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A B S T R A C T

The paper is a follow-up of the recent study on the assessment of discrete wind gust parameters impacting
a flexible lightweight structure as a first step towards the evaluation of the worst-case scenario caused by
strong wind gusts (JWEIA 231, 105207, 2022). The present study goes beyond by suggesting an optimization
framework which allows to determine the worst-case scenario automatically. For this purpose, a stochastic
response surface algorithm with a surrogate model based on radial basis functions is chosen. The algorithm
relies on costly evaluations of the objective function, which consist of CPU-time intensive fully coupled fluid–
structure interaction (FSI) high-fidelity simulations including the pre- and post-processing of the results. Besides
the parallelization of the coupled FSI solver, a parallel version of the optimization algorithm allows to carry
out several costly evaluations simultaneously. The Metric Stochastic Response Surface algorithm determines
the worst case fast. Then, it continues to explore the optimization space to ensure that the global extremum
is reached. A sensitivity study on relevant parameters of the optimization algorithm is conducted. Typically,
for the present FSI setup, an optimization run takes one week with 6 evaluations in parallel to compute 100
different configurations. The worst case is found after about one third of the evaluations. The increase of
parallel evaluations drastically reduces the wall-clock time, but the worst case is found later after half of the
evaluations. This later finding is due to the parallel nature of the algorithm. Finally, the various sources of
uncertainties that arise throughout the entire procedure are assessed and discussed.
1. Introduction

Remarkable wind events such as strong wind gusts are nowadays of
high interest for civil engineers due to their devastating consequences
on constructions. Besides turbulent fluctuations of the approaching
atmospheric boundary layer leading to fatigue of the building materials,
rapid but strong wind events can result in a total breakdown. To hinder
this, design standards provide guidelines for the dimensioning and
testing. These standards are often developed based on measurements
and rather simplistic assumptions. Therefore, to improve the design
process, the existing standards have to be combined with modern
high-fidelity numerical simulations.

Lightweight structures such as tents, roofs and large umbrellas are
common in civil engineering design due to the fact that they are
transportable and easy to shape. However, the counterpart of these
advantages is that they are highly sensitive to wind loads and partic-
ularly to wind gusts because of their flexibility. Simulations of such
deformable lightweight structures exposed to highly transient turbulent
flows require a two-way coupling between the different media to be
accurate. Moreover, to ensure the structural integrity of the design, the
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numerical predictions have to take the worst-case scenario associated
with the investigated problem into account. The aim of the current
project is to propose a software framework that is able to detect
this worst-case scenario for flexible thin structures (membrane, shell)
plunged into a turbulent boundary layer and exposed to discrete wind
gusts.

This long-term project started with the development of a fluid–
structure interaction (FSI) simulation framework relying on a high-
fidelity finite-volume flow solver using the large-eddy simulation (LES)
technique coupled with a finite-element and isogeometric structure
solver (Breuer et al., 2012). This partitioned FSI solver was carefully
validated for laminar flows based on the FSI3 benchmark (Turek et al.,
2010). Then, the FSI validation process switched to turbulent flows for
thin-walled quasi-2D shell structures (De Nayer et al., 2014; De Nayer
and Breuer, 2014) and a 3D air-inflated membrane (De Nayer et al.,
2018a; Apostolatos et al., 2019). In order to be able to tackle the worst-
case scenario for such a FSI setup originating from extreme wind events,
the fluid solver was extended to include discrete wind gusts. A novel
source-term formulation injecting wind gusts at an arbitrary location
167-6105/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
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of the computational domain was derived in De Nayer and Breuer
(2020). Combining this ingredient with the previously mentioned FSI
framework, the deformations of an air-inflated flexible membrane in
form of a hemisphere within a realistic turbulent boundary layer and
exposed to strong discrete gusts could be investigated in De Nayer et al.
(2022). To prepare the determination of the worst-case scenario for this
civil engineering case, a sensitivity study was carried out to derive the
different relevant input parameters and output objectives (De Nayer
and Breuer, 2022). The present work is the direct continuation of this
investigation to find the worst-case scenario in an efficient manner
and deals with the extension of the computational framework by an
optimization algorithm for computationally intensive problems.

The optimization topic is vast. In order to choose an appropriate
optimization method for the present civil engineering problem, the
selection process is restricted to algorithms especially developed for
expensive objective functions. Based on the recent wind engineering
and civil engineering literature surrogate-based optimization seems to
be efficient for this purpose. Bernardini et al. (2015) and later Ding
and Kareem (2018) apply Kriging surrogates calibrated by URANS and
LES predictions to determine the aerodynamics of buildings possessing
different cross-section shapes. Coupled to a genetic algorithm a multi-
objective optimization of the shape of the civil engineering structure
is presented. Similarly, Abdelaziz et al. (2021) use a genetic algo-
rithm in order to minimize wind-induced vibration amplitudes of tall
buildings. This genetic algorithm is coupled with two meta-models
consisting of two artificial neural networks. Another application of a
genetic algorithm with a feed-forward neural network as the meta-
model is described by Muñoz-Paniagua and Garcìa (2019): The nose
shape of two crossing high-speed trains under cross-wind is optimized
relying either on a single objective, the minimization of the side force
coefficient, or on a multi-objective run, where the pressure pulse is
also minimized. Another multi-objective optimization investigation of
a high-speed train is conducted by Li et al. (2016) based on a genetic
algorithm and a Kriging meta-model trained by RANS simulations. In
civil engineering the behavior of bridges, particularly the prediction
of their flutter velocity, are of high interest. An optimization of their
shapes can be conducted as carried out by Kusano et al. (2020) for the
Great Belt East Bridge. In this study a surrogate model was built relying
on CFD simulations in order to estimate the force coefficients acting on
the bridge.

Looking into the aeronautics literature for the determination of
the worst-case scenario for the response of aircrafts to wind gusts,
surrogate-based optimization also seems to be the best choice. For
instance, Khodaparast et al. (2012) compare different meta-models
such as Kriging and Radial Basis Function (RBF) as well as optimization
techniques in order to identify the critical loads for a model with
five objective functions. Boeing’s proprietary optimizer denoted Design
Explorer (Phoenix Integration, 2017), which relies on the combination
of surrogate modeling with a gradient-based optimization, converges
faster than the other methods. In their multidisciplinary design op-
timization (MDO) framework (Guzman Nieto et al., 2019) combine
the Kriging meta-model with the efficient global optimization (EGO)
algorithm (Jones et al., 1998) in order to obtain fast and accurate
critical loads for a commercial aircraft model. Similarly, the MDO
framework of the German Aerospace Center (Goertz et al., 2020) uses
an enhanced Kriging surrogate model (Wilke, 2019) among others to
build reduced-order aircraft models (Ripepi et al., 2018), which are
then controlled by an EGO wing shape optimizer.

Furthermore, the literature focusing on optimization algorithms pro-
vides a variety of other surrogate-based optimization methods. Among
them, the Scatter Search with Kriging for Matlab® (SSkm) by Egea
et al. (2009) mixes the evolutionary approach with a Kriging response
surface. The NOMAD framework (Audet et al., 2006, 2022) can join
their implementation of the Mesh Adaptive Direct Search (MADS)
algorithm with the Design and Analysis of Computer Experiments
2

(DACE) software (Lophaven et al., 2002), which provides a Kriging h
model. Gutmann (2001a,b) develops a global optimization technique
relying on RBFs, where the next iterate to be evaluated is determined
by minimizing a bumpiness function. Regis and Shoemaker (2007b)
introduce the Stochastic Response Surface (SRS) method for global
optimization problems: At each iteration a response surface model
(Kriging, RBF, . . . ) is updated and exactly one point is selected for
function evaluation from a set of randomly generated points based on
an user-determined merit function. For various problems it performs
better than the RBFs technique by Gutmann (2001b). In order to
increase the time efficiency, a parallel version is presented in Regis and
Shoemaker (2007a).

Relying on the previous non-exhaustive literature review on the
worst-case determination in aeronautics and civil engineering, SRS
methods have apparently not yet been applied to this kind of problems.
However, the results achieved on different benchmarks presented in the
optimization literature are very encouraging. Therefore, a surrogate-
based optimization method applying a Stochastic Response Surface
method as introduced by Regis and Shoemaker (2007a,b) is selected
for the present study. The objective of the optimization process relying
on high-fidelity simulations is to find the worst-case scenario for an
air-inflated membranous structure exposed to discrete wind gusts.

The manuscript is organized as follows: Section 2 introduces the
worst-case scenario prediction framework including the optimization
technique, the fluid and structure solvers and the fluid–structure cou-
pling. The geometry and computational setup of the considered civil
engineering case is detailed in Section 3. Based on this highly transient
FSI problem the determination of the worst case, at which the maximal
inner stresses are reached, is discussed and a brief sensitivity analysis
on the relevant optimization parameters is conducted in Section 4. In
addition, a detailed description of the optimization technique and a
summary of the different sources of uncertainty that occur during the
complete procedure can be found in the appendices.

2. Worst-case scenario prediction framework

Simulations of a multi-physics problem such as the FSI case tackled
in this study are computationally intensive. In order to identify the
worst-case scenario for such problems, which includes several input
parameters, the number of expensive evaluations, i.e., pre-processing of
the case, time-consuming numerical predictions based on coupled FSI
simulations and post-processing of a huge amount of data, has to be
kept as low as possible. To tackle this kind of issues, diverse response
surface algorithms were developed as mentioned in the introduction.
In the present framework the Matlab® implementation of a Stochastic
Response Surface method (Regis and Shoemaker, 2007a,b) will be
applied.

2.1. Stochastic response surface algorithm based on RBF surrogates

The determination of the worst-case scenario for the current case
is carried out by the optimization function surrogateopt included in
Matlab®1. It applies a Metric Stochastic Response Surface (MSRS)
algorithm with a surrogate model relying on radial basis functions for
the response surface part. The description of stochastic response surface
methods and their associated mathematical proofs are detailed in Regis
and Shoemaker (2007b). An user documentation for surrogateopt is
available2. Obviously, the search for the worst-case scenario bases on
the determination of a global maximum. However, to stay consistent
with the terminology employed in the optimization literature, the MSRS
algorithm described below and sketched in Fig. 1 looks for a global
minimum, which can be resolved by the introduction of a minus sign

1 https://de.mathworks.com/products/matlab.html
2 https://de.mathworks.com/help/gads/surrogate-optimization-algorithm.
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in the objective function (see Section 3.5). In the following, only a
brief specification of the entire algorithm is presented. For a detailed
description the interested reader is referred to Appendix A.

The MSRS algorithm implemented in surrogateopt starts in step 1
ith 𝑛0 costly evaluations of the objective function 𝑓 for a problem

of dimension 𝑑. In the present case, 𝑓 contains the FSI solver described
in Section 2.2 followed by the post-processing. These initial points are
generated by a quasi-random sequence and are called random samples.
The so-called incumbent is determined as the point with the minimum
bjective function value among the costly evaluated points. Now, the
ore of the MSRS algorithm starts with step 2 which is a loop over the
aximum number of costly evaluations. It includes step 2.1 in which

he response surface model 𝑠𝑛 is generated or updated relying on the
lready evaluated and costly vector points. Here, surrogateopt applies

for the response surface model a radial basis function interpolator based
on cubic splines with a linear tail. Step 2.2 explores the domain of
evaluation within the bounds. For this purpose, a large amount of
possible candidate points are randomly generated by samplers around
the incumbent point. The procedure can be related to a local search.
In order to explore the neighborhood as good as possible, several
samplers (the random sampler, the mesh adaptive direct search Or-
thoMADS (Abramson et al., 2009) and the Generalized Pattern Search
(GPS) (Torczon, 1997)) are applied in a cycle. Accordingly, the gener-
ation of the random candidate points is centered around the incumbent
point. In Step 2.3 the next function evaluation points are determined.
A so-called merit function relying on the previously generated response
surface model is computed at every random candidate point generated
in step 2.2, except those too close to the previously evaluated points
defined by a user-defined dimensionless minimum distance 𝑑sample

min . The
merit function 𝑓merit implemented in the surrogateopt function is the
weighted sum of the response surface value and the distance from
the evaluated points as proposed by Regis and Shoemaker (2007b).
The transition between a local search around the current incumbent
point and a more global search depends on the value of the weight,
where a large value encourages the local refining, while a smaller value
encourages the global exploration. Since steps 2.2 and 2.3 are nested,
the weight is adapted within the sampler cycle from 0.3 to 0.95. The
next function evaluation point denoted adaptive point is the one with
the highest 𝑓merit value. If all candidate points are too close to the
evaluated points, no new adaptive point is defined and steps 2.4 and 2.5
are skipped. In that case a local minimum is reached. If the maximum
number of loops is not reached, a new search begins at step 1 based
on other random points associated with a reset of the surrogate. Step 2.4
comprises the costly function evaluation of the objective function and
in step 2.5 an update of the best function value is carried out if
required. When the current number of expensive evaluations reaches its
predefined maximum, the MSRS algorithm ends with step 3 and returns
the best solution found.

As detailed in Appendix A, the optimization function has the option
to use a kind of parallelism to strongly reduce the wall-clock time.
ts associated uncertainty is discussed in Appendix B.6. Optimization
uns based on the parallel version can be carried out with 𝑖𝑤 costly
valuations treated simultaneously by the compute cluster as sketched
n Fig. 1. Here 𝑖𝑤 denotes the number of parallel workers. Per con-
truction, the parallelism of the algorithm leads to a total amount of
valuated points for the generation of the surrogate slightly higher than
he one defined by the user (which corresponds to 𝑛0). 𝑛

parallel
0 is at most

0+𝑖𝑤, since the optimization function switches to the next step, as soon
s 𝑛0 is reached, but waits for the workers, which are evaluating points.

For the present study the surrogateopt parameters ‘MaxFunctionEval-
ations’ and ‘MinSampleDistance’ are set to 𝑁max = 100 and 𝑑sample

min =
10−3, respectively. The number of parallel workers is set to 𝑖𝑤 = 6.
The value 𝑁max = 100 combined with 6 parallel workers is a good
ompromise between an accurate solution for the global minimum and
he required wall-clock time of the considered problem. One evaluation
3

akes approximately between 8 and 18 h using 42 CPU cores (see
Section 2.2). That leads to a total computation time of about one
week on a parallel compute cluster for the worst-case determination,
which is acceptable in the academic field. The remaining user-defined
parameters related to the surrogateopt function are retained at their
default values.

2.2. Coupled solver for FSI simulations

The objective function 𝑓 mentioned in the previous section is com-
posed of the preparation of the FSI case (the input parameters of the
𝑛th costly evaluation 𝐱𝑛 are passed to the input files of the solvers
for the fluid and the structure), the numerical predictions of the FSI
problem through an in-house FSI simulation framework and finally,
the evaluation of the results, for example, the maximum of the inner
stresses in the structure (see the sketch in Fig. 1).

The FSI simulation framework is based on a partitioned proce-
dure (Breuer et al., 2012) relying on the computational structure dy-
namics solver Carat++ (Bletzinger et al., 2006) and the fluid solver
FASTEST-3D (Durst and Schäfer, 1996). The coupling and the mapping
between the two diverse surface discretizations at the FSI interface
are carried out by the open-source software EMPIRE (Sicklinger et al.,
2014). Strong and loose coupling schemes are available. Details about
the presently applied mortar mapping in case of FEM discretizations can
be found in Wang et al. (2016) and Apostolatos et al. (2019). All the
data exchange relies on message passing interface (MPI) communica-
tions. This FSI simulation framework has been validated among others
based on experimental FSI benchmarks (Kalmbach and Breuer, 2013;
De Nayer et al., 2014, 2018a; De Nayer and Breuer, 2014; Wood et al.,
2018).

Carat++ is a finite-element and an isogeometric structural solver
developed with emphasis on the prediction of the mechanical behavior
of thin-walled structures such as shells and membranes (Breitenberger
et al., 2015; Philipp et al., 2016). The momentum equation written in a
Lagrangian frame of reference is applied to describe the dynamic equi-
librium of the structure. A St. Venant-Kirchhoff material law is assumed
and links the Piola–Kirchhoff stress tensor with the Green–Lagrange
strain tensor (Basar and Weichert, 2013). The time is discretized relying
on the standard second-order non-linear Newmark scheme.

For FSI problems the fluid solver FASTEST-3D predicts complex tur-
bulent flows using the large-eddy simulation (LES) technique by solv-
ing the filtered Navier–Stokes equations in the arbitrary Lagrangian–
Eulerian (ALE) form. The equations are discretized based on the finite-
volume technique on a curvilinear, block-structured body-fitted grid
with a collocated variable arrangement. The surface and volume in-
tegrals are approximated by the midpoint rule. Most flow variables
are linearly interpolated to the cell faces leading to a second-order
accurate central scheme. To stabilize the simulation, the convective
fluxes are approximated by the technique of flux blending (Ferziger
and Perić, 2002). In the present study the flux blending includes 3%
of a first-order accurate upwind scheme and 97% of a second-order
accurate central scheme. In order to avoid unwanted oscillations, the
momentum interpolation technique of Rhie and Chow (1983) for non-
staggered grids is applied to couple the pressure and the velocity
fields. To solve the pressure–velocity coupling problem, a semi-implicit
predictor–corrector scheme is applied: First, the momentum equations
are time-marched by a low-storage multi-stage Runge–Kutta method to
obtain an intermediate velocity. Then, the corrector step ensures that
mass conservation is achieved in form of a divergence-free velocity field
by solving a Poisson equation for the pressure correction.

Since LES is applied, the large scales of the turbulent flow are
resolved and the small scales are modeled by a subgrid-scale (SGS)
model. The classical (Smagorinsky, 1963) SGS model combined with
the standard parameter 𝐶𝑠 = 0.1 and with the Van-Driest damp-
ing function for the near-wall region is applied, since a preliminary

study (De Nayer et al., 2018b) has proven that the model delivers
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Fig. 1. Sketch of the complete worst-case scenario prediction framework (parallel version).
reasonable results for this test case. In order to mimic a realistic in-
flow, synthetic turbulent fluctuations generated by the recursive digital
filter technique of Klein et al. (2003) can be injected at the inlet or
within the computational domain based on the source-term method
proposed by Schmidt and Breuer (2017), Breuer (2018) and De Nayer
et al. (2018b). Note that this procedure satisfies the divergence-free
condition, since it purely relies on a modification of the momentum
equation not disturbing the mass conservation. For more information
the reader is referred to the cited references. Note that details about the
prescribed velocities, Reynolds stresses and length scale for the current
application are specified in Section 3.2. Furthermore, the uncertainties
related to the fluid simulation and turbulence modeling are discussed
in Appendix B.1.

To study the worst-case scenario on the present FSI case, extreme
wind events, i.e., discrete deterministic wind gusts, are injected into the
computational domain. Various mathematical functions can be applied
for this purpose. In this study solely the Extreme Coherent Gust (ECG)
defined in the IEC-Standard (2002) is selected. The parameters used to
describe the shapes are provided in Section 3.3 and the uncertainties as-
sociated with the gust modeling in Appendix B.2. Similar to the inflow
turbulence the wind gusts are injected into the flow using a source-
term formulation recently introduced by De Nayer and Breuer (2020).
According to this method the gust shape is generated within the flow
field by purely modifying the momentum equation. Thus, no mass is
added to the flow. Therefore, after the solution of the Poisson equation
for the pressure correction, the flow is divergence-free. Analogously to
the injection of turbulent fluctuations, the source-term formulation for
the gust injection also ensures the mass conservation of the flow.
4

The distortions of the structure resulting from the fluid loads are
taken into account at the FSI interface. The fluid mesh of the body-
fitted fluid solver is adapted using a fast procedure relying on linear and
transfinite interpolations (TFI) in case of small deformations or by the
hybrid grid adaption method developed for LES and large deformations
by Sen et al. (2017).

The flow solver itself is parallelized based on classical domain
decomposition and MPI communications. Since the flow simulation is
the most expensive part, the majority of CPU cores (here 40) is used for
this purpose. Contrarily, the structural solver Carat++ and the coupling
tool EMPIRE solely need one core each.

3. FSI application case

In civil engineering numerous wall-mounted structures in hemi-
spherical form exist such as silos, tents or stadiums. The flow around
this kind of three-dimensional bodies is complex as demonstrated
in Wood et al. (2016). Besides the flow complexity itself a flexible
structure made of a thin membrane leads to a challenging FSI case.
The application case described in the following is originating from the
experimental investigation carried out by Wood et al. (2018). Here,
the objective was to set up a validation case in the wind tunnel for a
flexible membranous structure exposed to a turbulent boundary layer.
Thus, the real size of such a construction had to be scaled down and
an appropriate material had to be found. After finding reasonable
parameters of the setup, the measurement campaign was successful and
delivered a huge amount of data for the comparison with coupled FSI
simulations (De Nayer et al., 2018a; Apostolatos et al., 2019). Although
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Fig. 2. Sketch of the considered FSI civil engineering case. The input parameters varied within this optimization study are marked by a box. The others are considered to be
fixed.
the experimental study did not consider the effect of wind gusts up to
now, the same generic setup is used in the present investigation on the
worst-case scenario. Ongoing experimental investigations are trying to
incorporate wind gusts into the wind tunnel setup (Wood et al., 2022).

3.1. Geometry and material of the structure

A flexible membrane of average thickness 𝑡membrane = 1.65 × 10−4

m is wall-mounted and exposed to the gravitational acceleration 𝐠 =
−9.81m/s2 𝐞𝟑 (see Fig. 2). The hemispherical form (diameter 𝐷) is
obtained by applying a pressure difference 𝛥𝑝FSI = 𝑝 − 𝑝∞ = 43 Pa
between the inner gauge pressure of the structure and the ambient
pressure. This value is a satisfying compromise between stabilization
and contour accuracy (Wood et al., 2018). The membrane material
is silicone (Wacker Elastosil 625). For a St. Venant-Kirchhoff material
the density, the Young’s modulus and the Poisson’s ratio are deter-
mined to 𝜌silicone = 1050 kg∕m3, 𝐸silicone = 7 × 105 Pa and 𝜈silicone ≈
0.45, respectively. Since silicone is a rubber-type material, the internal
structural damping cannot be neglected. Pure structural test cases
presented in Wood et al. (2018) allow to set a correct material be-
havior for the simulations. In the present study the material damping
is modeled by the well-established Rayleigh damping. The constant
mass- and stiffness-proportional parameters are set to 𝛼𝑟 = 17.47 and
𝛽𝑟 = 1.89 × 10−4 as determined in De Nayer et al. (2018a). A discus-
sion regarding the inherent uncertainties associated with the struc-
tural modeling and with the geometry representation can be found in
Appendices B.3 and B.4, respectively.

3.2. Approaching boundary layer

The smooth wall, on which the body is mounted, generates a thick
turbulent boundary layer without wind gust. Based on the measurements
of Wood et al. (2016) the distribution of the time-averaged streamwise
velocity at a distance of 1.5 diameters upstream of the structure closely
follows the 1/7 power law and the thickness of the boundary layer 𝛿
corresponds to the height of the hemisphere (𝛿 = 𝐻 = 𝐷∕2). Based
on the free-stream velocity 𝑢∞ = 9.95 m/s in streamwise direction at
standard atmospheric conditions (𝜌air = 1.225 kg/m3, 𝜇air = 18.27 ×
10−6 kg/(m s)) the Reynolds number is 100,000. In order to obtain
accurate numerical predictions, this kind of turbulent inflow has to
be realistically modeled. Based on the time-averaged velocities and
Reynolds stresses measured in the experiment (Wood et al., 2018)
and complemented by DNS data of Schlatter et al. (2009), synthetic
inflow (STIG) data are generated by the digital filter concept of Klein
et al. (2003) and injected at a distance of 1.5 diameters upstream
5

of the body. The integral length and time scales of the turbulence
applied are 𝐿STIG

𝑧 ∕𝐷 = 𝐿STIG
𝑦 ∕𝐷 = 𝐿STIG∕𝐷 = 2.04 × 10−2 and

𝑇 STIG 𝑢∞∕𝐷 = 2.85 × 10−2, respectively (for more details, see De Nayer
et al. (2018a)). Based on these settings a peak turbulence level of

TuSTIG =
√

1
3

(

𝑢′𝑢′ + 𝑣′𝑣′ +𝑤′𝑤′
)

∕𝑢∞ = 8% is reached close to the
bottom wall for the situation without any discrete gust.

Please note that all parameters listed in this section are constant
within the current investigation.

3.3. Wind gust modeling

The perturbations included in the synthetic turbulent boundary
layer are of limited amplitudes since the objective was to describe
the approaching boundary layer. Thus, the effect of strong wind gusts
triggering large structural deformations and leading to a worst-case sce-
nario are not taken into account in the description of the approaching
turbulent boundary layer. To consider such impacts, discrete determin-
istic wind gusts are added to the flow as described in Section 2.2. The
shape of the gust is defined in the local basis 1 =

(

𝑂, 𝐠1, 𝐠2, 𝐠3
)

(see
De Nayer et al., 2022, for details about the theory and the basis) based
on the velocity by the mathematical functions 𝑓1, 𝑓2, 𝑓3 in the three
spatial directions and 𝑓t in time:

𝐮g
|

|

|1
(𝑡, 𝜉, 𝜂, 𝜁 ) = 𝐴g 𝑓t(𝑡) 𝑓1(𝜉) 𝑓2(𝜂) 𝑓3(𝜁 ) 𝐠𝟏 . (1)

The strength of the wind gust can be controlled by the input
parameter denoted gust amplitude 𝐴g. In the present case the gust is
injected in the streamwise direction, i.e., 𝐠1 = 𝐞1, to maximize the
effects of the gust on the structure. An adapted version of the ECG gust
type introducing the central value 𝜙g is considered (De Nayer et al.,
2019) to define the functions 𝑓1, 𝑓2, 𝑓3 and 𝑓t:

𝑓𝑖(𝜙) =

⎧

⎪

⎨

⎪

⎩

1
2

(

1 + cos

(

2𝜋
(

𝜙 − 𝜙g
)

𝐿𝜙
g

))

for
(

𝜙 − 𝜙𝑔
)

∈
[

− 𝐿𝜙
g

2
, 𝐿𝜙

g

2

]

0 else .

(2)

The variable 𝜙 is equal to the coordinate 𝜙 = {𝑥, 𝑦, 𝑧} or the time 𝑡
and the subscript 𝑖 is equal to 1, 2, 3 or 𝑡, respectively. 𝐿𝜙

g represents
the length and time scales of the wind gust. For the considered FSI ap-
plication the temporal shape function 𝑓t(𝑡) follows the same analytical
function as the spatial shape 𝑓1(𝜉) oriented in gust direction, i.e., the
streamwise direction. The length scales of the gust in wall-normal and
spanwise direction are fixed to 𝐿𝜂 = 𝐿𝜁 = 1𝐷, while that in the gust
𝑔 𝑔
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direction 𝐿𝜉
𝑔 (and consequently 𝐿𝑡

𝑔 , since 𝐿𝑡
𝑔 = 𝐿𝜉

𝑔∕𝑢conv
𝑔 with 𝑢conv

𝑔 = 𝑢∞
here) is an input parameter of the optimization problem.

Since the discrete wind gust can be injected everywhere inside the
computational domain, the position vector of the gust (𝑥0𝑔 , 𝑦

0
𝑔 , 𝑧

0
𝑔) is of

relevance. In the present FSI study 𝑥0𝑔∕𝐷 is set to −1.5 so that the longest
gust (largest 𝐿𝜉

𝑔) can be fully injected before reaching the flexible
structure. 𝑦0𝑔 is set to zero, which means that the center of the gust is
in the symmetry plane of the structure. That maximizes the impact of
the gust on the body. As demonstrated in De Nayer and Breuer (2022)
the altitude 𝑧0𝑔 at which the gust is injected plays a dominant role for
the structural deformations. Therefore, it is also an input parameter of
the optimization.

To resume the gust amplitude 𝐴g, its length scale in streamwise
direction 𝐿𝜉

g and its injection altitude 𝑧0𝑔 are input parameters for the
optimization run. In the precursor sensitivity study (De Nayer and
Breuer, 2022) the effect of these wind gust parameters was already
evaluated. Meaningful ranges for the investigation of the worst-case
scenario were derived for 𝐴g and 𝐿𝜉

g: 0.5 ≤ 𝐴g∕𝑢∞ ≤ 1.0, 0.5 ≤ 𝐿𝜉
g∕𝐷 ≤

1.0. The gust injection altitude 𝑧0𝑔 was shown to have a major impact
on the results. Therefore, in order to be sure to reach the worst case in
the present work, its variation range is increased in both directions to
1∕8 ≤ 𝑧0𝑔∕𝐷 ≤ 6∕8. The remaining parameters are fixed in the current
investigation.

3.4. Computational setup

The thin-walled structure is composed of 1926 finite membrane
Constant Strain Triangle (CST) elements and 999 nodes based on the
grid-independence study carried out in De Nayer et al. (2018a). All
nodes are free except those connected to the smooth plate at the bot-
tom, which cannot move in any translational direction. The membrane
has an outer side in contact with the air flow solved by the fluid
solver and an inner side, where the air is over-pressurized. The domain
inside the hemisphere is not solved by the fluid solver. It is assumed
that the pressure difference 𝛥𝑝FSI stays constant over time. In order
to take that into account, a follower pressure load acting on each
surface element is added directly to the structural solver. Concerning
the outer side, the fluid loads composed of the pressure and the shear
stresses are predicted by the fluid solver FASTEST-3D and exchanged
by the coupling and mapping tool EMPIRE (Sicklinger et al., 2014).
Additionally, a dead load acting on the volume of each membrane
element models the gravitational acceleration 𝐠. In order to define the
initial state of the membranous structure, a homogeneous and isotropic
pre-stress tensor field is prescribed with the value of 𝑛membrane = 7794.5
Pa (see De Nayer et al., 2018a, for the determination of this value).

The computational domain for the fluid solver is a perfect hemi-
spherical expansion in radial direction (radius 10𝐷) starting at the
center of the structure. A block-structured grid composed of 4.3 ×
106 control volumes (CV) was proved to be sufficient for acceptable
predictions of the flow close to the walls and close to the body (see De
Nayer et al. (2018b) for details). In order to fulfill the recommendations
by Piomelli and Chasnov (1996) for wall-resolved LES the first cell
center is located at a distance of 𝛥𝑧∕𝐷 ≈ 5 × 10−5 from the wall leading
to maximal 𝑧+ values of 0.25 based on the time-averaged flow data.
Furthermore, the aspect ratio of the CVs on the body are between
1 and 10 and the geometric stretching ratios in radial direction are
kept below 1.1. During the FSI simulation this fluid grid is adapted
using the fast TFI method to take the deformation of the body into
account and to keep the computational effort acceptable. Concerning
the boundary conditions, the bottom plate and the flexible membrane
are considered as no-slip walls. The outer surface of the hemispherical
expansion is divided into inlet and outlet patches. In the lower part of
the outlet patch, where large turbulent vortices are present and have to
pass the outlet boundary without perceptible disturbances, a convective
6

boundary condition is applied.
Regarding the FSI problem, a loose coupling is applied, since the
density ratio 𝜌fluid∕𝜌structure is far below unity, i.e., the added-mass
effect is very limited. The uncertainties stemming from the FSI coupling
are addressed in Appendix B.5. Both solvers use the same constant time
step 𝛥𝑡∗ = 𝛥𝑡 𝑢∞ ∕𝐷 = 3.317 × 10−5 leading to a CFL number of about
3 × 10−2 (computed with the local velocity and the length of the cell).
In the first FSI investigations conducted with the flexible hemisphere
(De Nayer et al., 2018a; Apostolatos et al., 2019) long predictions in
term of simulation time had to be carried out in order to determine
the statistics of the turbulent flow field and the structure deformations.
In De Nayer et al. (2022) and De Nayer and Breuer (2022) the required
simulation time was also long in order to include the whole passing of
the gust through the wake. In the present configuration a simulation
time of 100,000 time steps (𝑡∗ ≈ 3.3) after the injection of the gust
ensures to capture the approaching gust, the impact of the gust on the
structure and the time interval when the gust is leaving the structure.
Thus, the worst-case scenario resulting from the impact of the wind
gust on the body can be evaluated with this reduced number of time
steps.

3.5. Objective function

For engineers the determination of the highest inner stresses occur-
ring in the material is of high interest in order to correctly dimension
their design and avoid material failures. Therefore, the global maxi-
mum of the von Mises stresses in the structure is used as the objective
function for the present optimization run. At each time step the von
Mises stresses 𝜎Mises are evaluated for each finite element of the mem-
brane and the maximum denoted max(𝜎Mises) is tracked. At the end
of the FSI simulation the maximum of the time history of max(𝜎Mises)
is taken as the objective function 𝑓 . Since surrogateopt searches for a
global minimum, -max(𝜎Mises) is returned.

4. Results and discussion

4.1. Summary of the gust–membrane interaction

In De Nayer et al. (2022) the effect of wind gusts on the flow
field, the resulting forces on the structure and the corresponding de-
formations of the flexible structure were analyzed in detail. For a
better understanding of the following consideration of the worst-case
scenario, some important results of these investigations are briefly
summarized here.

Due to the injected gust the streamwise velocity in the region
upstream of the flexible structure raises approximately according to
𝑢max
1 ∕𝑢∞ = 1 + 𝐴𝑔∕𝑢∞. When the gust reaches the hemisphere, the

resulting forces in streamwise and vertical direction increase signifi-
cantly and the streamwise component reaches its first local maximum
(see Fig. 3(a) for a typical time history). The structure starts to deform
and the front of the membrane grows hollow due to the impact of the
gust visible by a high pressure in this region. Then the gust convects
downstream. When the gust is located above the hemisphere, the strong
suction pulling the body upwards leads to the maximum vertical force.
Afterwards the wind gust detaches from the structure. The low pressure
area in the back of the body is responsible for the second peak value
of the streamwise force. During this phase the forming indentation at
the front still gets larger and deeper. A delay between the maxima
of the total forces and the maxima of the local deflections of the
front is detected. The latter is observed when the gust has already
passed the hemisphere completely (see Fig. 3(c)). Afterwards the front
indentation starts to decrease again and the deflections of the inflated
hemisphere slowly return to their original level. To analyze failure
of ductile materials the von Mises stress was predicted as a classical
criterion to be compared with the yield stress of the material. For
𝑧0𝑔∕𝐷 = 2∕8 the largest von Mises stresses during the gust impact were

observed very close to the bottom wall at the front gap resulting from
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Fig. 3. Typical critical case (𝑧0𝑔∕𝐷 = 2∕8, 𝐴𝑔∕𝑢∞ = 1.0, 𝐿𝜉
𝑔∕𝐷 = 1.0).
the gust impact. It has to be noticed that another area of high von Mises
stresses is located at the periphery of this gap and particularly at the
apex of the hemispherical membrane. That is visible in Fig. 3(b) and
again appears earlier (𝑡∗ ≈ 1.81) than the maximal deflection (𝑡∗ ≈ 2.56).

4.2. Determination of the worst case

Applying the framework introduced in Section 2 and sketched in
Fig. 1 with 6 parallel workers, the determination of the worst case
starts with the initialization phase (STEP 1). 𝑛parallel

0 (here 25) costly
evaluations of the objective function are carried out. The values of the
input parameters 𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞ and 𝐿𝜉

𝑔∕𝐷 of these FSI simulations are
chosen randomly by the optimization algorithm to explore the whole
space within the user-given bounds provided in Section 3.3. Fig. 4(a)
depicts the spreading of those random points in the 2D planes 𝑧0𝑔∕𝐷 vs.
𝐴𝑔∕𝑢∞, 𝑧0𝑔∕𝐷 vs. 𝐿𝜉

𝑔∕𝐷 and 𝐴𝑔∕𝑢∞ vs. 𝐿𝜉
𝑔∕𝐷, respectively. The coupled

simulation of the 𝑛parallel
0 evaluations delivering the smallest objective

value, i.e., the largest von Mises stresses, is marked as the incumbent.
After this initialization step the second phase of the optimization

algorithm, i.e., the determination of the minimum, begins by construct-
ing the RBF surrogate 𝑠 based on the 𝑛parallel previously evaluated
7

𝑛0 0
random samples (STEP 2.1) (see Fig. 4(b)). Then, the Metric Stochastic
Response Surface (MSRS) algorithm generates around the incumbent
numerous candidate points (STEP 2.2) to be rated based on their
merit function as defined in Eq. (A.3) (STEP 2.3). The selection of the
candidate samples, denoted adaptive points, is driven by two factors:
On one side, the MSRS algorithm wants to explore the whole space
within the bounds. On the other side, it looks for a minimum. This
dual task of the MSRS algorithm is clearly visible in Figs. 4(c). Some of
the selected and evaluated adaptive points are far from the incumbent
and from the minimum, but fill a gap between other already evaluated
samples in order to improve the meta-model. Since the parallel version
of the MSRS method is applied with 6 workers, 6 adaptive points are
asynchronously evaluated in parallel (STEP 2.4). Afterwards, a new
incumbent is determined among all evaluated points (STEP 2.5), the
RBF surrogate is updated with these 6 new samples and the next
candidate points are generated for assessment. This loop proceeds till
a minimum is found. Fig. 4(c) gathers all selected and costly evaluated
candidate points until the surrogate reset. Since 6 parallel workers
are used, each set of 6 newly evaluated points are marked by the
same symbol and the same gray scale value on the plot, so that the
reader can follow the progression of the algorithm thorough the space.
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In the present optimization run the minimum is reached at (𝑧0𝑔∕𝐷,
𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷) = (0.219,1,1) with an objective value of -max(𝜎Mises)
−66.17 kPa. The worst case is the 38th point evaluated (including

he 25 initial random points). Thus, it can be remarked that the MSRS
lgorithm determines the worst case fast, but continues to explore the
pace around the incumbent to be sure that the minimum is found. This
an be observed in Fig. 4(c): The first sequence of adaptive points are
ostly concentrated close to the incumbent determined by the initial

andom points and within the area of high maximal von Mises stress
iven by the surrogate (marked in red in Fig. 4(b)). This leads to the
ocalization of the point (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷) = (0.219,1,1). Then,
the algorithm fails to find a lower minimum in that area. Therefore,
it tries to explore the rest of the space as visible in Fig. 4(c). If the
MSRS method does not succeed to improve this local minimum and all
candidate points are too close to each other, it stops and decides to
restart the procedure at STEP 1 to ensure that the global minimum
s found. In the present run, this case occurs after 73 evaluations.
ew initial random points are generated, but they have to be different

rom the already evaluated ones. The surrogate is reset and the whole
rocedure proceeds until the maximum number of costly evaluations
max (here 𝑁max = 100) is reached. Note that only one surrogate reset

s done in the presented run. A run with 𝑁max = 200 shows that no
etter minimum can be found.

The amplitude 𝐴𝑔∕𝑢∞ = 1 and the length scale of the gust 𝐿𝜉
𝑔∕𝐷 = 1

eading to the maximal von Mises stress is not a surprise. The stronger
nd wider the gust is, the higher is its energy leading to large defor-
ations of the structure. Therefore, the MSRS algorithm found 𝐴𝑔∕𝑢∞

and 𝐿𝜉
𝑔∕𝐷 equal to their upper bounds. The circumstance that the worst

case is determined for a low value of the third parameter 𝑧0𝑔∕𝐷 was not
foreseeable. As visible in Fig. 3(b), the high values of the von Mises
stresses concentrate at the periphery of the gap (particularly close to
the apex) resulting from the impact of the gust in front of the membrane
and also close to the bottom wall due to this boundary. For values
of 𝑧0𝑔∕𝐷 larger than 0.252 the high von Mises stresses locate more at
the periphery at the apex, for values of 𝑧0𝑔∕𝐷 less than 0.252 they are
detected close to the bottom wall. This can be explained by the role
of the fixed nodes of the membranous structure at the bottom wall.
They lead to high strains and thus high inner stresses in the membrane
elements close to the bottom plate. It is interesting to remark that the
worst case for the maximum von Mises stress (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷)
= (0.219,1.0,1.0) is not the same as the worst case for the maximum
vertical force as another objective function reached at (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞,
𝐿𝜉
𝑔∕𝐷) = (0.368,1.0,1.0), although they occur at nearly the same time

instant (see Fig. 3(a)).
The optimization parameter 𝑛0 was set to 20 leading to 𝑛parallel

0 = 25
in the present parallel run. Since the first surrogate relies on the 𝑛parallel

0
first costly evaluations of the objective function, this value has a direct
influence on the accuracy of the first meta-model 𝑠𝑛0 . Fig. 5 depicts
the relative error 𝜀 between 𝑠𝑛0 and 𝑠𝑁max relying on all samples and
considering 𝑠𝑁max as reference. The maximum of 𝜀, about 20% in the
resent run, is located in the area where the worst case is supposed to
e. This makes sense: since more points are evaluated in this region and
hus the updated meta-model adapts there. Far away only a few points
re chosen, therefore the surrogate is barely updated and its error is
lose to zero. In the current run the error obtained with 𝑛parallel

0 = 25 is
uite low. Consequently, 𝑛parallel

0 = 25 is considered to be enough and
ill not be modified.

With the presented framework multiple MSRS optimization runs
ere carried out on the HPC cluster of the Helmut-Schmidt-Universität,
SUper, built with Intel Icelake sockets and Intel® Xeon® Platinum
360Y processors and connected by a non-blocking NVIDIA InfiniBand
DR100 fabric (Neumann and Preuß, 2022). The parallel run with 6
orkers and 𝑁max = 100 costly evaluations described here took about 8
ays to finish. The wall-clock time for one costly evaluation is between
and 18 h. This large deviation in the wall-clock time is due to the
8

i

ifferences in the membrane deformations resulting from the impact of
usts with different strengths and lengths.

Due to modeling, discretization, and computational errors, the re-
ults and thus the worst-case obtained from the computational frame-
ork carry a certain degree of uncertainty. To evaluate the reliabil-

ty of the results, Appendix B provides a catalog of diverse sources
ontributing to this uncertainty.

.3. Sensitivity analysis of the optimization settings

Several optimization settings have a major impact on the complete
un. The total amount of evaluations 𝑁max directly influences the wall-
lock time consumption of the complete optimization run. As already
entioned, 𝑁max = 100 is enough to deliver the worst-case scenario

nd leads to an acceptable run time of one week.
The minimal sample distance 𝑑sample

min is an important dimensionless
arameter. Applying the same seed for the quasi-random generator, the
tandard value of 𝑛0 = 20 and the given fixed bounds for the input
arameters, a variation of 𝑑sample

min has no impact on the generation
f the initial random points. Therefore, the incumbent among the
andom points remains identical and the latter are not depicted in
he already crowded Fig. 6. However, the choice of 𝑑sample

min impacts
he selection of sample points. In the run presented before, 𝑑sample

min is
et to 10−3. Increasing 𝑑sample

min to a value larger than 5 × 10−3 has for
onsequence that the algorithm is more limited for the choice of can-
idate points within the bounds. Thus, the evaluated samples are more
pread through the space as visible in Fig. 6. With this configuration the
orst case at (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷) = (0.219,1.0,0.95) is found faster
han with 𝑑sample

min = 10−3 (28th vs. 38th evaluation including initial
oints). However, the magnitude of its objective value -max(𝜎Mises) =
63.82 kPa is 3.5% less than that of the objective value found with
sample
min = 10−3. Thus, the value of the minimal sample distance 𝑑sample

min
s decisive for the optimization run: A too large value prevents the
ramework to determine an accurate worst case. Decreasing 𝑑sample

min
o 10−6 has for consequence that the algorithm considers candidate
oints, which are closer to each other. The accuracy of the worst-
ase parameters will be higher: The worst case is determined for
𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷) = (0.217,1.0,1.0) with an objective value of -
ax(𝜎Mises) = −66.18 kPa, which has an amplitude 0.016% larger than
ith 𝑑sample

min = 10−3. However, the MSRS algorithm requires more
valuations to reach this result. With 𝑑sample

min = 10−3 the worst case
s attained at the 38th evaluation. With a value of 𝑑sample

min = 10−6 it
akes about 40% more evaluations (about 53). Moreover, the 𝑑sample

min
arameter directly influences the surrogate reset. The higher 𝑑sample

min is,
he faster the surrogate reset occurs.

The parameter 𝑖𝑤, i.e., the number of parallel workers, plays a major
ole in the time consumption. A complete parallel run with 12 workers
akes about 4 and half days, i.e., half of the time needed by a run with

workers. This result is not surprising, since about the same amount
f costly evaluations 𝑁max are carried out in both cases. Please remark
hat a parallel run with more workers carries out slightly more eval-
ations due to the asynchronism of the algorithm. When the parallel
SRS method switches between phases, the samples being evaluated

emain in service, but any other points in the queue are removed
rom the queue. Therefore, when the 𝑁maxth evaluation terminates,
he optimization algorithm stops, but waits until the other running
valuations finish. The parameter 𝑖𝑤 has no influence on the incumbent
mong the initial random points. Again, due to the asynchronism of the
arallel algorithm, slightly more initial random points (31 vs. 25) are
sed with 𝑖𝑤 = 12. With the same minimal sample distance 𝑑sample

min =
0−3 the parameter 𝑖𝑤 has no impact on the final worst case: 𝑖𝑤 = 12
etermines the point (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉

𝑔∕𝐷) = (0.219,1.0,1.0) as the
orst-case scenario exactly as 𝑖𝑤 = 6. However, due to the parallelism
f the MSRS algorithm it is discovered later (52th vs. 38th evaluation

ncluding initial points). Fig. 7 compares the distributions of the sample
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Fig. 4. Typical stochastic response surface optimization run (6 parallel workers with 𝑑sample
min = 10−3).
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Fig. 5. Relative error between the surrogate 𝑠𝑛0 based on the 𝑛parallel
0 initial random samples and the surrogate 𝑠𝑁max

relying on all samples (6 parallel workers with 𝑑sample
min = 10−3).
points in the space (𝑧0𝑔∕𝐷, 𝐴𝑔∕𝑢∞, 𝐿𝜉
𝑔∕𝐷) for 𝑖𝑤 = 6 and 12. These

distributions are not exactly identical but similar, showing that the
parallelism implementation of the MSRS method works well.

5. Conclusions

To determine the worst-case scenario of lightweight membranous
structures attacked by strong discrete wind gusts, a new methodol-
ogy based on high-fidelity solvers has been developed. The core is
a partitioned FSI solver that predicts the resulting loads and stresses
in the structure when exposed to discrete gusts. The most critical
wind gust defined by its properties (gust strength, length and vertical
position) are found by an optimization algorithm. Since the evaluations
of the objective function are expensive, particular importance was put
on this aspect when selecting the metric stochastic response surface
algorithm with a surrogate model based on radial basis functions as
an appropriate optimization framework. Thus, costly evaluations of
the objective function can be minimized. The whole process can be
fully automated. Furthermore, to shorten the wall-clock time of the
procedure, a certain number of parallel workers can be assigned which
simultaneously evaluate the objective function.

The following main conclusions can be drawn from this study:

• The proposed algorithmic framework works reliably and deter-
mines the global minimum of the considered problem, i.e., here
the worst-case scenario given by the highest von Mises stress in
the structure. Throughout the entire project, a systematic inves-
tigation was conducted to identify and assess the various sources
of uncertainties within the procedure, with the aim of minimizing
their impact.

• For the present case of a wall-mounted flexible membranous
structure impacted by discrete wind gusts, a number of 𝑛0 = 20
initial random samples (25 evaluations are done with 6 parallel
workers, 31 with 12 parallel workers) is sufficient to generate
an accurate RBF response surface model for the first pass. Fur-
thermore, the user has to pay attention to the minimal sample
distance 𝑑sample

min . With a low value, i.e., 𝑑sample
min = 10−6, the worst

case is accurately tracked, but requires more costly evaluations
after the surrogate reset. With a value larger than 𝑑sample

min =
5 × 10−3 a ‘‘worst’’ case is found faster. However, this sample
is not exactly the worst case, since the magnitude of the von
Mises stress maximum is 3.5% lower than the one predicted with
𝑑sample

min = 10−6. For the present case a value of 𝑑sample
min = 10−3

is found to be the best compromise between the accuracy of the
worst case and the assessment of the whole space. A value of
𝑁max = 100 maximal costly evaluations is proven to be sufficient
to determine the global minimum of the problem.

• The methodology is parallelized on two levels. First, the time-
consuming coupled FSI simulations relying on a partitioned solver
10
are parallelized based on classical domain decomposition with
explicit message passing. Second, the application of a certain
number of parallel workers for the determination of the worst
case speedups the optimization process significantly. Thus, within
a few days the worst case of the highly challenging application
case can be determined.

• From the application of the devised methodology to an air-
inflated hemispherical structure the following conclusions can be
drawn:

– Although the discrete wind gust model represents only a
simplifying assumption, it allows to compare the critical
gust strength with the Beaufort wind force scale. In the
present case the maximum gust strength leading to critical
loads has a Beaufort number of 8 and is denoted a gale.

– During the gust impact the forces on the structure rise by a
factor of less than two, however, the maximum von Mises
stress increases by a factor of more than 3 with significant
deflections of the membrane.

– It is worth noting that the worst-case scenario found for the
maximum von Mises stress does not align with the worst-
case scenario relying on the maximum vertical force. Even
though these critical points occur at almost the same time
instant, the former is reached at a lower gust injection
altitude (𝑧0𝑔 = 0.219𝐷) compared to the latter (𝑧0𝑔 = 0.368𝐷).
From a civil engineering perspective, prioritization of the
worst-case scenario associated with the maximum stress is
more pertinent for ensuring structural integrity.

– Comparing the height of the hemispherical dome 𝐷 with
the altitude 𝑧0𝑔 at which the gust is injected, the worst-case
scenario resulting in the highest von Mises stresses is found
for the situation when the gust center is quite close to the
bottom plate (𝑧0𝑔 = 0.219𝐷). The reason is the fixation of
the membranous structure at the bottom wall which leads
to high strains and thus high inner stresses in that region.
Conversely, one cannot conclude that wind gusts close to
the ground are always particularly critical, as this depends
heavily on the structure under consideration.

• The methodology developed is neither restricted to the present
application case (membranous structure) nor to the simulation
technique currently applied (partitioned solver/large-eddy simu-
lation). For example, the usage of the Reynolds-averaged Navier–
Stokes approach could further drastically reduce the CPU-time
requirements, but this is accompanied by losses of the accuracy
and reliability of the predictions.

The presented framework for the worst-case scenario prediction will

be applied to further FSI cases. A large-span membranous four-points
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ppendix A. Details on the stochastic response surface algorithm
ased on RBF surrogates

As briefly explained in Section 2.1 the determination of the worst-
ase scenario is carried out by the optimization function surrogateopt
ncluded in Matlab®4. It applies a Metric Stochastic Response Surface
MSRS) algorithm with a surrogate model relying on radial basis func-
ions for the response surface part. The different steps of the procedure
ere briefly described in Section 2.1 and schematically shown in Fig. 1.
ontrary to the above mentioned section, here the different steps are
escribed in detail.

The MSRS algorithm implemented in surrogateopt starts in STEP
1 (Initialization) with 𝑛0 costly evaluations of the objective func-
tion 𝑓 (here the FSI solver described in Section 2.2 followed by the
post-processing) for a problem of dimension 𝑑. These initial points
represented by the vector of input parameters 𝐱𝑖 ∈ R𝑑 for 𝑖 = 1,… , 𝑛0
are generated by a quasi-random sequence. Therefore they are called
random samples. For this purpose, an uniform random deviate between
0 and 1 is scaled and shifted to remain within the respective bounds.
When 𝑛0 reaches the limit of max (20, 2 𝑑), the initialization step is
over. In case of a parallel optimization run 𝑛parallel

0 is slightly larger
than 𝑛0, since it depends also on the total number of parallel workers
(𝑛0 ≤ 𝑛parallel

0 ≤ 𝑛0 + 𝑖𝑤). This limit 𝑛0 is arbitrary, but chosen against
the background that the evaluations are expensive. 𝑛0 is stored in 𝑛 and
𝐱∗𝑛 denoted incumbent is determined as the point with the best function
value 𝑓 ∗

𝑛 = 𝑓 (𝐱∗𝑛 ) among the costly evaluated points. Now, the core of
the MSRS algorithm starts.

STEP 2 (While (𝑛 < 𝑁max)) is a while loop over 𝑁max, i.e., the
maximum number of costly evaluations.

• STEP 2.1 (Fit/Update Response Surface Model) generates or
updates the response surface model 𝑠𝑛(𝐱) relying on the 𝑛 already
evaluated and costly vector points (𝐱𝑖, 𝑓 (𝐱𝑖)), for 𝑖 = 1,… , 𝑛.
surrogateopt applies for the response surface model a radial basis
function interpolator 𝑠𝑛 based on cubic splines with a linear tail
𝑝 as introduced by Gutmann (2001b) in order to minimize the
measure of bumpiness:

𝑠𝑛(𝐱) =
𝑛
∑

𝑖=1
𝜆𝑖 ‖𝐱 − 𝐱𝑖‖3 + 𝑝(𝐱). (A.1)

‖.‖ is the Euclidean norm, i.e., the L2-norm. The polynomial 𝑝(𝐱)
is defined based on the basis  = (𝐛0 = 𝟏,𝐛1,… ,𝐛𝑑 ) with their
associated real number coefficients 𝑐0,… , 𝑐𝑑 .  is the basis of the
linear space 𝛱𝑑 × (𝑑+1) containing the linear polynomials formed
by each 𝑑 input parameters of the considered problem. The real

3 https://dtecbw.de
4 https://de.mathworks.com/products/matlab.html
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number coefficients 𝝀 =
(

𝜆1,… , 𝜆𝑛
)𝑇 and polynomial coefficients

𝐜 =
(

𝑐0,… , 𝑐𝑑
)𝑇 are determined by solving the system:

[

𝜱 𝐏
𝐏𝑇 𝟎

] [

𝝀
𝐜

]

=
[

𝐅
𝟎

]

, (A.2)

where 𝜱 is the matrix 𝛷𝑘𝑙 = ‖𝐱𝑘 − 𝐱𝑙‖3 for 𝑘, 𝑙 = 1,… , 𝑛 and P
has the coefficients 𝑃𝑘𝑙 = 𝐛𝑙(𝐱𝑘) for 𝑘 = 1,… , 𝑛 and 𝑙 = 0,… , 𝑑.
The vector F is composed of the 𝑛 expensive evaluations of the
objective function 𝑓 , i.e., 𝐅 =

(

𝑓 (𝐱1),… , 𝑓 (𝐱𝑛)
)𝑇 .

• STEP 2.2 (Randomly Generate Candidate Points) has the im-
portant role to explore the domain of evaluation within the
bounds. In order to realize that, a large amount of possible
candidate points are randomly generated by samplers around the
incumbent point, i.e., the evaluated point with the best function
value. The procedure can be related to a local search. In order
to explore the neighborhood (or trust region of radius 𝜌trust) as
good as possible in different directions, several samplers are
applied in a cycle: The random sampler (in which the random
number generator is set to the Matlab® default Mersenne Twister)
is applied twice in a row and generates random points accord-
ing to a Gaussian distribution with zero mean and a standard
deviation set to 𝜌trust. Then, the mesh adaptive direct search
OrthoMADS (Abramson et al., 2009) followed by the Generalized
Pattern Search (GPS) (Torczon, 1997) sampler come into play.
Accordingly, the generation of the random candidate points is
centered around the incumbent point and within the trust region
of radius 𝜌trust. The scaling factor 𝜌trust is set to 0.2 times the size
of the box specified by the input parameter bounds. It doubles (up
to 0.8) in case of a successful search for improving the objective
function and halves (down to 10−5) in case of an unsuccessful
search for improving the objective function.

• Step 2.3 (Select the Next Function Evaluation Point) deter-
mines which candidate point is the best to be evaluated by the
costly objective function 𝑓 . To proceed a so-called merit function
relying on the previously generated response surface model 𝑠𝑛(𝐱)
is computed at every random candidate points generated in step
2.2, except those too close to the previously costly evaluated
points. A minimum distance 𝑑sample

min is set by default and can be
adapted by the user. The merit function implemented in the surro-
gateopt function is the weighted sum of the response surface value
𝑆(𝐱) and the distance from the evaluated points 𝐷(𝐱) proposed
by Regis and Shoemaker (2007b):

𝑓merit(𝐱) = 𝑤𝑆(𝐱) + (1 −𝑤)𝐷(𝐱) with 𝑆(𝐱) =
𝑠𝑛(𝐱) − 𝑠min
𝑠max − 𝑠min

and

𝐷(𝐱) =
𝑑max − 𝑑(𝐱)
𝑑max − 𝑑min

.

(A.3)

𝑠𝑛(𝐱) is the current RBF response surface model computed for the
candidate point 𝐱, 𝑠min the minimum surrogate value among the
candidate points and 𝑠max the maximum. Defining the distance
𝑑𝑖𝑗 by the L2-norm between a candidate point 𝑖 and an evaluated
point 𝑗, 𝑑min and 𝑑max are the minimum and maximum of 𝑑𝑖𝑗
over all candidate points 𝑖 and evaluated points 𝑗. 𝑑(𝐱) is the
minimum of the distance between the candidate point 𝐱 and all
evaluated points. Since the vector 𝐱 is normalized by the bounds
in each dimension, all distances are dimensionless as the user-
parameter 𝑑sample

min . The transition between a local search around
the current incumbent point and a more global search depends
on the value of the weight 𝑤: A large 𝑤 encourages the local
refining of the current best value, while a smaller 𝑤 encourages
the global exploration. Since Steps 2.2 and 2.3 are nested in the
surrogateopt implementation, the value of 𝑤 is adapted within the
sampler cycle from 0.3 to 0.95 following the suggestion by Regis
and Shoemaker (2007b) (see the documentation for details). The

https://dtecbw.de
https://de.mathworks.com/products/matlab.html
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Fig. 7. Effect of the parallel worker number 𝑖𝑤 on the sample creation for 𝑑sample
min = 10−3. Incumbent among initial random points highlighted in blue, adaptive samples depicted

by gray symbols, worst case depicted by a diamond highlighted by a square in red.
next function evaluation point 𝐱𝑛+1 is the one with the highest
𝑓merit value. This point is called an adaptive point.
If all candidate points are too close to the evaluated points,
i.e., below the given minimum sample distance 𝑑sample

min , no new
adaptive point is defined and Steps 2.4 and 2.5 are skipped. In
that specific case a local minimum is reached. If 𝑛 is lower than
𝑁max, a new search begins at STEP 1 based on other random
points associated with a reset of the surrogate.

• Step 2.4 (Do Costly Function Evaluation) contains the expen-
sive evaluation of the objective function 𝑓 at the point 𝐱𝑛+1.

• Step 2.5 (Update Information): The new evaluated point be-
comes a part of the pool available for the surrogate. If the new
evaluated point possesses an objective function 𝑓 (𝐱𝑛+1) lower than
the current one from the incumbent 𝑓 (𝐱∗𝑛 ), an update of the best
function value is carried out: 𝐱∗𝑛+1 = 𝐱𝑛+1 and 𝑓 ∗

𝑛+1 = 𝑓 (𝐱∗𝑛+1). 𝑛+1
is stored in 𝑛.

When the current number of expensive evaluations reaches 𝑁max,
the MSRS algorithm ends with STEP 3 and returns the best solution
found.

An optimization run using surrogateopt is also composed of several
local searches to determine the global optimum. Since 𝑓merit penalizes
any new candidate point that is close to the previously evaluated
points, the iterates provided by the MSRS algorithm can stay during
the second (or higher) pass away from the minimum found during the
first surrogate pass. The minimum is highly influenced by the initial
surrogate and the incumbent, so a reset gives another chance to find
the global minimum.

The optimization function has the option to use a kind of parallelism
to strongly reduce the wall-clock time as in Regis and Shoemaker
(2007a). A fixed number of parallel workers 𝑖𝑤 is defined by the user.
The routine performs its main algorithm (generation of surrogate, local
search, . . . ) on the host, not on the parallel workers. Based on the latest
13

surrogate, the parallel implementation fills a queue of adaptive points to
be evaluated by the expensive objective function. The Matlab® sched-
uler assigns the adaptive points from the queue to workers as those
become available. These workers act asynchronously. When all workers
return one evaluation of the time-consuming objective function, the
RBF surrogate is updated and a local search is started. When the
algorithm decides to switch between phases (for example from STEP 1
to STEP 2.1 or from STEP 2.5 to STEP 2.1), the points being evaluated
remain in service, and any other points in the queue are discarded from
the queue. Therefore, generally, the number of initial random points
𝑛parallel
0 that the parallel algorithm creates in STEP 1 is at least 𝑛0 but at

most 𝑛0+𝑖𝑤. In practice, the expensive objective function can be defined
in Matlab® as a wrapper function containing the following steps: Pre-
processing of the case, start of the FSI solver through the job scheduling
system available on the cluster in use (such as Slurm5) and post-
processing. In that way, optimization runs based on the parallel version
can be carried out with 𝑖𝑤 costly evaluations treated simultaneously by
the compute cluster as sketched in Fig. 1.

Appendix B. Uncertainties in the overall workflow

Due to modeling, discretization, and computational errors, the re-
sults obtained from the computational framework have a certain level
of uncertainty. Given that the present work is built upon numerous
preceding publications, this section aims to provide a comprehensive
overview of various sources of uncertainty from the fluid simula-
tion part, the gust modeling part, the structure simulation part, the
geometry representation, the coupling part and the optimization part.

B.1. Fluid simulation

As mentioned in Section 2.2, both fluid and structure solvers apply
well-established schemes leading to a second-order accuracy in time

5 https://slurm.schedmd.com

https://slurm.schedmd.com
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and space. In order to achieve a good compromise between low com-
putational errors and low CPU costs, the variables are stored in double
precision and the limit of the residuum for both solvers is set to 10−10.
A CFD grid sensitivity study was carried out for the rigid model of
the hemisphere. In Wood et al. (2016) the time-averaged predictions
were compared with the time-averaged measurements delivering a very
good agreement not only for the velocity components, but also for
the Reynolds stresses, proving that the uncertainties arising from the
discretization of the fluid equations were kept low. The turbulence
modeling and the influence of the subgrid-scale model on the flow
around the rigid hemisphere were also investigated in Wood et al.
(2016), leading to the conclusion that the classical Smagorinsky model
with 𝐶𝑠 = 0.1 delivers nearly identical results as the dynamic Smagorin-
sky model usually referred to. In order to reduce the propagation of
uncertainties in the whole problem, one set of turbulence inflow data
containing a large number of time steps was generated by the recursive
digital-filter technique of Klein et al. (2003). This set is used for all
simulations of the same Reynolds number. Thus, if two simulations
restart from the same restart file and use the same set of turbulence
inflow data (useful for an optimization run), the outcome will be
identical.

B.2. Gust modeling

Given that the gust modeling applied in the present framework
only describes the underlying physics approximately, it inherently in-
troduces modeling uncertainties. Unfortunately, due to a lack of exper-
imental data no direct evaluation of these uncertainties is currently
possible. However, this rather simple gust modeling is a must for
control and optimization, since it is deterministic, i.e., for a given
set of gust parameters the same gust shape is always achieved. The
gust shape is superimposed on the underlying turbulent inflow. The
time instant at which the gust is superimposed is an important source
of uncertainty as highlighted in De Nayer et al. (2022). Indeed, the
addition of a fixed gust velocity amplitude to a fluctuating background
velocity mimicking turbulence leads to variations of up to 19% in the
maximal force coefficients and up to 6% in the maximal von Mises
stresses. Therefore, within the optimization run it is important to select
the same superposition instant on the same set of turbulence inflow
data.

B.3. Structure simulation

Concerning the structure, a rather simple material modeling, i.e.,
the St. Venant-Kirchhoff material, was selected to assure an easy re-
producibility for the community. The associated material parameters,
the Young’s modulus 𝐸silicone and the Poisson’s ratio 𝜈silicone were
xperimentally determined by Wood et al. (2018). The value of 𝐸silicone

is closely approximated by a linearization of the stress/strain relation
under the assumption that the strain values are below 10%. In the
present setup, the situations involving strong gusts (𝐴𝑔∕𝑢∞ = 1.5) have

maximum strain of 6.5 %. Thus, the St. Venant-Kirchhoff material
odeling can be applied. During the experiments of Wood et al. (2018)

everal flexible membranes were manufactured by a casting process
n order to evaluate the reproducibility of the results. That leads to a
nique value for the material density 𝜌silicone to complete the material

modeling. The wall thickness of the membrane was measured by a
micrometer with a precision of 5 μm and two different contact-free
laser-based methods delivering a unique averaged value. For the struc-
ture simulation, particular attention was paid to the initial pre-stress
of the membrane, recognizing its potential to introduce uncertainty.
Since it determines the initial state of equilibrium of the membrane, the
structural response during the FSI case strongly depends on it. For the
present setup, the analytical Barlow’s formula is available delivering
a first approximation of the initial pre-stress. Starting with this value,
14

a calibration was performed in De Nayer et al. (2018a) to achieve a d
close agreement with measurements from a steady-state test mitigating
the uncertainty in that part of the structure modeling. As the coupled
FSI scenario is strongly time-dependent, the structural damping in the
membrane has to be taken into account. The material employed for
thin-walled structures often leads to structural damping exhibiting a
non-linear behavior. However, to coincide with the approach used
for simple material modeling, the well-established Rayleigh damping
technique was applied and its coefficients were determined in De Nayer
et al. (2018a) to achieve the decay observed in the displacement am-
plitude of the experimental dynamic structure test introduced by Wood
et al. (2018). The combination of the St. Venant-Kirchhoff material
and the Rayleigh damping model yields satisfying results in terms
of displacement response and its associated main frequencies on this
dynamic structure test. The uncertainty arising from structural finite-
element discretization was minimized through a grid-independence
study conducted in De Nayer et al. (2018a).

B.4. Geometry representation

The representation of the geometry introduces two major sources
of error to the investigated case. First, the surface of the body in the
simulation is considered as smooth. In the experiments the surface
roughness was measured and a value of 𝑅𝑎 = 0.8 μm was determined
for the rigid hemisphere in Wood et al. (2016) and 𝑅𝑎 = 16 μm
or the flexible membrane in Wood et al. (2018). According to the
elatively low values, the surface roughness was not taken into account
n the simulations. Second, the curvy shape of the hemisphere, is not
n issue in case of pure wall-resolved LES for the body-fitted fluid
olver, since a fine grid is required. This changes in case of coupled
imulations, as the mapping procedure at the FSI interface links the
tructural discretization to the fluid counterpart. Due to the typically
oarser nature of finite element-based structural grids compared to fluid
rids, the structural elements dictates the quality of the FSI interface.
s a consequence, non-physical kinks appear on the fluid side, which
enerates a kind of an artificial roughness. This phenomenon was
nvestigated in Apostolatos et al. (2019). A good compromise in terms
f geometry representation and low CPU costs for the present case is a
edium-sized finite-element structural mesh. Even for large deflections

f the membrane, the kinks visible at the interface (see Fig. 3(c)) do
ot significantly affect the fluid flow. For a perfect representation of
he FSI interface, an isogeometric discretization of the membrane or an
sogeometric mapping introducing an exact coupling layer as proposed
y Apostolatos et al. (2019) should be considered.

.5. Coupling scheme

The coupling between the fluid and the structure domains can be a
urther source of uncertainties at different levels. First, the coupling
lgorithm itself. For the present setup a loose coupling algorithm is
ufficient, since air (i.e., the fluid medium) is much lighter than the
tructure. In a precursor study, a coupled FSI simulation was carried out
ith the strong coupling algorithm delivering the same outcome (force

oefficients, membrane deflections, . . . ). Therefore, the loose coupling
s not a significant source of uncertainty in the present case. The
apping applied at the FSI interface between the fluid and structure
iscretizations is another source of uncertainty for the transferred data.
n order to correctly predict highly transient FSI phenomena, the total
ransferred fluid load experienced by the body is important. However,
he correct spatial distribution of the mapped fluid loads is even more
elevant in the present case, where local gusts of diverse amplitudes hit
he structure. Therefore, the dual mortar mapping method developed
y Wang et al. (2016) and extended in Apostolatos et al. (2019) is
pplied. It ensures the consistency of the fluid load along the FSI
nterface. The relative error in the total fluid force made during the
ransfer stays below 1.5% The maximal relative error in the mapped

isplacements is notably smaller staying below 0.01 %.
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Nevertheless, the close agreement between the predicted time-
averaged deflections of the flexible hemisphere (without gust but at
three different turbulent inflows) and its related measurements, as well
as the correct predictions of the instantaneous phenomena observed
during the experiments, show that modeling uncertainties, discretiza-
tion errors and coupling errors were kept low (see De Nayer et al.
(2018a)).

B.6. Optimization procedure

Regarding the MSRS optimization procedure, the following conclu-
sions can be drawn. If the user sets the parameter 𝑁max such that
enough evaluations of the objective function are carried out, only
the parameter 𝑑sample

min can introduce uncertainty into the optimization
outcome. A large value of 𝑑sample

min can restrict the search for the min-
imum, hindering the determination of the worst-case scenario. The
reproducibility of the optimization outcome is also an issue, since the
Matlab documentation states about the surrogateopt function: ‘‘Parallel
surrogate optimization does not necessarily give reproducible results, due
to the non reproducibility of parallel timing, which can lead to different
execution paths’’. For each configuration presented, three runs involv-
ing the same parameters were always started on the same compute
cluster, nearly leading to the same optimization paths and always
determining the same worst-case scenario. Thus, the results were re-
producible and no uncertainty on the outcome was observed regarding
the non-reproducibility of parallel timing.
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