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A B S T R A C T 

The size and complexity reached by the large sky spectroscopic surveys require efficient, accurate, and flexible automated tools 
for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multinetwork deep 

learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of 
classes and optimize the redshift predictions. Redshift errors are determined via an ensemble/pseudo-Monte Carlo test obtained 

by randomizing the weights of the netw ork-of-netw orks structure. As a demonstration of the capability of GaSNet-II, we use 
260k Sloan Digital Sk y Surv e y spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k 

e xtragalactic objects. GaSNet-II achiev es 92.4 per cent av erage classification accurac y o v er the 13 classes and mean redshift 
errors of approximately 0.23 per cent for galaxies and 2.1 per cent for quasars. We further train/test the pipeline on a sample 
of 200k 4MOST (4-metre Multi-Object Spectroscopic Telescope) mock spectra and 21k publicly released DESI (Dark Energy 

Spectroscopic Instrument) spectra. On 4MOST mock data, we reach 93.4 per cent accuracy in 10-class classification and mean 

redshift error of 0.55 per cent for galaxies and 0.3 per cent for active galactic nuclei. On DESI data, we reach 96 per cent accuracy 

in (star/galaxy/quasar only) classification and mean redshift error of 2.8 per cent for galaxies and 4.8 per cent for quasars, despite 
the small sample size available. GaSNet-II can process ∼40k spectra in less than one minute, on a normal Desktop GPU. 
This makes the pipeline particularly suitable for real-time analyses and feedback loops for optimization of Stage-IV surv e y 

observations. 

Key words: methods: data analysis – techniques: spectroscopic – surv e ys – software: development – galaxies: distances and 

redshifts. 
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 I N T RO D U C T I O N  

ith the upcoming all-sky spectroscopic surv e y infrastructures, 
ncluding the Dark Energy Spectroscopic Instrument (DESI; DESI 
ollaboration 2022 ), 4-metre Multi-Object Spectroscopic Telescope 

4MOST; de Jong et al. 2019 ), Multi-Object Optical and Near- 
nfrared Spectrograph (MOONS; Cirasuolo et al. 2020 ), and consid- 
ring also the slitless spectroscopic capabilities of the space-based 
issions like Chinese Space Station Telescope ( CSST ; Zhan 2011 )

nd Euclid (Laureijs et al. 2011 ), hundreds of millions of spectra
ill be acquired in the next half-decade. The first samples from
ESI are already publicly available (DESI Collaboration 2023 ). To 
ptimize the scientific outcome of these huge data sets, strategies 
o perform fast, efficient, and, most of all, accurate automated 
nalyses have become mandatory. Machine learning (ML) provides 
 E-mail: napolitano@mail.sysu.edu.cn 

(
(  

2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
 large variety of efficient solutions to achieve this goal. We have
lready demonstrated that convolutional neural network (CNN) 
odels can be very ef fecti ve in classifying spectra for specific tasks

ike the search for strong g alaxy–g alaxy lenses (GaSNet; Zhong,
i & Napolitano 2022 ), showing superior efficiency and flexibility 
ompared to traditional methods [e.g. principal component analysis 
PCA) eigenspectra fitting; see Talbot et al. 2021 ]. 

Object classification and redshift prediction are the first steps to 
e performed by standard pipelines of spectroscopy observations. 
he y pro vide basic information to be used for science applications.
or instance, the separation of quiescent early-type galaxies, from 

he starburst emitting systems is fundamental for galaxy formation 
Lehnert & Heckman 1996 ), while the classification of active galactic
uclei (AGN) is crucial to understanding the role of supermassive 
lack holes (Fiore et al. 2017 ), and the identification of quasars
quasi-stellar objects, QSOs) is important for cosmological studies 
Secrest et al. 2021 ). ML can be an efficient and practical alternative
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h permits unrestricted reuse, distribution, and reproduction in any medium, 
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o traditionally automatic methods (Bolton et al. 2012 ; Hutchinson
t al. 2016 ) to build entire ML-based parallel pipelines, similar to
hat is already done in astronomical imaging, where there have
een enormous advances in recent years. Some examples of these
atter applications are the galaxy morphology pipelines, like the
ne developed by Dom ́ınguez S ́anchez et al. ( 2022 ) for SDSS-
R17 (Sloan Digital Sk y Surv e y-Data Release 17), and the pipeline
eveloped by Boucaud et al. ( 2020 ) for Euclid . ML can offer
uge decreases in computational time and resources (Graff et al.
014 ), while providing close to human-level classification results, for
xample, in the star/quasar separation (Busca & Balland 2018 ). This
rovides the chance to o v ercome the limits typically plaguing tra-
itional classification methods in terms of computational resources,
uman intervention, limited real-time applications, scalability, etc.
Alzubaidi et al. 2021 ), thus giving us the opportunity to develop
utomatized ML-based tools (D’Isanto & Polsterer 2018 ; Parks et al.
018 ; Makhija et al. 2019 ). 
With respect to spectroscopy, a variety of automatic redshift

rediction tools and pipelines have been developed using tradi-
ional methods, but relatively little has been done in terms of

L applications. Traditional codes, such as SPECTRO1D (SubbaRao
t al. 2002 ) and REDMONSTER (Hutchinson et al. 2016 ), based on
ross-correlation methods (Tonry & Davis 1979 ), or REDROCK (Lan
t al. 2023 ), based on template fitting using a set of different PCA
omponents (DESI Collaboration 2023 ), are some examples of such
utomated tools. They have been tested or successfully applied
o larger scale spectroscopy surv e ys, generally requiring minimal
uman intervention. Ho we ver, they are often time-consuming, for
xample, if the number of templates increases, or require an op-
imization of the first guess redshifts to maximize the accuracy.
urthermore, in low signal-to-noise ratio (SNR) situations, the
erformance of some of these tools can highly be degraded (e.g.
ecause of an increasing failure rate, Bolton et al. 2012 ). 
Deep learning (DL) based methods, instead, have the advantage

f efficiency , scalability , and flexibility . Here, the applications to
pectroscopy are yet at the pioneer level and limited to the search
or strong gravitational lenses, Li et al. 2019 ), with only a DL
ool previously tested to classify spectra and measure redshift (i.e.
aSNet, Zhong et al. 2022 ) yet with the specific goal of finding
idden strong lensing emissions in galaxy spectra. Ho we ver, the first
aSNet is versatile enough to be adapted to answer most of the

ypical problems large sk y surv e ys might need to face. In particular,
t can easily perform tasks like real-time analysis for the detection of
ransients/peculiar objects, and still give a prediction of their redshift.

In this paper, we present a new DL tool that expands the capabilities
f the former GaSNet to respond to the needs for upcoming
pectroscopic surv e ys like 4MOST and DESI. DESI is expected to
bserve 30 million galaxies/AGN and 10 million stars. On the other
and, 4MOST will co v er approximately 15 000 sq de g and observ e
ore than 25 million targets. In particular, we design and test a

ull real-time pipeline based on DL that uses reduced 1D spectra
s input to (1) classify spectra in a given number of subclasses; (2)
redict the redshift; and (3) assign an error to the redshift. GaSNet-
I is a DL-based tool for spectroscopy classification and redshift
rediction which provides the probability of the type of spectrum and
he object redshift with uncertainty. To train and test the pipeline we
tart from a catalogue from SDSS-DR16 (J ̈onsson et al. 2020 ) which
rovides a large number of classified spectra grouped into about 180
lasses. This allows us to randomly select 13 subclass spectra from
he SDSS-DR 16, each with more than 20 000 spectra. The 4MOST
ock spectra (10 subclasses) and DESI early data release spectra (3

lasses) are also randomly selected as additional data sets, to examine
NRAS 532, 643–665 (2024) 
he flexibility and generality of the pipeline. In particular, the different
roperties of these three data sets will allow us to co v er a large variety
f classification situations from very specialized classifications for
DSS and 4MOST samples to a coarse-grained classification using
ESI data. 
The paper is organized as follows: in Section 2 , SDSS data sets

sed for our analysis are introduced. In Section 3 , we describe
he ML models and our no v el idea of building an ML pipeline.
n Section 4 , we present the training and testing results. In Section 5 ,
e discuss the ML predicted results, including further impro v ements

nd perspectives for further ML pipelines. In the final Section 6 , we
raw some conclusions. 

 DATA  

he main purpose of this paper is to find a DL-based method,
o classify and predict the redshift of 1D spectra. As introduced
bo v e, we are interested in applying ‘supervised’ networks, based
n labelled data. For the scope of this work, the main labels we
eed to start with are a ‘class’ and a ‘redshift’. The generality of
he tool depends on the number of classes we can separate from
heir spectral properties. While a basic separation can rely on a very
oarse classification aiming to distinguish only stars, galaxies, and
GN/QSO (P ̂ aris et al. 2017 ), for many science applications, one
ight be interested in a more detailed classification that distinguishes

arious star, galaxy, and AGN/QSO subclasses (Bundy et al. 2015 ;
an et al. 2019 ). In this case, to best train any supervised tool
e need data sets that can provide such kind of information. The

deal data set would be an observed sample of objects for which a
ualitati ve/quantitati ve classification has been performed (Liu et al.
019 ; Lyke et al. 2020 ). Ho we ver, as an alternati ve, one can use
ock data sets, where physically moti v ated templates of different

alactic and extragalactic objects in different instrumental conditions
resolution, seeing, etc.) and co v ering a realistic range of intrinsic
bject properties (e.g. luminosity, colours, redshifts, kinematics,
tc.), can mimic the data one is expected to collect for a given science
rogram (e.g. via spectral synthesis; Cid Fernandes et al. 2005 ). 
Below we describe the data we will use throughout the paper,

o v ering the two typologies of training/test samples discussed abo v e.
n particular, as the observation-based data set, we use the SDSS-
R16 data set, which contains the most detailed classified subclass

ample of sources available to date. As such, this will represent the
eference data set around which we want to construct and benchmark
ur pipeline. Furthermore, to explore the possible application of
aSNet-II to upcoming stage-IV surv e ys, we use a customized mock

atalogue, closely reproducing 4MOST observations (Driver et al.
019 ; Helmi et al. 2019 ; Merloni et al. 2019 ; Swann et al. 2019 ; de
ong et al. 2019 ). Furthermore, we take advantage of the early data
elease of DESI (DESI Collaboration 2023 ), to perform a first test of
he no v el GaSNet-II v ersion performances on a first Stage-IV surv e y
ata set. Notable for SDSS and DESI, the redshifts and classifications
re not 100 per cent reliable (see e.g. Lyke et al. 2020 ; Alexander
t al. 2023 ), which can potentially lead to deviations between the DL
redictions and the pipeline results. 

.1 Reference data set: SDSS-DR16 

DSS-DR16 (Ahumada et al. 2020 ), contains around 0.44 million
nique stars, 2.6 million galaxies, and 0.75 million quasars; all
pectra are divided into three classes (star, galaxies, and QSOs),
ach one having a different number of subclasses for a total of 181
ubclasses. Most of the subclasses comprise a number of spectra
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Table 1. Some definitions and statistics of our reference data set from 

SDSS. 

Column 1 2 3 4 5 

class subclass Label z̄ [ z min , z max ] SNR 

STAR A0 0 – – 26.2 
STAR F5 1 – – 30.5 
STAR F9 2 – – 34.9 
STAR G2 3 – – 33.7 
STAR K1 4 – – 32.8 
STAR K3 5 – – 31.1 
STAR K5 6 – – 31.0 
GALAXY nan 7 0.46 [0.00, 1.86] 5.82 
GALAXY AGN 8 0.21 [0.00, 0.57] 14.3 
GALAXY STARBURST 9 0.15 [0.00, 0.57] 9.78 
GALAXY STARFORMING 10 0.11 [0.00, 0.56] 12.4 
QSO nan 11 1.68 [0.01, 7.04] 2.64 
QSO BROADLINE 12 1.78 [0.03, 5.29] 6.54 

Notes . Column 1: the name of the different subclass, constituted by the class 
name and subclass name. The subclass name ‘nan’ denotes classes with no 
specific subclass. Column 2: the label we used afterward. Column 3: the 
mean redshift of the subset. Column 4: the redshift range. Column 5: mean 
median signal-to-noise ratio, SNR . 
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Figure 1. Example spectra of the seven stellar subclasses, corresponding to 
the first 7 of the 13 subclasses constituting the SDSS sample listed in Table 1 . 
The A, F, G, and K stars with different subtypes are selected as the SDSS test 
samples to validate the ability of fine classification. 
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maller than a few hundred. The classification and redshift pipeline 
f SDSS is based on a χ2 minimization, by comparing each spectrum 

o the combination of basis templates, which are derived from rest-
rame PCA of training samples (Bolton et al. 2012 , B + 12 hereafter).
he number of labelled spectra is more than four million. 1 In Table 1 ,
e report the only 13 subclasses that have more than 20 000 classified
bjects, as this is the minimal sample size we need for the best
raining of our tools. Despite these representing a tiny fraction of
he original class list (181), we stress that these 13 subclasses are
epresentative of the most common objects one would expect to 
lassify in typical spectroscopic surv e ys, especially if we look at the
xtragalactic sample. Most of the excluded classes, though, consist 
f stellar types (e.g. O, B star, dwarf, special carbon star, etc.) that
ave small observational samples collected, due to their intrinsic 
arity. Of course, this is a limitation if one wants to apply the current
lassifier to real data that we expect to solve in the future by collecting 
ore complete samples to build a compelling training sample, for 

xample, using the early release of upcoming surv e ys (e.g. DESI and
MOST). Also, the reduced number of subtypes adopted might not 
eturn the true final accuracy of the method, as we cannot predict if
he classifier can perform closely to the av erage accurac y for all the

issing classes. Ho we ver, we belie ve that the number and variety
f classes we have collected for this test, is already large enough
o assess the potential of these (no v el and une xplored) techniques.
ndeed, since the main objective of this paper is to check if DL can
fficiently and automatically classify spectra and measure redshifts of 
stronomical sources, the main conclusions we will draw will not be 
ffected by the number of classes adopted, as long as the network can
e trained for each class with a sufficiently large and representative 
no wledge base. Follo wing this same line of argument, our results
re also not affected by the accuracy of the classification performed in 
 + 12 , as long as all spectra are assigned to a given class following

elf-consistent criteria. In this respect, GaSNet-II would just replicate 
he same classification bias intrinsic to the SDSS-DR16 sample, if 
ny. Ho we ver, from the perspecti ve of the application to upcoming
urv e ys, the problem of cross-contamination among classes needs 
 DR16 Optical Spectra Overview . 

t  

2

o be addressed to quantify how much this can impact the purity
f classifications. Although this is not among the objectives of this
aper, we briefly discuss this in Appendix A . 
Finally, for the 13 suitable classes from SDSS-DR16, we can 

andomly select 20 000 spectra from each of these classes to collect
 total catalogue of 260 000 spectra, constituting our primary data
et. Most of the classes do not o v erlap physically, e xcept for the
BROADLINE’ one, because if any galaxies or quasars have lines 
etected at the 10 σ level with velocity dispersion (VDISP) σ

 200 km s −1 at the 5 σ level, the label ‘BROADLINE’ is added to
heir subclass. 2 The 20 000 spectra in each subclass are further split
nto random 70 per cent, 15 per cent, and 15 per cent subsamples to
e used in training, validation, and testing, respectively. 
Some typical spectra of different galactic (stars) and extragalactic 

galaxies/AGN/QSOs) types are shown in Figs 1 and 2 , respectively.
he spectra are trimmed to stay within 4000–9000 Å wavelength 

ange, for uniformity, then re-sampled to co v er 5001 pix els, for a
nal ef fecti v e binning of 1 Å pix el −1 . Besides this ‘pre-processing’
tep, producing a uniform binned spectrum with respect to the 
riginal one, no additional data manipulation has been applied to 
he data. The range and mean redshift and SNR are listed in Table 1 .
MNRAS 532, 643–665 (2024) 

 https:// www.sdss3.org/ dr9/ spectro/ catalogs.php 

https://www.sdss4.org/dr16/spectro/#SDSSopticalMilkyWayobservingprograms
https://www.sdss3.org/dr9/spectro/catalogs.php
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M

Figure 2. Example spectra of SDSS extragalactic subclasses, as listed in 
T able 1 . W e can clearly see the different features characterizing the different 
classes. From top to bottom, in particular, we can notice the increasing 
importance of the emission lines that play an important role in redshift 
prediction. The ‘nan’ type spectra generally lack such emission lines, although 
they might still contain some low-SNR ones, which are hard to see. This 
means that the ‘nan’ sample might o v erlap with other emission-line classes. 
QSOs also show a power-law continuum that does not carry any redshift 
information. 

Figure 3. The redshift distribution of the SDSS-DR16 data set (stacked 
histogram). The mean and range of redshift are already shown in Table 1 . 
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Figure 4. The SNR distribution of the SDSS-DR16 data set (stacked 
histogram). Top: star classes; middle: galaxy classes; and bottom: AGN 

classes. In general, the extragalactic objects are fainter than the star classes. 
The mean SNR is shown in Table 1 . 
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he distribution of redshift and SNR of different subclasses are
hown in Figs 3 and 4 . We stress that the high-redshift end on the
edshift distribution in Fig. 3 is populated by a few systems. This is
mportant to keep in mind, as we expect that this undersampling can
NRAS 532, 643–665 (2024) 
mpact the redshift predictions at the higher end of the class redshift
istributions. On the other hand, the SNR distribution co v ers quite
 high range, except for the QSO, which also shows a significant
ndersampling at SNR > 10, and (counter-intuitively) causes worse
redictions in this SNR range. Overall, to prevent such selection
ffects, one solution can be the use of simulated spectra, in order to
ollect a more balanced training data set. Although useful to solve
hese ‘completeness’ problems, this strategy has other limits which
e will discuss in the next section, where we make use of 4MOST
ock spectra, as an additional data set to test. 

.2 Other data set: 4MOST mock spectra 

he data set consists of approximately 200 000 mock spectra
btained to reproduce 4MOST observation conditions, which are
ategorized into 10 different subclasses according to the adopted
emplates. We make use of a mock catalogue of spectra based
n a customized software package, 3 reproducing the Exposure
ime Calculator prediction of observed spectra for 4MOST. The
oftw are mak es use of a series of customized templates selected
or the different surv e ys (see Introduction) to be tested within the
xtragalactic Pipeline working group (IGW8) and the Classification
orking group (IGW9) of the 4MOST consortium. The spectral
avelength range is cut to between 4000 and 9000 Å, and the number
f pixels is interpolated to obtain 5001 pixels. The simulated spectra
re generated from the given spectral energy distribution (SED)
emplates for a given set of observation conditions and random noise
including cosmic rays and randomized Ly α forest). 4 The spectral
ignal is obtained according to the exposure time and extinction: in
articular, the exposure time is taken to be 1200 s for all spectra,

https://escience.aip.de/readthedocs/OpSys/etc/master/index.html
https://github.com/jkrogager/py4most
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Table 2. 4MOST simulation data set. 

Column 1 2 3 4 5 

class subclass Label z̄ [ z min , z max ] SNR 

Dyn 0 – – 74.5 

GalHR 1 – – 39.9 

ESN 2 – – 12.8 

GalDiskLR 3 – – 140.4 

MCsn 4 – – 72.3 

COSMO AGN 5 2.2 [0.9, 4.0] 6.3 

ClusB 6 0.52 [0.3, 1.0] 5.8 

WAVES 7 0.32 [0.0, 0.8] 1.6 

RedGAL 8 0.33 [0.0, 1.1] 8.7 

tides host 9 0.11 [0.0, 0.6] 19.7 

Notes . Column 1: the name of the different subclass. Column 2: the label we 
used afterward. Column 3: the mean redshift of the subset. Column 4: the 
redshift range. Column 5: the mean median signal-to-noise ratio, SNR . The 
first five subclasses are galactic objects and the last five are extragalactic 
objects. 
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nd the extinction is determined by the average galactic reddening 
aw parametrized by Fitzpatrick & Massa ( 2007 ). The final sample
ontains a total of 10 subclasses, 5 galactic and 5 extragalactic. 
he galactic objects are: metal-poor stars and other dynamics 

racers (Dyn) of The Milky Way Halo Low/High-Resolution Surv e y 
Christlieb et al. 2019 ; Helmi et al. 2019 ), Cepheids in Magellanic
loud (GalHR) of 1001MC Surv e y (Cioni et al. 2019 ), White
warf (ESN) of 1001MC Surv e y, Galactic disc stars (GalDiskLR) of
MOST Surv e ys S1–S4 (Bensby et al. 2019 ; Chiappini et al. 2019 ;
hristlieb et al. 2019 ; Helmi et al. 2019 ), and stars of Magellanic
loud (MCsn) in 4MOST Surv e y S1 (Christlieb et al. 2019 ; Helmi
t al. 2019 ). The extragalactic simulated sources are taken from
ock catalogues and spectra provided by the 4MOST consortium 

 xtragalactic surv e ys: S5 eROSITA Galaxy Cluster Redshift Surv e y
Finoguenov et al. 2019 ), S6 AGNs (Merloni et al. 2019 ), S7 Wide-
rea VISTA Extragalactic Surv e y (WAVES, Driv er et al. 2019 ; Jin

t al. 2024 ), S8 Cosmology Redshift Surv e y (Richard et al. 2019 ), and
10 The Time-Domain Extragalactic Surv e y (Swann et al. 2019 ). The
espective contribution in simulated spectra of each survey is 2099 
24 658, 6056, 10 443, and 13 386) for S5 (S6, S7, S8, and S10). The
emplates used by S5, S6, and S8 were obtained by stacking spectra
ith the method from Comparat et al. ( 2020 ). 5 The stacked spectra
ere observed by SDSS within the Extended Baryon Oscillation 
pectroscopic Surv e y (eBOSS) or the SPectroscopic IDentification 
f ERosita Sources (SPIDERS) programs (Almeida et al. 2023 ) 
nd have similar properties to the selected targets to be observed 
y 4MOST consortium surv e ys S5, S6, and S8. As opposed to the
DSS-DR16, the classes available in the 4MOST sample are ‘surv e y
riented’. In fact, the templates simulated come from different 
ethods, and they are not purely grouped by physical properties, 

or example, star-forming versus passive galaxies or AGN, but rather 
ustomized for the surv e y requirements, including the SNR. 6 This is
vident, for example, for the WAVES sample, which requires only 
edshift measurements of the targets, with the minimal exposure 
ime and SNR needed to reach a reliable measurement. Table 2 
hows the label of subclasses, SNR, and redshift distribution, while 
n Figs 5 and 6 we show some typical spectra from each of the 10
lasses. The galactic objects have a higher average median SNR than 
he extragalactic objects. In the 4MOST sample, galactic objects 
xhibit a higher SNR than those in the SDSS samples, whereas 
he extragalactic objects show a slightly lower SNR . The redshift 
istributions of the five extragalactic classes are shown in Fig. 7 . The
alaxy classes show a distribution that is similar to the one seen for
he SDSS-DR16, while the quasars show a flatter distribution than 
he real data. As mentioned in Section 2.1 , this might help alleviate
he bias associated with incompleteness. Ho we ver, this also raises the
uestion of how realistic the ‘prior’ distribution adopted in simulation 
an be (e.g. see discussion in Li et al. 2022b , for imaging mock data).
e postpone this test until we can access deep 4MOST observations, 

ully accounting for selection effects. Until then the 4MOST mock 
 https:// github.com/ JohanComparat/ qmost templates 
 The main reason for this particular choice is that at the moment we have 
nished this work there was not yet a uniform physically moti v ated set of 

emplates available for g alactic/extrag alactic targets in 4MOST, although 
 list of FGK star targets (from the galactic working group, IWG3) and 
 catalogue of stars with known labels for half a million stars from 

ALAH/APOGEE/RAVE/Gaia (from the ISSI team) will be available, and 
ill be used for future GaSNet analyses. This does not represent a major issue 

or the purpose of this paper which aims to show the capabilities of the DL 

o perform classifications/regression tasks, regardless of the physics behind 
he spectra. 

Figure 5. Example spectra of five galactic subclasses of the 4MOST sample, 
as listed in Table 2 . From top to bottom, there are Dyn, GalHR, ESN, 
GalDiskLR, and MCsn. 

d  

g  

o  

2  

f

ata set provides us a unique opportunity to test GaSNet-II as a
eneral purpose ‘surv e y-oriented’ classifier, based on a large variety
f classes, at the same time . Each subclass consists of approximately
0 000 spectra, which are split into 70 per cent/15 per cent/15 per cent
or training, validation, and testing, respectively. 
MNRAS 532, 643–665 (2024) 
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Figure 6. Example spectra of five extragalactic subclasses of the 4MOST 

sample (simulated), as listed in Table 2 . From top to bottom, there are 
COSMO AGN, ClusB, WAVES, RedGAL, and tides host. 

Figure 7. The redshift distribution of the 4MOST data set. The mean and 
range of redshift are already shown in Table 2 . 
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Table 3. DESI data set. 

Column 1 2 3 4 5 

Class Label z̄ [ z min , z max ] SNR 

STAR 0 – – 19.1 
QSO 1 1.59 [0.06, 4.27] 6.54 
GALAXY 2 0.196 [0, 1.69] 7.53 

Notes . Column 1: the name of different classes. Column 2: the label. Column 
3: the mean redshift of the subset. Column 4: the redshift range. Column 5: 
mean signal-to-noise ratio, SNR . 

Figure 8. The typical DESI spectra of QSO, STAR, and GALAXY classes. 
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.3 Other data set: DESI spectra 

he data set is constituted of 21 000 randomly selected DESI
pectra, 7 which are categorized into three classes, QSO, STAR, and
ALAXY. Each class consists of 7000 spectra in the data set. The
ESI spectra are randomly selected from ‘sv1’ (‘Target Selection
alidation’) samples and ‘sv3’ (One-Percent Surv e y) samples with
NR larger than 2 and ZWARN flat equal 0. Spectra are split

nto 70 per cent/15 per cent/15 per cent for training, validation, and
esting, respectively. In the early data release version, DESI only
rovides a separation of the observed object into QSO–STAR–
NRAS 532, 643–665 (2024) 

 https:// data.desi.lbl.gov/ public/ edr/ 8
ALAXY, with only stars possessing further subclasses (eight in
otal), but with too few spectra to be used for training here. Hence,
he DESI data set can be used to test GaSNet-II for a coarsely
lassified, poorly sampled data set (e.g. to be compared to a similar
est on SDSS-DR16 as in Appendix B ). The DESI classification
nd redshift prediction pipeline used REDROCK , a software package 8 

ased on fitting a set of PCA templates to every target at every redshift
DESI Collaboration 2023 ). The DESI spectra consist of three bands
 B , R , and Z bands), with a wavelength range from 3600 to 9800
. Once again, spectra are interpolated to co v er 5001 pix els in the
avelength range 4000–9000 Å, which are then used for the training.
ore details of the data set are shown in Table 3 . The samples have a

imilar level of SNR to the SDSS samples (Table 1 ) after the selection
onditions were imposed. In Fig. 8 , we show some spectra from the
hree different classes. Here, we have also highlighted, in different
olours according to the legend, the subspectra collected from the
hree DESI arms, that are combined in the final DESI full-wavelength
ange spectra. Finally, the redshift distributions of galaxy and quasar
amples are shown in Fig. 9 . 

 PIPELINE  DESCRI PTI ON  A N D  T R A I N I N G  

hanks to their fle xibility, efficienc y, and accurac y, the multinetworks
ombination can be applied to the prediction of various astronomical
arameters, and possibly form a fully automatic DL pipeline. The
NN (Krizhe vsky, Sutske ver & Hinton 2012 ) and the residual
onnection (ResNet; He et al. 2015 ) are two of the most widely tested
L architectures. CNN and ResNet have been extensively applied

o classification and regression problems in astronomy, such as the
hotometric strong lens detection (Li et al. 2019 , 2021 ; Petrillo et al.
 https:// github.com/ desihub/ redrock/ releases/ tag/ 0.15.4 

https://data.desi.lbl.gov/public/edr/
https://github.com/desihub/redrock/releases/tag/0.15.4
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Figure 9. The redshift distribution of the DESI data set. The mean and range 
of redshift are shown in Table 3 . 
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019 ; Huang et al. 2020 ), galaxies morphology classification (Ball
t al. 2004 ; de Diego et al. 2020 ; Dom ́ınguez S ́anchez et al. 2022 ),
tar, galaxy, or quasars identification (Kim & Brunner 2017 ; Busca &
alland 2018 ; Parks et al. 2018 ; Guo & Martini 2019 ), photometric

edshift predictions (Hoyle 2016 ; Pasquet et al. 2019 ; Li et al. 2022a ),
nd stellar parametrization (Fabbro et al. 2018 ; Leung & Bovy 2019 ;
uiglion et al. 2024 ). 
In this paper, we construct a multinetwork pipeline system, which 

s constituted by several, small, self-similar ResNet network models. 
he pipeline intends to map the pix el-lev el 1D spectra to return a
lassification probability and redshift. The classifier first is able to 
istinguish between subclasses. For instance, in the case of SDSS- 
R16 (see Table 1 ), it separates the seven subclasses of stars (A0, F5,
G, K1, K3, and K5) that, being ‘galactic’ objects, are assumed to
ave redshift z = 0, and the 6 extragalactic objects, 4 of galaxies (nan,
GN, STARBURST, and STARFORMING) and 2 of QSOs (nan and 
ROADLINE). In total, there are 13 different classes. Then, on these 
xtragalactic classes, GaSNet-II performs the redshift predictions and 
rror estimates. Similarly, for 4MOST (see Table 2 ), the classifier
eparates the objects in the five star classes (Dyn, GalHR, ESN, 
alDiskLR, and MCsn) and extragalactic classes (COSMO AGN, 
lusB, WAVES, RedGAL, and tides host), then, for these latter, the 
aSNet-II predicts the redshift and the errors. For DESI, the classifier

ust separates into three coarse classes (Table 3 ) and the redshift is
easured for the galaxies and QSOs. 
In this section, we introduce the details of the GaSNet-II architec- 

ure, the strategy for network training, and error estimates. We start
y discussing in detail the training of the pipeline using the reference
ata set o v er which we want to test the capabilities of the pipeline,
hat is, the SDSS-DR16 sample. The structure and training of the 
ipeline will be the same for the other two data sets, that is, 4MOST
nd DESI, except that, due to the different numbers of labels (see
ection 2 ), only the structure of the output will be different. For the

atter data sets, we will discuss directly the performances on the test
ample in Section 4 . 

.1 GaSNet-II: philosophy and ar chitectur e 

he philosophy behind the GaSNet-II architecture is based on two 
rinciples: simplicity and efficiency . Simplicity , because we want 
o build a network made of ‘lighter’, self-similar ResNets. The 
eason is that, by controlling each small network performance, we 
an easily check and control the whole pipeline performance. Also, 
aving several ResNet blocks makes it easy to customize different 
ubnetworks for different tasks. Efficiency, because GaSNet-II is able 
o parallelize classification and redshift predictions, which generally 
re part of a serial two-step process in classical pipelines, as the
edshift accuracy is class dependent. Indeed, it is more difficult to
etermine the redshift for specific classes. An ob vious e xample is
assiv e v ersus activ e galaxies, as the former does not hav e as man y
igh SNR features as the emission lines of the latter (Mateus et al.
006 ). 
To achieve this second objective, for GaSNet-II we decided to 

se a particular architecture made of parallel subnetworks, each one 
pecialized on a specific task. This is sketched in Fig. 10 (a), where a
ubnetwork is used to classify and give the probability to each object
o belong to a series of pre-defined classes, while other parallel
ubnetworks, trained on each and only classes that need redshift 
stimates, are used to give the redshift predictions and error estimates.
bviously, the numbers of subnetworks are pre-assigned according 

o the number of those classes with redshift, that is, the training
ample. In fact, being GaSNet-II a supervised network, the classes 
nd redshifts need to be known as labels of the training sample used
o train the networks. 

Ho we ver, all subnetworks are almost the same, in terms of their
nternal structure. Specifically, the multinetwork pipeline consists 
f one ResNet P model to predict the probability, ˆ P , of each
ubclass for classification, and six (identical) ResNet i to predict the 
edshift, z, of different extragalactic objects, respectively. The index 
 corresponds to the label in Table 1 . The input of all subnetworks
re the 1D spectra, in flux units. As we will detail later, in this latter
hase, GaSNet-II performs a Monte Carlo (MC) test, that allows us
o estimate the errors, σ z , on the redshift predictions. Hence, the
utput of the GaSNet-II pipeline is a 13-dimensional array of terns
 

ˆ P , z, σz ). The final input/output can be schematically summarized
s: 

 ( flux ) = 

{ 

( P i , 0) , i ∈ [0 , 6] , 

( P i , z i , σz,i ) , i ∈ [7 , 12] 
, (1) 

here ˆ P i are the probability from the ResNet i classifier, z i are the
edshift predictions, and σ z, i are the redshift uncertainty, from the 
ix ResNet regression models. 

In terms of workflow, the classification is performed in parallel to
and hence independently from) the redshift prediction, hence this 
atter does not impact the classification. In principle, one can guess
hat this is a disadvantage as the knowledge of the redshift could
mpro v e the classification (for instance, this is easy to understand
or stars that have z ∼ 0). Ho we ver, the GaSNet-II seems to reach
lready very high classification performances ( ∼ 99 per cent , see 
ppendix B , Fig. B1 ) without this information. On the other hand,

here are advantages of this ‘parallel’ approach: (i) one can scale-up
he network by adding training samples for more classes, making it
asy to extend the classification to other objects or even other targets,
uch as stellar parameters; (ii) parallelization reduces the impact 
f correlations between different quantities; (iii) for this reason, it 
s e xtremely fle xible and can ef fecti vely applied to different SNRs
nd various surv e ys, as we will demonstrate later in this paper; (iv)
t provides a reasonable uncertainty estimation, which is a robust 
tarting point for subsequent Bayesian analyses; and (v) neural 
etworks are powerful interpolators, thus also good at classifying 
pectra that lie within a learned multidimensional surface that cross- 
orrelation would not grasp. 
MNRAS 532, 643–665 (2024) 
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(a)

(b)

Figure 10. Panel (a): the general structure of the multinetworks pipeline. ResNet P is used as a classifier and ResNet 7 − 12 is used for redshift prediction 
of extragalactic targets (note that ResNet 0 − 6 are missing because we do not need to predict the redshift of stars). One of the advantages of this structure 
is that it is simple and controllable, and can be trained and predicted in parallel. Panel (b): the detailed description of single subnetwork ResNet i (bottom 

figures) architecture, made by small blocks. The input of the network is 5001-pixel spectrum flux, and the output is the probability or redshift. The difference 
between classification ( n = 13 , softmax ) and redshift prediction ( n = 1 , None ) is the output dimension and the acti v ation in the last layer. A feature-extract 
block Block ( n ) and a fully connected block Dense ( n ) are shown. cov1d is the 1D convolution layer. In one cov1d rectangle, 5 is the kernel size; /3 is the stride 
size; n is the number of channels. relu and softmax are the acti v ate function, None represents no acti v ate function here, that means liner. The left cov1d in the 
Block ( n ) shortcut is used to match the shape. pool1d is a 1D Maxpooling layer. As a schematic, the top right panel shows how to predict the redshift error of the 
label 7 (GALAXY nan) subclass in parallel. Though 10 (customized) same subnetworks, trained by the same data but with different initial weights, 10 different 
redshifts were obtained from a single spectrum input. The expectation and error can be calculated. Other redshift errors are obtained in the same way. 
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.2 GaSNet-II: pipeline description 

n this section, we describe in detail the full end-to-end pipeline,
hich we have broadly described in the previous section. In the

ollo wing, for bre vity, we define the input of the subnetworks, x , and
he fitting labels of subnetworks, y , as: 

 = flux / 
√ 

N , N = 

5001 ∑ 

j= 1 

flux 2 j , (2) 

ˆ  = one − hot ( i) , i ∈ [0 , 12] , (3) 

 i = z i , i ∈ [7 , 12] , (4) 

here the j represents the pix el inde x, from 1 to 5001, and the one-hot
ncoder converts the categorical data into digits, for example, one-
NRAS 532, 643–665 (2024) 
ot(0) = 001, one-hot(1) = 010, one-hot(2) = 100, etc. In equation
 2 ), the flux is normalized just like a vector. The fitting labels ˆ y 
re the labels converted by the one-hot encoder from Table 1 . The
tting parameters y i are the spectroscopic redshifts provided by the
atalogue. To prevent the prediction of very high-redshift values,
here the currently available training samples are too poor to give

ccurate results, we limit them to the range z ∈ [0, 5]. The loss
unctions used are 

oss = − ˆ y t · log ( ̂  y p ) , (categorical cross-entropy) (5) 

oss i = 

{
1 
2 ( y it − y ip ) 2 , | y it − y ip | ≤ δ

δ| y it − y ip | − 1 
2 δ

2 , | y it − y ip | > δ
, (Huber loss) . 

(6) 
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Table 4. Models detail. ‘pars’ is the number of network parameters. ‘Num’ 
is the number of training spectra used. ‘loss’ is the minimal loss on the 
validation set. ‘acc’ is the max accuracy on the validation set, and ‘MAE’ is 
the minimum mean absolute error on the validation set. 10 

Name pars (10 6 ) Num (10 3 ) loss (10 −3 ) acc/MAE 

ResNet P 4.16 182 218 91.9 per cent 
(acc) 

ResNet 7 4.16 14 0.868 0.011 

ResNet 8 4.16 14 0.152 0.003 

ResNet 9 4.16 14 0.066 0.001 

ResNet 10 4.16 14 0.112 0.002 

ResNet 11 4.16 14 10.2 0.107 

ResNet 12 4.16 14 2.32 0.027 

10 Both trained by an NVIDIA Tesla P40 GPU 
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here ˆ y p , y ip are the prediction values and ˆ y t , y tp are the true values,
nd parameter δ = 0.1. Huber loss combines the advantages of 
ean absolute error (MAE) and mean square error, and alleviates 

he sensitivity to outliers. 
As seen in the previous section, the GaSNet-II pipeline is con- 

tituted by seven almost identical ResNet subnetworks. This is 
ho wn no w in more detail in Fig. 10 (b), where we offer a complete
chematic view of the full architecture, which we describe below. 
tarting from the general structure seen in panel (a), we see that the
ubnetwork architecture consists of a series of ResNet ‘blocks’. One 
f the advantages of using the subnetwork architecture, discussed in 
ection 3.1 , is that it is particularly convenient to perform MC tests,
hich are the foundation of the GaSNet-II error estimates, as shown 
y the ‘zoom-in’ inset (top-right) in the same Fig. 10 (b). 
The idea behind the MC run is to use the different (10) subnet-

orks 9 with the same data, for example, a spectrum of an object of
 given class, but with different initial network weights. In practice, 
he initial subnetwork parameters are set by a random Gaussian 
istribution, which establishes a random initial condition for the 
ntire process, thus mimicking an MC experiment. Ho we ver, this
an also be seen as an ensemble training/MC, which is a relatively
ommon practice in DL (e.g. Lakshminarayanan, Pritzel & Blundell 
016 ; Ganaie et al. 2021 ), and applied in the synthetic stellar spectra
hysical properties estimating(e.g. Bialek et al. 2020 ). This allows 
s to e v aluate the stability of the output, by changing the initial
ondition of the training process. For the robust data points, different 
ubnetworks are expected to predict values that are close to the 
round truth, like the best-fitting values that find a global (or even a
ocal) minimum in the χ2 topology. 

On the other hand, for the ‘unstable’ points different subnetworks 
re expected to find different predictions, like happens in best-fitting 
f the χ2 has many local minima. In this way (despite the number
f parallel experiments being only 10), we can separate the robust
rom unstable prediction targets. Hence, estimating the cumulative 
ncertainties on the final target estimates has two main objectives: (1)
o associate a redshift and an error based on a probability distribution
unction (PDF) to every given target; and (2) to test the robustness
f the network, by quantifying the o v erall predictions scatter with
espect to the ground truth. 

Indeed, from the ‘zoom-in’ inset of the MC test, in Fig. 10 (b), we
an see that the MC step provides a mean value, z and a variance, σ .

This is also done in parallel for the six extragalactic classes to
btain: 

¯ i = 

9 ∑ 

j= 0 

z ij / 10 , (7) 

i = 

√ √ √ √ 

9 ∑ 

j= 0 

( z ij − z̄ i ) 2 / 10 , (8) 

s shown in Fig. 10 (b). The predicted expectations and errors will be
hown in Section 4 . In Table 4 , we show the number of parameters,
nd the number of spectra adopted for the training of the subnetworks.

To check the ef fecti veness of the use of the mean redshifts and their
rrors from equations ( 7 ) and ( 8 ), we also provide the point estimate
 The choice of 10 networks is primarily to optimize the computational 
esources, to make GaSNet-II usable in small medium-scale servers with no 
uch impact on the final results. For instance, considering the convergence 

f uncertainty in high SNR, Fig. 17 shows that 10 subnetworks are sufficient 
o robustly assess uncertainties and we do not expect to improve this result 
y increasing the number of subnetworks. 

W  

o  

u  

d
d  

t
a  

T  
edshift for each target. These are based on a version of the network
ith only one ResNet in the MC module in Fig. 10 (a) for each of

he classes, and compare these with the ones we obtain from the MC
un. These point estimates are analogous to individual measurements 
rom standard techniques, like cross-correlation ( REDMONSTER ) or 
emplate fitting ( REDROCK ) and are meant to provide a realistic scatter
f the estimates due to the combination of the data quality and the
L method. 
Finally, Fig. 10 (b) (top right) shows the convenience of the

ubnetwork architecture as the structure of each ResNet is the same
or each one of the subnetworks, regardless of whether it is used to
lassify (e.g. ResNet P ) or to predict redshifts ( ResNet i 0 −9 ). 

.3 GaSNet-II training: SDSS-DR16 

he training of GaSNet-II aims to minimize the loss function and
aximize the accuracy (of the classification and predictions). As 
entioned, all ‘specialized’ subnetworks are trained in parallel. 
As a training set for the classifier network ( ResNet P , in Fig. 10 a),

e use a total of 182 000 SDSS-DR16 spectra, incorporating the 13
ubclasses, each of them co v ered by 14 000 spectra for their training.
y definition, each of the redshift prediction networks ( ResNet i in
ig. 10 a), makes use of the same 14 000 used by the classifier for
ach subclass i , but with the purpose of mapping the input spectra to
he labelled redshifts. 

Under such partitioning of the training data, one can imagine that
he classifier is set to search for the redshift in a larger parameter
pace, while the redshift ‘regressor’ networks, ResNet i , are set to
earch for the specific redshifts of each subclass of spectra. 

The result of the training process o v er the validation set is shown
n Fig. 11 , where a step learning rate is used. The learning rate starts
t 10 −3 , then slowly decays to 10 −6 at the end (halving every 5
pochs when the epoch < 50) during 50 training epochs. The loss
urves in the upper panel of the figure might indicate some slight
 v erfitting, while the accurac y curv es show that it does not affect
he performance. The accuracy curve remains flat as more training 
pochs are implemented, meaning that it has achieved its upper limit.
e have used a 0.5 dropout rate in the final layer to mitigate potential
 v erfitting in the training set. Overfitting could be further reduced by
sing fewer network parameters or increasing the size of the training
ata (e.g. through online additive-noise data augmentation), however, 
ue to the small amount of o v erfitting to correct we decided to test
hese strategies in future analyses. The checkpoints with maximum 

ccuracy or minimum MAE are used as the model of the pipeline.
able 4 shows an average classification accuracy of 91.9 per cent
MNRAS 532, 643–665 (2024) 
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Figure 11. The training results for 50 epochs. We adopted a dropout rate of 
0.5 in the dense layer to prevent overfitting during training. The first panel is 
the loss and accuracy of ResNet, which is used to classify the spectra. The 
second and third panels are the loss and the MAE of ResNet i, which are 
used to predict the redshift. The dashed lines are the results of the training 
set, and the solid lines are the results of the validation set. The significant 
fluctuation in the first 20 epochs is due to the significant varying of learning 
rates. The o v erall worse performance in the training set is because we only 
employed the dropout in the training processes. 
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rom ResNet P , as well as a range of MAE for redshift estimation
cross different subclasses, ranging from 0.001 to 0.107. The number
f trainable parameters of the subnetwork and the number of training
amples are also provided. 

 RESU LTS  

n this section, we show the results of the pipeline using the same
DSS-DR16 data set and test sample. Ho we ver, in the second part of

he section, we also show the results of GaSNet-II, customized for
he 4MOST mock data and DESI early data release, to demonstrate
he potential for future application on Stage-IV surv e ys. 

.1 Statistical parameters 

efore looking into the results, we introduce the statistical indicators
o quantify the performance of GaSNet-II, specifically for the redshift
NRAS 532, 643–665 (2024) 
ccuracy. The first parameter is the Bias, defined as: 

ias = | ln 
(

1 + z t 

1 + z p 

)
| , (9) 

here z t represents the real value and z p represents the prediction
alue. The Bias measures the deviation of z p from z t . In particular, we
an use it to define the fraction of the ‘good’ estimates, Good Frac
GF), as the fraction o v er the total number of spectra, N , of the
edshift estimates for which the Bias is smaller than the related
hreshold, thr x, that can differ for different classes ( x = gal , qso ).
ence, 

ood Frac x = 

N ( Bias < thr x) 

N 

. (10) 

e set the threshold of the galaxy species (nan, star-forming,
tarbursts, and AGN), thr gal = 0 . 0015, such that optimal predictions
re defined as Bias < 0 . 0015, and the threshold of the QSO (nan and
road lines), thr qso = 0.015, which qualify as good the predictions
ith Bias < 0.015. 
The second parameter is redshift relative bias �z, defined as: 

z = | z p − z t | / | 1 + z t | , (11) 

hich is more intuitive than the Bias to interpret redshift discrepan-
ies. In particular, this is closely related to the MAE, which is the
ean of the �z numerator, that is, 

AE = Mean ( | z p − z t | ) . (12) 

s a reference, for the SDSS and DESI pipelines, �z < 0.01 was
ssentially used as the catastrophic prediction threshold (Bolton et al.
012 ; Dawson et al. 2016 ; Alexander et al. 2023 ), although it was
ess strict for high-VDISP QSOs. 

.2 SDSS-DR16 spectra 

.2.1 Classification 

s discussed in Section 3 , the ResNet P subnetwork gives the
lassification probability ( P i ) for each of the input spectra. This
s the fastest task performed by GaSNet-II; it can perform the
lassification prediction of the 39 000 spectra belonging to the
est sample in about one minute (excluding read time). The cor-
esponding confusion matrix is shown in Fig. 12 . Here we see
hat most of the subclass accuracies are larger than 90 per cent,
xcept for the subclasses GALAXY STARFORMING. The average
ccuracy of the 13 subclasses is 92.4 per cent. This av erage accurac y
s certainly driven by the SNR of the spectra, as higher SNRs
llow the network to better separate the spectra. This is shown
n Appendix C , where we use the same GaSNet-II to classify
ncreasingly higher SNR spectra and find that the av erage accurac y
an reach a limit of ∼ 96 per cent for the highest SNRs. The
tar-forming galaxies are the class with lower accuracy, possibly
ue to a larger o v erlap (and thus a more uncertain classification)
ith other ‘emission line’ classes, e.g. AGN and starb urst, b ut also
ith normal galaxies (GALAXY nan class), possibly because low

tar-forming galaxies do not have strong enough emission lines
o distinguish against non-star-forming systems. Some additional
onfusion can have a more physical origin, such as the smooth tran-
ition between AGN-dominated and host-galaxy-dominated signals.
urthermore, the accuracy of QSO nan is also relatively low, but in

his case, we track the reason for the typically low SNR, as seen in
ig. 4 . Despite QSO nan (GALAXY STARFORMING) performing
t 91 per cent (87 per cent) level, the missing sources are misclassified
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Figure 12. Confusion matrix results for the classification of the SDSS test 
set. The predicted and actual labels for each subclass (see Table 1 ) are listed on 
the left and bottom sides, respectively. Each subclass has 3000 test samples. 
The average accuracy is 92.4 per cent, and most are larger than 90 per cent 
(except the GALAXY STARFORMING subclass). The matrix should be read 
along columns, that is the direction along which 100 per cent of the actual 
labels are distributed by the classifier. 
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11 Preliminary tests considering anomaly detection show that we can achieve 
�z ∼ 10 −4 . This will be discussed in upcoming analyses. 
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s QSO BROADLINE (GALAXY nan, GALAXY STARBURST, 
nd GALAXY AGN), which means that only the level of activity 
intensity of the lines) mo v es some objects from one subclass to the
ther. If we also consider the arbitrariness in the separation of these
ubclasses in the SDSS classification, we believe that the accuracy 
eached by the GaSNet-II represents possibly a lower limit. 

In Appendix B , we have collapsed all the subclasses on the
hree major classes of star/galaxy/QSO, which shows an average of 
9 per cent accuracy. This test is important to reproduce the ‘primary’
oarse classification each of the forthcoming surv e ys will implement 
see e.g. DESI in Section 4.4.1 , for comparison). The main result is
hat a higher accuracy can be achieved (99 per cent on average) with
ewer classes, using the same training data and network architecture. 

.2.2 Redshifts: point estimates 

s anticipated in Section 3.2 , we want to first derive the redshift
oint estimate for a single measurement from the spectra. This has 
n intrinsic error, which is due to a series of factors that we simplify
nto two categories: (1) SNR of the spectra and (2) measurement 
ethod. The former is linked to the structure of the data and how the

eatures used for the redshift estimates are detected and measured 
emission/absorption lines, 4000 Å break, etc.). The latter is linked to 
he accuracy of the method: for the DL tools, this lies in the impact of
he weights and random seeds in the netw ork. These tw o f actors are
ot independent as, for instance, high SNR spectra make the impact 
f the weights minimal as the network tends to converge to a more
obust estimate, and vice versa. Hence, the point estimate should 
eflect more the scatter due to these intrinsic sources of errors. 

Fig. 13 shows the ‘point estimate’ redshift predictions of the six
xtragalactic SDSS-DR16 subclasses, described in Section 3.2 . The 
 v erall impression is a rather good agreement between the predictions
rom GaSNet-II and the SDSS-DR16 redshifts, with rather small 
z and MAE, and a minimal fraction of catastrophic estimates, 

xcept for the QSO nan subclass. The best accuracy is found for
he GALAXY STARBUSRST and GALAXY STARFORMING, 
ubclasses, �z = 0.001, while QSO nan shows the worst �z =
.047. These accuracies are still about one order of magnitude larger
han the ones required for redshift catalogues (see e.g. Bolton et al.
012 ), but this is not a major concern for this analysis that is not meant
o optimize the redshift accuracies. 11 The GF is generally larger than

50 per cent but reaches 80 per cent rele v ant fractions only for
hree classes. We see an increasing scatter of the predictions at higher
edshifts in almost all categories, mainly driven by the poor coverage
rom the training samples of high redshifts. As we will see, training
n mock spectra can strongly alleviate this problem. The relatively 
oor performance of the QSO nan sample, as we mentioned abo v e, is
dditionally driven by the low SNR of the spectra. As we will discuss
ater, the SNR has a large impact on the accuracy of the predictions.

The values of Bias of all subclasses are shown in Fig. 14 . In this
gure, we present the Bias values as a function of the redshift and
olour-coded by their SNR. The GF is reported in the legend for
ach SNR bin. It is evident that the number of ‘good’ predictions
ncreases with SNR, which also correlates with redshifts; the lower 
NR spectra generally correspond to the higher redshift ones. This 
lso explains why even classes with lower GF, like the GALAXY nan
GF = 0.63), reach a rather large GF ∼ 90 per cent , for SNR > 10
pectra. If we exclude the QSO nan, which has too few SNR > 10
pectra to have reliable statistics (see Section 2.1 ), all classes have
F going between 63 per cent and 94 per cent, while the average GF

s larger than 90 per cent for starb urst, star -forming, and broad-line
SO, clearly because of their well detectable emission lines. On the
ther hand, the lower accuracy of the normal galaxies (GALXY nan)
s due to the fact that GaSNet-II learns the redshift mainly from the
ontinuum shape and possibly the absorption lines, whereby the 
pectra have lower SNR for key features compared to the emission-
ine galaxies; this can limit the performance of the former subclass. 

.2.3 Redshifts: MC estimates 

e finally discuss the redshifts and errors of the six extragalactic 
ubclasses predicted by the MC test discussed in Section 3.2 , which
re shown in Fig. 15 . The main evidence emerging from a quick view
f the predicted values is that the accuracy is comparable to the point
stimates, as measured by MAE and �z, which are very close, or
ven identical to the ones shown in Fig. 13 . Looking at the errors,
he y are e xtremely small for the predicted values that distribute along
he 1-to-1 relation and become bigger for the (few) highly scattered
redictions. 
As discussed in the previous section, QSO nan is the most

roblematic subclass, showing a larger scatter, and, consequently, 
arger errors. Looking at the high- z end in all classes, we see the
ffect again of the sparse training samples which contribute to the
arger errors, which are mirrored by the increased scatter in the
stimates already noticed in Section 4.2.2 . This is quantified in
ig. 15 , where the upper panels show the mean σ z of the redshift
stimates in different redshift bins. Here, we can clearly see that the
ean errors increase with increasing redshift in almost all classes, 

xcept the GALAXY AGN. Some points’ errors are underestimated, 
MNRAS 532, 643–665 (2024) 
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M

Figure 13. Redshift predictions of six extragalactic SDSS subclasses, each of which used one subnetwork. The subclasses GALAXY STARBUSRST and 
GALAXY STARFORMING have the best redshift estimations, with an error of �z = 0.001. This can be attributed to the presence of significant emission lines 
in their spectra, as shown in Fig. 2 . The subclass QSO nan has the worst estimation with an error of �z = 0.047. This subclass is characterized by the lowest 
SNR, a high-redshift range (Table 1 ), and a weaker broad emission-line signal in the spectrum (Fig. 2 ). Error bars on each redshift bin (10 bins) are plotted at 
the top of the panel. The MAE for each bin is used as the error bar. The plot clearly indicates that errors become significant at the higher redshift end, which is 
attributed to the lack of training samples in that region. 
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articularly at the high-redshift end. This is due to a lack of training
amples in those regions, which results in lower accuracy in this
egion. The bottom line is that the estimated errors are indeed a
easure of the reliability of the GaSNet-II predictions, as large error

ars emerge either because the estimated values are far from their
rue value, or because the predicted value is poor due to the poor
nowledge base. In particular, we can use the estimated error, σ z ,
o determine whether an estimate is ‘robust’ or ‘unstable’, using
he MAE (listed in Table 4 ) as a lower limit for an estimate to be 
nstable. 
Before we discuss the predicted errors, we want to see whether

he mean redshift estimates behave similarly to the point estimates,
r, in other words, whether the point estimates are drawn by the
edshift PDF derived by the MC run. This is needed to check if
he point estimates are ‘unbiased’ predictions of the ‘ground truth’.
o do that, in Fig. 16 , we plot the relative scatter normalized to

he errors, t = | z t − z p | /σz , for the different test sets, which should
e enclosed in the range [0, 3] for a Gaussian distribution. Here,
e see that the great majority of the point estimates are within the
 σ z distribution with fractions of the order of 0.96 or higher. This
s not fully compatible with a pure Gaussian distribution (expected
o be ∼0.99), but rather shows some excess outliers, which we can
oughly estimate to be no more than 5 per cent. Also, we see that
ome subclasses are more prone to systematics than others, like
he ‘GALAXY AGN’ and ‘GALAXY STARBURST’, that have a
endenc y to pro vide o v erestimated ‘point’ redshifts. We stress here
hat the point estimates are obtained by a separate, independent
NRAS 532, 643–665 (2024) 
ipeline, trained to optimize the redshift estimate on a single run,
o they cannot be considered a random sample of the MC run, which
s trained to optimize the mean z . We take this into consideration in
he discussion below. 

Moving to the error estimate, we start by connecting these errors
ith the data structure. If the errors are artificially produced by

nternal network errors, due to the stochasticity of some processes,
hen these should not have any correlation with the spectra uncer-
ainties. To show that, in Fig. 17 , we compare the σ z and SNR
f the spectra, where we see a correlation between the error size
nd the SNR, as quantified by the median values (dashed line),
howing that the lower the SNR the larger the σ z tends to be. This
s proof that the errors are driven by the data noise, which was
ssumed without proof so far in this section, and is consistent with
he impact of the SNR in classification, discussed in Section 4.2.1
nd Appendix C . Ho we v er, at an y fix ed SNR value, we also see
he scatter of the σ z from class to class, with the QSO generally
howing larger errors. If we exclude the regions with sparse sampling
see e.g. SNR ∼ 5 for ‘GALAXY STARFORMING’, or SNR ∼6–8
or ‘GALAXY AGN’), where the larger scatter of the errors might
eflect lower precisions due to a poor training sample, the reason
f the σ z variation from class to class should reside in the type
f features that GaSNet-II used for the predictions. For instance,
n the case of the ‘QSO BROADLINE’ (and perhaps also partially
rue for ‘QSO nan’) it is the line broadening that leads to more
nsecure estimates, especially at lower SNR. Interestingly this is
ot seen for ‘GALAXY nan’, which lets us speculate that for these
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Figure 14. Bias as a function of the redshift for different extragalactic SDSS 
classes as indicated by the legend on the right. The spectra are divided into low 

(SNR = [0,2)), medium (SNR = [2,10)), and high (SNR > 10) SNR to show the 
performance at different noise levels. The GF within each SNR bin is reported 
in the legend. The plot shows clearly that estimate deviations exhibit more 
scatter as the SNR decreases, implying larger statistical errors. The errors 
increase at the high-redshift end, where the SNR is typically lower. Another 
source of scatter is that as the redshift increases, the training samples become 
smaller. See also Section 2.1 . 

s
b  

d
w  

s  

a
m
a  

o
A
a  

v
a  

c

i  

n
t  

t
G
σ

f
e  

(
G
s  

R
r  

l

D  

W  

u  

t  

t  

σ

V
 

S  

d
r
w  

r
e  

a  

s
F  

o
M  

v  

l  

s  

t  

T  

n  

r
(

4

N  

m  

c
s  

p
O  

t
r

t  

a  

i  

v  

o  

d
t  

u

4

S  

m  

a  

a  

t  

b  

a  

e
t  

m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/1/643/7700728 by guest on 08 N
ovem

ber 2024
ystems the absorption lines are not driving the redshift estimates, 
ut rather the full spectrum and there is a smooth and regular
egradation of the errors for smaller and smaller SNRs, similar to 
hat is seen for GALAXY AGN. Direct analysis of the impact of the

pectral features on the accuracy is beyond the purpose of this paper
nd would require more sophisticated techniques like self-attention 
ethods of anomaly detection, which we will address in forthcoming 

nalyses. Ho we ver, to gi ve a preliminary insight into the importance
f the spectral features in classification and redshift predictions, in 
ppendix D , we show the gradients of the classification probability 

nd the output redshift with respect to input flux, which allows us to
isualize the impact of spectral features in the GaSNet predictions, 
lthough they cannot give a real measure of the impact of the
ontinuum. 

On the other hand, GALAXY STARFORMING seems to be 
nsensitive to SNR until they reach SNR ∼ 7, below which promi-
ent emission lines start to blend into the noise, and then 
he continuum takes o v er dominating the larger errors, similar
o GALAXY nan. We also notice different behaviour between 
ALAXY ST ARFORMING and ST ARBURST, as, for the latter, 
z is increasingly noisier toward low SNR. As the most important 

eatures for these two classes are the emission lines, one would 
xpect a similar behaviour for σ z . There are two reasons for this:
1) emission lines in starburst galaxies dominate the spectra and 
aSNet-II does not learn much from the continuum for star-forming 

ystems. Thus the redshifts are fully determined by the ability of the
esNets to cross-correlate emission lines o v er a large wavelength 

ange; and (2) ResNets is perhaps not the ideal tool for this emission-
ine redshift estimation task, which is typically well handled by other 
L structures, like ‘self-attention’ networks (e.g. Han et al. 2020 ).
e will discuss this in detail in Section 5 . Finally, another source of

ncertainty in both redshift and classification can be the VDISP, as
his can produce a different broadening of the line that might reduce
he accuracy of both tasks. In Appendix E , we demonstrate that both
z and classification accuracy show almost no correlation with the 
DISP, inside the different classes. 
The bottom line is that the estimated error sizes as a function of

NR and redshift seem to be mainly driven by the data quality and
ata features as one should expect from standard analysis methods, 
ather than the stochasticity of the DL network. As a consequence, 
e are moti v ated to use σ z as a proxy of the ‘robustness’ of the

edshift estimates, as we now can interpret σ z as the cumulative 
ffect of the variance of the weights of the network (see Section 3.2 )
nd the data noise. Also, we can expect that the estimates with
maller σ z are more tightly distributed around the true value. In 
ig. 18 , we show again the Bias versus z, which is split into ‘robust’
r ‘unstable’ categories based on whether their σ z ≤ MAE or > 

AE, respectively, where MAE is the mean absolute error in the
alidation set (Table 4 ). The robust limit is very close to the GF
imit, and only in the ‘GALAXY nan’ or ‘QSO nan’ subclasses it is
ignificantly larger. Thus, the robust estimates have a fraction o v er the
otal samples that are larger than the GF defined by the Bias threshold.
his result is particularly rele v ant for practical applications, as for
ew spectra with no a priori information on the redshift, the use of the
edshift errors proposed here allows us to discard unstable estimates 
larger deviation points) without knowing the ground truth. 

.3 4MOST mock spectra 

ext, we analyse the 4MOST data set introduced in Section 2.2 . The
ain reason to use this data set is to test GaSNet-II with spectra

lose to expected data from major Stage-IV upcoming spectroscopic 
urv e ys, but classified on the basis of the surv e y requirements, thus
roviding a different classification approach, more survey-oriented. 
verall, this would allow us to test the versatility of the pipeline,

o respond to different requirements, both in classification and in 
edshift predictions. 

The training of GaSNet-II with the 4MOST spectra follows 
he same procedure discussed for SDSS-DR16 in Section 3.3 . As
nticipated, the size of the sample for each class (total of 10 classes)
s the same as SDSS-DR16 (20 000) and we use the same training,
 alidation, and test di vision (70 per cent, 15 per cent, and 15 per cent).
In the 4MOST observation phase, the labelled training data rely 

n the classification of the first months of 4MOST observations to
evelop a customized training sample based on data collected from 

he different surv e y teams. Alternativ e approaches might rely on the
se of mock data, or using visually classified data. 

.3.1 Classification 

tarting with the classification, in Fig. 19 we show the confusion
atrix obtained o v er the test samples. GaSNet-II achieves an

ccurac y be yond 90.0 per cent for the majority of subclasses, and
n average overall accuracy of 93.4 per cent, which is slightly better
han the one found for SDSS-DR16 (92.4 per cent). One reason can
e the absence of contamination discussed abo v e, which we will
ddress at the end of this section; another reason is likely to be the
ven stronger disparity in SNR between subclasses. Before we check 
hat, we first discuss some other rele v ant features from the confusion

atrix. 
MNRAS 532, 643–665 (2024) 
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Figure 15. The mean redshift predictions and errors of the six extragalactic SDSS subclasses. The error bar of each sample point represents the standard 
deviation obtained from the MC estimation of 10 subnetworks. In the top left of each main panel, the subclass name, MAE, �z, and the GF are displayed. 
The points in the top panels display the mean of the distribution of the z p residuals ( z p − z t ) with respect to the true values ( z t ) in each bin, and error bars 
corresponding mean σz values (see the text). 

Figure 16. The distribution of t versus redshift, where t is defined as t = 

| z t − z̄ p | /σz . In the legend, ‘frac’ denotes the proportion of the sample with 
t ≤ 3. 

Figure 17. The distribution of | z p − z t | versus SNR for the SDSS test data, 
tracking the performance of error estimations in different noise levels. Median 
σz is indicated by a dashed line. It demonstrates the MC method can reflect 
the uncertainty realistically. In low SNR regions, the value of median σz is 
larger compared to the high SNR regions, as expected. 
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Figure 18. Bias of the 10 subnetworks used. The x -axis is the real redshift 
and the y -axis is the Bias. The MAE is listed in Table 4 . ‘robust’ is defined 
as σz ≤ MAE, where MAE is the mean absolute error in the validation 
set. This demonstrates that unstable points (larger deviation points) can be 
automatically found without knowing the ground truth. 

Figure 19. The figure displays the classification results of the 4MOST model 
on the testing set. It presents a confusion matrix where the legends are the 
same as Fig. 12 . This figure indicates an average accuracy of 93.4 per cent. 
The worst performance is observed in the subclass RedGAL, which has 
an accuracy of only 66 per cent. 29 per cent of the spectra in RedGAL are 
misclassified as ClusB. Note that the matrix has to be read along columns, that 
is the direction along which the 100 per cent of the true labels are distributed 
by the classifier. 

Figure 20. We randomly pick four spectra. The upper panel shows ClusB 

and RedGAL spectra with a redshift of 0.3. The bottom panel shows the 
spectra with a redshift of 0.9. 
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In particular, we notice a striking 100 per cent score by the
OSMO AGN class that is superior to the 91 per cent scored by the
aSNet-II on the SDSS AGN sample. Since the mean SNR of the two
ata sets is very close in galaxy and AGN, (see Tables 1 and 2 ), we
dentify the reason for this o v erperformance on the COSMOS AGN
ample to the different redshift distributions, whereby the 4MOST 

ample lies at a much higher average redshift compared to the SDSS
GN. This makes it easier for GaSNet-II to unequivocally distinguish 

he brightest AGN features from, for example, starb urst/star -forming
alaxy emission lines, for f araw ay systems than for closer ones.
o we ver, another factor that might help this outperformance is the

imited chance of cross-contamination among the training/testing 
lasses, which have been constructed here on distinct templates to 
btain the mock spectra (see also below). 
The only clear case of such contamination is the mixing between

ubclass ‘ClusB’ (label 6, corresponding to bright cluster galaxies) 
nd ‘RedGAL’ (label 8, i.e. red galaxies). ClusB likely systems are a
eculiar subsample of the RedGAL systems, at least at low redshift,
s bright central cluster galaxies are generally old, red galaxies, 
articularly in their centres (see e.g. Bernardi et al. 2007 ), which is
here 4MOST fibres would be placed. Fig. 20 shows the templates
f two ClusB spectra at redshift 0.3 and 0.9, respectively versus
wo redGAL templates at the same redshifts, normalized to the 
ame flux at 6000 Å at each redshift. We are asking the classifier to
eparate spectra that are nearly indistinguishable at the same redshift. 
urprisingly, in Fig. 19 , we see that GaSNet-II can correctly predict

he clusB galaxies, while it confuses the RedGAL for ClusB in
29 per cent of the cases. We can possibly explain this with the

act that ClusB galaxies often systematically show emission lines in 
heir spectra, while the RedGAL mostly do not (see again Fig. 20 ),
ence we argue that the emission lines are features that GaSNet-II
ssociates to ClusB galaxies and not RedGAL, where they are not
ominant. This means that RedGAL spectra with emission lines have 
 larger chance of being classified as ClusB. To conclude this section,
e refer the reader to Appendix B where, as for SDSS, we have
erformed the classification of the spectra by grouping the different 
tar, galaxy, and AGN classes to emulate a coarse STAR-GALAXY- 
GN classification, to be compared with a similar one from SDSS
nd DESI. We stress here that this experiment, besides putting the
erformances on 4MOST templates in the context of other reference 
urv e ys, pro vides us also a test on a more physically oriented sample,
ather than a surv e y-oriented classification discussed so far. This is
loser to what GaSNet will be required to perform in the early stage of
MOST operations. In this case, we can see that the coarse classifier
an reach an even higher mean accuracy of 98 per cent, comparable
ith what we have seen for SDSS. 
MNRAS 532, 643–665 (2024) 
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.3.2 Redshifts 

e finally show the results for the redshift predictions, limiting
urselves to the MC estimates with errors. In Fig. 21 , we show the
redicted redshifts for all the 4MOST extragalactic subclasses. The
gure indicates an average �z of 0.0055 for galaxy types (ClusB,
AVES, RedGAL, and tides host), while it becomes 0.003 for AGN.
he average GF for the galaxy is 0.68, while for AGN is 0.71.
hese latter are the class for which GaSNet-II also provides the most
ccurate classification, meaning that the combination of good SNR
nd emission lines, permits high performances for both tasks. Among
he galaxy types the average error is dominated by the WAVES class
hich has the largest errors, possibly due to the low average SNR

see Table 2 ). The same WAVES class also shows the highest relative
catter � z = 0.014 compared to � z ∼ 0.004 shown by the majority
f the other subclasses. Overall the � z found for the 4MOST mock
ample seems slightly worse than the one measured for SDSS ( � z 

0.003), although a direct comparison is not appropriate, with the
wo samples having different observational constraints, especially
n terms of SNR, for instance, 4MOST AGNs and galaxies have a
ower SNR except the ‘tide host’ subclass (e.g. comparing Tables 1
nd 2 ). The 4MOST redshifts also show a GF on average slightly
ower than the one of SDSS as reported by the mean good fractions
n the legends of Fig. 21 , against the GFs reported in Fig. 15 , for
DSS. Once again the WAVES spectra are the ones with the worst
F, which are a consequence of the systematically larger errors,
ltimately driven by the low SNR. 
As for the comparison with standard methods, here a full detailed

heck of the relative performance of GaSNet-II with respect to tools
ike REDROCK and REDMONSTER is beyond the scope of this paper.
o we ver, to put the GaSNet-II performances into perspective, on
 series of benchmarking tests on simulated 4MOST consortium
ata sets, we have found GaSNet-II GF to be ∼20 per cent worse
han REDROCK and REDMONSTER , although, for some classes, like
GN/QSO, GaSNet-II shows a GF even better than classical tools.
or instance, REDMONSTER shows an average GF of 0.71 (GF for
GN/QSO is 0.43), mean absolute deviation (MAD) of 0.00042, and
ime (in the unit of seconds per spectrum per core, sec/spec/core) of
.02; REDROCK shows an average GF of 0.48 (GF for AGN/QSO is
.23), MAD of 0.051, and untested Time; while for GaSNet-II we find
n average GF of 0.40 (GF for AGN/QSO is 0.70), MAD of 0.0086,
nd Time of 0.00089 on the AGN/QSO/GALAXY redshift test sets.
his indicates that there is still room for GaSNet impro v ements,
hich can be consolidated with final, more sophisticated, mock data,

nd eventually with the first 4MOST observations. 

.4 DESI spectra 

e finally apply GaSNet-II to the early release DESI data. As seen in
ection 2.3 , the DESI classification taxonomy is less complex only
 very broad classification (i.e. star, galaxy, and quasars), and their
umbers are less abundant, as we could test our tools o v er ∼1050
lassified spectra for each class. This allows us, besides testing
aSNet-II on a further data set, with a dif ferent observ ation set-
p and size, to perform a basic analysis o v er a ‘coarse’ classification
hich is similar to what we expect to implement for 4MOST earlier
ata releases (see also Appendix B ). The classification and redshift
stimates are quickly discussed below. 

.4.1 Classification 

he separation of the test sample on the three DESI classes is shown
n Fig. 22 , where the confusion matrix indicates the accuracy of each
NRAS 532, 643–665 (2024) 
f the three classes is larger than 93 per cent, and the average accuracy
s 96 per cent. The high accurac y is ob viously highly dominated by
he small number of classes, ho we ver, this also shows an almost
bsent ambiguity of the classification for classes notoriously prone
o confusion, for example, stars and galaxies. This is likely due
o the ability of GaSNet-II to guess the redshift and (eventually)
he shapes of the spectral features. We expect though that with a
arger training sample the accuracy will be further increased. To put
hese results in perspective with other data sets, in Appendix B we
ave performed a similar analysis for SDSS-DR16, by collapsing all
pectra subclasses into three broad classes as for the DESI data set.
e anticipate that, using the same number of SDSS training samples,
e find a 99 per cent accuracy for such a coarse classification, that

eems rather higher than the one obtained for DESI. This implies that
he quality of the spectra, rather than the number of training samples,
s the major factor contributing to the accuracy. We expect to return
o such a test in upcoming DESI releases to confirm this result. 

.4.2 Redshifts 

inally, we show the MC predictions of the redshifts and their errors
or the DESI GALAXY and QSO objects. In Fig. 23 , we can see
 good agreement between the predictions with the ground truth
nd an average redshift error ( �z) of the two classes of 2.8 per cent
or galaxies and 4.8 per cent for QSOs. These errors are larger than
he ones obtained for former data sets for two main reasons. The
rst is the unbalanced redshift distribution, especially in the high-
edshift part (i.e. z > 0.4 for galaxies and z > 2.5 for QSO), where
here are fewer systems, especially for the galaxies. The second is
he o v erall smaller training samples available for these early-release
ata from DESI (about 1/10 of the former data sets), resulting in
ypically larger errors on the individual spectra. Once we can include

ore DESI training samples, and use customized subnetworks for
he special subclasses, we expect the accuracy will rise to the level
ound for SDSS and 4MOST. 

 DI SCUSSI ON  

n this section, we will discuss the potential strategies for improve-
ents in performance and further developments. 
As far as classification is concerned, a key problem is how to

mpro v e the ‘absolute’ accuracy of the classification method. So far,
e have benchmarked GaSNet-II with respect to the labels assigned

rom the different data sets (relative performances). For the SDSS
nd DESI data sets, the labels are deduced from the PCA fitting, and
his can bring some systematics. In fact, when using a classification
ased on real spectra as labels for the training of the DL tools,
he upper limit of the ‘absolute’ accuracy of the trained networks
s decided by the accuracy of the training set, which in turn is set
y the accuracy of the ‘traditional’ pipeline used for labelling it.
 viable alternative is to incorporate human-labelled data, like, for

xample, SDSS-DR12 superset (P ̂ aris et al. 2017 , 2018 ). Ho we ver,
his approach is not bias-free either, introducing a different form of
ias: human judgment. Another physically moti v ated alternati ve is
o utilize mock data, based on theoretical templates, for example,
imilar to those used for the 4MOST sample in Section 4.3.1 . In
ig. 24 , we describe a general procedure for training on simulated
ata. Here, the function F represents: 

 ( flux ) = 

{
( P i , 0) , i ∈ galatic 
( P i , z i ) , i ∈ extragalactic . 

(13) 
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Figure 21. Redshift predictions for the five extragalactic 4MOST mock subclasses. It is worth noting that the simulated spectra are produced on a coarse grid 
of redshifts, hence the quantization. Legends are identical to Fig. 15 . 

Figure 22. The DESI classification on the test set. Legends are identical 
to Fig. 12 . As before, the matrix should be read along columns, that is the 
direction along which the 100 per cent of the true labels are distributed by the 
classifier. 
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Figure 23. Redshift predictions of two DESI classes (GALAXY and QSO). 
Legends are identical to Fig. 15 . 

Figure 24. The general process of networks trained by simulation involves 
training on mock samples, finding the mapping F , and predicting real data. The 
training data are generated with specific parameters ( i , z i ) and observational 
realism. The networks are trained to reco v er the labels i , z i , and ultimately, the 
well-trained networks are used to fit the parameters i , z i based on observational 
data input. It is a first-principles-based method rather than an empirical-based 
one. 
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he networks shown in the figure serve as a powerful fitting tool that
inimizes the need for manual adjustments. The mock data, pro- 

uced under specific physical conditions ( i , z i ), are used as training
ata for the networks. Subsequently, well-trained networks are set up 
y optimizing the prediction accuracy of the parameters ( i , z i ). If the
raining sample is complete and accurate, these well-trained networks 
an be considered, by construction, as the optimal tools maximizing 
he ‘absolute’ accuracy of the predicting parameters ( i , z i ) when ap-
lied to real observational data. In practice, this is possibly true only
f: (1) the theoretical models are correct, and (2) one introduces into
he process all the observational conditions to maximize the fidelity 
MNRAS 532, 643–665 (2024) 
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etween mock train/test sets and observations, including Poissonian
oise, realistic distributions of SNR, seeing, intrinsic broadening of
he features (e.g. galaxy kinematics), artefacts, etc. (see e.g. Fig. 24 ).
he former condition is generally satisfied for most of the objects one
xpects to classify in galactic and extragalactic surveys as there are
ather robust theoretical stellar (e.g. Coelho 2014 ) and galaxy/QSO
emplates (e.g. K e wley et al. 2001 ). Ho we ver, there might still be
emaining systematics due to specific model shortcomings or even
unknown’ phenomena that are not fully accounted for by standard
heories or empirical models. In principle, these latter systems would
ossibly appear as ‘anomalies’ in theoretical-based classifications
hat can be studied separately either to impro v e models or explore
ew phenomena. With regard to ‘observational realism’, the inclusion
f more observational conditions is something that is currently under
evelopment (in the case of imaging data, see e.g. Yin et al. 2022 ).
espite these difficulties, which we aim to address in future analyses,

he main advantage of using mock data sets is the freedom to
hoose the hyperparameters that one is expected to predict with
pectra, and then optimize the training sample accordingly (a kind of
ctive learning loop), for example, using theoretical-based simulation
pectra co v ering a wide and physical range of these hyperparameters.
nother advantage of using the mock spectra is that they do not suffer

he poor sampling problem, which plagues empirical data sets (e.g.
are events, like strong gravitational lenses, or high-redshift galaxy
amples, etc.). As a result, they eliminate the biases introduced by
ncomplete or poor sampling. 

Regardless of the philosophy behind the training sets, there might
e further strategies that can help impro v e the classification. One
s the hierarchy. Classifications can be done in one step (as we
ave proposed in Sections 4.2.1 , 4.3.1 , and 4.4.1 ) or multiple steps.
pectra can be roughly classified in the first step, followed by a more
ophisticated subclassification in subsequent steps (see e.g. S ́anchez-
 ́aez et al. 2021 ). This decision-tree-like classification can allow
s to have a more fine-grained and detailed classification process.
he architecture of multiple identical subnetworks, similar to what
e currently use, can be easily rearranged into a decision-tree-like
ierarchical structure to realize a multi-ML model combination ‘tree’
tructure, with more branches and deeper layers. 

Moving to the redshift estimates, we foresee that rele v ant im-
ro v ements can be obtained using ‘self-attention’ (Vaswani et al.
017 ), which is becoming popular as the state-of-the-art model in
L applications. For instance, Fig. 20 is an example where the

lassifier based on the ResNet struggles to ef fecti vely recognize the
light difference in the spectrum when there is a mix of features
ike the spectrum continuum and emission lines. ‘self-attention’ has
hown to be superior in recognizing the global features and ‘long-
ange correlation’ compared to CNNs (Han et al. 2020 ) with the
et effect that both classification and redshift estimates can highly
e impro v ed (see also Section 4.2.3 ). We plan to implement these
lternative approaches in future work by replacing the convolutions
ith ‘self-attention’ in the small blocks of our network. 
Finally, alternative methods of estimating the redshift error exist.

n standard netw orks, k eeping the inputs the same leads to the same
utputs, which is stable but does not allow us to generalize the error
stimates. Apart from introducing multiple subnetworks to estimate
he errors, as we have already experimented with in this paper, there
re other approaches to introduce uncertainty, such as MC drop-
ut techniques (Podsztavek, Škoda & Tvrd ́ık 2022 ) or Bayesian
eural networks (Perreault Le v asseur, Hezaveh & Wechsler 2017 ;
hou et al. 2022 ; Gentile et al. 2023 ). We stress though that we
xpect that these methods are unlikely to yield significant differences
ith respect to our approach as these methods obtain the error by
NRAS 532, 643–665 (2024) 
epeating predictions. We aim to test these different techniques in
uture analyses. 

 C O N C L U S I O N  

e hav e dev eloped new tools for spectroscopy classification and
edshift prediction using DL techniques and constructed a pipeline
hat we have tested on SDSS, 4MOST, and DESI data sets. The
erformance of our pipeline on these three different data sets can
e summarized as follows: on SDSS, the classifier achieves an
v erage accurac y of 92.4 per cent for a 13-subclass classification
ask (with most types exceeding 90 per cent), and redshift prediction
ccuracy around 0.23 per cent for galaxy and 2.1 per cent for QSO
ubclasses. On 4MOST, the classifier achieves an average accuracy
f 93.4 per cent for a 10-subclass classification task and redshift pre-
iction accuracy of around 0.55 per cent for galaxy and 0.3 per cent
or AGN. On DESI, the classifier achieves an average accuracy of
6 per cent for a 3-class classification task and redshift prediction
ccuracy of around 2.8 per cent for galaxy and 4.8 per cent for AGN.
he accuracy of classifiers is strikingly consistent. Ho we ver, the
spect of redshift prediction is clearly dependent on various factors
uch as the types of subclasses/classes, the average spectral element
NR, and the sample size of the training data. F or e xample, the poor
NR of subclass WAVES results in the highest error on the 4MOST
ata set, while the relatively sparse training data for DESI contributes
o a larger redshift error compared to SDSS and 4MOST. 

GaSNet-II’s efficiency and accuracy make this tool suitable for
eal-time analyses of nightly observations. The predictions for 39 000
pectra can be completed in less than one minute. Among the data
roducts, GaSNet-II can provide realistic redshift errors from a built-
n subnetwork architecture simulating an MC test. As seen in the
iscussion of the SDSS-DR16 results. The redshift error of each
ata point can be also used to assess the robustness of the predicted
edshifts. 

In summary, DL methods offer significant advantages for Stage-
V spectroscopic infrastructures like DESI, 4MOST, and MOONS in
arious aspects, such as efficienc y, ‘data-driv en’, better performance
n low SNR, better consistency and systematics, and so on. Although
he current redshift accurac y leav es room for impro v ement, DL, as a
ew tool, holds huge potential for further dev elopment. Man y aspects
f impro v ement can be done with the future 4MOST simulations.
urther data sets such as theoretical spectra and impro v ements
uch as a ‘self-attention’ structure will be applied to GaSNet-II in
he future to impro v e the ‘absolute’ accuracy of classification and
edshift estimates, respectively. 
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PPENDIX  A :  CROSS-CONTAMINATION  O N  

ATA  SET  

e have anticipated in Section 2.1 that the empirical classification
f the SDSS-DR16 cannot guarantee full accuracy, and we cannot
xclude cross-contamination among the different classes. This might
ave an impact both on the classification and the accuracy of
he redshifts. As discussed in Section 5 , a possible workaround
s to train on a purer sample of mock spectra based on well-
stablished theoretical or observational templates (Bellstedt et al.
020 ; Robotham et al. 2020 ; Thorne et al. 2021 ). An example
f how this might lead to higher performances has been offered
y the 4MOST sample, where for some classes we have reached
00 per cent accuracy (e.g. COSMOS AGN, ESN, and GAL HR) for
 combination of clean templates and rich training sample, although
NRAS 532, 643–665 (2024) 

igure A1. Confusion matrix of a three-class classification (AGN, STAR- 
URST, and STARFORMING), showing how this changes with increasing 

andom contamination (0 per cent – 5 per cent – 10 per cent). The contam- 
nation fraction refers to randomly selected and shuffled labels in the 
ata set. As expected, as contamination increases, the accuracy decreases. 
oughly speaking, with respect to the original sample (0 per cent artificial 
ontamination), we observe an average decrease in accuracy by 3.3 per cent 
or 5 per cent contaminants and 7.7 per cent for 10 per cent contaminants. 

F
C
c
f
A
C
(
a
1

he 4MOST training sample is not exactly built o v er physically
oti v ated templates, but, rather, specific surv e y targets, that might

av e v ery specific properties, including high SNR, that make the
pectra easier to classify (e.g. tides host). 

Here, we intend to check, more quantitatively, the possible impact
f the misclassified spectra in a given class. We use the SDSS-
R16 data set as a reference for this test and add, to each class,
 per cent or 10 per cent contamination from the relatively similar
lasses seen from the confusion matrix. For the sake of brevity and
larity, we use only three extragalactic classes: AGN, STARBURST,
nd STARFORMING. The result is shown in the confusion matrix in
ig. A1 . All of those three classes belong to the subclass of GALAXY
nd show some degree of mixing with each other in the SDSS sample.

As additional testing, the results of cross-contamination on the
MOST data set (RedGAL, clusB, and COSMO AGN) are also
hown in Fig. A2 . In Section 4.3.1 , the confusion matrix shows some
trong de generac y between the class RedGAL and clusB, so we test
he cross-contamination on those two classes and COSMO AGN.
he additional class COSMO AGN was used to reflect the upper limit
f classification (the cross-contamination rate). We find an average
ecrease in accuracy by 5.7 per cent for 5 per cent contamination and
 per cent for 10 per cent contamination. 
We end this section by showing the redshift predictions for the

amples with contamination, discussed at the end of the Section 4.3.1 .
ig. A3 shows the redshift prediction results for three subclasses
AGN, STARBURST, and STARFORMING) in the three different
ross-contamination levels (0 per cent – 5 per cent – 10 per cent). The
gure shows that the small contamination among subclasses does
ot significantly decrease the accuracy of redshift prediction, but it
till causes performance degradation, such as the average decrease
n GF by 2 per cent for 5 per cent contamination and 3.3 per cent for
0 per cent contamination. 
igure A2. Confusion matrix of a three-class classification (COMOS AGN, 
lusB, and RedGAL), showing how this changes with increasing random 

ontamination (0 per cent – 5 per cent – 10 per cent). The contamination 
raction refers to randomly selected and shuffled labels in the data set. 
s contamination increases, the accuracy of both the COMOS AGN and 
lusB decreases. Roughly speaking, with respect to the original sample 

0 per cent artificial contamination), we observe an average decrease in 
ccuracy by 5.7 per cent for 5 per cent contamination and 9 per cent for 
0 per cent contamination. 
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Figure A3. Redshift prediction results of three subclass (AGN, STARBURST, and STARFORMINGL) in the three different cross-contamination levels 
(0 per cent – 5 per cent – 10 per cent). The first row represents 0 per cent contamination. The second row represents 5 per cent contamination. The third row 

represents 10 per cent contamination. The figure indicates that the small contamination on subclasses does not significantly decrease the accuracy of redshift 
prediction, but we still observe an average decrease of GF by 2 per cent for 5 per cent contamination and 3.3 per cent for 10 per cent contamination. 
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PPEN D IX  B:  T H E  C OA R S E  CLASSIFIER  O F  

DSS-DR16  A N D  4 M O S T  

n this appendix, we briefly describe a more homogeneous compar- 

igure B1. Results of the ‘coarse’ classification of the SDSS (left) and
MOST (right) data set. The spectra are categorized into three classes: 
ALAXY, QSO (AGN), and STAR. GaSNet-II achieved an average accuracy 
f 99 per cent. The STAR class nearly achieved 100 per cent accuracy. The
lass with the lowest accuracy is QSO, but it still achieved an impressive
8 per cent accuracy. 
tive check of the performances of the GaSNet-II on the three data
ets discussed in the paper, by emulating the situation where we have
he same data size and number of classes. We use the DESI sample
s a reference, as it contains the smaller data set (21 000 entries)
nd coarser classification (GALAXY, QSO/AGN, and STAR). To do 
hat, we hav e re grouped the spectra belonging to these three broader
lasses for SDSS (STAR: raw 1–7; GALAXY: raw 8–11; and QSO:
aw 12–13, in Table 1 ) and 4MOST (STAR: raw 1–5; AGN: raw 6;
nd GALAXY: raw 7–10, in Table 2 ) respectively. To be uniform with
he DESI case, we have also randomly extracted 7000 spectra from
hese re-grouped classes, to train and test the GaSNet-II, using the
ame set-up of DESI training/testing. Fig. B1 shows the results of this
coarse’ classification of SDSS and 4MOST data sets, to be compared
ith the same for DESI in Fig. 22 . The figure indicates that GaSNet-

I can achieve an average accuracy of 99 per cent for classification.
he STAR class nearly achieved 100 per cent accuracy. The class
ith the lowest accuracy is QSO, but it still achieved an impressive
8 per cent accuracy. Compared to the DESI classification, it exhibits
 higher accuracy for the same coarse classes and the same amount
f training data, with an impro v ement of about 3 per cent, which can
e attributed to the qualities of the SDSS spectrum. For instance, the
MNRAS 532, 643–665 (2024) 
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ean SNR of stars and galaxies in SDSS spectra is higher than that
f DESI. This can be seen by comparing Tables 1 and 3 . 

PPENDIX  C :  RELATIONSHIP  BETWEEN  

V ER AG E  CLA SSIFICATION  AC C U R AC Y  A N D  

NR  

ere, we want to test the dependence of the classification accuracy

igure C1. The average classification accuracy of the SDSS 13-subclasses
lassification with respect to the SNR. We only consider the SNR range of
–50. 

n the SNR of the spectra (see also Section 4.2.3 for the redshift
stimates). In Fig. C1 , we show the average classification accuracy
 v er the SDSS 13-subclasses with respect to the SNR. We consider
4 bins in the SNR range of 0–50. The figure shows that as the SNR
ncreases, the accuracy systematically increases and finally reaches
n upper limit of an average classification accuracy of ∼ 96 per cent .

PPENDIX  D :  VISUALIZATION,  T H E  

R A D I E N T S  O F  O U T P U T  

s discussed in Nepal et al. 2023 , target (i.e. output label) gradients
s a function of input neuron (or wavelength), in the form of partial
eri v ati ves of the output with respect to λ can give information about
he sensitivity of output labels to each of the input fluxes. This allows
s to visualize whether the CNN is learning from the spectral features.
n Fig. D1 , we have selected six SDSS extragalactic random spectra
ncluding objects from different classes. We have paid attention to
 v oiding too low SNR to a v oid the gradient being dominated by
oise rather than the impact of the spectral features. As it can be
een, the gradients of both the classification probability, | d P d λ | , and
he redshift predictions, | d z d λ | , show strong increases around the most
rominent features (e.g. emission lines in star-forming and starburst
alaxies) and possibly some absorption lines from normal galaxies.
nterestingly, they seem to be less sensitive to the very broad lines
rom quasars, meaning that these are too smoothly varying, maybe
ooking more like a continuum feature. Also interesting is the fact
hat the gradients show a burst around the ‘redshifted’ 4000 Å break
or the GALAXY nan spectrum (at ∼7000 Å), implying that this is
 feature that can be seen by the CNN. 

PPENDIX  E:  CLASSIFICATION  A  C C U R A  C Y,  
EDSHIFT  U N C E RTA I N T Y,  A N D  VELOCIT Y  

ISPER SION  

n this appendix, we test the impact of the VDISP on the spectra
lassification and redshift estimates. The line broadening caused by
he VDISP might enlarge the width of emission or absorption lines,
NRAS 532, 643–665 (2024) 
igure D1. The normalized flux and gradients of six SDSS extragalactic
pectra. Line z grad represents the absolute redshift gradients, | d z d λ | , which is
hifted by −1; and line P grad represents the absolute probability gradients,
 

d P 
d λ | , which is shifted by −2. 

ffecting the accuracy of redshift prediction. In Fig. E1 (left panel),
e demonstrate that the predicted σ z of the SDSS data set is slightly

orrelated with the VDISP of galaxies, as the larger the VDISP of
he galaxy, the larger the predicted uncertainty. Ho we ver, in the same
gure, we also show the σ z separated in the different subclasses and
e see that, for each subclass, the σ z is almost independent of the
DISP. This is mirrored by the classification accuracy (bottom panel)
here we see that, except for ‘GALAXY STARFORMING’ which
as a sparser sampling, the accuracy also stays almost constant with
he VDISP. Hence, we conclude that the accuracy of classifications
nd redshift estimates are mainly driven by the class type (meaning
pectral features) and SNR (see Section 4.2.3 and Appendix C ),
ather than the VDISP. 
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Figure E1. The predicted σz values by the MC and the VDISP of four SDSS 
subclasses of galaxies are plotted. The x -axis represents the VDISP, limited 
to values up to 450 km s −1 . 
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