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ABSTRACT

The size and complexity reached by the large sky spectroscopic surveys require efficient, accurate, and flexible automated tools
for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multinetwork deep
learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of
classes and optimize the redshift predictions. Redshift errors are determined via an ensemble/pseudo-Monte Carlo test obtained
by randomizing the weights of the network-of-networks structure. As a demonstration of the capability of GaSNet-II, we use
260k Sloan Digital Sky Survey spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k
extragalactic objects. GaSNet-II achieves 92.4 per cent average classification accuracy over the 13 classes and mean redshift
errors of approximately 0.23 per cent for galaxies and 2.1 per cent for quasars. We further train/test the pipeline on a sample
of 200k 4MOST (4-metre Multi-Object Spectroscopic Telescope) mock spectra and 21k publicly released DESI (Dark Energy
Spectroscopic Instrument) spectra. On 4MOST mock data, we reach 93.4 per cent accuracy in 10-class classification and mean
redshift error of 0.55 per cent for galaxies and 0.3 per cent for active galactic nuclei. On DESI data, we reach 96 per cent accuracy
in (star/galaxy/quasar only) classification and mean redshift error of 2.8 per cent for galaxies and 4.8 per cent for quasars, despite
the small sample size available. GaSNet-II can process ~40k spectra in less than one minute, on a normal Desktop GPU.
This makes the pipeline particularly suitable for real-time analyses and feedback loops for optimization of Stage-IV survey
observations.

Key words: methods: data analysis—techniques: spectroscopic—surveys —software: development— galaxies: distances and
redshifts.

1 INTRODUCTION

With the upcoming all-sky spectroscopic survey infrastructures,
including the Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration 2022), 4-metre Multi-Object Spectroscopic Telescope
(4MOST; de Jong et al. 2019), Multi-Object Optical and Near-
infrared Spectrograph (MOONS; Cirasuolo et al. 2020), and consid-
ering also the slitless spectroscopic capabilities of the space-based
missions like Chinese Space Station Telescope (CSST; Zhan 2011)
and Euclid (Laureijs et al. 2011), hundreds of millions of spectra
will be acquired in the next half-decade. The first samples from
DESI are already publicly available (DESI Collaboration 2023). To
optimize the scientific outcome of these huge data sets, strategies
to perform fast, efficient, and, most of all, accurate automated
analyses have become mandatory. Machine learning (ML) provides

* E-mail: napolitano@mail.sysu.edu.cn

© 2024 The Author(s).

a large variety of efficient solutions to achieve this goal. We have
already demonstrated that convolutional neural network (CNN)
models can be very effective in classifying spectra for specific tasks
like the search for strong galaxy—galaxy lenses (GaSNet; Zhong,
Li & Napolitano 2022), showing superior efficiency and flexibility
compared to traditional methods [e.g. principal component analysis
(PCA) eigenspectra fitting; see Talbot et al. 2021].

Object classification and redshift prediction are the first steps to
be performed by standard pipelines of spectroscopy observations.
They provide basic information to be used for science applications.
For instance, the separation of quiescent early-type galaxies, from
the starburst emitting systems is fundamental for galaxy formation
(Lehnert & Heckman 1996), while the classification of active galactic
nuclei (AGN) is crucial to understanding the role of supermassive
black holes (Fiore et al. 2017), and the identification of quasars
(quasi-stellar objects, QSOs) is important for cosmological studies
(Secrest et al. 2021). ML can be an efficient and practical alternative

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
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to traditionally automatic methods (Bolton et al. 2012; Hutchinson
et al. 2016) to build entire ML-based parallel pipelines, similar to
what is already done in astronomical imaging, where there have
been enormous advances in recent years. Some examples of these
latter applications are the galaxy morphology pipelines, like the
one developed by Dominguez Sédnchez et al. (2022) for SDSS-
DR17 (Sloan Digital Sky Survey-Data Release 17), and the pipeline
developed by Boucaud et al. (2020) for Euclid. ML can offer
huge decreases in computational time and resources (Graff et al.
2014), while providing close to human-level classification results, for
example, in the star/quasar separation (Busca & Balland 2018). This
provides the chance to overcome the limits typically plaguing tra-
ditional classification methods in terms of computational resources,
human intervention, limited real-time applications, scalability, etc.
(Alzubaidi et al. 2021), thus giving us the opportunity to develop
automatized ML-based tools (D’Isanto & Polsterer 2018; Parks et al.
2018; Makhija et al. 2019).

With respect to spectroscopy, a variety of automatic redshift
prediction tools and pipelines have been developed using tradi-
tional methods, but relatively little has been done in terms of
ML applications. Traditional codes, such as SPECTRO1D (SubbaRao
et al. 2002) and REDMONSTER (Hutchinson et al. 2016), based on
cross-correlation methods (Tonry & Davis 1979), or REDROCK (Lan
et al. 2023), based on template fitting using a set of different PCA
components (DESI Collaboration 2023), are some examples of such
automated tools. They have been tested or successfully applied
to larger scale spectroscopy surveys, generally requiring minimal
human intervention. However, they are often time-consuming, for
example, if the number of templates increases, or require an op-
timization of the first guess redshifts to maximize the accuracy.
Furthermore, in low signal-to-noise ratio (SNR) situations, the
performance of some of these tools can highly be degraded (e.g.
because of an increasing failure rate, Bolton et al. 2012).

Deep learning (DL) based methods, instead, have the advantage
of efficiency, scalability, and flexibility. Here, the applications to
spectroscopy are yet at the pioneer level and limited to the search
for strong gravitational lenses, Li et al. 2019), with only a DL
tool previously tested to classify spectra and measure redshift (i.e.
GaSNet, Zhong et al. 2022) yet with the specific goal of finding
hidden strong lensing emissions in galaxy spectra. However, the first
GaSNet is versatile enough to be adapted to answer most of the
typical problems large sky surveys might need to face. In particular,
it can easily perform tasks like real-time analysis for the detection of
transients/peculiar objects, and still give a prediction of their redshift.

In this paper, we present a new DL tool that expands the capabilities
of the former GaSNet to respond to the needs for upcoming
spectroscopic surveys like 4MOST and DESI. DESI is expected to
observe 30 million galaxies/AGN and 10 million stars. On the other
hand, 4MOST will cover approximately 15000 sq deg and observe
more than 25 million targets. In particular, we design and test a
full real-time pipeline based on DL that uses reduced 1D spectra
as input to (1) classify spectra in a given number of subclasses; (2)
predict the redshift; and (3) assign an error to the redshift. GaSNet-
IT is a DL-based tool for spectroscopy classification and redshift
prediction which provides the probability of the type of spectrum and
the object redshift with uncertainty. To train and test the pipeline we
start from a catalogue from SDSS-DR16 (Jonsson et al. 2020) which
provides a large number of classified spectra grouped into about 180
classes. This allows us to randomly select 13 subclass spectra from
the SDSS-DR 16, each with more than 20 000 spectra. The 4MOST
mock spectra (10 subclasses) and DESI early data release spectra (3
classes) are also randomly selected as additional data sets, to examine
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the flexibility and generality of the pipeline. In particular, the different
properties of these three data sets will allow us to cover a large variety
of classification situations from very specialized classifications for
SDSS and 4MOST samples to a coarse-grained classification using
DESI data.

The paper is organized as follows: in Section 2, SDSS data sets
used for our analysis are introduced. In Section 3, we describe
the ML models and our novel idea of building an ML pipeline.
In Section 4, we present the training and testing results. In Section 5,
we discuss the ML predicted results, including further improvements
and perspectives for further ML pipelines. In the final Section 6, we
draw some conclusions.

2 DATA

The main purpose of this paper is to find a DL-based method,
to classify and predict the redshift of 1D spectra. As introduced
above, we are interested in applying ‘supervised’ networks, based
on labelled data. For the scope of this work, the main labels we
need to start with are a ‘class’ and a ‘redshift’. The generality of
the tool depends on the number of classes we can separate from
their spectral properties. While a basic separation can rely on a very
coarse classification aiming to distinguish only stars, galaxies, and
AGN/QSO (Paris et al. 2017), for many science applications, one
might be interested in a more detailed classification that distinguishes
various star, galaxy, and AGN/QSO subclasses (Bundy et al. 2015;
Yan et al. 2019). In this case, to best train any supervised tool
we need data sets that can provide such kind of information. The
ideal data set would be an observed sample of objects for which a
qualitative/quantitative classification has been performed (Liu et al.
2019; Lyke et al. 2020). However, as an alternative, one can use
mock data sets, where physically motivated templates of different
galactic and extragalactic objects in different instrumental conditions
(resolution, seeing, etc.) and covering a realistic range of intrinsic
object properties (e.g. luminosity, colours, redshifts, kinematics,
etc.), can mimic the data one is expected to collect for a given science
program (e.g. via spectral synthesis; Cid Fernandes et al. 2005).

Below we describe the data we will use throughout the paper,
covering the two typologies of training/test samples discussed above.
In particular, as the observation-based data set, we use the SDSS-
DR16 data set, which contains the most detailed classified subclass
sample of sources available to date. As such, this will represent the
reference data set around which we want to construct and benchmark
our pipeline. Furthermore, to explore the possible application of
GaSNet-II to upcoming stage-IV surveys, we use a customized mock
catalogue, closely reproducing 4MOST observations (Driver et al.
2019; Helmi et al. 2019; Merloni et al. 2019; Swann et al. 2019; de
Jong et al. 2019). Furthermore, we take advantage of the early data
release of DESI (DESI Collaboration 2023), to perform a first test of
the novel GaSNet-II version performances on a first Stage-IV survey
data set. Notable for SDSS and DESI, the redshifts and classifications
are not 100 per cent reliable (see e.g. Lyke et al. 2020; Alexander
et al. 2023), which can potentially lead to deviations between the DL
predictions and the pipeline results.

2.1 Reference data set: SDSS-DR16

SDSS-DR16 (Ahumada et al. 2020), contains around 0.44 million
unique stars, 2.6 million galaxies, and 0.75 million quasars; all
spectra are divided into three classes (star, galaxies, and QSOs),
each one having a different number of subclasses for a total of 181
subclasses. Most of the subclasses comprise a number of spectra
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Table 1. Some definitions and statistics of our reference data set from
SDSS.

Column 1 2 3 4 5

class_subclass Label z [Zmin» Zmax ] SNR
STAR_AO 0 - - 26.2
STAR_F5 1 - - 30.5
STAR_F9 2 - - 34.9
STAR_G2 3 - - 33.7
STAR K1 4 - - 32.8
STAR_K3 5 - - 31.1
STAR K5 6 - - 31.0
GALAXY _nan 7 0.46 [0.00, 1.86] 5.82
GALAXY_AGN 8 0.21 [0.00, 0.57] 14.3
GALAXY_STARBURST 9 0.15 [0.00, 0.57] 9.78

GALAXY_STARFORMING 10 0.11
QSO_nan 11 1.68
QSO_BROADLINE 12 1.78

[0.00, 0.56] 124
[0.01, 7.04] 2.64
[0.03, 5.29] 6.54

Notes. Column 1: the name of the different subclass, constituted by the class
name and subclass name. The subclass name ‘nan’ denotes classes with no
specific subclass. Column 2: the label we used afterward. Column 3: the
mean redshift of the subset. Column 4: the redshift range. Column 5: mean
median signal-to-noise ratio, SNR.

smaller than a few hundred. The classification and redshift pipeline
of SDSS is based on a x> minimization, by comparing each spectrum
to the combination of basis templates, which are derived from rest-
frame PCA of training samples (Bolton et al. 2012, B + 12 hereafter).
The number of labelled spectra is more than four million.! In Table 1,
we report the only 13 subclasses that have more than 20 000 classified
objects, as this is the minimal sample size we need for the best
training of our tools. Despite these representing a tiny fraction of
the original class list (181), we stress that these 13 subclasses are
representative of the most common objects one would expect to
classify in typical spectroscopic surveys, especially if we look at the
extragalactic sample. Most of the excluded classes, though, consist
of stellar types (e.g. O, B star, dwarf, special carbon star, etc.) that
have small observational samples collected, due to their intrinsic
rarity. Of course, this is a limitation if one wants to apply the current
classifier to real data that we expect to solve in the future by collecting
more complete samples to build a compelling training sample, for
example, using the early release of upcoming surveys (e.g. DESI and
4MOST). Also, the reduced number of subtypes adopted might not
return the true final accuracy of the method, as we cannot predict if
the classifier can perform closely to the average accuracy for all the
missing classes. However, we believe that the number and variety
of classes we have collected for this test, is already large enough
to assess the potential of these (novel and unexplored) techniques.
Indeed, since the main objective of this paper is to check if DL can
efficiently and automatically classify spectra and measure redshifts of
astronomical sources, the main conclusions we will draw will not be
affected by the number of classes adopted, as long as the network can
be trained for each class with a sufficiently large and representative
knowledge base. Following this same line of argument, our results
are also not affected by the accuracy of the classification performed in
B + 12, as long as all spectra are assigned to a given class following
self-consistent criteria. In this respect, GaSNet-1I would just replicate
the same classification bias intrinsic to the SDSS-DR16 sample, if
any. However, from the perspective of the application to upcoming
surveys, the problem of cross-contamination among classes needs
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Figure 1. Example spectra of the seven stellar subclasses, corresponding to
the first 7 of the 13 subclasses constituting the SDSS sample listed in Table 1.
The A, F, G, and K stars with different subtypes are selected as the SDSS test
samples to validate the ability of fine classification.

to be addressed to quantify how much this can impact the purity
of classifications. Although this is not among the objectives of this
paper, we briefly discuss this in Appendix A.

Finally, for the 13 suitable classes from SDSS-DR16, we can
randomly select 20 000 spectra from each of these classes to collect
a total catalogue of 260 000 spectra, constituting our primary data
set. Most of the classes do not overlap physically, except for the
‘BROADLINE’ one, because if any galaxies or quasars have lines
detected at the 100 level with velocity dispersion (VDISP) o
>200 kms~! at the 5o level, the label ‘BROADLINE’ is added to
their subclass.” The 20 000 spectra in each subclass are further split
into random 70 per cent, 15 per cent, and 15 per cent subsamples to
be used in training, validation, and testing, respectively.

Some typical spectra of different galactic (stars) and extragalactic
(galaxies/f AGN/QSOs) types are shown in Figs 1 and 2, respectively.
The spectra are trimmed to stay within 4000-9000 A wavelength
range, for uniformity, then re-sampled to cover 5001 pixels, for a
final effective binning of 1 A pixel™'. Besides this ‘pre-processing’
step, producing a uniform binned spectrum with respect to the
original one, no additional data manipulation has been applied to
the data. The range and mean redshift and SNR are listed in Table 1.

Zhttps://www.sdss3.org/dr9/spectro/catalogs.php
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Figure 2. Example spectra of SDSS extragalactic subclasses, as listed in
Table 1. We can clearly see the different features characterizing the different
classes. From top to bottom, in particular, we can notice the increasing
importance of the emission lines that play an important role in redshift
prediction. The ‘nan’ type spectra generally lack such emission lines, although
they might still contain some low-SNR ones, which are hard to see. This
means that the ‘nan’ sample might overlap with other emission-line classes.
QSOs also show a power-law continuum that does not carry any redshift
information.

GALAXY_AGN
GALAXY_STARBURST
GALAXY_STARFORMING
GALAXY_nan

0.4 0.6 0.8 1.0
REDSHIFT

EEE QSO_BROADLINE
B QSO_nan

REDSHIFT

Figure 3. The redshift distribution of the SDSS-DR16 data set (stacked
histogram). The mean and range of redshift are already shown in Table 1.

The distribution of redshift and SNR of different subclasses are
shown in Figs 3 and 4. We stress that the high-redshift end on the
redshift distribution in Fig. 3 is populated by a few systems. This is
important to keep in mind, as we expect that this undersampling can
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Figure 4. The SNR distribution of the SDSS-DR16 data set (stacked
histogram). Top: star classes; middle: galaxy classes; and bottom: AGN
classes. In general, the extragalactic objects are fainter than the star classes.
The mean SNR is shown in Table 1.

impact the redshift predictions at the higher end of the class redshift
distributions. On the other hand, the SNR distribution covers quite
a high range, except for the QSO, which also shows a significant
undersampling at SNR >10, and (counter-intuitively) causes worse
predictions in this SNR range. Overall, to prevent such selection
effects, one solution can be the use of simulated spectra, in order to
collect a more balanced training data set. Although useful to solve
these ‘completeness’ problems, this strategy has other limits which
we will discuss in the next section, where we make use of 4AMOST
mock spectra, as an additional data set to test.

2.2 Other data set: 4MOST mock spectra

The data set consists of approximately 200000 mock spectra
obtained to reproduce 4MOST observation conditions, which are
categorized into 10 different subclasses according to the adopted
templates. We make use of a mock catalogue of spectra based
on a customized software package,’ reproducing the Exposure
Time Calculator prediction of observed spectra for 4MOST. The
software makes use of a series of customized templates selected
for the different surveys (see Introduction) to be tested within the
Extragalactic Pipeline working group (IGW8) and the Classification
working group (IGW9) of the 4MOST consortium. The spectral
wavelength range is cut to between 4000 and 9000 A, and the number
of pixels is interpolated to obtain 5001 pixels. The simulated spectra
are generated from the given spectral energy distribution (SED)
templates for a given set of observation conditions and random noise
(including cosmic rays and randomized Lya forest).*The spectral
signal is obtained according to the exposure time and extinction: in
particular, the exposure time is taken to be 1200 s for all spectra,

3https://escience.aip.de/readthedocs/OpSys/etc/master/index.html
“https://github.com/jkrogager/py4most
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and the extinction is determined by the average galactic reddening
law parametrized by Fitzpatrick & Massa (2007). The final sample
contains a total of 10 subclasses, 5 galactic and 5 extragalactic.
The galactic objects are: metal-poor stars and other dynamics
tracers (Dyn) of The Milky Way Halo Low/High-Resolution Survey
(Christlieb et al. 2019; Helmi et al. 2019), Cepheids in Magellanic
Cloud (GalHR) of 1001MC Survey (Cioni et al. 2019), White
Dwarf (ESN) of 1001MC Survey, Galactic disc stars (GalDiskLR) of
4MOST Surveys S1-S4 (Bensby et al. 2019; Chiappini et al. 2019;
Christlieb et al. 2019; Helmi et al. 2019), and stars of Magellanic
Cloud (MCsn) in 4MOST Survey S1 (Christlieb et al. 2019; Helmi
et al. 2019). The extragalactic simulated sources are taken from
mock catalogues and spectra provided by the 4MOST consortium
extragalactic surveys: S5 eROSITA Galaxy Cluster Redshift Survey
(Finoguenov et al. 2019), S6 AGNs (Merloni et al. 2019), S7 Wide-
Area VISTA Extragalactic Survey (WAVES, Driver et al. 2019; Jin
etal. 2024), S8 Cosmology Redshift Survey (Richard et al. 2019), and
S10 The Time-Domain Extragalactic Survey (Swann etal. 2019). The
respective contribution in simulated spectra of each survey is 2099
(24 658, 6056, 10443, and 13 386) for S5 (S6, S7, S8, and S10). The
templates used by S5, S6, and S8 were obtained by stacking spectra
with the method from Comparat et al. (2020).> The stacked spectra
were observed by SDSS within the Extended Baryon Oscillation
Spectroscopic Survey (eBOSS) or the SPectroscopic IDentification
of ERosita Sources (SPIDERS) programs (Almeida et al. 2023)
and have similar properties to the selected targets to be observed
by 4MOST consortium surveys S5, S6, and S8. As opposed to the
SDSS-DR16, the classes available in the 4AMOST sample are ‘survey
oriented’. In fact, the templates simulated come from different
methods, and they are not purely grouped by physical properties,
for example, star-forming versus passive galaxies or AGN, but rather
customized for the survey requirements, including the SNR.® This is
evident, for example, for the WAVES sample, which requires only
redshift measurements of the targets, with the minimal exposure
time and SNR needed to reach a reliable measurement. Table 2
shows the label of subclasses, SNR, and redshift distribution, while
in Figs 5 and 6 we show some typical spectra from each of the 10
classes. The galactic objects have a higher average median SNR than
the extragalactic objects. In the 4MOST sample, galactic objects
exhibit a higher SNR than those in the SDSS samples, whereas
the extragalactic objects show a slightly lower SNR. The redshift
distributions of the five extragalactic classes are shown in Fig. 7. The
galaxy classes show a distribution that is similar to the one seen for
the SDSS-DR16, while the quasars show a flatter distribution than
the real data. As mentioned in Section 2.1, this might help alleviate
the bias associated with incompleteness. However, this also raises the
question of how realistic the ‘prior’ distribution adopted in simulation
can be (e.g. see discussion in Li et al. 2022b, for imaging mock data).
We postpone this test until we can access deep 4MOST observations,
fully accounting for selection effects. Until then the 4AMOST mock

Shttps://github.com/JohanComparat/qmost_templates

5The main reason for this particular choice is that at the moment we have
finished this work there was not yet a uniform physically motivated set of
templates available for galactic/extragalactic targets in 4MOST, although
a list of FGK star targets (from the galactic working group, IWG3) and
a catalogue of stars with known labels for half a million stars from
GALAH/APOGEE/RAVE/Gaia (from the ISSI team) will be available, and
will be used for future GaSNet analyses. This does not represent a major issue
for the purpose of this paper which aims to show the capabilities of the DL
to perform classifications/regression tasks, regardless of the physics behind
the spectra.
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Table 2. 4MOST simulation data set.

Column 1 2 3 4 5
class_subclass Label b4 [Zmins Zmax] SNR
Dyn 0 - - 745
GalHR 1 - - 39.9
ESN 2 - - 12.8
GalDiskLR 3 - - 140.4
MCsn 4 - - 72.3
COSMO_-AGN 5 2.2 [0.9, 4.0] 6.3
ClusB 6 0.52 [0.3, 1.0] 5.8
WAVES 7 0.32 [0.0, 0.8] 1.6
RedGAL 8 0.33 [0.0, 1.1] 8.7
tides_host 9 0.11 [0.0, 0.6] 19.7

Notes. Column 1: the name of the different subclass. Column 2: the label we
used afterward. Column 3: the mean redshift of the subset. Column 4: the
redshift range. Column 5: the mean median signal-to-noise ratio, SNR. The
first five subclasses are galactic objects and the last five are extragalactic
objects.
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Figure 5. Example spectra of five galactic subclasses of the 4AMOST sample,
as listed in Table 2. From top to bottom, there are Dyn, GalHR, ESN,
GalDiskLR, and MCsn.

data set provides us a unique opportunity to test GaSNet-II as a
general purpose ‘survey-oriented’ classifier, based on a large variety
of classes, at the same time. Each subclass consists of approximately
20000 spectra, which are splitinto 70 per cent/15 per cent/15 per cent
for training, validation, and testing, respectively.

MNRAS 532, 643-665 (2024)

$20Z JaquianoN g0 uo 1sanb Aq 82200/ 2/St9/L/ZES/3191e/Seluw/Wwod dno-olwapeoe//:sdiy Wol) papeojuMo(]


https://github.com/JohanComparat/qmost_templates

648  F Zhong et al.

le—15

7.5
~ COSMO_AGN
5.0 z=1.4
2.5
00 1 T T T T T T
le_lééOOO 5000 6000 7000 8000 9000

1e71%0'00 5000 6000 7000 8000 9000

4000 5000 6000 7000 8000 9000

flux/(erg s~ cm~2 Ang~!
II\) o N
b
3
-
1
=
wn

le—15
61
GAL
41 z
5]
0- . : - . : .
4000 5000 6000 7000 8000 9000
le—15
41 tides_host
J z=0.1
21 ]l N -
L b r ™
4000 5000 6000 7000 8000 9000
wavelength/A

Figure 6. Example spectra of five extragalactic subclasses of the 4AMOST
sample (simulated), as listed in Table 2. From top to bottom, there are
COSMO_AGN, ClusB, WAVES, RedGAL, and tides host.
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Figure 7. The redshift distribution of the 4MOST data set. The mean and
range of redshift are already shown in Table 2.

2.3 Other data set: DESI spectra

The data set is constituted of 21000 randomly selected DESI
spectra,7 which are categorized into three classes, QSO, STAR, and
GALAXY. Each class consists of 7000 spectra in the data set. The
DESI spectra are randomly selected from ‘sv1’ (‘Target Selection
Validation’) samples and ‘sv3’ (One-Percent Survey) samples with
SNR larger than 2 and ZWARN flat equal 0. Spectra are split
into 70 per cent/15 per cent/15 per cent for training, validation, and
testing, respectively. In the early data release version, DESI only
provides a separation of the observed object into QSO-STAR-

"https://data.desi.Ibl.gov/public/edr/
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Table 3. DESI data set.

Column 1 2 3 4 5

Class Label b4 [Zmin» Zmax] SNR
STAR 0 — — 19.1
QSO 1 1.59 [0.06, 4.27] 6.54
GALAXY 2 0.196 [0, 1.69] 7.53

Notes. Column 1: the name of different classes. Column 2: the label. Column
3: the mean redshift of the subset. Column 4: the redshift range. Column 5:
mean signal-to-noise ratio, SNR.
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Figure 8. The typical DESI spectra of QSO, STAR, and GALAXY classes.

GALAXY, with only stars possessing further subclasses (eight in
total), but with too few spectra to be used for training here. Hence,
the DESI data set can be used to test GaSNet-II for a coarsely
classified, poorly sampled data set (e.g. to be compared to a similar
test on SDSS-DR16 as in Appendix B). The DESI classification
and redshift prediction pipeline used REDROCK, a software package®
based on fitting a set of PCA templates to every target at every redshift
(DESI Collaboration 2023). The DESI spectra consist of three bands
(B, R, and Z bands), with a wavelength range from 3600 to 9800
A. Once again, spectra are interpolated to cover 5001 pixels in the
wavelength range 4000-9000 A, which are then used for the training.
More details of the data set are shown in Table 3. The samples have a
similar level of SNR to the SDSS samples (Table 1) after the selection
conditions were imposed. In Fig. 8, we show some spectra from the
three different classes. Here, we have also highlighted, in different
colours according to the legend, the subspectra collected from the
three DESI arms, that are combined in the final DESI full-wavelength
range spectra. Finally, the redshift distributions of galaxy and quasar
samples are shown in Fig. 9.

3 PIPELINE DESCRIPTION AND TRAINING

Thanks to their flexibility, efficiency, and accuracy, the multinetworks
combination can be applied to the prediction of various astronomical
parameters, and possibly form a fully automatic DL pipeline. The
CNN (Krizhevsky, Sutskever & Hinton 2012) and the residual
connection (ResNet; He et al. 2015) are two of the most widely tested
DL architectures. CNN and ResNet have been extensively applied
to classification and regression problems in astronomy, such as the
photometric strong lens detection (Li et al. 2019, 2021; Petrillo et al.

8https:/github.com/desihub/redrock/releases/tag/0.15.4
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Figure 9. The redshift distribution of the DESI data set. The mean and range
of redshift are shown in Table 3.

2019; Huang et al. 2020), galaxies morphology classification (Ball
et al. 2004; de Diego et al. 2020; Dominguez Sénchez et al. 2022),
star, galaxy, or quasars identification (Kim & Brunner 2017; Busca &
Balland 2018; Parks et al. 2018; Guo & Martini 2019), photometric
redshift predictions (Hoyle 2016; Pasquet et al. 2019; Li et al. 2022a),
and stellar parametrization (Fabbro et al. 2018; Leung & Bovy 2019;
Guiglion et al. 2024).

In this paper, we construct a multinetwork pipeline system, which
is constituted by several, small, self-similar ResNet network models.
The pipeline intends to map the pixel-level 1D spectra to return a
classification probability and redshift. The classifier first is able to
distinguish between subclasses. For instance, in the case of SDSS-
DR16 (see Table 1), it separates the seven subclasses of stars (A0, F5,
FG, K1, K3, and K5) that, being ‘galactic’ objects, are assumed to
have redshift z = 0, and the 6 extragalactic objects, 4 of galaxies (nan,
AGN, STARBURST, and STARFORMING) and 2 of QSOs (nan and
BROADLINE). In total, there are 13 different classes. Then, on these
extragalactic classes, GaSNet-1I performs the redshift predictions and
error estimates. Similarly, for 4AMOST (see Table 2), the classifier
separates the objects in the five star classes (Dyn, GalHR, ESN,
GalDiskLR, and MCsn) and extragalactic classes (COSMO_AGN,
ClusB, WAVES, RedGAL, and tides_host), then, for these latter, the
GaSNet-II predicts the redshift and the errors. For DESI, the classifier
just separates into three coarse classes (Table 3) and the redshift is
measured for the galaxies and QSOs.

In this section, we introduce the details of the GaSNet-II architec-
ture, the strategy for network training, and error estimates. We start
by discussing in detail the training of the pipeline using the reference
data set over which we want to test the capabilities of the pipeline,
that is, the SDSS-DR16 sample. The structure and training of the
pipeline will be the same for the other two data sets, that is, 4MOST
and DESI, except that, due to the different numbers of labels (see
Section 2), only the structure of the output will be different. For the
latter data sets, we will discuss directly the performances on the test
sample in Section 4.

3.1 GaSNet-II: philosophy and architecture

The philosophy behind the GaSNet-II architecture is based on two
principles: simplicity and efficiency. Simplicity, because we want
to build a network made of ‘lighter’, self-similar ResNets. The
reason is that, by controlling each small network performance, we
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can easily check and control the whole pipeline performance. Also,
having several ResNet blocks makes it easy to customize different
subnetworks for different tasks. Efficiency, because GaSNet-Il is able
to parallelize classification and redshift predictions, which generally
are part of a serial two-step process in classical pipelines, as the
redshift accuracy is class dependent. Indeed, it is more difficult to
determine the redshift for specific classes. An obvious example is
passive versus active galaxies, as the former does not have as many
high SNR features as the emission lines of the latter (Mateus et al.
2006).

To achieve this second objective, for GaSNet-II we decided to
use a particular architecture made of parallel subnetworks, each one
specialized on a specific task. This is sketched in Fig. 10(a), where a
subnetwork is used to classify and give the probability to each object
to belong to a series of pre-defined classes, while other parallel
subnetworks, trained on each and only classes that need redshift
estimates, are used to give the redshift predictions and error estimates.
Obviously, the numbers of subnetworks are pre-assigned according
to the number of those classes with redshift, that is, the training
sample. In fact, being GaSNet-1I a supervised network, the classes
and redshifts need to be known as labels of the training sample used
to train the networks.

However, all subnetworks are almost the same, in terms of their
internal structure. Specifically, the multinetwork pipeline consists
of one ResNet_P model to predict the probability, P, of each
subclass for classification, and six (identical) ResNet_i to predict the
redshift, z, of different extragalactic objects, respectively. The index
i corresponds to the label in Table 1. The input of all subnetworks
are the 1D spectra, in flux units. As we will detail later, in this latter
phase, GaSNet-II performs a Monte Carlo (MC) test, that allows us
to estimate the errors, o, on the redshift predictions. Hence, the
output of the GaSNet-II pipeline is a 13-dimensional array of terns
(P, z, 0.). The final input/output can be schematically summarized
as:

(P;, 0),
(Pi, zi, 020),

i €10,6],

1
ie[7,12]’ )

F(flux) = {

where P; are the probability from the ResNet_i classifier, z; are the
redshift predictions, and o, ; are the redshift uncertainty, from the
six ResNet regression models.

In terms of workflow, the classification is performed in parallel to
(and hence independently from) the redshift prediction, hence this
latter does not impact the classification. In principle, one can guess
that this is a disadvantage as the knowledge of the redshift could
improve the classification (for instance, this is easy to understand
for stars that have z ~ 0). However, the GaSNet-II seems to reach
already very high classification performances (~ 99 per cent, see
Appendix B, Fig. B1) without this information. On the other hand,
there are advantages of this ‘parallel’ approach: (i) one can scale-up
the network by adding training samples for more classes, making it
easy to extend the classification to other objects or even other targets,
such as stellar parameters; (ii) parallelization reduces the impact
of correlations between different quantities; (iii) for this reason, it
is extremely flexible and can effectively applied to different SNRs
and various surveys, as we will demonstrate later in this paper; (iv)
it provides a reasonable uncertainty estimation, which is a robust
starting point for subsequent Bayesian analyses; and (v) neural
networks are powerful interpolators, thus also good at classifying
spectra that lie within a learned multidimensional surface that cross-
correlation would not grasp.
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Figure 10. Panel (a): the general structure of the multinetworks pipeline. ResNet_P is used as a classifier and ResNet_7 — 12 is used for redshift prediction
of extragalactic targets (note that ResNet_0 — 6 are missing because we do not need to predict the redshift of stars). One of the advantages of this structure
is that it is simple and controllable, and can be trained and predicted in parallel. Panel (b): the detailed description of single subnetwork ResNet; (bottom
figures) architecture, made by small blocks. The input of the network is 5001-pixel spectrum flux, and the output is the probability or redshift. The difference
between classification (n = 13, softmax) and redshift prediction (n = I, None) is the output dimension and the activation in the last layer. A feature-extract
block Block(n) and a fully connected block Dense(n) are shown. covld is the 1D convolution layer. In one cov1d rectangle, 5 is the kernel size; /3 is the stride
size; n is the number of channels. relu and softmax are the activate function, None represents no activate function here, that means liner. The left covld in the
Block(n) shortcut is used to match the shape. poolld is a 1D Maxpooling layer. As a schematic, the top right panel shows how to predict the redshift error of the
label 7 (GALAXY _nan) subclass in parallel. Though 10 (customized) same subnetworks, trained by the same data but with different initial weights, 10 different
redshifts were obtained from a single spectrum input. The expectation and error can be calculated. Other redshift errors are obtained in the same way.

3.2 GaSNet-II: pipeline description

In this section, we describe in detail the full end-to-end pipeline,
which we have broadly described in the previous section. In the
following, for brevity, we define the input of the subnetworks, x, and
the fitting labels of subnetworks, y, as:

5001
x:ﬂux/«/ﬁ, N:Zﬂux?, 2)
j=1
$ =one — hot(i), i €[0,12], 3)
vi =2z, 1€][7,12], “4)

where the j represents the pixel index, from 1 to 5001, and the one-hot
encoder converts the categorical data into digits, for example, one-
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hot(0) = 001, one-hot(1) = 010, one-hot(2) = 100, etc. In equation
(2), the flux is normalized just like a vector. The fitting labels §
are the labels converted by the one-hot encoder from Table 1. The
fitting parameters y; are the spectroscopic redshifts provided by the
catalogue. To prevent the prediction of very high-redshift values,
where the currently available training samples are too poor to give
accurate results, we limit them to the range z € [0, 5]. The loss
functions used are

loss = —3,; - log(9,), (categorical cross-entropy) 5)

1 2
3 ie = yip)~,
loss; = 4 2 P
: {«Slyn — yipl — 382,

[Yie — yipl <6

Yir — yi| > 8° (Huber loss).
it ip

Q)
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where J,, y;, are the prediction values and ;, y;, are the true values,
and parameter § = 0.1. Huber loss combines the advantages of
mean absolute error (MAE) and mean square error, and alleviates
the sensitivity to outliers.

As seen in the previous section, the GaSNet-1I pipeline is con-
stituted by seven almost identical ResNet subnetworks. This is
shown now in more detail in Fig. 10(b), where we offer a complete
schematic view of the full architecture, which we describe below.
Starting from the general structure seen in panel (a), we see that the
subnetwork architecture consists of a series of ResNet ‘blocks’. One
of the advantages of using the subnetwork architecture, discussed in
Section 3.1, is that it is particularly convenient to perform MC tests,
which are the foundation of the GaSNet-II error estimates, as shown
by the ‘zoom-in’ inset (top-right) in the same Fig. 10(b).

The idea behind the MC run is to use the different (10) subnet-
works® with the same data, for example, a spectrum of an object of
a given class, but with different initial network weights. In practice,
the initial subnetwork parameters are set by a random Gaussian
distribution, which establishes a random initial condition for the
entire process, thus mimicking an MC experiment. However, this
can also be seen as an ensemble training/MC, which is a relatively
common practice in DL (e.g. Lakshminarayanan, Pritzel & Blundell
2016; Ganaie et al. 2021), and applied in the synthetic stellar spectra
physical properties estimating(e.g. Bialek et al. 2020). This allows
us to evaluate the stability of the output, by changing the initial
condition of the training process. For the robust data points, different
subnetworks are expected to predict values that are close to the
ground truth, like the best-fitting values that find a global (or even a
local) minimum in the x? topology.

On the other hand, for the ‘unstable’ points different subnetworks
are expected to find different predictions, like happens in best-fitting
if the x2 has many local minima. In this way (despite the number
of parallel experiments being only 10), we can separate the robust
from unstable prediction targets. Hence, estimating the cumulative
uncertainties on the final target estimates has two main objectives: (1)
to associate a redshift and an error based on a probability distribution
function (PDF) to every given target; and (2) to test the robustness
of the network, by quantifying the overall predictions scatter with
respect to the ground truth.

Indeed, from the ‘zoom-in’ inset of the MC test, in Fig. 10(b), we
can see that the MC step provides a mean value, 7 and a variance, o.

This is also done in parallel for the six extragalactic classes to
obtain:

9
Zi = ZZ;,‘/IO, @)
j=0

9
> (zi; —z)*/10, ®
j=0

as shown in Fig. 10(b). The predicted expectations and errors will be
shown in Section 4. In Table 4, we show the number of parameters,
and the number of spectra adopted for the training of the subnetworks.

To check the effectiveness of the use of the mean redshifts and their
errors from equations (7) and (8), we also provide the point estimate

9The choice of 10 networks is primarily to optimize the computational
resources, to make GaSNet-II usable in small medium-scale servers with no
much impact on the final results. For instance, considering the convergence
of uncertainty in high SNR, Fig. 17 shows that 10 subnetworks are sufficient
to robustly assess uncertainties and we do not expect to improve this result
by increasing the number of subnetworks.
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Table 4. Models detail. ‘pars’ is the number of network parameters. ‘Num’
is the number of training spectra used. ‘loss’ is the minimal loss on the
validation set. ‘acc’ is the max accuracy on the validation set, and ‘MAE’ is

the minimum mean absolute error on the validation set. '
Name pars (10°  Num (10%)  loss (1073) acc/MAE
ResNet_P 4.16 182 218 91.9 per cent
(acc)
ResNet_7 4.16 14 0.868 0.011
ResNet_8 4.16 14 0.152 0.003
ResNet_9 4.16 14 0.066 0.001
ResNet_10 4.16 14 0.112 0.002
ResNet_11 4.16 14 10.2 0.107
ResNet_12 4.16 14 2.32 0.027

10Both trained by an NVIDIA Tesla P40 GPU

redshift for each target. These are based on a version of the network
with only one ResNet in the MC module in Fig. 10(a) for each of
the classes, and compare these with the ones we obtain from the MC
run. These point estimates are analogous to individual measurements
from standard techniques, like cross-correlation (REDMONSTER) or
template fitting (REDROCK) and are meant to provide a realistic scatter
of the estimates due to the combination of the data quality and the
DL method.

Finally, Fig. 10(b) (top right) shows the convenience of the
subnetwork architecture as the structure of each ResNet is the same
for each one of the subnetworks, regardless of whether it is used to
classify (e.g. ResNet_P) or to predict redshifts (ResNet_i g_g).

3.3 GaSNet-II training: SDSS-DR16

The training of GaSNet-II aims to minimize the loss function and
maximize the accuracy (of the classification and predictions). As
mentioned, all ‘specialized’ subnetworks are trained in parallel.

As atraining set for the classifier network (ResNet_P, in Fig. 10a),
we use a total of 182 000 SDSS-DR16 spectra, incorporating the 13
subclasses, each of them covered by 14 000 spectra for their training.
By definition, each of the redshift prediction networks (ResNet_i in
Fig. 10a), makes use of the same 14 000 used by the classifier for
each subclass 7, but with the purpose of mapping the input spectra to
the labelled redshifts.

Under such partitioning of the training data, one can imagine that
the classifier is set to search for the redshift in a larger parameter
space, while the redshift ‘regressor’ networks, ResNet_i, are set to
search for the specific redshifts of each subclass of spectra.

The result of the training process over the validation set is shown
in Fig. 11, where a step learning rate is used. The learning rate starts
at 1073, then slowly decays to 107¢ at the end (halving every 5
epochs when the epoch < 50) during 50 training epochs. The loss
curves in the upper panel of the figure might indicate some slight
overfitting, while the accuracy curves show that it does not affect
the performance. The accuracy curve remains flat as more training
epochs are implemented, meaning that it has achieved its upper limit.
‘We have used a 0.5 dropout rate in the final layer to mitigate potential
overfitting in the training set. Overfitting could be further reduced by
using fewer network parameters or increasing the size of the training
data (e.g. through online additive-noise data augmentation), however,
due to the small amount of overfitting to correct we decided to test
these strategies in future analyses. The checkpoints with maximum
accuracy or minimum MAE are used as the model of the pipeline.
Table 4 shows an average classification accuracy of 91.9 per cent
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Figure 11. The training results for 50 epochs. We adopted a dropout rate of
0.5 in the dense layer to prevent overfitting during training. The first panel is
the loss and accuracy of ResNet, which is used to classify the spectra. The
second and third panels are the loss and the MAE of ResNet_i, which are
used to predict the redshift. The dashed lines are the results of the training
set, and the solid lines are the results of the validation set. The significant
fluctuation in the first 20 epochs is due to the significant varying of learning
rates. The overall worse performance in the training set is because we only
employed the dropout in the training processes.

from ResNet_P, as well as a range of MAE for redshift estimation
across different subclasses, ranging from 0.001 to 0.107. The number
of trainable parameters of the subnetwork and the number of training
samples are also provided.

4 RESULTS

In this section, we show the results of the pipeline using the same
SDSS-DR16 data set and test sample. However, in the second part of
the section, we also show the results of GaSNet-II, customized for
the 4MOST mock data and DESI early data release, to demonstrate
the potential for future application on Stage-IV surveys.

4.1 Statistical parameters

Before looking into the results, we introduce the statistical indicators
to quantify the performance of GaSNet-II, specifically for the redshift

MNRAS 532, 643-665 (2024)

accuracy. The first parameter is the Bias, defined as:

1
Bias = |ln( +Z[) I )
1+2z,

where z, represents the real value and z, represents the prediction
value. The Bias measures the deviation of z,, from z,. In particular, we
can use it to define the fraction of the ‘good’ estimates, Good_Frac
(GF), as the fraction over the total number of spectra, N, of the
redshift estimates for which the Bias is smaller than the related
threshold, thr_x, that can differ for different classes (x = gal, gso).
Hence,
N (Bias < thr_x)
N .
We set the threshold of the galaxy species (nan, star-forming,
starbursts, and AGN), thr_gal= 0.0015, such that optimal predictions
are defined as Bias < 0.0015, and the threshold of the QSO (nan and
broad lines), thr_gso = 0.015, which qualify as good the predictions
with Bias < 0.015.
The second parameter is redshift relative bias Az, defined as:

Good_Frac_x = (10)

Az =lzp —zl/I1 + zl, an

which is more intuitive than the Bias to interpret redshift discrepan-
cies. In particular, this is closely related to the MAE, which is the
mean of the Az numerator, that is,

MAE = Mean(|z,, — z|). (12)

As a reference, for the SDSS and DESI pipelines, Az < 0.01 was
essentially used as the catastrophic prediction threshold (Bolton et al.
2012; Dawson et al. 2016; Alexander et al. 2023), although it was
less strict for high-VDISP QSOs.

4.2 SDSS-DR16 spectra

4.2.1 Classification

As discussed in Section 3, the ResNet_P subnetwork gives the
classification probability (P;) for each of the input spectra. This
is the fastest task performed by GaSNet-1I; it can perform the
classification prediction of the 39000 spectra belonging to the
test sample in about one minute (excluding read time). The cor-
responding confusion matrix is shown in Fig. 12. Here we see
that most of the subclass accuracies are larger than 90 per cent,
except for the subclasses GALAXY_STARFORMING. The average
accuracy of the 13 subclasses is 92.4 per cent. This average accuracy
is certainly driven by the SNR of the spectra, as higher SNRs
allow the network to better separate the spectra. This is shown
in Appendix C, where we use the same GaSNet-II to classify
increasingly higher SNR spectra and find that the average accuracy
can reach a limit of ~ 96 percent for the highest SNRs. The
star-forming galaxies are the class with lower accuracy, possibly
due to a larger overlap (and thus a more uncertain classification)
with other ‘emission line’ classes, e.g. AGN and starburst, but also
with normal galaxies (GALAXY _nan class), possibly because low
star-forming galaxies do not have strong enough emission lines
to distinguish against non-star-forming systems. Some additional
confusion can have a more physical origin, such as the smooth tran-
sition between AGN-dominated and host-galaxy-dominated signals.
Furthermore, the accuracy of QSO_nan is also relatively low, but in
this case, we track the reason for the typically low SNR, as seen in
Fig. 4. Despite QSO_nan (GALAXY _STARFORMING) performing
at 91 per cent (87 per cent) level, the missing sources are misclassified
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Figure 12. Confusion matrix results for the classification of the SDSS test
set. The predicted and actual labels for each subclass (see Table 1) are listed on
the left and bottom sides, respectively. Each subclass has 3000 test samples.
The average accuracy is 92.4 percent, and most are larger than 90 per cent
(except the GALAXY _STARFORMING subclass). The matrix should be read
along columns, that is the direction along which 100 per cent of the actual
labels are distributed by the classifier.

as QSO_BROADLINE (GALAXY _nan, GALAXY _STARBURST,
and GALAXY_AGN), which means that only the level of activity
(intensity of the lines) moves some objects from one subclass to the
other. If we also consider the arbitrariness in the separation of these
subclasses in the SDSS classification, we believe that the accuracy
reached by the GaSNet-II represents possibly a lower limit.

In Appendix B, we have collapsed all the subclasses on the
three major classes of star/galaxy/QSO, which shows an average of
99 per cent accuracy. This test is important to reproduce the ‘primary’
coarse classification each of the forthcoming surveys will implement
(see e.g. DESI in Section 4.4.1, for comparison). The main result is
that a higher accuracy can be achieved (99 per cent on average) with
fewer classes, using the same training data and network architecture.

4.2.2 Redshifts: point estimates

As anticipated in Section 3.2, we want to first derive the redshift
point estimate for a single measurement from the spectra. This has
an intrinsic error, which is due to a series of factors that we simplify
into two categories: (1) SNR of the spectra and (2) measurement
method. The former is linked to the structure of the data and how the
features used for the redshift estimates are detected and measured
(emission/absorption lines, 4000 A break, etc.). The latter is linked to
the accuracy of the method: for the DL tools, this lies in the impact of
the weights and random seeds in the network. These two factors are
not independent as, for instance, high SNR spectra make the impact
of the weights minimal as the network tends to converge to a more
robust estimate, and vice versa. Hence, the point estimate should
reflect more the scatter due to these intrinsic sources of errors.

Fig. 13 shows the ‘point estimate’ redshift predictions of the six
extragalactic SDSS-DR16 subclasses, described in Section 3.2. The
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overall impression is a rather good agreement between the predictions
from GaSNet-II and the SDSS-DR16 redshifts, with rather small
Az and MAE, and a minimal fraction of catastrophic estimates,
except for the QSO_nan subclass. The best accuracy is found for
the GALAXY_STARBUSRST and GALAXY_STARFORMING,
subclasses, Az = 0.001, while QSO_nan shows the worst Az =
0.047. These accuracies are still about one order of magnitude larger
than the ones required for redshift catalogues (see e.g. Bolton et al.
2012), but this is not a major concern for this analysis that is not meant
to optimize the redshift accuracies.!' The GF is generally larger than
~ 50 per cent but reaches 80 percent relevant fractions only for
three classes. We see an increasing scatter of the predictions at higher
redshifts in almost all categories, mainly driven by the poor coverage
from the training samples of high redshifts. As we will see, training
on mock spectra can strongly alleviate this problem. The relatively
poor performance of the QSO_nan sample, as we mentioned above, is
additionally driven by the low SNR of the spectra. As we will discuss
later, the SNR has a large impact on the accuracy of the predictions.

The values of Bias of all subclasses are shown in Fig. 14. In this
figure, we present the Bias values as a function of the redshift and
colour-coded by their SNR. The GF is reported in the legend for
each SNR bin. It is evident that the number of ‘good’ predictions
increases with SNR, which also correlates with redshifts; the lower
SNR spectra generally correspond to the higher redshift ones. This
also explains why even classes with lower GF, like the GALAXY _nan
(GF = 0.63), reach a rather large GF~ 90 per cent, for SNR > 10
spectra. If we exclude the QSO_nan, which has too few SNR > 10
spectra to have reliable statistics (see Section 2.1), all classes have
GF going between 63 per cent and 94 per cent, while the average GF
is larger than 90 per cent for starburst, star-forming, and broad-line
QSO, clearly because of their well detectable emission lines. On the
other hand, the lower accuracy of the normal galaxies (GALXY _nan)
is due to the fact that GaSNet-II learns the redshift mainly from the
continuum shape and possibly the absorption lines, whereby the
spectra have lower SNR for key features compared to the emission-
line galaxies; this can limit the performance of the former subclass.

4.2.3 Redshifts: MC estimates

We finally discuss the redshifts and errors of the six extragalactic
subclasses predicted by the MC test discussed in Section 3.2, which
are shown in Fig. 15. The main evidence emerging from a quick view
of the predicted values is that the accuracy is comparable to the point
estimates, as measured by MAE and Az, which are very close, or
even identical to the ones shown in Fig. 13. Looking at the errors,
they are extremely small for the predicted values that distribute along
the 1-to-1 relation and become bigger for the (few) highly scattered
predictions.

As discussed in the previous section, QSO_nan is the most
problematic subclass, showing a larger scatter, and, consequently,
larger errors. Looking at the high-z end in all classes, we see the
effect again of the sparse training samples which contribute to the
larger errors, which are mirrored by the increased scatter in the
estimates already noticed in Section 4.2.2. This is quantified in
Fig. 15, where the upper panels show the mean o, of the redshift
estimates in different redshift bins. Here, we can clearly see that the
mean errors increase with increasing redshift in almost all classes,
except the GALAXY_AGN. Some points’ errors are underestimated,

Preliminary tests considering anomaly detection show that we can achieve
Az ~ 10™*. This will be discussed in upcoming analyses.
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Figure 13. Redshift predictions of six extragalactic SDSS subclasses, each of which used one subnetwork. The subclasses GALAXY _STARBUSRST and
GALAXY _STARFORMING have the best redshift estimations, with an error of Az = 0.001. This can be attributed to the presence of significant emission lines
in their spectra, as shown in Fig. 2. The subclass QSO_nan has the worst estimation with an error of Az = 0.047. This subclass is characterized by the lowest
SNR, a high-redshift range (Table 1), and a weaker broad emission-line signal in the spectrum (Fig. 2). Error bars on each redshift bin (10 bins) are plotted at
the top of the panel. The MAE for each bin is used as the error bar. The plot clearly indicates that errors become significant at the higher redshift end, which is

attributed to the lack of training samples in that region.

particularly at the high-redshift end. This is due to a lack of training
samples in those regions, which results in lower accuracy in this
region. The bottom line is that the estimated errors are indeed a
measure of the reliability of the GaSNet-II predictions, as large error
bars emerge either because the estimated values are far from their
true value, or because the predicted value is poor due to the poor
knowledge base. In particular, we can use the estimated error, o,
to determine whether an estimate is ‘robust’ or ‘unstable’, using
the MAE (listed in Table 4) as a lower limit for an estimate to be
unstable.

Before we discuss the predicted errors, we want to see whether
the mean redshift estimates behave similarly to the point estimates,
or, in other words, whether the point estimates are drawn by the
redshift PDF derived by the MC run. This is needed to check if
the point estimates are ‘unbiased’ predictions of the ‘ground truth’.
To do that, in Fig. 16, we plot the relative scatter normalized to
the errors, t = |z, — Z,| /o, for the different test sets, which should
be enclosed in the range [0, 3] for a Gaussian distribution. Here,
we see that the great majority of the point estimates are within the
30, distribution with fractions of the order of 0.96 or higher. This
is not fully compatible with a pure Gaussian distribution (expected
to be ~0.99), but rather shows some excess outliers, which we can
roughly estimate to be no more than 5 per cent. Also, we see that
some subclasses are more prone to systematics than others, like
the ‘GALAXY_AGN’ and ‘GALAXY_STARBURST"’, that have a
tendency to provide overestimated ‘point’ redshifts. We stress here
that the point estimates are obtained by a separate, independent
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pipeline, trained to optimize the redshift estimate on a single run,
so they cannot be considered a random sample of the MC run, which
is trained to optimize the mean z. We take this into consideration in
the discussion below.

Moving to the error estimate, we start by connecting these errors
with the data structure. If the errors are artificially produced by
internal network errors, due to the stochasticity of some processes,
then these should not have any correlation with the spectra uncer-
tainties. To show that, in Fig. 17, we compare the o, and SNR
of the spectra, where we see a correlation between the error size
and the SNR, as quantified by the median values (dashed line),
showing that the lower the SNR the larger the o, tends to be. This
is proof that the errors are driven by the data noise, which was
assumed without proof so far in this section, and is consistent with
the impact of the SNR in classification, discussed in Section 4.2.1
and Appendix C. However, at any fixed SNR value, we also see
the scatter of the o, from class to class, with the QSO generally
showing larger errors. If we exclude the regions with sparse sampling
(see e.g. SNR ~ 5 for ‘GALAXY_STARFORMING’, or SNR~6-8
for ‘GALAXY_-AGN’), where the larger scatter of the errors might
reflect lower precisions due to a poor training sample, the reason
of the o, variation from class to class should reside in the type
of features that GaSNet-II used for the predictions. For instance,
in the case of the ‘QSO_BROADLINE’ (and perhaps also partially
true for ‘QSO_.nan’) it is the line broadening that leads to more
insecure estimates, especially at lower SNR. Interestingly this is
not seen for ‘GALAXY _nan’, which lets us speculate that for these
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Figure 14. Bias as a function of the redshift for different extragalactic SDSS
classes as indicated by the legend on the right. The spectra are divided into low
(SNR=[0,2)), medium (SNR=[2,10)), and high (SNR>10) SNR to show the
performance at different noise levels. The GF within each SNR bin is reported
in the legend. The plot shows clearly that estimate deviations exhibit more
scatter as the SNR decreases, implying larger statistical errors. The errors
increase at the high-redshift end, where the SNR is typically lower. Another
source of scatter is that as the redshift increases, the training samples become
smaller. See also Section 2.1.

systems the absorption lines are not driving the redshift estimates,
but rather the full spectrum and there is a smooth and regular
degradation of the errors for smaller and smaller SNRs, similar to
what is seen for GALAXY _AGN. Direct analysis of the impact of the
spectral features on the accuracy is beyond the purpose of this paper
and would require more sophisticated techniques like self-attention
methods of anomaly detection, which we will address in forthcoming
analyses. However, to give a preliminary insight into the importance
of the spectral features in classification and redshift predictions, in
Appendix D, we show the gradients of the classification probability
and the output redshift with respect to input flux, which allows us to
visualize the impact of spectral features in the GaSNet predictions,
although they cannot give a real measure of the impact of the
continuum.

On the other hand, GALAXY _STARFORMING seems to be
insensitive to SNR until they reach SNR ~ 7, below which promi-
nent emission lines start to blend into the noise, and then
the continuum takes over dominating the larger errors, similar
to GALAXY_nan. We also notice different behaviour between
GALAXY_STARFORMING and STARBURST, as, for the latter,
o, is increasingly noisier toward low SNR. As the most important
features for these two classes are the emission lines, one would
expect a similar behaviour for o,. There are two reasons for this:
(1) emission lines in starburst galaxies dominate the spectra and
GaSNet-II does not learn much from the continuum for star-forming
systems. Thus the redshifts are fully determined by the ability of the
ResNets to cross-correlate emission lines over a large wavelength
range; and (2) ResNets is perhaps not the ideal tool for this emission-
line redshift estimation task, which is typically well handled by other
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DL structures, like ‘self-attention’ networks (e.g. Han et al. 2020).
We will discuss this in detail in Section 5. Finally, another source of
uncertainty in both redshift and classification can be the VDISP, as
this can produce a different broadening of the line that might reduce
the accuracy of both tasks. In Appendix E, we demonstrate that both
o, and classification accuracy show almost no correlation with the
VDISP, inside the different classes.

The bottom line is that the estimated error sizes as a function of
SNR and redshift seem to be mainly driven by the data quality and
data features as one should expect from standard analysis methods,
rather than the stochasticity of the DL network. As a consequence,
we are motivated to use o, as a proxy of the ‘robustness’ of the
redshift estimates, as we now can interpret o, as the cumulative
effect of the variance of the weights of the network (see Section 3.2)
and the data noise. Also, we can expect that the estimates with
smaller o, are more tightly distributed around the true value. In
Fig. 18, we show again the Bias versus z, which is split into ‘robust’
or ‘unstable’ categories based on whether their 0, < MAE or >
MAE, respectively, where MAE is the mean absolute error in the
validation set (Table 4). The robust limit is very close to the GF
limit, and only in the ‘GALAXY _nan’ or ‘QSO_nan’ subclasses it is
significantly larger. Thus, the robust estimates have a fraction over the
total samples that are larger than the GF defined by the Bias threshold.
This result is particularly relevant for practical applications, as for
new spectra with no a priori information on the redshift, the use of the
redshift errors proposed here allows us to discard unstable estimates
(larger deviation points) without knowing the ground truth.

4.3 4MOST mock spectra

Next, we analyse the 4MOST data set introduced in Section 2.2. The
main reason to use this data set is to test GaSNet-II with spectra
close to expected data from major Stage-IV upcoming spectroscopic
surveys, but classified on the basis of the survey requirements, thus
providing a different classification approach, more survey-oriented.
Overall, this would allow us to test the versatility of the pipeline,
to respond to different requirements, both in classification and in
redshift predictions.

The training of GaSNet-II with the 4MOST spectra follows
the same procedure discussed for SDSS-DR16 in Section 3.3. As
anticipated, the size of the sample for each class (total of 10 classes)
is the same as SDSS-DR16 (20 000) and we use the same training,
validation, and test division (70 per cent, 15 per cent, and 15 per cent).

In the 4AMOST observation phase, the labelled training data rely
on the classification of the first months of 4MOST observations to
develop a customized training sample based on data collected from
the different survey teams. Alternative approaches might rely on the
use of mock data, or using visually classified data.

4.3.1 Classification

Starting with the classification, in Fig. 19 we show the confusion
matrix obtained over the test samples. GaSNet-II achieves an
accuracy beyond 90.0 percent for the majority of subclasses, and
an average overall accuracy of 93.4 per cent, which is slightly better
than the one found for SDSS-DR16 (92.4 per cent). One reason can
be the absence of contamination discussed above, which we will
address at the end of this section; another reason is likely to be the
even stronger disparity in SNR between subclasses. Before we check
that, we first discuss some other relevant features from the confusion
matrix.
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Figure 15. The mean redshift predictions and errors of the six extragalactic SDSS subclasses. The error bar of each sample point represents the standard
deviation obtained from the MC estimation of 10 subnetworks. In the top left of each main panel, the subclass name, MAE, Az, and the GF are displayed.
The points in the top panels display the mean of the distribution of the 7, residuals (Z, — z,) with respect to the true values (z,) in each bin, and error bars
corresponding mean o ; values (see the text).
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the uncertainty realistically. In low SNR regions, the value of median o is
larger compared to the high SNR regions, as expected.
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Figure 18. Bias of the 10 subnetworks used. The x-axis is the real redshift
and the y-axis is the Bias. The MAE is listed in Table 4. ‘robust’ is defined
as 0, < MAE, where MAE is the mean absolute error in the validation
set. This demonstrates that unstable points (larger deviation points) can be
automatically found without knowing the ground truth.
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Figure 19. The figure displays the classification results of the 4AMOST model
on the testing set. It presents a confusion matrix where the legends are the
same as Fig. 12. This figure indicates an average accuracy of 93.4 per cent.
The worst performance is observed in the subclass RedGAL, which has
an accuracy of only 66 percent. 29 percent of the spectra in RedGAL are
misclassified as ClusB. Note that the matrix has to be read along columns, that
is the direction along which the 100 per cent of the true labels are distributed
by the classifier.
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Figure 20. We randomly pick four spectra. The upper panel shows ClusB
and RedGAL spectra with a redshift of 0.3. The bottom panel shows the
spectra with a redshift of 0.9.

In particular, we notice a striking 100 percent score by the
COSMO_AGN class that is superior to the 91 per cent scored by the
GaSNet-1I on the SDSS AGN sample. Since the mean SNR of the two
data sets is very close in galaxy and AGN, (see Tables 1 and 2), we
identify the reason for this overperformance on the COSMOS_AGN
sample to the different redshift distributions, whereby the 4AMOST
sample lies at a much higher average redshift compared to the SDSS
AGN. This makes it easier for GaSNet-II to unequivocally distinguish
the brightest AGN features from, for example, starburst/star-forming
galaxy emission lines, for faraway systems than for closer ones.
However, another factor that might help this outperformance is the
limited chance of cross-contamination among the training/testing
classes, which have been constructed here on distinct templates to
obtain the mock spectra (see also below).

The only clear case of such contamination is the mixing between
subclass ‘ClusB’ (label 6, corresponding to bright cluster galaxies)
and ‘RedGAL’ (label 8, i.e. red galaxies). ClusB likely systems are a
peculiar subsample of the RedGAL systems, at least at low redshift,
as bright central cluster galaxies are generally old, red galaxies,
particularly in their centres (see e.g. Bernardi et al. 2007), which is
where 4MOST fibres would be placed. Fig. 20 shows the templates
of two ClusB spectra at redshift 0.3 and 0.9, respectively versus
two redGAL templates at the same redshifts, normalized to the
same flux at 6000 A at each redshift. We are asking the classifier to
separate spectra that are nearly indistinguishable at the same redshift.
Surprisingly, in Fig. 19, we see that GaSNet-1I can correctly predict
the clusB galaxies, while it confuses the RedGAL for ClusB in
~ 29 per cent of the cases. We can possibly explain this with the
fact that ClusB galaxies often systematically show emission lines in
their spectra, while the RedGAL mostly do not (see again Fig. 20),
hence we argue that the emission lines are features that GaSNet-1I
associates to ClusB galaxies and not RedGAL, where they are not
dominant. This means that RedGAL spectra with emission lines have
alarger chance of being classified as ClusB. To conclude this section,
we refer the reader to Appendix B where, as for SDSS, we have
performed the classification of the spectra by grouping the different
star, galaxy, and AGN classes to emulate a coarse STAR-GALAXY-
AGN classification, to be compared with a similar one from SDSS
and DESI. We stress here that this experiment, besides putting the
performances on 4MOST templates in the context of other reference
surveys, provides us also a test on a more physically oriented sample,
rather than a survey-oriented classification discussed so far. This is
closer to what GaSNet will be required to perform in the early stage of
4MOST operations. In this case, we can see that the coarse classifier
can reach an even higher mean accuracy of 98 per cent, comparable
with what we have seen for SDSS.
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4.3.2 Redshifts

We finally show the results for the redshift predictions, limiting
ourselves to the MC estimates with errors. In Fig. 21, we show the
predicted redshifts for all the 4MOST extragalactic subclasses. The
figure indicates an average Az of 0.0055 for galaxy types (ClusB,
WAVES, RedGAL, and tides_host), while it becomes 0.003 for AGN.
The average GF for the galaxy is 0.68, while for AGN is 0.71.
These latter are the class for which GaSNet-1I also provides the most
accurate classification, meaning that the combination of good SNR
and emission lines, permits high performances for both tasks. Among
the galaxy types the average error is dominated by the WAVES class
which has the largest errors, possibly due to the low average SNR
(see Table 2). The same WAVES class also shows the highest relative
scatter A, = 0.014 compared to A, ~ 0.004 shown by the majority
of the other subclasses. Overall the A, found for the 4AMOST mock
sample seems slightly worse than the one measured for SDSS (A,
~ 0.003), although a direct comparison is not appropriate, with the
two samples having different observational constraints, especially
in terms of SNR, for instance, 4AMOST AGNs and galaxies have a
lower SNR except the ‘tide_host’ subclass (e.g. comparing Tables 1
and 2). The 4MOST redshifts also show a GF on average slightly
lower than the one of SDSS as reported by the mean good fractions
in the legends of Fig. 21, against the GFs reported in Fig. 15, for
SDSS. Once again the WAVES spectra are the ones with the worst
GF, which are a consequence of the systematically larger errors,
ultimately driven by the low SNR.

As for the comparison with standard methods, here a full detailed
check of the relative performance of GaSNet-II with respect to tools
like REDROCK and REDMONSTER is beyond the scope of this paper.
However, to put the GaSNet-II performances into perspective, on
a series of benchmarking tests on simulated 4MOST consortium
data sets, we have found GaSNet-II GF to be ~20 per cent worse
than REDROCK and REDMONSTER, although, for some classes, like
AGN/QSO, GaSNet-II shows a GF even better than classical tools.
For instance, REDMONSTER shows an average GF of 0.71 (GF for
AGN/QSO is 0.43), mean absolute deviation (MAD) of 0.00042, and
Time (in the unit of seconds per spectrum per core, sec/spec/core) of
1.02; REDROCK shows an average GF of 0.48 (GF for AGN/QSO is
0.23), MAD of 0.051, and untested Time; while for GaSNet-II we find
an average GF of 0.40 (GF for AGN/QSO is 0.70), MAD of 0.0086,
and Time of 0.00089 on the AGN/QSO/GALAXY redshift test sets.
This indicates that there is still room for GaSNet improvements,
which can be consolidated with final, more sophisticated, mock data,
and eventually with the first 4AMOST observations.

4.4 DESI spectra

We finally apply GaSNet-II to the early release DESI data. As seen in
Section 2.3, the DESI classification taxonomy is less complex only
a very broad classification (i.e. star, galaxy, and quasars), and their
numbers are less abundant, as we could test our tools over ~1050
classified spectra for each class. This allows us, besides testing
GaSNet-1I on a further data set, with a different observation set-
up and size, to perform a basic analysis over a ‘coarse’ classification
which is similar to what we expect to implement for 4MOST earlier
data releases (see also Appendix B). The classification and redshift
estimates are quickly discussed below.

4.4.1 Classification

The separation of the test sample on the three DESI classes is shown
in Fig. 22, where the confusion matrix indicates the accuracy of each

MNRAS 532, 643-665 (2024)

of the three classes is larger than 93 per cent, and the average accuracy
is 96 per cent. The high accuracy is obviously highly dominated by
the small number of classes, however, this also shows an almost
absent ambiguity of the classification for classes notoriously prone
to confusion, for example, stars and galaxies. This is likely due
to the ability of GaSNet-II to guess the redshift and (eventually)
the shapes of the spectral features. We expect though that with a
larger training sample the accuracy will be further increased. To put
these results in perspective with other data sets, in Appendix B we
have performed a similar analysis for SDSS-DR16, by collapsing all
spectra subclasses into three broad classes as for the DESI data set.
We anticipate that, using the same number of SDSS training samples,
we find a 99 per cent accuracy for such a coarse classification, that
seems rather higher than the one obtained for DESI. This implies that
the quality of the spectra, rather than the number of training samples,
is the major factor contributing to the accuracy. We expect to return
to such a test in upcoming DESI releases to confirm this result.

4.4.2 Redshifts

Finally, we show the MC predictions of the redshifts and their errors
for the DESI GALAXY and QSO objects. In Fig. 23, we can see
a good agreement between the predictions with the ground truth
and an average redshift error (Az) of the two classes of 2.8 per cent
for galaxies and 4.8 per cent for QSOs. These errors are larger than
the ones obtained for former data sets for two main reasons. The
first is the unbalanced redshift distribution, especially in the high-
redshift part (i.e. z > 0.4 for galaxies and z > 2.5 for QSO), where
there are fewer systems, especially for the galaxies. The second is
the overall smaller training samples available for these early-release
data from DESI (about 1/10 of the former data sets), resulting in
typically larger errors on the individual spectra. Once we can include
more DESI training samples, and use customized subnetworks for
the special subclasses, we expect the accuracy will rise to the level
found for SDSS and 4MOST.

5 DISCUSSION

In this section, we will discuss the potential strategies for improve-
ments in performance and further developments.

As far as classification is concerned, a key problem is how to
improve the ‘absolute’ accuracy of the classification method. So far,
we have benchmarked GaSNet-1I with respect to the labels assigned
from the different data sets (relative performances). For the SDSS
and DESI data sets, the labels are deduced from the PCA fitting, and
this can bring some systematics. In fact, when using a classification
based on real spectra as labels for the training of the DL tools,
the upper limit of the ‘absolute’ accuracy of the trained networks
is decided by the accuracy of the training set, which in turn is set
by the accuracy of the ‘traditional’ pipeline used for labelling it.
A viable alternative is to incorporate human-labelled data, like, for
example, SDSS-DR12 superset (Paris et al. 2017, 2018). However,
this approach is not bias-free either, introducing a different form of
bias: human judgment. Another physically motivated alternative is
to utilize mock data, based on theoretical templates, for example,
similar to those used for the 4MOST sample in Section 4.3.1. In
Fig. 24, we describe a general procedure for training on simulated
data. Here, the function F represents:

(P;,0), i€ galatic
(P;, z;), i € extragalactic.

F (flux) = { (13)
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Figure 21. Redshift predictions for the five extragalactic 4AMOST mock subclasses. It is worth noting that the simulated spectra are produced on a coarse grid

of redshifts, hence the quantization. Legends are identical to Fig. 15.
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Figure 22. The DESI classification on the test set. Legends are identical
to Fig. 12. As before, the matrix should be read along columns, that is the
direction along which the 100 per cent of the true labels are distributed by the
classifier.

The networks shown in the figure serve as a powerful fitting tool that
minimizes the need for manual adjustments. The mock data, pro-
duced under specific physical conditions (i, z;), are used as training
data for the networks. Subsequently, well-trained networks are set up
by optimizing the prediction accuracy of the parameters (i, z;). If the
training sample is complete and accurate, these well-trained networks
can be considered, by construction, as the optimal tools maximizing
the ‘absolute’ accuracy of the predicting parameters (i, z;) when ap-
plied to real observational data. In practice, this is possibly true only
if: (1) the theoretical models are correct, and (2) one introduces into
the process all the observational conditions to maximize the fidelity
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Figure 23. Redshift predictions of two DESI classes (GALAXY and QSO).
Legends are identical to Fig. 15.
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Figure 24. The general process of networks trained by simulation involves
training on mock samples, finding the mapping F, and predicting real data. The
training data are generated with specific parameters (i, z;) and observational
realism. The networks are trained to recover the labels i, z;, and ultimately, the
well-trained networks are used to fit the parameters i, z; based on observational
data input. It is a first-principles-based method rather than an empirical-based
one.
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between mock train/test sets and observations, including Poissonian
noise, realistic distributions of SNR, seeing, intrinsic broadening of
the features (e.g. galaxy kinematics), artefacts, etc. (see e.g. Fig. 24).
The former condition is generally satisfied for most of the objects one
expects to classify in galactic and extragalactic surveys as there are
rather robust theoretical stellar (e.g. Coelho 2014) and galaxy/QSO
templates (e.g. Kewley et al. 2001). However, there might still be
remaining systematics due to specific model shortcomings or even
‘unknown’ phenomena that are not fully accounted for by standard
theories or empirical models. In principle, these latter systems would
possibly appear as ‘anomalies’ in theoretical-based classifications
that can be studied separately either to improve models or explore
new phenomena. With regard to ‘observational realism’, the inclusion
of more observational conditions is something that is currently under
development (in the case of imaging data, see e.g. Yin et al. 2022).
Despite these difficulties, which we aim to address in future analyses,
the main advantage of using mock data sets is the freedom to
choose the hyperparameters that one is expected to predict with
spectra, and then optimize the training sample accordingly (a kind of
active learning loop), for example, using theoretical-based simulation
spectra covering a wide and physical range of these hyperparameters.
Another advantage of using the mock spectra is that they do not suffer
the poor sampling problem, which plagues empirical data sets (e.g.
rare events, like strong gravitational lenses, or high-redshift galaxy
samples, etc.). As a result, they eliminate the biases introduced by
incomplete or poor sampling.

Regardless of the philosophy behind the training sets, there might
be further strategies that can help improve the classification. One
is the hierarchy. Classifications can be done in one step (as we
have proposed in Sections 4.2.1, 4.3.1, and 4.4.1) or multiple steps.
Spectra can be roughly classified in the first step, followed by a more
sophisticated subclassification in subsequent steps (see e.g. Sdnchez-
Saez et al. 2021). This decision-tree-like classification can allow
us to have a more fine-grained and detailed classification process.
The architecture of multiple identical subnetworks, similar to what
we currently use, can be easily rearranged into a decision-tree-like
hierarchical structure to realize a multi-ML model combination ‘tree’
structure, with more branches and deeper layers.

Moving to the redshift estimates, we foresee that relevant im-
provements can be obtained using ‘self-attention’ (Vaswani et al.
2017), which is becoming popular as the state-of-the-art model in
DL applications. For instance, Fig. 20 is an example where the
classifier based on the ResNet struggles to effectively recognize the
slight difference in the spectrum when there is a mix of features
like the spectrum continuum and emission lines. ‘self-attention’ has
shown to be superior in recognizing the global features and ‘long-
range correlation’” compared to CNNs (Han et al. 2020) with the
net effect that both classification and redshift estimates can highly
be improved (see also Section 4.2.3). We plan to implement these
alternative approaches in future work by replacing the convolutions
with ‘self-attention’ in the small blocks of our network.

Finally, alternative methods of estimating the redshift error exist.
In standard networks, keeping the inputs the same leads to the same
outputs, which is stable but does not allow us to generalize the error
estimates. Apart from introducing multiple subnetworks to estimate
the errors, as we have already experimented with in this paper, there
are other approaches to introduce uncertainty, such as MC drop-
out techniques (Podsztavek, Skoda & Tvrdik 2022) or Bayesian
neural networks (Perreault Levasseur, Hezaveh & Wechsler 2017,
Zhou et al. 2022; Gentile et al. 2023). We stress though that we
expect that these methods are unlikely to yield significant differences
with respect to our approach as these methods obtain the error by
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repeating predictions. We aim to test these different techniques in
future analyses.

6 CONCLUSION

We have developed new tools for spectroscopy classification and
redshift prediction using DL techniques and constructed a pipeline
that we have tested on SDSS, 4MOST, and DESI data sets. The
performance of our pipeline on these three different data sets can
be summarized as follows: on SDSS, the classifier achieves an
average accuracy of 92.4percent for a 13-subclass classification
task (with most types exceeding 90 per cent), and redshift prediction
accuracy around 0.23 per cent for galaxy and 2.1 per cent for QSO
subclasses. On 4MOST, the classifier achieves an average accuracy
of 93.4 per cent for a 10-subclass classification task and redshift pre-
diction accuracy of around 0.55 per cent for galaxy and 0.3 per cent
for AGN. On DESI, the classifier achieves an average accuracy of
96 per cent for a 3-class classification task and redshift prediction
accuracy of around 2.8 per cent for galaxy and 4.8 per cent for AGN.
The accuracy of classifiers is strikingly consistent. However, the
aspect of redshift prediction is clearly dependent on various factors
such as the types of subclasses/classes, the average spectral element
SNR, and the sample size of the training data. For example, the poor
SNR of subclass WAVES results in the highest error on the 4AMOST
data set, while the relatively sparse training data for DESI contributes
to a larger redshift error compared to SDSS and 4MOST.

GaSNet-II's efficiency and accuracy make this tool suitable for
real-time analyses of nightly observations. The predictions for 39 000
spectra can be completed in less than one minute. Among the data
products, GaSNet-II can provide realistic redshift errors from a built-
in subnetwork architecture simulating an MC test. As seen in the
discussion of the SDSS-DR16 results. The redshift error of each
data point can be also used to assess the robustness of the predicted
redshifts.

In summary, DL methods offer significant advantages for Stage-
IV spectroscopic infrastructures like DESI, 4MOST, and MOONS in
various aspects, such as efficiency, ‘data-driven’, better performance
in low SNR, better consistency and systematics, and so on. Although
the current redshift accuracy leaves room for improvement, DL, as a
new tool, holds huge potential for further development. Many aspects
of improvement can be done with the future 4MOST simulations.
Further data sets such as theoretical spectra and improvements
such as a ‘self-attention’ structure will be applied to GaSNet-II in
the future to improve the ‘absolute’ accuracy of classification and
redshift estimates, respectively.
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APPENDIX A: CROSS-CONTAMINATION ON
DATA SET

We have anticipated in Section 2.1 that the empirical classification
of the SDSS-DR16 cannot guarantee full accuracy, and we cannot
exclude cross-contamination among the different classes. This might
have an impact both on the classification and the accuracy of
the redshifts. As discussed in Section 5, a possible workaround
is to train on a purer sample of mock spectra based on well-
established theoretical or observational templates (Bellstedt et al.
2020; Robotham et al. 2020; Thorne et al. 2021). An example
of how this might lead to higher performances has been offered
by the 4MOST sample, where for some classes we have reached
100 per cent accuracy (e.g. COSMOS_AGN, ESN, and GAL_HR) for
a combination of clean templates and rich training sample, although
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Figure Al. Confusion matrix of a three-class classification (AGN, STAR-
BURST, and STARFORMING), showing how this changes with increasing
random contamination (O percent — 5 percent — 10 per cent). The contam-
ination fraction refers to randomly selected and shuffled labels in the
data set. As expected, as contamination increases, the accuracy decreases.
Roughly speaking, with respect to the original sample (0 percent artificial
contamination), we observe an average decrease in accuracy by 3.3 per cent
for 5 per cent contaminants and 7.7 per cent for 10 per cent contaminants.
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the 4MOST training sample is not exactly built over physically
motivated templates, but, rather, specific survey targets, that might
have very specific properties, including high SNR, that make the
spectra easier to classify (e.g. tides_host).

Here, we intend to check, more quantitatively, the possible impact
of the misclassified spectra in a given class. We use the SDSS-
DR16 data set as a reference for this test and add, to each class,
Spercent or 10 percent contamination from the relatively similar
classes seen from the confusion matrix. For the sake of brevity and
clarity, we use only three extragalactic classes: AGN, STARBURST,
and STARFORMING. The result is shown in the confusion matrix in
Fig. Al. All of those three classes belong to the subclass of GALAXY
and show some degree of mixing with each other in the SDSS sample.

As additional testing, the results of cross-contamination on the
4AMOST data set (RedGAL, clusB, and COSMO_AGN) are also
shown in Fig. A2. In Section 4.3.1, the confusion matrix shows some
strong degeneracy between the class RedGAL and clusB, so we test
the cross-contamination on those two classes and COSMO_AGN.
The additional class COSMO_AGN was used to reflect the upper limit
of classification (the cross-contamination rate). We find an average
decrease in accuracy by 5.7 per cent for 5 per cent contamination and
9 per cent for 10 per cent contamination.

We end this section by showing the redshift predictions for the
samples with contamination, discussed at the end of the Section4.3.1.
Fig. A3 shows the redshift prediction results for three subclasses
(AGN, STARBURST, and STARFORMING) in the three different
cross-contamination levels (0 per cent — 5 per cent — 10 per cent). The
figure shows that the small contamination among subclasses does
not significantly decrease the accuracy of redshift prediction, but it
still causes performance degradation, such as the average decrease
in GF by 2 per cent for 5 per cent contamination and 3.3 per cent for
10 per cent contamination.
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Figure A2. Confusion matrix of a three-class classification (COMOS_AGN,
ClusB, and RedGAL), showing how this changes with increasing random
contamination (Opercent — 5percent — 10percent). The contamination
fraction refers to randomly selected and shuffled labels in the data set.
As contamination increases, the accuracy of both the COMOS_AGN and
ClusB decreases. Roughly speaking, with respect to the original sample
(Opercent artificial contamination), we observe an average decrease in
accuracy by 5.7 percent for 5percent contamination and 9 percent for
10 per cent contamination.
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Figure A3. Redshift prediction results of three subclass (AGN, STARBURST, and STARFORMINGL) in the three different cross-contamination levels
(Opercent — 5percent — 10 per cent). The first row represents 0 per cent contamination. The second row represents 5 per cent contamination. The third row
represents 10 per cent contamination. The figure indicates that the small contamination on subclasses does not significantly decrease the accuracy of redshift
prediction, but we still observe an average decrease of GF by 2 per cent for 5 per cent contamination and 3.3 per cent for 10 per cent contamination.

APPENDIX B: THE COARSE CLASSIFIER OF
SDSS-DR16 AND 4MOST

In this appendix, we briefly describe a more homogeneous compar-

STAR
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Figure B1. Results of the ‘coarse’ classification of the SDSS (left) and
4MOST (right) data set. The spectra are categorized into three classes:
GALAXY, QSO (AGN), and STAR. GaSNet-II achieved an average accuracy
of 99 per cent. The STAR class nearly achieved 100 per cent accuracy. The
class with the lowest accuracy is QSO, but it still achieved an impressive
98 per cent accuracy.

ative check of the performances of the GaSNet-1I on the three data
sets discussed in the paper, by emulating the situation where we have
the same data size and number of classes. We use the DESI sample
as a reference, as it contains the smaller data set (21 000 entries)
and coarser classification (GALAXY, QSO/AGN, and STAR). To do
that, we have regrouped the spectra belonging to these three broader
classes for SDSS (STAR: raw 1-7; GALAXY: raw 8-11; and QSO:
raw 12-13, in Table 1) and 4MOST (STAR: raw 1-5; AGN: raw 6;
and GALAXY: raw 7-10, in Table 2) respectively. To be uniform with
the DESI case, we have also randomly extracted 7000 spectra from
these re-grouped classes, to train and test the GaSNet-II, using the
same set-up of DESI training/testing. Fig. B1 shows the results of this
‘coarse’ classification of SDSS and 4MOST data sets, to be compared
with the same for DESI in Fig. 22. The figure indicates that GaSNet-
II can achieve an average accuracy of 99 per cent for classification.
The STAR class nearly achieved 100 per cent accuracy. The class
with the lowest accuracy is QSO, but it still achieved an impressive
98 per cent accuracy. Compared to the DESI classification, it exhibits
a higher accuracy for the same coarse classes and the same amount
of training data, with an improvement of about 3 per cent, which can
be attributed to the qualities of the SDSS spectrum. For instance, the
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mean SNR of stars and galaxies in SDSS spectra is higher than that
of DESI. This can be seen by comparing Tables 1 and 3.

APPENDIX C: RELATIONSHIP BETWEEN
AVERAGE CLASSIFICATION ACCURACY AND
SNR

Here, we want to test the dependence of the classification accuracy
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Figure C1. The average classification accuracy of the SDSS 13-subclasses
classification with respect to the SNR. We only consider the SNR range of
0-50.

on the SNR of the spectra (see also Section 4.2.3 for the redshift
estimates). In Fig. C1, we show the average classification accuracy
over the SDSS 13-subclasses with respect to the SNR. We consider
14 bins in the SNR range of 0-50. The figure shows that as the SNR
increases, the accuracy systematically increases and finally reaches
an upper limit of an average classification accuracy of ~ 96 per cent.

APPENDIX D: VISUALIZATION, THE
GRADIENTS OF OUTPUT

As discussed in Nepal et al. 2023, target (i.e. output label) gradients
as a function of input neuron (or wavelength), in the form of partial
derivatives of the output with respect to A can give information about
the sensitivity of output labels to each of the input fluxes. This allows
us to visualize whether the CNN is learning from the spectral features.
In Fig. D1, we have selected six SDSS extragalactic random spectra
including objects from different classes. We have paid attention to
avoiding too low SNR to avoid the gradient being dominated by
noise rather than the impact of the spectral features. As it can be
seen, the gradients of both the classification probability, |‘é—':|, and
the redshift predictions, |g—i |, show strong increases around the most
prominent features (e.g. emission lines in star-forming and starburst
galaxies) and possibly some absorption lines from normal galaxies.
Interestingly, they seem to be less sensitive to the very broad lines
from quasars, meaning that these are too smoothly varying, maybe
looking more like a continuum feature. Also interesting is the fact
that the gradients show a burst around the ‘redshifted’ 4000 A break
for the GALAXY _nan spectrum (at ~7000 A), implying that this is
a feature that can be seen by the CNN.

APPENDIX E: CLASSIFICATION ACCURACY,
REDSHIFT UNCERTAINTY, AND VELOCITY
DISPERSION

In this appendix, we test the impact of the VDISP on the spectra
classification and redshift estimates. The line broadening caused by
the VDISP might enlarge the width of emission or absorption lines,

MNRAS 532, 643-665 (2024)

3 —— flux, GALAXY_AGN, 2=0.10
2 —— zgrad
(1) bt TS bl — Pgrad
o b u I P I N
o R Ml
4000 5000 6000 7000 8000 9000

‘

i —— flux, GALAXY_nan, z=0.74
. zgrad

; MWWW ~—— Pgrad

N " WM‘ R

2 A I i& TNy Al Mk

4000 5000 6000 7000 8000 9000
3 T
> ] —— flux, GALAXY_STARBURST, z=0.11
N ] Mo . —— zgrad
o L LA I —— Pgrad
o ke bt s b
> T N PR T
4000 5000 6000 7000 8000 9000
3 T
> —— flux, GALAXY_STARFORMING, z=0.12
1 X " L —— zgrad
o [l A M " — Pgrad
-1 PO A LLA Aok A A an —
N i BT T | A
4000 5000 6000 7000 8000 9000
3 \ —— flux, QSO_BROADLINE, z=3.05
i —— zgrad
o WWW Mgty ——..P.grad
o AU T n
2 TUIRY NIRRT TN .Ab“ " A
4000 5000 6000 7000 8000 9000
— T T
B i —— flux, QSO_nan, z=1.86
=
% 1 zgrad
=l i it lol oo
=0 ARG e
E ——"Y N A«m%,lm)% quw,
S e ‘. | . —
= 1 i T [T
4000 5000 6000 7000 8000 9000

wavelength/A

Figure D1. The normalized flux and gradients of six SDSS extragalactic
spectra. Line z_grad represents the absolute redshift gradients, |% |, which is
shifted by —1; and line P_grad represents the absolute probability gradients,
|92, which is shifted by —2.

affecting the accuracy of redshift prediction. In Fig. E1 (left panel),
we demonstrate that the predicted o, of the SDSS data set is slightly
correlated with the VDISP of galaxies, as the larger the VDISP of
the galaxy, the larger the predicted uncertainty. However, in the same
figure, we also show the o, separated in the different subclasses and
we see that, for each subclass, the o, is almost independent of the
VDISP. This is mirrored by the classification accuracy (bottom panel)
where we see that, except for ‘GALAXY_STARFORMING’ which
has a sparser sampling, the accuracy also stays almost constant with
the VDISP. Hence, we conclude that the accuracy of classifications
and redshift estimates are mainly driven by the class type (meaning
spectral features) and SNR (see Section 4.2.3 and Appendix C),
rather than the VDISP.
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