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 was trained for 10 epochs using GeneralData, Test2, and Valid2; (ii) second, we fine-tuned such Transformer using documentlevel data, with 3-sentence concatenation as context, for 4 epochs using Train, Test1, and Valid1 data. We then compared the three translation outputs from an interdisciplinary perspective, investigating some of the effects of sentence-vs. document-based training. Computer scientists, translators and corpus linguists discussed the remaining linguistic issues for this discourse-level literary translation.

Introduction

In order to analyse literary translations, we have gathered an interdisciplinary team of translators, linguists and computational scientists. We used this opportunity to explore neural machine translation of literary texts as a test set for test suites and unsolved issues for MMT literary translations, especially for the Chinese-English language pair. While the topic of literary machine translation has gained momentum in the last years, there have still been few attempts to customize systems to liter-ary data, although this idea is also drawing attention (Kenny and Winters, forthcoming). Indeed, research has been carried out on this subject, notably on Catalan [START_REF] Toral | What level of quality can neural machine translation attain on literary text[END_REF], but also on Slovenian [START_REF] Kuzman | Neural Machine Translation of Literary Texts from English to Slovene[END_REF], German and Russian [START_REF] Matusov | The Challenges of Using Neural Machine Translation for Literature[END_REF], and on French [START_REF] Baayen | lan-guageR: Analyzing Linguistic Data: A Practical Introduction to Statistics. R package version 1[END_REF], where research suggests that MT systems can be further fine-tuned on specific genres and individual translator styles (Hansen and Esperança-Rodier, V.2023).

Of course, these very attempts bring about many issues concerning textual ownership, copyright, translator status and livelihood, possibly lowered quality, cognitive friction, etc. [START_REF] Taivalkoski-Shilov | Ethical Issues Regarding Machine(-Assisted) Translation of Literary Texts[END_REF]. It is therefore important to include these ethical aspects into the research and clarify its objectives: for instance, whether MT should serve as a reading aid [START_REF] Oliver | InLéctor: Automatic Creation of Bilingual E-Books[END_REF], or as a postediting tool that may decrease the effort needed to translate [START_REF] Kolb | Less room for engagement[END_REF] and constrain creativity [START_REF] Guerberof | Creativity in Translation: Machine Translation as a Constraint for Literary Texts[END_REF].

Part research has also focused on evaluating the use of existing tools for literary texts. In the context of Chinese to English, attention has been paid to some of the specific shortcomings of MT systems, such as the translation of adjectival possessive pronouns [START_REF] Jiang | A Contrastive Study on the Rendition of Adjectival Possessive Pronouns in Pride and Prejudice by Human Translation and Online Machine Translation[END_REF], or theme-rheme progressions [START_REF] Jiang | How are neural machinetranslated chinese-to-english short stories constructed and cohered? an exploratory study based on themerheme structure[END_REF]. Such limitations can indeed have a drastic impact on readers' acceptance, which [START_REF] Shih | Can Machine Translation Declare a New Realm of Service? Online Folktales as a Case Study[END_REF] explores in the context of online folktales, confirming that the text's function plays a large role in this respect.

Lastly, [START_REF] Thai | Exploring Document-Level Literary Machine Translation with Parallel Paragraphs from World Literature[END_REF] have also pointed the incompatibility of MT metrics, document-level or otherwise, for literary texts, concluding that "hu-man expert evaluation is currently the only way to judge the quality of literary MT".

The rest of the paper is organised as follows: Section 2 details our approaches to the task and the training data of our experiments, Section 3 presents the results and Section 4 discusses them.

Data and Tools Used

This section details the toolkits we used and our training data for the three submissions authorised for the task. We first used part of the training data proposed by the organisers (Wang et al., 2023a) to observe the translations from mBART50 from Chinese into English before fine-tuning mBART (primary submission). We then used a fine-tuned context-aware concatenation-based Transformer trained at document level (contrastive1 submission) and a traditional sentence-level Transformer (con-trastive2 submission).

Primary model: mBART50 fine-tuning

As a primary submission, we used GuoFeng corpus (Wang et al., 2023a) to fine-tune the mBART50 model with Chinese-English data, using the Train set for training, Test1 as test set, and Valid1 as validation set. We followed similar training parameters to [START_REF] Lee | Pretrained multilingual sequence-to-sequence models: A hope for low-resource language translation[END_REF] when fine-tuning mBART50. As [START_REF] Lee | Pretrained multilingual sequence-to-sequence models: A hope for low-resource language translation[END_REF], we trained for 3 epochs, using gelu as an activation function, with a learning rate of 0.05, dropout of 0.1 and a batch size of 16 (we parallelised two A100 GPUs with batch size 8 per device). We decoded using a beam search of size 5.

Contrastive models

We submit two contrastive models, the first is a context-aware model (contrastive1) built on the second system, a sentence-level model (contrastive2).

For our contrastive1 submission, we used a context-aware NMT system based on the concatenation method [START_REF] Lupo | Encoding sentence position in context-aware neural machine translation with concatenation[END_REF]. The training was performed in two steps: (i) a sentence-level transformer [START_REF] Vaswani | Attention is all you need[END_REF] was trained for 10 epochs 1 using General Data as train set, Test2 as test set, and Valid2 as validation set ; (ii) second, we fine-tuned at document-level using 3-sentence concatenation for 4 epochs 2 using Train as train set, Valid1 as validation set and Test1 as test set. During the fine-tuning, we used ReLU as an activation function, with an inverse square root learning 1 We used only 10 epochs because of time constraints 2 We used only 4 epochs because of time constraints rate decay, dropout of 0.1, and a batch size of 64. We decoded using a beam search of size 4. For our contrastive2, we used the model trained at step (i) (sentence-level). The training parameters were an inverse square root learning rate decay, a dropout of 0.1, and a batch size of 64. We decoded using a beam search of size 4.

Evaluation Metrics

To evaluate our models, we use the BLEU score metric [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] as implemented in the Moses package.

We performed a human annotation of errors in the translation obtained by our primary submission. 109 segments were selected and annotated by three evaluators that are Chinese native speakers. To measure the inter-annotator agreement, we used Fleiss' kappa [START_REF] Fleiss | Measuring nominal scale agreement among many raters[END_REF]. The score is calculated to measure the inter-rater reliability of the annotations as the following equation

κ = P o -P e 1 -P e
where P o -P e measures the real concordance of annotations that are not achieved above chance, while 1 -P e measures the achievable concordance of annotations above chance. In our case, we computed errors by type as well as error types by segment (6 types and 109 segments, cf4.3.2).

Experiments and Results

We provide a human analysis of the primary model by discussing the improvements observed with the mBART fine-tuning with respect to the baseline. Additionally, we report the BLEU scores of our three systems.

Baseline of primary model: mBART50

During the training phase of the competition, with the standard HuggingFace implementation of mBART50, we observed the following issues when we translated Test1 from Chinese to English, which was part of the data provided for training by the organisers:

• hallucinations

• discrepancy between the Chinese input and the English translations

• tense concord

• co-referentiality issues for pronouns

Most textual discrepancies between the sizes of the sentences in the two languages were fixed by the fine-tuning as well as hallucinations and Chinese characters in the English translations. We nevertheless noticed a certain number of Chinese characters in the mBART50 translations, which decreased after our fine-tuning, and we only found 18 examples for all the 16,742 sentences, mostly for the fantasy genre, when referring to named entities or specific attributes of the universe (Skills: Blade Technique, Wing Protection, ).

Fine-tuning with Literary Data

In this section, we analyse the outputs qualitatively. This analysis consists of an initial description of the baseline and fine-tuned outputs, followed by a deeper examination of the syntactic and semantic functions of the produced outputs by both models. Instances of hallucinations were observed in the outputs of our baseline model. The hallucinated elements are present in the source text, so they are not elements which are not present in the source text. According to [START_REF] Lee | Hallucinations in neural machine translation[END_REF], hallucinations can be defined as the model producing a vastly different and inadequate output when the source is perturbed under a specific noise model. Thus, we may suggest that there exist other instances where the model ceases translation of the source text and proceeds with generating output punctuated solely by a sequence of continuous commas ("""",), which may represent an alternative manifestation of hallucination. Interestingly, it is noteworthy that the fine-tuned outputs did not exhibit any instances of hallucination. However, it should be mentioned that few Chinese tokens were observed in the fine-tuned outputs. In the Chinese source text, the equivalent of the word "businessmen" is placed at the left periphery of the sentence, having a pragmatic effect that involves topic introduction or re-introduction, based on the context. Both the baseline and fine-tuned models take the left dislocated element to the right periphery of the sentence, thereby inducing an alternation in the sentence's intended meaning. As we observed, the baseline models chunk the sentences and use commas instead of employing coordinations, relative clauses, or more complex structures. In this example, the baseline model produces "Ten minutes later. consciousness is exhausted. scattered" by separating each chunk or even token with a period. In contrast, the fine-tuned model generates "Ten minutes later, his consciousness was exhausted and dissipated.", using coordination to form a united sentence. This represents another instance of the fine-tuned model's proficient manipulation of structures, wherein it employs a relative clause "which" to interconnect the sentences. Ex: "Wang lived in the 413 bedrooms of the West school district, Lins lived in the 413 bedrooms of the East school district." Fine-tuned: 09primary: "Wang Yicheng stayed in 413, which was in the West campus. Lin Sisi stayed in 413, which was in the East campus." Furthermore, the choice of tense seems to be different in the two models: As for the fine-tuned model, a preference for the past tense becomes evident. Conversely, as for the baseline model, an over-use of the present tense is observed in its outputs. We may also add that baseline models tend to favour the indicative mood, which indicates assertion, as seen in an example like "What's wrong with the game?". On the other hand, fine-tuned models have been trained to produce sentences in moods that exhibit a reduced level of assertiveness, as evidenced by constructions like "Could there be a problem with the game?".

BLEU scores

In this section, we report the results of our primary, constrastive1, and contrastive2 in terms of BLEU score computed using Test1 and Test2 datasets at the end of the full training process of each model. The official results of the competition on test3 were not computed as the reference translations were not provided (at the time of writing this article). Table 1 shows that our primary system achieves the same BLEU score as contrastive2 3 , the sentence-level transformer implementation. We notice that the document-level system (contrastive1) is not better than the sentence-level model. This might be explained by the few epochs used for training.

Model

Discussion

Lexical Complexity

To appreciate the relative complexity of the terms used in the translations we first qualitatively compared the translations and contrastive2 seemed to be more elaborate, so we tested this impression with more quantitative means. We investigated the vocabulary growth curves of the three translations using the functions available from the languageR package [START_REF] Baayen | lan-guageR: Analyzing Linguistic Data: A Practical Introduction to Statistics. R package version 1[END_REF] to find out that the number of different types progress on the same rhythm for the different translations. In this type of representation, the horizontal axis corresponds to the expansion of the translation corpus (number of tokens) and the vertical axis corresponds to the number of types. The first lower series of curves corresponds to the number of hapaxes. As can be seen in Figure 1, the progression is very similar for the different translations we produced, while the mBART fine-tuning translation (primary) seems to be more verbose as the translation contains pore tokens than the two contrastive translations. The difference between our different models is clearly not lexical.

Challenging Literary Aspects of the Test Set

The first challenge was the size of the testing data, which resorted to different text genres, but was 30 times bigger than other challenge datasets like for the biomedical task in 2021. An additional difficulty was the paucity of metadata for the 14 genres or for chapter attributions (22 announced and 12 found).

Translation Quality analysis based on

Error Annotation

Quality overview

In total, 109 sample segments were randomly selected from the twelve translated texts generated by the fine-tuned mBART50 model. Based on these sample segments, each translated text was assigned an overall grade individually by three annotators on a scale of 1 to 10, with 1-3 denoting "Very Poor", 4-6 denoting "Poor", 7-8 denoting "Moderate", and 9-10 denoting "Good". The annotators are native Chinese speakers with near native level of English competence. They work in the domain of translation training and linguistics with an advanced proficiency of Chinese-English translation. The three grades given by the annotators for each text were then averaged to obtain a relative ranking of each translation. Overall, the twelve translations achieved an average score of 5 out of 10 in general, with a standard deviation of 0.87. Specifically, seven subgenres were identified among the twelve texts, namely: fantasy (4 texts), ancient romance (2 texts), military (1 text), thriller (1 text), modern romance (2 texts), sci-fi (1 text), and online games (1 text). All the sub-genres are typical in contemporary web novels. Notably, there is not a clear cut between different sub-genres and this categorisation is for analytical purposes only. Among the identified subgenres, the ranking from high to low quality is as follows: thriller (6.0 out of 10), fantasy (5.7), online games (5.4), sci-fi (5.0), ancient romance (4.7), modern romance (4.6), and military (3.8). While subgenre types might be a factor in influencing the quality of the translation given their language styles (e.g., the proportion of conversational segments, terminologies, formality, etc.), this line of discussion requires further evidence. Among the sample segments, the quality and language style of individual source text seem to play a more vital role in the overall quality of the translations. Several prominent error types linking to the stylistic features of the texts were identified, as detailed below.

Error typology

To obtain a more detailed insight into the quality of these translations, the sample segments were annotated based on the error typology introduced by (Hansen and Esperança-Rodier, V.2023). The original typology was further categorized for the Chinese -English language pair and inter-rater validation purposes. Specifically, six level-one error types were identified:

• semantic errors (SEM): errors that directly affect the meaning of the text, involving issues like omission, addition, or wrong translation of content/nuance of content;

• logical, structural and cohesion errors (LSC): errors related to the logical flow and coherence of the text, affecting how different parts relate to each other;

• grammatical errors (GRM): errors related to Figure 1: Vocabulary growth curves of our three translations (primary, contrastive1, contrastive2). The lower series of curves corresponds to the hapaxes for primary, ontrastive1 and contrastive2.

the rules of language such as gender, number, tense, and person etc.;

• stylistic errors (STY): errors regarding the style, tone, and appropriateness of the language used;

• stuttering (STU): words repeated for no apparent reason by the MT system;

• non-translation (NTR): source term left untranslated in the target.

Each level one error type contains specific level two and sometimes level three error types. The complete error typology tailored for this task can be found in the appendix. We use Fleiss' kappa to measure the Level 1 error type inter-rater agreement, and the overall Fleiss' kappa score is 0.288, which can be interpreted as "Moderate agreement" according to (Landis and Koch, 1977)'s classifications. . Fleiss' kappa of Level 1 subgenre annotations is presented in Table 2.

Among all annotated segments, 30.58% segments are considered error-free. 47.71% of them belong to the SEM error type, with the remainder of 11.31% on STY, 4.89% on LSC, and 3.98% on GRM.

Prominent Error Types

Understanding the text in its original language is the basis for literary translation, which requires multi-faceted considerations pinned by context, literary style and cultural nuance. The fine-tuned sys- tem attempts to address the greater-than-sentencelevel textual features. However, human annotation results have shown that it continues to struggle with contextual analysis, which leads to prominent errors such as non-translation, mistranslation and inconsistent translation or reference of proper nouns and terms, mistranslation of idioms, etc.

Transliteration is the main way of addressing the character names from Chinese into English (in this case, standard Pinyin is used). Surprisingly, the system failed to maintain consistency of reference to name entities, for example, "宋扶" (song fu) was translated as "Song Fu", "Song Fudge" and "Song Yidao" at places. The character "宋扶" is also mentioned as "宋师弟" or "宋师兄", which were translated literally (see examples in table 3, handannotated in bold). Given the nature of fantasy (xianxia) novels, "师兄" (senior brother) or "师弟" (junior brother) is a common way of addressing

王 子 法 一 脸 惊 讶 道 :"师 兄 此 话 怎 讲?"
"What do you mean, senior brother?" Prince Charming asked in surprise.

郑 金 龙 笑 眯 眯 道:"师弟,你是在 跟 我 装 糊 涂 吗 ? 宋 师 弟 的 死 , 你 们 不 准 备 给 师 门 一 个 交 代?"
"Junior brother, are you playing dumb?" Zheng Jin Long said with a smile."You don't want to give your sect an account for Junior brother Song's death?"

王 子 法 面 容 一 肃 , 沉 声 道 :"宋 师 兄 差 点 坏 我 蓝 玉 门 好 事 , 宋 扶 该 死 ! 再 给 我 们 一 次 机 会 , 我 们 还 是 会 这 样 做!"

"Senior

Brother Song almost ruined our Lanyu Sect's business. Song Fudge deserves to die! Give us another chance, and we'll still do this!" the prince said solemnly. people under the same sect. Literal translation in this particular context might reduce textual cohesion and such inconsistent reference might confuse target language readers given the numerous consecutive mentions of "brother" in the text. The same issue was observed in the document-level model (contrastive1) result too.

It is difficult for the system to identify a named entity if the name itself or part of the name can be used as a proper noun. For example, "王子法" (wang zi fa) was mistranslated as "Prince Charming", which was because the system misidentified the first two Chinese characters "王子" (wang zi, literal meaning: prince) as a named entity.

Other inconsistency regarding proper nouns lies in the formality of presentation, i.e., case error, meaning translation going against previous choices regarding the capitalization of series-specific terms. In fantasy novels, sect names and martial arts techniques are prominent terms. However, the capitalization of these terms was not always consistent.

It is challenging for the current system to capture ideas or emotions in culturally specific expressions. For example, the idiom "天下没有不散的宴席" is translated as "there is no such thing as a banquet in the world". As a literal translation, it omitted the important part of the idiom "不散的" (literal meaning: non-separable / never-ending), which leads to the failure of conveying its figurative meaning "All good things must come to an end". On the contrary, it did well in translating "哑巴吃黄连" (literal meaning: a mute person eats bitter melons) as "speechless". The discrepancy between the translation quality of idioms shows that more culture-specific training data is needed to improve the accuracy and idiomaticity of literary machine translation.

Sentence-vs. Document-based Training Strategies

An important aspect of the competition was the choice to use full chapters with contextualised successive sentences instead of (more) limited contexts usually retained for translation competitions. This resulted in a much bigger dataset than for more standard competitions (in the vicinity of 400 sentences for biomedical tasks). We submitted 2 models based on a similar architecture: Contrastive1 and Contrastive2.

We used as Contrastive2 a context-agnostic sentence-level transformer model as in [START_REF] Vaswani | Attention is all you need[END_REF] trained on 10 epochs.

We used as Contrastive1 an on-context transformer model with the exact same architecture as Contrastive2 but that adopts sliding windows of 3 concatenated sentences pre-trained on 10 epochs to the sentence-level and trained on 4 epochs with concatenated sentences.

Concatenation of 3to3 implies that the source sentence is concatenated to the two previous sentences using end-of-sentence tokens between each of them. A sliding windows is when sliding-KtoK model encodes the source windows sentences x i K using the end to sentence tokens <eos> and a special token <S> used to mark sentence boundaries in the concatenation then decode the translation y i K x i K = x i-K+1 <S>x i-K+2 <S>...<S>x i <eos> y i K = y i-K+1 <S>y i-K+2 <S>...<S>y i <eos> Another Contrastive model was trained, but unfortunately too late for the submission, based on [START_REF] Lupo | Focused concatenation for context-aware neural machine translation[END_REF]) it has the same specificity than Contrastive1 with a context discount of 0.01. Context-discount means that the loss function is defined as :

L CD (x j K , y j K ) = CD • L context + L current
After the submission period, we continued training our contrastive systems. After 55 epochs of sentence-level pre-training and 14 epochs of document-level training, the system achieved a BLEU score of 21.46 on Test1 test set.

Further Research

Related Research

This subsection discusses related papers.

For fine-tuning mBART, we replicated the parameters tested by [START_REF] Lee | Pretrained multilingual sequence-to-sequence models: A hope for low-resource language translation[END_REF], namely retraining for three epochs. With the same parameter, [START_REF] Namdarzadeh | Fine-tuning mbart-50 with french and farsi data to improve the translation of farsi dislocations into english and french[END_REF] have fine-tuned Persian→English and Persian→French with a single short story but nevertheless observed dramatic improvement for Persian→French translations in terms of elimination of hallucinations, English words and morpho-syntactic correction. We have not tried other multilingual Large Language Models such as mBERT [START_REF] Wu | Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT[END_REF] (based on BERT), mT5 [START_REF] Xue | mt5: A massively multilingual pre-trained text-to-text transformer[END_REF], XLM-R [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] based on RobertA or the more recent (and bigger) Bloom model [START_REF] Teven | Bloom: A 176bparameter open-access multilingual language model[END_REF].

For concatenation Transformer, we used some parameters tested by [START_REF] Lupo | Focused concatenation for context-aware neural machine translation[END_REF]) that translated English→German and English→Russian to observe dramatic improvement on Contrapro set [START_REF] Müller | A large-scale test set for the evaluation of context-aware pronoun translation in neural machine translation[END_REF] and English→Russian set [START_REF] Voita | When a good translation is wrong in context: Context-aware machine translation improves on deixis, ellipsis, and lexical cohesion[END_REF] although with only a slight improvement in BLEU score.

Future Research

This first collaboration between several universities and backgrounds has discussed English input and was an opportunity to discuss the findings of the competition on literary data and also our insights into the fine-tuning of mBART50 with literary data. We aim to replicate this analysis on Farsi data, as Farsi is one of the 50 languages of mBART50. As is often the case in competitions, we did not train as much as we expected. For the fine-tuning of mBART, we managed to train for three epochs, which is what we found in previous studies [START_REF] Lee | Pretrained multilingual sequence-to-sequence models: A hope for low-resource language translation[END_REF], but for two other submissions, we were training from scratch and could only manage to train for 10 epochs for constrastive2 (sentencelevel) and fine-tune for 4 epochs for contrastive1 (document-level). This impacted our results. Evaluating our BLEU score on Test1, we got 22.31 BLEU score for both primary and contrastive2 meanwhile 19.03 BLEU score for constrative1.

Conclusion

This paper presented the MAKE-NMTViz system description for the WMT2023 Literary Shared Task. We participated in the Chinese-to-English task with a model trained at sentence level and at document level. We only used the data provided by the organisers but also analysed the translations produced with mBART50 before our submissions. As we did not receive scores from the organisers of the task, we mostly focused on the qualitative analysis of our translations. We resorted to a typology of translation errors and highlighted prominent error types that remained in our translations.

Limitations

During this translation task, we met one limitation with respect to the document-level translation system. In this case, we did not adapt the system to process in Chinese→English language pair. We employed the same setup described in previous works, where the system was trained for English→Russian, English→German and English→French languages.

Table 2 :

 2 Fleiss' kappa of subgenres. κ = 1 is perfect concordance, κ = 0 is no concordance between annotators.

	Subgenre	Score ↑
	Modern Military	0.534
	Science Fiction	0.344
	Ancient Romance 0.321
	Fantasy	0.283
	Modern Romance 0.283
	Thriller	0.152
	Online Game	0.143

Table 3 :

 3 Examples for illustration
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Primary and contrastive2 scores on Test1 are identical due to coincidence.
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A Error Typology

• Stuttering.

• Non-translation.