt)),

wherew2 is the weight of this factor when the ITI and delay is
0, Rt−1 is the response made on the previous trial (left =−1,
right = 1) and λ2 is the decay rate. Positive values of w2 therefore
represent a tendency to repeat the previous choice, whereas
negative values represent a tendency to suppress the previous
choice, via different degrees of inhibitory control.

The decision variable, z, was computed as the sum of these
two factors, m and p, with negative values of representing a ten-
dency to choose the left side, and positive values a tendency to
choose the right side. The decision variable was then trans-
formed into the probability of choosing the right side on trial t
using the softmax operator [54],

P(Rt ¼ 1) ¼ 1
1þ e�bzt

:

The inverse softmax temperature, β, determines the steepness
of the softmax function, and thus how sensitive the choice prob-
ability is to z. We refer to this parameter as representing ‘choice
stochasticity’, as it captures the balance between exploration
and exploitation.

The model was fit separately to each subject’s choice
behaviour using maximum log-likelihood estimation in Matlab
(v R2018a) to find the parameter values that optimize the likeli-
hood that the model would produce the same choices. This
process can get stuck in local maxima, a situation in which any
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small change to the current parameter values decreases the log-
likelihood. To avoid this situation, the optimization can be run
multiple times, each time with a different initial guess for each
parameter value, taking the parameter values with the overall
maximum log-likelihood. To ensure that a large portion of the
space of possible parameter values was explored, a grid search
over all parameter values was used to initialize model par-
ameters before fitting [55]. The weight of the working memory
factor, w1, was restricted to the range [0,1], and the weight of
the choice history factor, w2 was restricted to [−1,1] in order to
detect both a tendency to inhibit or repeat the previous choice
reflecting different degrees of inhibitory control. These ranges
served to normalize the contributions of each factor to the
decision variable. The decay rate parameters, λ1 and λ2, and
the inverse softmax temperature, β, were constrained to be in
the range [0,10] to avoid asymptotic values in which further
increases in value have no effect on behaviour.

( f ) Data analysis
Before analysis, we checked if any coded behaviours that
occurred during either a trial or the ITI were affecting the ability
of the model to predict the responses of the subjects. We found
that locomotion during trials was the only behaviour negatively
impacting the model’s prediction accuracy, and therefore, we
excluded all the trials in which locomotion occurred (see elec-
tronic supplementary material). We also removed trials in
which the ITI was more than 2.5 s.d. above the mean, and we
excluded subjects with less than 25 remaining trials (one
mother-reared subject from both the original task at the first
time-point and the randomized control version at the second
time-point). We then checked if there was a difference in ITI
duration between the two rearing groups, and we found no
difference (see electronic supplementary material).

To compare performance on the original ‘A-not-B’ task
between the two rearing groups over time, we computed three
measures based on previous literature (e.g. [47,52]): (i) percen-
tage of correct responses (i.e. proportion of correct trials out of
all trials completed); (ii) cumulative score (the sum of successful
change trial delays divided by the number of total trials com-
pleted); and (iii) maximum delay reached. These measures
were computed for each subject at each assessment time-point.
The percentage of correct responses was also computed for the
randomized control version of the task completed at the
second time-point. For percentage of correct responses, we con-
ducted a generalized linear mixed model with group (mother-
reared/peer-reared), time-point (3.5/5 years) and their inter-
action included as fixed effects, and subject, time-point and
session as nested random intercepts. For the cumulative score
and maximum delay, we conducted a linear mixed model with
group, time-point and their interaction included as fixed effects,
and subject-specific random intercepts. To compare the percen-
tage of correct responses in the original task versus the
randomized control version at the second time-point, we con-
ducted a generalized linear mixed model with group, task
(original/control) and their interactions included as fixed effects,
and subject, task (original/control) and session as nested
random intercepts.

The computational model was fitted separately for each sub-
ject at each assessment time-point, and for the two versions of the
tasks. To compare the fitted model parameters between the two
rearing groups across time, we used linear mixed models with
group, time-point, and their interactions included as fixed effects,
and subject-specific random intercepts. To compare the fitted
parameters between the two rearing groups and tasks at the
second time-point, we used linear mixed models with group
(mother-reared/peer-reared), task (original/control) and their
interactions included as fixed effects, and subject-specific
random intercepts. To investigate whether the fitted model par-
ameters were related to task performance, and thus to what
extent the performance measures reflected involvement of work-
ing memory and inhibitory control, we used separate linear
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mixed models for each model parameter and performance
measure in the original version across time. For percentage of
correct responses, cumulative score and maximum delay, we
computed linear mixed models with model parameter (i.e. w1,
λ1, w2, λ2 or β), group (mother-reared/peer-reared), time-point
(3.5/5 years) and group by time-point interaction included as
fixed effects, and subject-specific random intercepts. We then
used separate linear mixed models for each model parameter
and performance measure across tasks at the second time-
point. For the percentage of correct responses, we fit linear
mixed models with model parameter (i.e. w1, λ1, w2, λ2 or β),
group (mother-reared or peer-reared), task (original/control)
and group by task interaction included as fixed effects, and
subject-specific random intercepts.

R v. 4.0.5 [56] was used to conduct all analyses presented
here (see electronic supplementary material for package infor-
mation). p-values for fixed effects and interactions were
obtained using Type III Wald χ2 tests for generalized linear
models. To account for smaller sample sizes and normality vio-
lations, permutation tests (grouped by subjects) with 10 000
permutations were used to assess the significance of linear
model factors and to follow-up significant interactions.
3. Results
(a) Task performance
We first sought to determine if task performance varied
between groups and time-points by comparing each of the
performance measures (percentage of correct responses,
cumulative score and maximum delay) between groups and
time-points for the original version of the ‘A-not-B’ task. A
significant main effect of group was revealed for the percen-
tage of correct responses [χ1 = 9.462; p < 0.01], with a higher
performance for the mother-reared compared to peer-reared
group (figure 4a). No significant main effect of time-point
or group by time-point interaction was found. A significant
main effect of group was also revealed for a cumulative
score [F1 = 12.643, p < 0.01], with a higher score for mother-
reared compared to peer-reared group (figure 4b). No signifi-
cant effect of time-point or group by time-point interaction
was found. Finally, a significant main effect of group was
found for the maximum delay [F1 = 17.721, p < 0.001], with
a higher delay for mother-reared compared to peer-reared
group (figure 4c). Again, no significant effect of time-point
or group by time-point interaction was revealed.

Having established that the mother-reared group had
higher performance on the ‘A-not-B’ task than the peer-
reared group at each time-point, we then compared their
performance between the original ‘A-not-B’ task and the
random control task at the second time-point. A significant
main effect of group was found [χ1 = 6.323; p = 0.011], with a
higher percentage of correct responses for the mother-reared
compared to peer-reared group (figure 4d). No significant
main effect of task or task by group interaction was revealed.
(b) Computational model fits
In order to determine the cognitive mechanisms underlying
the difference in performance between the two groups, we
then compared the fitted model parameters between groups
and time-points for the ‘A-not-B’ task. A significant main
effect of group was revealed for working memory decay
(λ1) [F1 = 7.008, p = 0.014], with the peer-reared group demon-
strating a significantly faster rate of decay compared to the
mother-reared group (figure 5a,b). There was no significant
effect of time-point or group by time-point interaction and
no significant differences in terms of the weight of the work-
ing memory factor (w1). There were no main effects of group
or time-point on the weight of the choice history factor (w2),
but a significant interaction between group and time-point
was found [F1 = 7.159, p = 0.021], with w2 decreasing from
time-point 1 to time-point 2 in mother-reared group and
increasing in the peer-reared group. No significant main
effects or interactions were found for choice history decay
rate (λ2; figure 5c,d ) nor choice stochasticity (β).

We then aimed to establish if the mechanisms behind the
difference in performance between groups were similar in
both versions of the task by comparing their fitted model par-
ameters between the original ‘A-not-B’ task and the random
control task at the second time-point. For working memory
decay rate (λ1), a significant main effect of group was
revealed [F1 = 5.314, p = 0.022], with the peer-reared group
demonstrating a significantly faster rate of decay compared
to the mother-reared group (figure 6a,b). There was no signifi-
cant effect of task, or a group by task interaction. Again, there
were no significant differences in terms of the weight of the
working memory factor (w1) (figure 6a,b). For choice history,
a significant main effect of group was revealed, with a greater
choice history factor weight (w2) found for the peer-reared
compared to mother-reared group [F1 = 5.454, p = 0.031]
(figure 6c,d). There was no significant effect of time-point or
interaction effects. No significant main effects or interactions
were found for decay rate of the choice history factor (λ2)
(figure 6c,d). For choice stochasticity (β), there were no
significant main effects or interactions.
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(c) Relationship between fitted model parameters
and performance measures

Having shown that the groups vary similarly in terms of their
performance in the original ‘A-not-B’ and random control
tasks, and that the model predicts group differences in work-
ing memory decay and the influence of choice history, we
then wanted to find out if these mechanisms were reflected
by any of the performance measures calculated. We therefore
related each fitted parameter to each performance measure
for the original version of the task at both time-points. The
weight of the working memory factor (w1) and the rate of
working memory decay (λ1) predicted the percentage of cor-
rect responses [w1: F1 = 11.104, p < 0.01; λ1: F1 = 10.564, p <
0.01; F1 = 5.180, p = 0.048], with higher working memory
factor weight and longer working memory decay rate
predicting a higher percentage of correct responses. There
was no relationship between the weight of the choice history
factor (w2), the decay rate of the choice history factor (λ2) or
choice stochasticity (β) and the percentage of correct
responses. The cumulative score was predicted by the
weight of the working memory factor (w1) [F1 = 4.576, p =
0.038], the rate of working memory decay (λ1) [F1 = 17.052,
p < 0.01] and choice stochasticity (β) [F1 = 8.880, p < 0.01],
with higher working memory factor weight, longer working
memory decay rate and less choice stochasticity predicting
higher cumulative scores. There was no relationship between
the weight of the choice history factor (w2) or the decay rate of
the choice history factor (λ2) with the cumulative score.
Finally, the rate of working memory decay (λ1) [F1 = 19.487,
p < 0.001] and choice stochasticity (β) [F1 = 9.941, p < 0.01]
both predicted the maximum delay, with longer working
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memory decay rate and less choice stochasticity linked to
higher maximum delay. Neither the weight of the working
memory factor (w1), the weight of the choice history factor
(w2), nor the decay rate of the choice history factor (λ2)
predicted maximum delay.

We then repeated this analysis for the original ‘A-not-B’ task
and the random control task at the second time-point, relating
each fitted model parameter to the percentage of correct
responses (the cumulative score and maximum delay metrics
only apply to the original task structure). The weight of the
working memory factor (w1) [F1 = 9.921, p< 0.01] and working
memory decay rate (λ1) [F1 = 4.696, p= 0.046] both predicted the
percentage of correct responses, with greater w1 and longer
decay rate related to a higher percentage of correct responses.
The weight of the choice history factor (w2), the decay rate of
the choice history factor (λ2) and choice stochasticity (β) did
not predict the percentage of correct responses.

4. Discussion
This study aimed to assess the longitudinal effects of early
psychosocial deprivation on EF across adolescence and
early maturity in rhesus macaques, using an ‘A-not-B’ task.
We found that early psychosocial deprivation had a negative
effect on task performance, with the peer-reared group
performing worse than the mother-reared group at both
assessment time-points. Furthermore, fitting a computational
model of decision making enabled us to identify the
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mechanistic processes likely to be contributing to perform-
ance on the task, with results suggesting that psychosocial
deprivation has long-term effects on both working memory
and inhibitory control components of EF. In addition to offer-
ing important insights into the longitudinal effects of early
deprivation on EF, findings also support a protracted devel-
opmental trajectory of inhibitory control in macaques that
extends into adulthood. These results indicate that the mech-
anisms implicated in the development of specific EF
components are similar in macaques and humans, with
specific EF components having different developmental time-
lines. Our study therefore also provides support for the use of
macaque models to investigate the psychological and neural
mechanisms through which EF develops more generally.

Our findings provide clear evidence for the potential
long-term negative impact of early psychosocial deprivation
on EF in macaques. Mother-reared animals performed
better on the ‘A-not-B’ task than peer-reared animals across
adolescence (time-point 1: 3.5 years) and early adulthood
(time-point 2: 5 years), which is in line with previous findings
suggesting that early psychosocial deprivation effects on
childhood EF in humans can persist into adulthood [21].
Analysis of the fitted model parameters revealed differences
between the groups in terms of working memory, with
peer-reared animals having a faster rate of working
memory decay across time. A difference in terms of inhibitory
control (i.e. the influence of choice history) was also found,
with peer-reared subjects having a greater tendency to
repeat, rather than inhibit, their previous choice in early
adulthood. Notably, results from the modified random ver-
sion of the task, used as a control at the second time-point
(5 years), indicate that these group differences were not
simply due to learning the structure of the original ‘A-not-
B’ task. These effects on specific components of EF are in
keeping with evidence that adversity in the form of early
deprivation may have a particularly severe impact on work-
ing memory and inhibitory control in humans (e.g. [22]).

Notably, analysis of the fitted model parameters suggests
that early psychosocial deprivation was linked to poor work-
ing memory in adolescence and early adulthood, but to
weaker inhibitory control in early adulthood only. This
could be due to several different factors. One possibility is
that the performance directly impacted the ability of the
task to correctly assess inhibitory control. According to
Diamond & Goldman-Rakic [45], the ‘B’ error (i.e. an incor-
rect response after switching the hiding position) occurs
only when performance is accurate enough. This would
mean that inhibitory control is only assessed correctly when
accuracy is relatively high. Many studies use a criterion for
subject inclusion where the participant has to be successful
in at least one ‘B’ trial to be included in analysis (e.g. [47]).
We also used this criterion, and the model successfully pre-
dicted the same proportion of responses for both rearing
groups despite their differences in performance (see elec-
tronic supplementary material). It is therefore unlikely that
the differences in the fitted model parameters would be
due to performance differences. Another possibility is that
working memory and inhibitory control follow different
developmental trajectories. For example, evidence shows
that inhibitory control starts to decline later (around 35
years) than working memory in human adults [4], and in
macaques, evidence suggests that working memory is
mature even at pre-puberty whereas inhibitory control is
not [57]. However, a lack of longitudinal studies that focus
on both working memory and inhibitory control does not
allow any clear conclusion to be made. Based on our findings,
we propose that while early psychosocial deprivation may
impact both aspects of EF, their developmental trajectories
after exposure likely differ. Peer-reared animals could have
accelerated development of inhibitory control compared to
mother-reared, then during adolescence, they are less flexible
and do not improve. On the contrary, working memory may
be impaired or accelerated at an earlier stage of development,
with a protracted and stable negative effect of early psychoso-
cial deprivation then seen across the transition from
adolescence to adulthood. These differing trajectories could
be explained by distinct underlying brain networks that are
differentially impacted by early psychosocial deprivation.
Confirming this hypothesis now requires more studies asses-
sing neural measures development and actual link to
behaviour across various stages of development.

Importantly, the inhibitory control parameters of the com-
putational model (i.e. the influence of choice history), did not
predict any of the performance measures, including the
cumulative score and maximum delay, which are thought
to account for both inhibitory control and working memory
EF components. On the contrary, the working memory par-
ameters predicted all performance measures. This suggests
that the performance measures used in previous research
mainly capture the influence of working memory on behav-
iour. However, using the computational model, it was
possible to assess the contribution of both working memory
and inhibitory control separately using an ‘A-not-B’ task.
These findings are in line with the recent suggestion that
proper assessment of inhibitory control in the first years of
life is difficult using ‘A-not-B’ and similar tasks because of
the high demands of working memory necessary to complete
such tasks [47,50]. Fitting of computational models could
thus help us to understand if EF follows an unitary construct
in infancy or if different components can already be distin-
guished at a very early stage of development still using this
task [3], and how these factors can lead to individual differ-
ences related to both positive and negative outcomes. Our
results suggest that the ‘A-not-B’ task does correctly assess
inhibitory control, but this EF component is not reflected by
the measures of performance used in the previous literature.

There are a few limitations to the present study that should
be acknowledged. First, due to the sample size, it is difficult to
account for inter-individual variability within the two groups
and the results may thus not be generalizable. Second, we did
not have any time-points pre-puberty, which would be necess-
ary to fully examine developmental trajectories of EF
development after exposure to early psychosocial deprivation.
Third, we only had the control version of the task at the second
assessment time-point (5 years). It will be important in future
research to replicate these results with careful controls in larger
samples and at time-points covering multiple key transition
periods in development.

This study also has several strengths. First, we assessed the
effect of early psychosocial deprivation on EF development
at two time-points covering a key transition period
(i.e. adolescence into early adulthood). Second, our sample
included two groups of macaques exposed to different early
social and highly controlled environments. Third, all assess-
ments were conducted with the monkeys remaining in their
home enclosure without the addition of invasive and stressful
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procedures, which also makes results more comparable to
those from human studies [49]. Finally, the use of a compu-
tational model enabled the distinction between specific
aspects of EF. This approach could be of great use in future
longitudinal assessment of EF, especially when including a
wide range of key developmental transition points.

To conclude, results from this study demonstrate that early
psychosocial deprivation is associated with long-term effects
on EF, which are apparent in adolescence and persist into
adulthood. The use of a computational model of decision
making to disentangle mechanisms underlying performance
on the ‘A-not-B’ task provides an alternative way to analyse
the data from such tasks and may be of specific interest for
developmental research, which is often defined by a lack of
precise measurement tools. In the future, computational
approaches such as that used here can easily be adapted to
other EF tasks, with the results then more easily linked to
specific aspects of neural development and related cognitive
mechanisms than classic behavioural measures alone. Such
research involving assessment of brain development is essen-
tial for clarifying how early deprivation effects EF over the
lifespan and identifying the factors that confer risk for or resi-
lience against poor developmental outcomes. This will be
critical for design of more effective treatments and interven-
tions that target individuals more at risk for developing
impairments in specific aspects of EF and associated
difficulties after exposure to early psychosocial deprivation.
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