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Extreme climate events constitute a major risk to global food production. Among 1 

these, the extreme rainfall is often dismissed from historical analyses and future 2 

projections, whose impacts and mechanisms remain poorly understood. Here, we 3 

find that rice yield reductions due to extreme rainfall in China were comparable 4 

to those induced by extreme heat over the last two decades, reaching 7.3  0.7% 5 

(one standard error) according to nationwide observations and 8.1  1.1% 6 

according to the crop model incorporating the mechanisms revealed from 7 

manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting 8 

nitrogen availability for tillering that lowers per-area effective panicles and by 9 

exerting physical disturbance on pollination that declines per-panicle filled grains. 10 

Considering these mechanisms, we projected ~8% additional yield reduction due 11 

to extreme rainfall under warmer climate by the end of the century. These findings 12 

demonstrate the critical importance to account for extreme rainfall in food 13 

security assessments, posing greater challenges to climate change adaptation. 14 



Extreme climate events have been recognized as a major risk induced by climate 15 

change1. Agricultural ecosystems are among the most vulnerable to climate extremes, 16 

resulting in remarkable damage to crop production2,3. For example, extreme climate 17 

events have been shown to account for 18-43% of the observed anomalies in global 18 

crop yields4. The consequences of such yield anomalies vary from fluctuations in food 19 

prices, destabilized food supply, to famines5. As such, understanding the impacts of 20 

extreme climate events on crop yield is critical for adapting food systems to future 21 

climate change and thus contributing to food security for the growing global 22 

populations. Recent studies have focused on elucidating impacts of drought6,7, extreme 23 

heat8,9 and cold spells10, but the impact of extreme rainfall on yields remain largely 24 

uncertain11,12.  25 

 26 

Estimating the yield loss due to extreme rainfall needs to assess the magnitude of 27 

extreme rainfall and timing of crop exposure, both of which are highly heterogeneous 28 

over space and time. Spatially, previous studies based on yield statistics and climate 29 

variables aggregated at administration zones may have smoothed out the highly 30 

localized extreme rainfall events, resulting in minimal impact of extreme rainfall being 31 

detected (−0.6 ± 1.2%, mean ± standard error), which is far below the observational 32 

damages from other climate extremes (e.g., −8.1 ± 3.1% from extreme heat, −5.2 ± 2.8% 33 

from drought, and −10.2 ± 6.5% from extreme cold; Supplementary Table 1). 34 

Temporarily, the exposure of crops to extreme rainfall can be dismissed if using climate 35 

data with coarse temporal resolution to explore the climate-yield relationships3. The 36 



lack of clear mechanistic evidence for extreme rainfall impacts4,11 has also rendered 37 

crop modelers to dismiss their potential effects in projecting the impacts of climate 38 

change13, despite the expected increase in occurrence of extreme rainfall14.  39 

 40 

Rice is the primary calorie source for more than 50% of the world’s population, with 41 

the largest production in China15. Rice is generally considered to be strongly tolerant to 42 

extreme rainfall, though this may be an artifact of relatively intense irrigation and 43 

drainage management that minimizes adverse effects of rainfall anomalies16,17. As a 44 

result, extreme rainfall impacts on rice yield remain poorly investigated. Here, we used 45 

long-term nationwide observations and multi-level rainfall manipulative experiments 46 

to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in 47 

China (see Methods, Supplementary Figs 1 and 2). We further improved a process-48 

based crop model by explicitly accounting for the relevant mechanisms to hindcast and 49 

project the yield responses to extreme rainfall across China. This combination of field 50 

observation, manipulative experiment, and model simulation enables us to address three 51 

questions here: what is the magnitude and pattern of change in rice yield due to extreme 52 

rainfall? what are the key mechanisms determining rice yield response to extreme 53 

rainfall? how strongly do changes in extreme rainfall impact future rice yield? 54 

 55 

Evidence from nationwide observations 56 

We used a window searching strategy18 to isolate change in rice yield (Y) induced by 57 



each extreme climate event for specific site and year combinations from the nationwide 58 

observations (see Methods, an example in Supplementary Fig. 3, and the definition of 59 

events in Supplementary Table 2). Y is defined as the relative change in rice yield 60 

between the treatment and control cases (in %), after excluding the effects from the 61 

other meteorological indicators and changes in rice cultivar and phenology, where in 62 

the treatment rice has been exposed to a given extreme event during the rice growing 63 

season, and in the control rice has not been exposed to that event and other extreme 64 

events either did not occur or were the same as in the treatment. This yielded 707 Y 65 

data at 114 sites covering most of rice production areas in China (Supplementary Fig. 66 

1b). These data show that extreme rainfall induced a significant yield reduction by 67 

7.3±0.7% (one standard error) in China (n = 217, P < 0.001, Fig. 1a). Such yield 68 

reduction is roughly equivalent to 9 times the annual rice yield growth over the past 69 

three decades (0.8% yr−1, Supplementary Fig. 4). Counter-intuitively, the yield 70 

reduction due to extreme rainfall was comparable to that due to extreme heat (5.0±1.8%, 71 

n = 61), and larger than the reductions related to drought (4.4±1.0%, n = 152), extreme 72 

cold (3.7±0.8%, n = 163), and the other extreme events (e.g. hail, typhoon and tropical 73 

cyclones, 2.5±1.2%, n = 114, Fig. 1a). The larger Y for extreme rainfall in relative to 74 

other extreme events is robust when comparing different extreme events with similar 75 

probability of occurrence (Supplementary Fig. 5). Spatial analyses further confirm that 76 

the negative effects of extreme rainfall on rice yield are more pervasive and stronger 77 

than those of other extreme events, even though record yield reductions (Y < −20%) 78 

can arise from any type of extreme events considered here (Fig. 1b-f).  79 



 80 

Fig. 1. Changes in rice yield (Y) induced by extreme climate events in China. a. 81 

The mean and standard error of Y from 1,000-time bootstrap estimates. b-f. Pattern 82 

of Y induced by extreme rainfall, extreme heat, drought, extreme cold, and the other 83 

events (typhoon and tropical cyclones), respectively. The digits noted at the base of 84 

each bar in panel a are the number of Y. The Asterisks refer to statistical significance 85 

of the differences in mean Y between extreme rainfall and other events based on the 86 

Wilcoxon rank sum test, with * P < 0.05, ** P < 0.01, *** P < 0.001, and n.s. for not 87 

significant. Y in panels b to f is presented for each site, but averaged in case of 88 

multiple samples. 89 

 90 



To identify the potential factors determining the magnitude of extreme rainfall impacts, 91 

correlation analyses were performed between Y and extreme rainfall parameters. We 92 

define extreme rainfall as the 99th percentile of hourly precipitation during rice growing 93 

season for each site (see Methods). The analyses show that extreme rainfall induced Y 94 

was negatively correlated with the intensity (cm per hour), the event amount (cm per 95 

event for which the break between hourly precipitation lies below 6 hours), and the 96 

event duration (hour per event) of extreme rainfall, rather than with the total intensity, 97 

frequency or proportion of extreme rainfall (Supplementary Fig. 6). The combining 98 

results from the Kruskal-Wallis Rank Sum Test and the Dunn’s test affirmed that the 99 

repeated extreme rainfall does not add to additional yield loss (Supplementary Fig. 6g). 100 

These relationships are robust against variations in the definitions of extreme rainfall 101 

(95th, 99th or 99.9th percentile) and of break duration (2, 6 or 12 hours) for consecutive 102 

extreme rainfall events (Supplementary Table 3), confirming the key driving indicators 103 

are hourly intensity and event amount rather than repeated frequencies. The sensitivities 104 

of Y to extreme rainfall intensity and event amount were −1.6 ± 0.7 % (cm h−1)−1 and 105 

−0.4 ± 0.1 % cm−1, respectively (Supplementary Fig. 6a, d). Such a sensitivity of Y to 106 

rainfall intensity is roughly in line with previous field observations (−1.0 ± 0.2 % (cm 107 

h−1)−1, n = 11), but larger than the results from previous statistical analysis aggregated 108 

at administrative scales (−0.03 ± 0.05 % (cm h−1)−1, n = 33; Supplementary Table 1). 109 

 110 

Experimental tests of the extreme rainfall-rice yield relationship 111 

To isolate the mechanisms leading to extreme rainfall impacts on Y, we established a 112 



series of rainfall manipulative experiments in 2018 and 2019 (see Methods and Fig. 2a 113 

for detailed setup). In the experiments, we established four rainfall levels to broadly 114 

represent extreme rainfall events across China’s rice fields. To test if the impacts differ 115 

by growth phases, rainfall manipulation was conducted for each or their combination 116 

of the three phases (i.e., vegetative phase when tillers are formed, reproductive phase 117 

when spikelets reach anthesis, and ripening phase when grains are filled). We quantified 118 

Y between treatment and control plots for which two replicates were considered. In 119 

agreement with the nationwide observations, Y was −1.1 ± 0.3% and −0.6 ± 0.1% in 120 

response to 1-centimeter increase in extreme rainfall intensity and event amount, 121 

respectively. These effect sizes were also statistically the same between the two 122 

experimental years (Supplementary Fig. 7a, b). Analyses of changes in yield 123 

components indicated that Y were mostly caused by declines in effective panicles per 124 

unit land area (EP) and filled grains per panicle (FG), accounting for 22% to 25% and 125 

71% to 75% of Y, respectively, whereas decreased grain weight (GW) only 126 

contributed to approximately 1.4% to 6.0% (Fig. 2 and Supplementary Fig. 7c). 127 

Extreme rainfall impacts on yield components depend on growth phase. Extreme 128 

rainfall in the vegetative phase mainly reduced EP, while in the reproductive phase, it 129 

mainly reduced FG. (Fig. 2).  130 



 131 

Fig. 2. Effects of simulated rainfall on rice yield and yield components. a. 132 

Experimental setup. b to e. Relative changes in rice yield (ΔY), effective panicles per 133 

unit land area (ΔEP), filled grains per panicle (ΔFG), and grain weight (ΔGW), 134 

respectively. For the 2nd supplementary experiment, the urea re-application rate (i.e., 135 

28.8 kg N ha−1) is equal to the average N losses observed from the treatment plots using 136 

the same rainfall amount during vegetative phase in main experiments. Asterisk 137 

indicates for the significant difference with zero, with P < 0.05.  138 

 139 

We hypothesized that the growth phase-dependent effects of extreme rainfall result 140 

from different mechanisms in reducing rice yield, that is, high extreme rainfall intensity 141 



reduces FG through physical disturbance (in terms of kinetic energy) on pollination19,20,  142 

and high extreme rainfall event amount stresses tillering through inducing soil N 143 

losses21,22. To test these hypotheses, we conducted two supplementary experiments 144 

using the maximum rainfall level (103 mm per hour for intensity or 240 mm per event 145 

for event amount) in 2021 (see Methods).  146 

 147 

In the first supplementary experiment, we sheltered half of each rice plot during the 148 

reproductive phase so that the sheltered halves of treatment were affected by extreme 149 

rainfall only through its effects on soil N losses, but not direct physical disturbance (Fig. 150 

2a and Supplementary Fig. 8). We found FG in the sheltered halves of treatment show 151 

little difference (< 2.0%) with the control, while FG in the exposed halves of treatment 152 

decreased by 18.0 ± 2.6% (Fig. 2). The empty or shrunken grains were found mostly in 153 

the upper part of the panicles of the exposed halves of treatment (Supplementary Fig. 154 

9), further supporting that FG were reduced by the physical disturbance that prevents 155 

successful pollination, a critical process of yield formation. 156 

 157 

The second supplementary experiment isolates the effects of soil N losses induced by 158 

extreme rainfall event amount during the vegetative phase (Supplementary Fig. 8a). We 159 

supplied additional urea to half of the treatments, so that if there was a soil N loss 160 

induced by the extreme rainfall, it would be compensated. We found that urea re-161 

application could help maintain N uptake per tiller, and thus successfully stabilized EP 162 



and rice yield (Fig. 2). Treatments that did not compensate for N losses caused 163 

proportionally similar declines in N uptake per tiller and thereby EP (R2 = 0.70 and 164 

0.57, respectively, P < 0.001, Supplementary Fig. 10). These findings confirm that the 165 

reduced EP was primarily attributable to extreme rainfall event amount that limits soil 166 

N availability and crop N uptake causing lower yields. 167 

 168 

 169 

Fig. 3. Schematic diagram of extreme rainfall impacts on rice yield. Single-headed 170 

arrows indicate the direction of causation identified by the structural equation 171 

modelling. Blue (red) arrows indicate significant positive (negative) effects (P < 0.05). 172 

Arrow width is proportional to the strength of the relationship, which is characterized 173 

by standardized path coefficients showing next to arrows. Amountveg, extreme rainfall 174 

event amount in vegetative phase; Intensityrep and Intensityrip, extreme rainfall intensity 175 

in reproductive and ripening phases, respectively; ΔY, relative changes in rice yield. 176 

 177 

Ultimately, we summarized and tested our findings from the experiments with structural 178 

equation modelling (SEM) to illustrate the mechanisms by which extreme rainfall 179 

reduces rice yield (Fig. 3). The SEM including the direct pathways of rainfall-induced 180 

physical disturbance and soil N losses shows the best performance (Supplementary Fig. 181 

11a), explaining 56% of the overall variance in rice yield reductions. This suggests that 182 

both pathways are primary mechanisms explaining Y, whereas other potential 183 



mechanisms (e.g., changes in photosynthesis, leaf area index, phosphorous loss, 184 

phosphorous and potassium absorptions) do not show significant effects 185 

(Supplementary Fig. 11b-f). In addition to these two pathways, the best-fit SEM also 186 

identified an indirect pathway, i.e., rainfall-induced N losses during the vegetative 187 

phase, which may also limit per-panicle N uptake during the reproductive phase thereby 188 

decreasing FG (Fig. 3 and Supplementary Fig. 11a).  189 

 190 

Crop model improvements for assessing Y 191 

Correctly representing the mechanisms through which extreme rainfall reduces rice 192 

yield is critical for diagnosing and projecting spatiotemporal variations in rice yield. 193 

We introduced the first physical disturbance module of extreme rainfall on rice yield in 194 

ORganizing Carbon and Hydrology in Dynamic EcosystEms for crops (ORCHIDEE-195 

crop)23, which is a process-based crop model including the representation of single, 196 

early and late rice types, paddy rice irrigation, and a detailed soil hydrology model24. 197 

The direct and indirect pathways of extreme rainfall through soil N losses was also 198 

introduced into the model (see Methods and Supplementary Table 4). The improved 199 

model can robustly capture the observed rice yield variability due to year-to-year 200 

climate variations and extreme rainfall treatments (the coefficient of determination of 201 

0.88 in 2018 and 0.78 in 2019, mean root square error of 0.69 in 2018 and 1.19 in 2019, 202 

Supplementary Fig. 12). The model was further validated by field observations of rice 203 

yield in 2021 between control and treatment (Supplementary Fig. 12). 204 



 205 

We then used the high-resolution global precipitation measurement (GPM) datasets25 206 

to drive the improved model over China in 2001-2016 (see Methods). On average, the 207 

improved model hindcasts lower rice yields due to the extreme rainfall by 8.1  1.1% 208 

(one standard error for interannual variability) for all rice types, 8.3  1.0% for single 209 

rice, 8.6  1.0% for early rice, and 7.6  1.3% for late rice (Supplementary Fig. 13a-c). 210 

Higher Y were simulated eastern China and southern coastal regions which 211 

experienced higher rainfall intensities (Supplementary Fig. 13a-c). Factorial model 212 

simulations show that physical disturbance induced by extreme rainfall was the most 213 

important determinant across 47-95% of rice sowing areas (Supplementary Fig. 13d-f), 214 

leading to yield losses of 3.9% for single rice, 5.1% for early rice, and 4.1% for late 215 

rice. Extreme rainfall-induced N losses dominated the Y mainly in Anhui and Jiangsu 216 

provinces where both N application rates26 and extreme rainfall event amount were 217 

relatively high27 (Supplementary Fig. 13h-j). 218 

 219 

Projected impacts of future change in extreme rainfall 220 

Since extreme rainfall was found to have significant impacts on historical rice yields, a 221 

process which was neglected in previous projections under climate change28,29, we 222 

made a first attempt to project the risk of future rice yield to changing extreme rainfall 223 

dynamics. We used the high-resolution climate projection by the IPSL model zoomed 224 

over China30, which performed well in reproducing the spectral properties of rainfall 225 



including extreme events31, to drive the improved model under two climate scenarios 226 

(representative concentration pathways [RCP] 4.5 and 8.5; see Methods). Considering 227 

extreme rainfall impacts led to greater projected yield reductions by the end of this 228 

century (2085-2100, Fig. 4). On average, extreme rainfall induces an additional yield 229 

reduction of 7.6% in China on the top of other climate-change induced impacts under 230 

RCP 4.5. We then ranked the additional yield reductions in grid cells from the largest 231 

to smallest and calculated the cumulative sowing area affected by a given additional 232 

yield change, and found that the sowing areas with additional yield reduction of >7.6% 233 

accounted for 58% for early rice, 39% for single rice, and 29% for late rice (Fig. 4a). 234 

Rice is projected to suffer from extreme rainfall events the most over northeast China 235 

and southeast coastal regions (Fig. 4b-d). However, additional yield reductions were 236 

projected to be weaker under RCP 8.5 relative to RCP 4.5 (Fig. 4e-h), with the national 237 

mean reduction due to extreme rainfall of 5.4%, mainly because of larger rice yield 238 

reduction induced by stronger warming and carbon dioxide concentrations under RCP 239 

8.5 together with no differences in projected extreme rainfall between the two scenarios 240 

(Supplementary Fig. 14). These new projections highlight the increasing risk of rice 241 

yield reductions induced by extreme rainfall and an urgent need to consider this risk in 242 

planning climate change adaptations.  243 



 244 

Fig. 4. Future projections of additional yield change induced by extreme rainfall. 245 

a and e. cumulative proportions of sowing area affected by a given additional yield 246 

change under RCP 4.5 and RCP 8.5, respectively; Black dashed lines represent the 247 

national means (−7.6% and −5.4%), and the numbers represent the cumulative 248 

proportions of sowing area affected by exceeding the national means. b to d. Patterns 249 

of ΔY under RCP 4.5. f to h. Same as panels b to d but under RCP 8.5.  250 

 251 

Discussion 252 

While both nationwide observations and model simulations indicated approximately 8% 253 

of rice yield lost in China due to extreme rainfall, we note that our analyses are subject 254 

to several sources of uncertainties. On the observation side, due to rigorous screening 255 

criteria to isolate extreme rainfall impacts from other extreme events, rice yield 256 

assessment has been eliminated over the Southeast Coast where extreme rainfall is 257 

strong (Supplementary Figs 1b and 15), likely underestimating the extent of extreme 258 

rainfall induced Y. On the modelling side, extreme rainfall intensity and event amount 259 

used for driving the historical simulations across China were from the half-hourly and 260 

0.1-degree GPM dataset, which is well represented for but still did not fully capture the 261 



observed heaviest rainfall extremes (Supplementary Fig. 16). Thus, our estimates of 262 

extreme rainfall impact on rice yield should be viewed as a conservative assessment. 263 

Another source of uncertainty is related to the setup of our manipulative experiments. 264 

The experiments were conducted on cloudy days to approximate natural rainfall 265 

conditions, but muted the effects of accompanying processes such as reduced air 266 

temperature32 and enhanced waterlogging33. These accompanying processes may cause 267 

rice diseases and lodging that can further compound rice yield responses12,34. Moreover, 268 

our experiment focused on uncovering mechanisms of extreme rainfall impacts under 269 

regular management, without climatic adaptations, which introduces additional 270 

uncertainties in future projection. 271 

 272 

Although we focused on rice yields in China that is the largest rice producer globally, 273 

attention to other rice producing regions may yield critical insights into the 274 

biogeography and generalizability of our findings. Compared to China, rice fields in 275 

South and Southeast Asia have smaller N application rates and larger fractions of 276 

rainfed rice (Supplementary Fig. 17). Extreme rainfall in these regions may lead to a 277 

lower risk of soil N losses and thus lower impacts on tillering. However, these regions 278 

were more exposed to extreme rainfall given much higher extreme rainfall intensity 279 

(Supplementary Fig. 15b), and thus subject to higher risk of physical disturbance. Since 280 

across approximately 80% of China’s rice fields, extreme rainfall impacts results from 281 

direct physical disturbance on pollination, rice yield reductions in South and Southeast 282 

Asia should also be significant. Previous projection of rice yield response to climate 283 



change without considering the extreme rainfall impacts (e.g., Webber et al.13, 284 

Rosenzweig et al.28, Jägermeyr et al.29, Iizumi et al.35) have likely been overly 285 

optimistic in this regard. 286 

 287 

The impacts of extreme rainfall on other staple crops such as wheat and maize remain 288 

to be explored. Although the magnitude and mechanistic representation of rice yield 289 

response to extreme rainfall may not be directly applicable to other crops, our research 290 

paradigm that combines field observations, manipulative experiments, and processed-291 

based modelling is well transferable. Unlike rice, sizable fraction of upland crops were 292 

rainfed or under different irrigation-drainage systems36. The sensitivity of tillering and 293 

pollination processes in response to extreme rainfall may also be different from what 294 

we observed here. Therefore, a major research challenge remains to assess the global 295 

extreme rainfall impacts for all cereal crops. 296 

 297 

Methods 298 

Analysis of nationwide observational data 299 

Yield change induced by extreme climate events. We collected field observations of rice 300 

yield and extreme climate events from the national agrometeorological observation 301 

network that is run by the China Meteorological Administration (CMA). This network 302 

covers most rice production areas, including single rice in northeast and central China 303 

and early and late rice in south China (Supplementary Fig. 1a). It provides rice yield of 304 



2,304 site-year records from 166 sites, and extreme climate events of 8,595 records 305 

from 356 sites occurred in the rice growing seasons over the period 1999-2012. Rice 306 

yield is defined as actual production divided by the hectare of harvested area. Extreme 307 

climate events are recorded on given days for each site and are sorted into five broad 308 

categories, i.e., extreme heat, extreme cold, extreme rainfall, drought, and the other 309 

events (see definitions in Supplementary Table 2). 310 

 311 

First, the field observations are reproduced by summing the detrended yield and the 312 

multi-year average (𝑌𝑑𝑒) for each site and rice type, to avoid the impacts of changing 313 

rice cultivar, phenology and technology. Second, to exclude the effects of the other 314 

meteorological indicators on yield, a multiple linear regression analysis is applied for 315 

𝑌𝑑𝑒 against mean temperature, total precipitation and total sunshine hours during rice 316 

growing season for each site and rice type. Regression coefficients are determined as 317 

the median of 1,000-time bootstrap estimates, and used for predicting yield (𝑌𝑓𝑖𝑡𝑑𝑒). 318 

Third, a window searching strategy18 is applied to find all available control-treatment 319 

pairs (YC and YT) to quantify rice yield change (Y) induced separately by different 320 

extreme events for a given site and year (Supplementary Fig. 3): 321 

∆Y =
(𝑌𝑇𝑑𝑒−𝑌𝑇𝑓𝑖𝑡𝑑𝑒)−(𝑌𝐶𝑑𝑒−𝑌𝐶𝑓𝑖𝑡𝑑𝑒)

𝑌𝐶𝑑𝑒
× 100%                                 (1) 322 

This strategy expands on previous studies3,11,12,37-42 in at least three aspects: (i) It 323 

ensures both control and treatment sharing approximately the same management 324 

practices (e.g., fertilization, irrigation, and drainage) and geographical conditions (e.g., 325 

soil properties and topography), while almost avoiding technology- or cultivar-driven 326 



change in rice yield; (ii) it isolates the impact of a given extreme event on rice yield 327 

while largely reducing the noise due to the other events, and (iii) it provides an 328 

observational evidence for climate extreme impacts on rice yield at the site scale, rather 329 

than expected signal from statistical inferences at administrative scales. Finally, a 330 

dataset of 707 control-treatment pairs from 114 sites were identified, i.e., 217 pairs for 331 

extreme rainfall at 82 sites, 152 pairs for drought at 73 sites, 61 pairs for extreme heat 332 

at 18 sites, 163 pairs for extreme cold at 61 sites, and 114 pairs for the other events at 333 

68 sites (Supplementary Fig. 1b and Data 1).  334 

 335 

The Wilcoxon rank sum test was applied to assess the significance of Y. The choice is 336 

motivated by the fact that Y is not normally distributed (Kolmogorov-Smirnov test, P 337 

< 0.05). The Wilcoxon rank sum test was also applied to quantify the difference between 338 

extreme rainfall and other extreme events. To solve the inconsistency of sample size 339 

among the extreme events, we applied the bootstrap resampling to estimate the means 340 

and standard error of Y by randomly sampling an equal size from the initial dataset 341 

for 1000 times. The results show that the differences in Y are robust, because Y are 342 

dominated primarily by climate extremes with moderate effects on rice yields, rather 343 

than a few outliers (Supplementary Fig. 18), and are not strongly influenced by sample 344 

size (Supplementary Fig. 19). In addition, we calculated the percentiles of the extreme 345 

events occurred in the period 1999-2012, and found that most of them exceed 95th 346 

percentile (Supplementary Fig. 5a-d). However, these percentiles are not completely 347 

consistent among the events. To test the robustness of the differences in Y, we 348 



compared the effects of different extreme events with similar percentiles, that is, 95th to 349 

99th (or 99th to 99.8th) percentiles for extreme heat and rainfall and 1st to 5th (or 0.2nd to 350 

1st) percentiles for extreme cold and drought (Supplementary Fig. 5e-f). 351 

 352 

Sensitivity of Y to extreme rainfall. We defined extreme rainfall if hourly precipitation 353 

exceeds the threshold that is the 99th percentile of growing-season hourly precipitation 354 

over the reference period 1981–2012 for each site. The data for hourly precipitation 355 

were acquired from the CMA. To outstand the main influencing factors, seven extreme 356 

rainfall parameters, reflecting characteristics of intensity, event amount and repeated 357 

extreme rainfalls, were then quantified during rice growing season for each treatment 358 

(Supplementary Data 1), including intensity as the maximum hourly precipitation when 359 

exceeding the threshold (RX1h, cm h−1), total intensity as the sum of hourly 360 

precipitation when exceeding the threshold (RX1hTOT, cm h−1), frequency as hours or 361 

the fraction of the hours when hourly precipitation exceeds the threshold to the length 362 

of rice growing season in hours (R99f, hours, and R99p, %)  , proportion as the sum of 363 

hourly precipitation that exceeds the threshold divided by the growing-season total 364 

precipitation (R99pPROP, %), event amount as the precipitation amount averaged for 365 

extreme rainfall events that involve at least one extreme rainfall and for which the break 366 

duration between hourly precipitation does not exceed 6 hours43 (Rg1event, cm per 367 

event), and event duration as the total hours of extreme rainfall events during rice 368 

growing season divided by event numbers (ERED, hour per event).  369 

 370 



We then conducted correlation analyses of the extreme rainfall induced Y against 371 

seven parameters for identifying the potential factors. The correlation emphasizes the 372 

changes in rice yields caused by the maximum precipitation intensity and event amount, 373 

rather than repeated extreme rainfall events nor proportion to total precipitation amount, 374 

though it may be also affected by large values of parameters over a few sites. To tackle 375 

this uncertainty, we applied the bootstrap resampling to estimate the sensitivities and 376 

standard error of Y in response to extreme rainfall by randomly sampling 90% of the 377 

samples from the initial dataset for 1000 times. Besides, Kruskal-Wallis Rank Sum Test 378 

and Dunn’s test are applied to confirm the insignificance of extreme rainfall frequencies 379 

(1, 2, 3 and 4 times) on ∆Y. We also tested if Y response to extreme rainfall is 380 

dependent on the definitions of extreme rainfall. The sensitivity analyses were 381 

conducted based on the different thresholds (95th, 99th or 99.9th percentile) to define 382 

extreme rainfall and based on the break duration ( 2, 6, or 12 hours) to define extreme 383 

rainfall event (Supplementary Table 3). 384 

 385 

Rainfall manipulative experiments 386 

Plants and cultivation condition. The experimental site is at the Jingzhou 387 

Agrometeorological Experimental Station in Hubei province, China (30°21´N, 388 

112°09´E; Supplementary Fig. 2a). It is characterized as subtropical humid monsoon 389 

climate, with a mean air temperature of 16 °C and a mean precipitation of 1,095 mm 390 

yr−1. Soil is classified as Hydragric Anthrosol (Supplementary Table 5). Rice seedling 391 

nurseries were managed under the water regime of continuous flooding. Seedlings of 392 



rice (Oryza sativa L.) were transplanted at 30-day seedling ages with a hill spacing of 393 

0.33 × 0.33 m (9 hills m−2), and harvested after 103 days. Fertilizers of 172 kg ha−1 N 394 

in the form of N-NH4, 61 kg ha−1 P in the form of P2O5 and 49 kg ha−1 K in the form of 395 

K2O were applied over three events, that was one event with 72 kg ha−1 N, 53 kg ha−1 P 396 

and 42 kg ha−1 K applied 1 day before rice transplanting, one with 78.7 kg ha−1 N 397 

applied two weeks after transplantation, and one with 20.9 kg ha−1 N, 8 kg ha−1 P and 398 

7 kg ha−1 K applied during the jointing stage. Further details on cultivation condition 399 

can be found in Supplementary Fig. 2b. 400 

 401 

Main experiment. The rainfall manipulative experiment was conducted from 2018 to 402 

2019, spanning two rice growing seasons. The experiment consisted of ambient control 403 

and factorial treatments with two replicates, and was designed for extreme rainfall 404 

level-timing combinations (Supplementary Fig. 2c), with the results in Supplementary 405 

Data 1. The treatments comprised four rainfall levels in each or all of three growth 406 

phases (i.e., vegetative, reproductive, or ripening phases). There was a total of 34 plots 407 

for main experiments, each of which had an area of 6 m2 (2 m × 3 m) and was 408 

completely isolated by plastic-covering levees and impervious plates at a 0.5-meter 409 

distance in between. Throughout the experiment, all plots were subjected to the same 410 

agricultural management practices. To avoid the border effects, we use independent-411 

samples t-test to compare the yield of ambient control with that of three plots nearby, 412 

with each plot owing 150 m2 (25 m × 6 m) with the same agricultural management 413 

practices, and found no significant differences during three rice growing seasons 414 



(P >0.05, Supplementary Fig. 20a). 415 

 416 

We manipulated rainfall levels by running the artificial rainfall manipulation system 417 

(NLJY-10, Nanlin Electronics, China) for one hour on two replicates for each treatment, 418 

with the rainfall amount of 60, 120, 180, and 240 mm. However, the intensities of 419 

manipulative rainfall were far less than natural one because of a lower falling velocity 420 

of raindrops. We thus measured the kinetic energy of manipulative rainfalls using the 421 

laser precipitation disdrometer (OTT Parsivel2, Hach, USA), which is equivalent to the 422 

natural rainfall intensities of 6, 19, 51, and 103 mm per hour. These rainfall levels 423 

represent most of the broad range of growing-season rainfall extremes (exceeding the 424 

99th percentile) across China’s rice fields (i.e., 8 to 143 mm per hour and 12 to 526 mm 425 

per event observed in the period 1999-2012). To approximate the natural rainfall 426 

condition, rainfall manipulation was conducted in cloudy daytime for vegetative and 427 

ripening phases, but for reproductive phase specifically at 8:00-13:00 when spikelets 428 

reach anthesis in experimental site. To minimize the impact of waterlogging, ponded 429 

water was discharged within 12 hours after rainfall manipulation if the depth exceeds 430 

100 mm. No plants were washed away or fell due to rainfall manipulation. 431 

 432 

For each plot, we measured leaf area index, total tiller number, dry weights of leave, 433 

stem, and panicle, which were determined from three hills with an average number of 434 

tillers (Supplementary Data 1). All leaves, stems, and panicles were oven-dried 435 

(DHG500, SUPO Co.) at 75°C for several days. We measured N, P, and K contents in 436 



leave, stem and panicle using a continuous flow analyzer (Elementar, Germany), and 437 

net photosynthesis of three flag leaves at two photosynthetic photon flux densities of 438 

1500 and 600 μmol m−2 s−1 using Li6400 (Li-Cor Inc., USA). These measurements were 439 

conducted at seedling, maturity, and during three growth phases. Net photosynthesis 440 

was measured before and after each rainfall manipulation. In addition, for each 441 

treatment, we observed N and P losses via runoff and leaching during the period from 442 

the beginning of rainfall manipulation to the time when ponded water level decreased 443 

down as that before manipulation. 444 

 445 

At maturity, three hills with an average number of panicles were collected from each 446 

plot to determine the yield estimated as the product of effective panicles per unit land 447 

area (EP), filled grains per panicle (FG), and grain weight (GW) (Supplementary Data 448 

1). The filled grains were oven-dried at 75 °C for at least 72 h, but their weights were 449 

adjusted to a fresh weight with a moisture content of 0.15 g H2O g−1, ref44. To determine 450 

actual yields, the filled grains from the other rice plant hills for all plots were machine-451 

threshed (OUGEDA Co., China) and sun-dried to reach a moisture content of 0.15 g 452 

H2O g−1. The yields for all plots were highly consistent with actual ones 453 

(Supplementary Fig. 20).  454 

 455 

We calculated absolute differences in rice yield and in yield components between the 456 

controls and treatments, and then converted the absolute differences to relative changes 457 

(Y, EP, FG, and GW in %) to simplify comparisons among treatments and with 458 



the other experimental results. Note that the compensation relationship between EP 459 

and FG if rice planting distance below 15 cm (ref45) can be avoided in our 460 

experimental plots as the distance is 30 cm. Y is equal to the sum of EP, FG, and 461 

GW, that is Y = EP + FG + GW according to the Kaya identity principle46. The 462 

attribution results help identify the key yield components that were most affected by 463 

extreme rainfall. We further identified in which growth phase extreme rainfall regulates 464 

the changes in key yield components. 465 

 466 

1st supplementary experiment. To isolate the mechanism driving the causal relationship 467 

between extreme rainfall and FG, we ran the first supplementary experiment during 468 

the reproductive phase in July 2021. In the experiment, extreme rainfall intensity is 103 469 

mm per hour (Supplementary Fig. 8 and Data 1). For each treatment, transparent 470 

impervious film was placed above half of the plot, such that half of the plants were fully 471 

exposed to artificial rainfall and the other part was sheltered but experienced the same 472 

increases in ponded water levels and nutrient losses as the exposed part. To avoid an 473 

unintentional influence of film on rice growth, the film was also placed above a half 474 

control plots and all films were removed when the experiment ended. 475 

 476 

FG and actual yield in exposed and sheltered parts for each plot were observed. Based 477 

on the observations, we attributed the effect of extreme rainfall on FG into physical 478 

disturbance and soil N loss as below: 479 

Total: Y = YROC − YCOC, FG = FGROC − FGCOC,                      (2a) 480 



Soil N loss (o): Yo = YRC − YCC, FGo = FGROC − FGCOC,             (2b) 481 

Physical disturbance (p): Yp = Y − Yo, FGp = FG − FGo,          (2c) 482 

where ROC and COC refer to the exposed parts for treatment and control, respectively. 483 

RC and CC refer to the sheltered parts for treatment and control, respectively. In 484 

addition, we measured the number of empty and shrunken grains at maturity as well as 485 

their distribution along panicle. Such observations further elucidate how extreme 486 

rainfall influences rice pollination during reproductive phase. 487 

 488 

2nd supplementary experiment. To confirm the causal effect of extreme rainfall on EP, 489 

we ran the second supplementary experiment during vegetative phase in June 2021. The 490 

rainfall amount is 240 mm. The experiment consisted of ambient control and two 491 

treatments (Supplementary Fig. 8a and Data 1). For treatments, rice plants were fully 492 

exposed to artificial rainfall on 6 plots, half of which were re-applied by 28.8 kg N ha−1 493 

(37% of tillering fertilizer application) in the form of urea after rainfall manipulation. 494 

The re-application rate was determined as the average of observed N losses from the 495 

treatment plots using the same rainfall amount during vegetative phase in 2018 and 496 

2019. 497 

 498 

For each plot, we observed EP and the actual yield at maturity as well as N uptake per 499 

tiller from transplantation to panicle initiation. Based on the observations, we tested the 500 

differences in these three indicators between treatments and controls using the 501 

Wilcoxon rank sum test. If no significant differences between N re-applied treatment 502 



and control but significant differences between normal treatment and control were 503 

found, the decrease in EP were attributed to N losses induced by extreme rainfall during 504 

the vegetative phase. 505 

 506 

Path analysis. Structural equation modelling (SEM) implemented in the R package 507 

‘lavaan 0.6-7’47 allows us to test different hypotheses governing the pathways by which 508 

extreme rainfall affects rice yield. On the basis of potential causal relationships revealed 509 

by our experiments and previous literatures48-50, a series of SEMs were formulated 510 

(Supplementary Fig. 11). The insignificant paths (P > 0.05) were eliminated gradually 511 

until all links significantly contributed to the final model. To compare model 512 

performance, we conducted a chi-squared difference test and calculated model fit 513 

statistics (root mean square error of approximation [RMSEA], comparative fit index 514 

[CFI], goodness-of-fit index [GFI] and adjusted R squared [𝑅𝑎𝑑𝑗
2 ]). Standardized path 515 

coefficients were computed according to ref. 51, which can be interpreted as the change 516 

in the dependent variable when the independent variable changes by one standard 517 

deviation. 518 

 519 

Process-based modelling for regional assessments 520 

We improved the process-based crop model ORCHIDEE-crop23,24,52 to account for the 521 

impacts of extreme rainfall according to the mechanisms revealed by our rainfall 522 

manipulative experiments. We first tested its performance at the experiment sites driven 523 

by climate data observed in 2018 and 2019, and further validated by additional 524 



observations in the supplement experiment year (2021), and then used the improved 525 

model to hindcast and project the impacts of extreme rainfall on rice yield across China 526 

during 2001-2016 and 2085-2100 under two Representative Concentration Pathways 527 

(RCP 4.5 and 8.5).  528 

 529 

Model improvement. ORCHIDEE-crop simulates crop phenology, leaf area dynamics, 530 

growth of reproductive organs, carbon allocation and managements, as well as carbon, 531 

water and energy fluxes of agroecosystems. This model has been applied globally and 532 

regionally, and found to robustly reproduce yield variability53. ORCHIDE-crop is 533 

suitable for this study since it has been optimized for simulating the phenology and 534 

yield of single, early and late rice types grown in China23,52. It has paddy irrigation and 535 

soil hydrology schemes24, able to represent the typical irrigation and drainage systems 536 

for China’s rice fields. It runs in a half-hourly time-step and at 0.5-degree grid cell, 537 

suitable for extreme rainfall of short duration, which is a challenging issue for the 538 

models running at daily time-step. 539 

 540 

In ORCHIDEE-crop, the rice growth starts from transplanting (LEV), and the growth 541 

cycle includes three stages divided by the onset of grain filling (DRP) and the 542 

physiological maturity (MAT)52. Starting from DRP, the quantity of dry matters 543 

accumulated in grains is calculated by applying a progressive “harvest index” to the 544 

biomass of the plant. The daily rate of grain increment is proportional to the daily 545 

accumulated thermal unit, which could be reduced by frost and extreme heat54. The 546 



impacts of extreme rainfall are formulated as a factor () to reduce the rate of grain 547 

increment: 548 

 = (1 + EP + FG),                                     (3a) 549 

EP = 0.262Nut − 1.644,                                  (3b) 550 

FG = −0.00424KEre −0.00115KEri + 0.139Nup −3.676,        (3c) 551 

where Nut and Nup denote relative change in N uptake per tiller and N uptake per 552 

panicle during vegetative phase (%) as a function of soil N losses, respectively. KEre 553 

denotes kinetic energy (J m−2 h−1) of the maximum hourly precipitation (exceeding the 554 

99th percentile) occurred at 8:00-16:00 in flowering period when spikelets reach 555 

anthesis and if hourly air temperature ranges from 23C to 35C, ref55,56. KEri denotes 556 

kinetic energy of the maximum hourly precipitation (exceeding the 99th percentile) 557 

during ripening phase. Note that Equation 3 summing EP and FG is suitable to 558 

diagnose and project extreme rainfall induced Y across China, because, according to 559 

the nationwide survey (Supplementary Data 1), the rice planting distances in China (17 560 

to 25 cm) are enough to avoid the compensation relationship between EP and FG45. 561 

Further details on model equations can be found in Supplementary Table 4.  562 

 563 

Historical simulation. Two sets of historical simulations were performed for three rice 564 

types over China: (1) the comprehensive simulation (S0) that accounts both impacts of 565 

rainfall-induced physical disturbance and soil N losses on rice yield and (2) the partial 566 

simulation (S1) that only accounts the impact of physical disturbance. By comparing 567 

S0 and S1, we could isolate the impact of soil N losses. The difference between yield 568 



simulations from the improved and original models can be attributed to the historical 569 

extreme rainfall (Supplementary Data 2), thus we derived ΔY as below: 570 

Y = 
Yield (improved model) - Yield (original model)

Yield (original model)
× 100%.                      (4) 571 

Details on historical input data can be found in Supplementary Table 6. Specifically, we 572 

used field observed rice phenology from the CMA to interpolate 0.1-degree 573 

transplanting date52. We used the satellite-based gridded precipitation datasets (GPM 574 

IMERGv6) to quantify extreme rainfall intensities and event amounts, since it is  well 575 

represented at the site scale (Supplementary Fig. 16).  576 

 577 

Future projections. To evaluate the implications of our new findings for future rice yield 578 

projections over China, we applied the improved ORCHIDEE-crop to simulate yield 579 

changes of three rice types under RCP 4.5 and 8.5 with present-day agricultural 580 

management practices (Supplementary Data 2). To analyze the effect of future extreme 581 

rainfall on rice yield, we estimated additional rice yield loss as the difference in future 582 

projected yields between the improved and original model versions in 2085-2100 583 

relative to the historical yield simulated by the original model in 2001-2016. To remove 584 

systematic deviations of the simulated historical climate, we applied the trend-585 

preserving bias-correction57 to the IPSL projected climate change30. The bias correction 586 

was then applied to the climate forcing data and extreme rainfall indices during 2085-587 

2100. Further details on input data source for future projections can be found in 588 

Supplementary Table 6. 589 

 590 



Data availability: The data from the national agrometeorological observation network 591 

and the rainfall manipulative experiments are available in Supplementary Data 1. 592 

Model input data for historical simulations and future projections are available from 593 

public data depositories listed in Supplementary Table 6. Model output data for 594 

historical simulations and future projections are available in Supplementary Data 2. 595 

 596 

Code availability: Source codes for data analyses are available from 597 

https://figshare.com/s/2ab948dda43e73da44b5 (a link for the review but for the public 598 

when being accepted). Source codes for process-based model are available from 599 

http://forge.ipsl.jussieu.fr/orchidee, under the French Free Software license, compatible 600 

with the GNU GPL (http://cecill.info/licences.en.html).  601 

 602 
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