
The 2DECOMP&FFT library: an update with new
CPU/GPU capabilities

Stefano Rolfo 1¶, Cédric Flageul2*, Paul Bartholomew3*, Filippo Spiga4*,
and Sylvain Laizet5*

1 STFC Daresbury Laboratory, Scientific Computing Department, UKRI, UK 2 PPRIME institute,
Curiosity Group, Université de Poitiers, CNRS, ISAE-ENSMA, Poitiers, France 3 EPCC, The University
of Edinburgh, Edinburgh, UK 4 NVIDIA Corporation, Cambridge, UK 5 Department of Aeronautics,
Imperial College London, London, UK ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05813

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @CeciliaCoelho
• @p-costa

Submitted: 30 August 2023
Published: 21 November 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The 2DECOMP&FFT library is a software framework written in modern Fortran to build large-
scale parallel applications. It is designed for applications using three-dimensional structured
meshes with a particular focus on spatially implicit numerical algorithms. However, the library
can be easily used with other discretisation schemes based on a structured layout and where
pencil decomposition can apply. It is based on a general-purpose 2D pencil decomposition
for data distribution and data Input Output (I/O). A 1D slab decomposition is also available
as a special case of the 2D pencil decomposition. The library includes a highly scalable and
efficient interface to perform three-dimensional Fast Fourier Transforms (FFTs). The library
has been designed to be user-friendly, with a clean application programming interface hiding
most communication details from application developers, and portable with support for modern
CPUs and NVIDIA GPUs (support for AMD and Intel GPUs to follow).

Statement of need
The 2DECOMP&FFT library (Li & Laizet, 2010) was originally designed for CPU hardware
and is now used by many research groups worldwide. The library is based on a 2D-pencil
decomposition for data distribution on distributed memory systems and is used as the core
of many CFD solvers such as Xcompact3d (Bartholomew et al., 2020) and CaNS (Costa,
2018), with excellent strong scaling performance up to hundreds of thousands of CPU cores.
2DECOMP&FFT mainly relies on MPI, and it offers a user-friendly interface that hides
the complexity of the communication. Version 2.0.1 of the library also offers a 1D slab
decomposition, which is implemented as a special case of the 2D decomposition. Two
alternatives are possible:

• Initial slabs orientation in the XY plane;
• Initial slabs orientation in the XZ plane.

In many configurations the slabs decomposition gives some gain in performance with respect
to the 2D-pencil decomposition. This is a consequence of having data already in memory when
transposing between the two dimensions of the slab. Therefore, it is possible to perform a
simple memory copy between input and output arrays instead of the full MPI communication.

The library also offers a very efficient and flexible interface to perform 3D Fast Fourier Transform
(FFT) on distributed memory systems. However, 2DECOMP&FFT is mainly designed to
perform data management and communication and the actual computation of the 1D FFT is
delegated to 3rd-party libraries. The supported FFT backends are: FFTW (Frigo & Johnson,

Rolfo et al. (2023). The 2DECOMP&FFT library: an update with new CPU/GPU capabilities. Journal of Open Source Software, 8(91), 5813.
https://doi.org/10.21105/joss.05813.

1

https://orcid.org/0000-0001-6325-7629
https://doi.org/10.21105/joss.05813
https://github.com/openjournals/joss-reviews/issues/5813
https://github.com/2decomp-fft/2decomp-fft.git
https://doi.org/10.5281/zenodo.10160599
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/CeciliaCoelho
https://github.com/p-costa
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05813


2005), the Intel Math Kernel Library (MKL), and the CUDA FFT (cuFFT), which is used for
FFT on NVIDIA GPUs. A Generic FFT backend, based on Glassman’s general N Fast Fourier
Transform (Ferguson, 1982), is also available to make the library more portable.

While the 2DECOMP&FFT library has been designed with high order compact schemes in
mind, it is possible that some derivatives can be evaluated using an explicit formulation based
on local stencils. For this reason a halo support API is also provided to support explicit message
passing between neighbouring pencils.

Finally, the library provides infrastructure to perform parallel data I/O using MPI I/O or
ADIOS2 (Godoy et al., 2020). The API provide several features such as: writing single or
multiple 3D arrays into a file, writing 2D slices of the data, and data compression either via
ADIOS2 or by writing reduced precision or resolution with the MPI I/O backend.

The first version of the library was released in 2010 as a tar.gz package, with a Makefile
approach, and could only make use of CPUs. It has not been modified since its release.
The new version of the library can now leverage NVIDIA GPUs, modern CPUs, and various
compilers (GNU, Intel, NVHPC, CRAY). It has CMAKE capabilities as well as a proper
continuous integration framework with automated tests. The new library was designed to
be more appealing to the scientific community, and it can now be easily implemented as an
independent library for use by other software.

GPU porting
An initial port of 2DECOMP&FFT to GPUs was performed within the solver AFiD-GPU (Zhu
et al., 2018), which was mainly based on CUDA-Fortran for some kernels and CUDA-aware-MPI
for communications. A second library, named cuDECOMP, which was directly inspired by
2DECOMP&FFT, takes full advantages of CUDA and uses NVIDIA’s most recent libraries
for communications, such as NVIDIA Collective Communication Library (NCCL), is presented
in Romero et al. (2022). Indeed, cuDECOMP only targets NVIDIA GPUs. The updated
2DECOMP&FFT mainly uses a mix of CUDA-Fortran and openACC for the GPU porting
together with CUDA-aware-MPI and NCCL for the communications. In addition to previous
work, the FFT module is ported to GPUs using cuFFT. The next step is also to implement
OpenMP for GPU porting to support both AMD and Intel GPU hardware.

How to use 2DECOMP&FFT
The 2D Pencil Decomposition API is defined with three Fortran modules which should be used
by applications as:

use decomp_2d_constants

use decomp_2d_mpi

use decomp_2d

where use decomp_2d_constants defines all the parameters, use decomp_2d_mpi introduces
all the MPI related interfaces, and use decomp_2d contains the main decomposition and
transposition APIs. The library is initialised using:

call decomp_2d_init(nx, ny, nz, p_row, p_col)

where nx, ny, and nz are the spatial dimensions of the problem, to be distributed over a
2D processor grid 𝑝𝑟𝑜𝑤 × 𝑝𝑐𝑜𝑙. Note that none of the dimensions need to be divisible by
p_row or p_col. In the case of p_row=p_col=0, an automatic decomposition is selected among
all possible combinations available. A key element of this library is a set of communication
routines that perform the data transpositions. As mentioned, one needs to perform 4 global
transpositions to go through all 3 pencil orientations (i.e., one has to go from x-pencils

Rolfo et al. (2023). The 2DECOMP&FFT library: an update with new CPU/GPU capabilities. Journal of Open Source Software, 8(91), 5813.
https://doi.org/10.21105/joss.05813.

2

https://doi.org/10.21105/joss.05813


to y-pencils to z-pencils to y-pencils to x-pencils). Correspondingly, the library provides 4
communication subroutines:

call transpose_x_to_y(var_in,var_out)

call transpose_y_to_z(var_in,var_out)

call transpose_z_to_y(var_in,var_out)

call transpose_y_to_x(var_in,var_out)

The input array var_in and output array var_out are defined by the code using the library
and contain distributed data for the correct pencil orientations.

Note that the library is written using Fortran’s generic interfaces so different data types are
supported without user input. That means in and out above can be either real or complex
arrays, the latter being useful for applications involving 3D Fast Fourier Transforms. Finally,
before exit, applications should clean up the memory by:

call decomp_2d_finalize

Detailed information about the decomposition API are available here. Several examples
detailing the usage of the different library functionalities can be found here.

Acknowledgements
The first version of the library was initially designed thanks to several projects funded under
the HECToR Distributed Computational Science and Engineering (CSE) Service operated
by NAG Ltd. The new library has been designed thanks to the support of EPSRC via the
CCP Turbulence (EP/T026170/1) and work funded under the embedded CSE programme of
the ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk) (ARCHER2
eCSE03-2).

References
Bartholomew, P., Deskos, G., Frantz, R. A. S., Schuch, F. N., Lamballais, E., & Laizet, S.

(2020). Xcompact3D: An open-source framework for solving turbulence problems on a
Cartesian mesh. SoftwareX, 12, 100550. https://doi.org/10.1016/j.softx.2020.100550

Costa, P. (2018). A FFT-based finite-difference solver for massively-parallel direct numerical
simulations of turbulent flows. Computers & Mathematics with Applications, 76(8),
1853–1862. https://doi.org/10.1016/j.camwa.2018.07.034

Ferguson, W. E. (1982). A simple derivation of Glassman’s general N fast Fourier transform.
Computers & Mathematics with Applications, 8(6), 401–411. https://doi.org/10.1016/
0898-1221(82)90016-5

Frigo, M., & Johnson, S. G. (2005). The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2), 216–231. https://doi.org/10.1109/JPROC.2004.840301

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P., Choi, J.,
Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress, J., Kurc, T., Liu, Q., Logan, J.,
Mehta, K., Ostrouchov, G., Parashar, M., … Klasky, S. (2020). ADIOS 2: The adaptable
input output system. A framework for high-performance data management. SoftwareX, 12,
100561. https://doi.org/10.1016/j.softx.2020.100561

Li, N., & Laizet, S. (2010). 2DECOMP&FFT - a highly scalable 2D decomposition library and
FFT interface. Cray User Group 2010 Conference, 1–13.

Romero, J., Costa, P., & Fatica, M. (2022). Distributed-memory simulations of turbulent
flows on modern GPU systems using an adaptive pencil decomposition library. Proceedings

Rolfo et al. (2023). The 2DECOMP&FFT library: an update with new CPU/GPU capabilities. Journal of Open Source Software, 8(91), 5813.
https://doi.org/10.21105/joss.05813.

3

https://2decomp-fft.github.io/pages/api_domain.html
https://github.com/2decomp-fft/2decomp-fft/blob/main/examples/README.md
https://doi.org/10.1016/j.softx.2020.100550
https://doi.org/10.1016/j.camwa.2018.07.034
https://doi.org/10.1016/0898-1221(82)90016-5
https://doi.org/10.1016/0898-1221(82)90016-5
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.21105/joss.05813


of the Platform for Advanced Scientific Computing Conference. https://doi.org/10.1145/
3539781.3539797

Zhu, X., Phillips, E., Spandan, V., Donners, J., Ruetsch, G., Romero, J., Ostilla-Mónico, R.,
Yang, Y., Lohse, D., Verzicco, R., Fatica, M., & Stevens, R. J. A. M. (2018). AFiD-GPU: A
versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters. Computer
Physics Communications, 229, 199–210. https://doi.org/10.1016/j.cpc.2018.03.026

Rolfo et al. (2023). The 2DECOMP&FFT library: an update with new CPU/GPU capabilities. Journal of Open Source Software, 8(91), 5813.
https://doi.org/10.21105/joss.05813.

4

https://doi.org/10.1145/3539781.3539797
https://doi.org/10.1145/3539781.3539797
https://doi.org/10.1016/j.cpc.2018.03.026
https://doi.org/10.21105/joss.05813

	Summary
	Statement of need
	GPU porting
	How to use 2DECOMP&FFT
	Acknowledgements
	References

