
SUPPLEMENTARY METHODS

1. Notation. Genetic associations among TEs are defined using the multilocus

notation of Barton and Turelli (1991) and Kirkpatrick et al. (2002). Throughout the

following, Xi,∅ and X∅,i correspond to indicator variables that equal 1 if a TE copy

is present at insertion site i on the maternally and paternally inherited haplotypes5

of an individual (respectively), and 0 otherwise. As the model does not include any

sex-of-origin effect, we have E [Xi,∅] = E [X∅,i] (where E stands for the average over

all individuals in the population) corresponding to the frequency of insertions at site i

in the population, denoted pi and supposed to be small. Using the centered variables

ζi,∅ = Xi,∅ − pi and ζ∅,i = X∅,i − pi, genetic associations are defined as:10

DU,V = E [ζU,V] (A1)

with:

ζU,V =

(∏
i∈U

ζi,∅

)(∏
j∈V

ζ∅,j

)
(A2)

and where U and V represent sets of insertions sites. Because the model assumes no

difference between sexes, we have DU,V = DV,U. For simplicity, associations between

TEs present on the same haplotype (DU,∅ = D∅,U) will be denoted DU: in particu-

lar, Dij corresponds to the linkage disequilibrium between insertions at sites i and j.15

Using the fact that X2
i,∅ = Xi,∅ and X2

∅,i = X∅,i (since these variables equal 0 or 1),

eliminated indices that may appear in associations can be eliminated using the relation

given by equation 5 in Kirkpatrick et al. (2002):

DUii,V = piqiDU,V + (1− 2pi)DUi,V (A3)

where U and V may be any set of loci and qi = 1 − pi; for example, Dii,∅ = piqi,

while Diij,∅ = (1− 2pi)Dij,∅ (since Di,∅ = D∅,i = 0, while D∅ = 1). The derivations20

presented here assume that the parameters u, v, α and β are small (of order ε, where

ε is a scaling factor); furthermore, recombination rates are assumed to be high, so

that genetic associations between insertions at different sites remain small (of order ε);

however, we will see that some of the results can be extended to tight linkage among

insertions. Variables measured after transposition, excision and selection will be de-25

noted with superscripts ‘t’, ‘e’ and ‘s’, respectively, while variables measured at the
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next generation (after reproduction) will be denoted with a prime.

2. Mean number of TEs per genome. The average number of TEs per genome,

n = 2
∑

i pi changes during transposition/excision and during selection. Using the30

notation defined above, and noting that the number of TEs in an individual is given

by n =
∑

i (Xi,∅ +X∅,i), the fitness of an individual can be written as:

W = exp

[
−α
∑
i

(Xi,∅ +X∅,i)−
β

2

∑
i 6=j

(Xi,∅ +X∅,i) (Xj,∅ +X∅,j)

]

= 1− αn− β

2
n2 − (α + βn)

∑
i

(ζi,∅ + ζ∅,i)

− β

2

∑
i 6=j

(ζij,∅ + ζ∅,ij + ζi,j + ζj,i) + o(ε)

(A4)

where the last sum is over all pairs of insertion sites i and j (each pair being counted

twice in the sum). From this, the average fitness in the population is:

W = 1− αn− β

2
n2 − β

∑
i 6=j

(Dij +Di,j) + o(ε) , (A5)

leading to:35

W

W
= 1−

∑
i

ai (ζi,∅ + ζ∅,i)

−
∑
i 6=j

aij (ζij,∅ + ζ∅,ij − 2Dij + ζi,j + ζj,i − 2Di,j) + o
(
ε2
) (A6)

with ai = α+ βn and aij = β/2. The effect of selection on the frequency of insertions

at site i is given by:

∆selpi = E

[
W

W

Xi,∅ +X∅,i

2

]
− pi = E

[
W

W

ζi,∅ + ζ∅,i
2

]
. (A7)

From equation A6, and using the fact that Di,j = 0, Dij,k = 0 under random mating,

this is:

∆selpi = − (α + βn)
∑
j

Dij −
β

2

∑
j 6=k

Dijk + o(ε) . (A8)

Neglecting linkage disequilibria and using Dii = piqi (from equation A3), we have to40

the first order in pi and in ε:

∆selpi ≈ − (α + βn) pi, (A9)
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leading to:

∆seln ≈ − (α + βn)n . (A10)

Furthermore, the changes in n due to transposition and excision are given by:

∆transpn = un, ∆excn = −vn (A11)

so that the equilibrium value of n (obtained by solving ∆seln+ ∆transpn+ ∆excn = 0)

is given by:45

n ≈ u− v − α
β

(A12)

(Charlesworth, 1991). Note that from equation A12, the effective strength of selection

acting against each TE copy (the coefficient ai = α + βn in equation A6) is approxi-

mately u− v.

3. Linkage disequilibrium between TEs. The linkage disequilibrium between50

TE insertions at sites i and j at the next generation, is given by:

Dij
′ = (1− rij)Dij

s + rij Di,j
s (A13)

where rij is the recombination rate between sites i and j and where Dij
s, Di,j

s are

measured after selection (before reproduction). The change in Dij caused by selection

is given by (e.g., Barton and Turelli, 1991):

Dij
s = E

[
W

W

ζij,∅ + ζ∅,ij
2

]
−∆selpi ∆selpj. (A14)

From equation A6 and A9, and using the fact that Di,j = 0, Dij,k = 0, Dijk,l = 0 under55

random mating, this is:

Dij
s = Dij

t − (α + βn)
∑
k

Dijk
t − β

2

∑
k 6=l

(
Dijkl

t +Dij,kl
t − 2Dij

tDkl
t
)

+ o(ε) . (A15)

where Dijk
t, Dijkl

t and Dij,kl
t are three and four-locus associations defined by equation

A1. Assuming that linkage disequilibria are of order ε, only the terms for k = i,

l = j and k = j, l = i in the second sum remain. Using the fact that Diijj =

piqipjqj + (1− 2pi) (1− 2pi)Dij (from equation A3), one obtains:60

Dij
s ≈ Dij

t − β pipj . (A16)
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Similarly, we have:

Di,j
s ≈ Di,j

t − β pipj . (A17)

In order to compute the effect of transposition on Dij, we first consider that

the number of possible insertions sites L is finite (but much larger than the number of

TEs present in the genome), and then take the limit as L tends to infinity. Dij,∅ after

transposition is given by:65

Dij,∅
t = E

[(
Xi,∅

t − pit
) (
Xj,∅

t − pjt
)]

(A18)

where

Xi,∅
t = Xi,∅

e + (1−Xi,∅
e)

u

2L

∑
k 6=i

(Xk,∅
e +X∅,k

e) . (A19)

Indeed, a TE is present on the maternally inherited chromosome at site i either if it

was already present before transposition (Xi,∅
e = 1, first term of equation A19), or if

one of the new un = u
∑

k 6=i (Xk,∅
e +X∅,k

e) copies inserts at this site, which happens

with probability 1/ (2L) (second term of equation A19). Dropping e superscripts for70

clarity, replacing Xi,∅ by ζi,∅ + pi, and assuming that LD and pi are small yields

pi
t = E [Xi,∅

t] ≈ pi + u
2L
n, while:

Dij,∅
t ≈ E

[[
ζi,∅

(
1− u

2L
n
)

+
u

2L

∑
k 6=i

(ζk,∅ + ζ∅,k − ζik,∅ − ζi,k)
]

×
[
ζj,∅

(
1− u

2L
n
)

+
u

2L

∑
k 6=j

(ζk,∅ + ζ∅,k − ζjk,∅ − ζj,k)
]]
.

(A20)

Assuming that linkage disequilibria are of order ε, this yields:

Dij
t ≈ Dij

e +
u

2L
(pi + pj) . (A21)

The term Dij
e in equation A21 stems from the product of ζi,∅ on the first line of

equation A20 with ζj,∅ on the second line, while the term in pi stems from the product75

of ζi,∅ on the first line with the term for k = i of the sum on the second line, yielding

u/ (2L) (Dii,∅ +Di,i −Diij,∅ −Dij,i), where Dii,∅ = piqi ≈ pi, while Di,i = 0, Dij,i = 0

under random mating and Diij,∅ = (1− 2pi)Dij is of order ε. Similarly, the product

of ζj,∅ on the second line of equation A20 with the term for k = j of the sum on the

first line yields the term in pj in equation A21. All other terms of equation A20 are80

o(ε). The same reasoning yields:

Di,j
t ≈ Di,j

e +
u

2L
(pi + pj) . (A22)
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The effect of TE excision is obtained similarly. We have:

Dij,∅
e = E [(Xi,∅

e − pie) (Xj,∅
e − pje)] (A23)

with Xi,∅
e = (1− v)Xi,∅, pi

e = (1− v) pi, yielding:

Dij
e = (1− v)2Dij ≈ Dij, Di,j

e ≈ (1− v)2Di,j = 0. (A24)

Altogether, equations A13, A16, A17, A21, A22 and A24 yield, at equilibrium:

Dij ≈
1

rij

[ u
2L

(pi + pj)− β pipj
]
. (A25)

The effect of LD on the variance in the number of TEs per genome is twice the sum85

of linkage disequilibria over all pairs of possible insertion sites, and is thus given by:

2
∑
i 6=j

Dij ≈
1

rh

[
un− βn

2

2

]
, (A26)

where rh is the harmonic mean recombination rate between all possible pairs of inser-

tion sites. Using equation A12, this yields:

2
∑
i 6=j

Dij ≈
n

2rh
(u+ v + α) . (A27)

Equation A27 shows that linkage disequilibria are positive due to the effect of trans-

position, and thus tend to increase the variance in the number of TEs per genome.90

However, equation A25 diverges as the recombination rate rij tends to zero, and rh

thus cannot be computed in the case of a continuous genetic map. Following Roze

(2014, 2016, 2021), more accurate results can be obtained in the case of tightly linked

loci by relaxing the assumption that linkage disequilibria are small during the deriva-

tion of recurrence equations. Using the fact that Diij = (1− 2pi)Dij ≈ Dij and still95

neglecting associations between more than two loci, equation A15 then yields:

Dij
s ≈ [1− 2 (α + βn)]Dij

t − β pipj . (A28)

Note that the term in −βDiijj in equation A15 also generates a term in −βDij
t, but

throughout the following we will generally consider that n is large, so that this term

should be negligible relative to the term −2βnDij
t that appears in equation A28.

Similarly, we have:100

Di,j
s ≈ [1− 2 (α + βn)]Di,j

t − β pipj . (A29)
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Furthermore, equation A20 now yields (still neglecting associations between more than

two loci):

Dij
t ≈

(
1− u

2L
n
)
Dij

e +
u

2L

(
pi + pj +

∑
k

Dik +
∑
k

Djk

)
(A30)

and similarly

Di,j
t ≈

(
1− u

2L
n
)
Di,j

e +
u

2L

(
pi + pj +

∑
k

Dik +
∑
k

Djk

)
. (A31)

Last, the effect of excision is given by:

Dij
e ≈ (1− 2v)Dij, Di,j

e = 0. (A32)

Equations A13 and A28–A32 now yield:105

Dij ≈
u
2L

(pi + pj +
∑

kDik +
∑

kDjk)− β pipj
1− (1− rij) [1− 2 (α + βn)]

(
1− u

2L
n
)

(1− 2v)
. (A33)

Summing over all pairs of loci i and j and taking the limit as L tends to infinity, the

term u
2L
n in the denominator vanishes. Furthermore, using n ≈ (u− v − α) /β so that

α + βn ≈ u− v, the denominator becomes approximately rij + 2u, giving:

2
∑
i 6=j

Dij ≈ E1

[
u

(
n+ 2

∑
i 6=j

Dij

)
− β n

2

2

]
(A34)

where E1 is the average over all possible pairs of insertion sites of 1/ (rij + 2u). Again

using n ≈ (u− v − α) /β, we finally have:110

2
∑
i 6=j

Dij ≈
E1

1− u E1
u+ v + α

2
n . (A35)

The inflation in variance caused by positive LD is thus given by:

Var (n)

n
≈ 1 +

E1
1− u E1

u+ v + α

2
. (A36)

Note that when linkage disequilibria make a significant contribution to the variance

in n, a more accurate expression for the effect of selection on n can be obtained from

equation A8:

∆seln ≈ − (α + βn)

(
n+ 2

∑
i 6=j

Dij

)
(A37)

which may be used together with equation A33 to obtain more precise (but compli-115

cated) expressions for n and 2
∑

i 6=j Dij.
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In the case of a linear genetic map of length R Morgans (with uniform density

of recombination), E1 is given by:

E1 ≈
2

R2

∫ R

0

R− x
x+ 2u

dx (A38)

where the recombination rate r is approximated by the genetic distance x, since E1
should be mostly generated by tightly linked loci as long as R is not too large, yielding:120

E1 ≈
2

R

[
(1 + 2ρR)

[
ln

(
1

2
+ ρR

)
− ln(ρR)

]
− 1

]
(A39)

with ρR = u/R. When R is large, the contribution of loosely linked loci to E1 be-

comes more important, and x in the denominator of equation A38 must be replaced

by (1− e−2x) /2 (Haldane, 1919), yielding a slightly more complicated expression (that

tends to 1/ (1/2 + 2u) as R tends to infinity). Both expressions of E1 give similar re-

sults for values of R up to 1, however, while the contribution of LD to the variance in125

the number of TEs per individual is generally very small when R > 1, as predicted by

both expressions. Nevertheless, Figure S1 shows that replacing x by (1− e−2x) /2 in

the denominator of equation A38 yields more accurate predictions when R is large.

4. Partial clonality. Assuming that at each generation, a proportion σ of off-130

spring is produced sexually (through random mating) while a proportion 1 − σ is

produced clonally (through mitosis), the average number of TEs per genome at equi-

librium stays approximately given by equation A12, while the effect of reproduction

on pairwise genetic associations is now given by:

Dij
′ = (1− rijσ)Dij

s + rijσDi,j
s (A40)

135

Di,j
′ = (1− σ)Di,j

s . (A41)

The effect of selection on Dij and Di,j is still given by equations A28 – A29, while the

effects of transposition and excision are given by:

Dij
t ≈ Dij

e +
u

2L

(
pi + pj +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

)
, (A42)

Di,j
t ≈ Di,j

e +
u

2L

(
pi + pj +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

)
, (A43)
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Dij
e ≈ (1− 2v)Dij, Di,j

e ≈ (1− 2v)Di,j. (A44)

Assuming that the rate of sex σ is small, one obtains, at equilibrium:140

Dij +Di,j ≈
4u+ σ (1 + 2rij)

(2u+ σ) (2u+ rijσ)

×

[
u

2L

(
pi + pj +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

)
− β pipj

]
(A45)

and the contribution of genetic associations to the variance in n is thus given by:

2
∑
i 6=j

(Dij +Di,j) ≈
E2

1− u E2
u+ v + α

2
n (A46)

where E2 is the average over all pairs of possible insertion sites of the fraction on the

first line of equation A45. When the rate of sex σ is small, distant pairs of loci may

contribute significantly to the average, which is thus computed as:

E2 =
2

R2

∫ R

0

(R− x) [4u+ σ [1 + 2r(x)]]

(2u+ σ) [2u+ r(x) σ]
dx (A47)

in the case of a linear genetic map of length R, where r(x) is given by Haldane’s145

mapping function (Haldane, 1919): r(x) = [1− e−2x] /2. Equation A47 yields:

E2 =
2R [R (1 + 4ρσ)− ln(−4ρσ)] + Li2(1 + 4ρσ)− Li2

(
e2R (1 + 4ρσ)

)
R2σ (1 + 2ρσ) (1 + 4ρσ)

(A48)

where ρσ = u/σ, and Li2(x) is the polylogarithm function
∑∞

k=1 z
k/k2. The inflation

in variance caused by positive genetic associations between loci is thus given by:

Var (n)

n
≈ 1 +

E2
1− u E2

u+ v + α

2
. (A49)

5. Partial selfing. Assuming that a proportion s of offspring is produced by selfing,150

while a proportion 1 − s is produced by random mating, the change in frequency of

insertions at site i is now given by (from equations A6 and A7):

∆selpi ≈ − (α + βn) (piqi +Di,i) . (A50)

The association Di,i measures the excess homozygosity at site i caused by selfing,

and equals F piqi to leading order, where F = s/ (2− s) is the inbreeding coefficient.

Therefore,155

∆seln ≈ − (α + βn) (1 + F )n, (A51)
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while the change in n due to transposition and excision is still given by (u− v)n,

giving, at equilibrium:

n ≈ u− v − α (1 + F )

β (1 + F )
. (A52)

The coefficient ai = α+βn of equation A6 is thus now approximately (u− v) / (1 + F )

at equilibrium, while the net effect of selection against each element, (α + βn) (1 + F )

(from equation A50) stays approximately equal to u − v. The effect of reproduction160

on pairwise genetic associations is given by:

Dij
′ = (1− rij)Dij

s + rij Di,j
s (A53)

Di,j
′ =

s

2
(Dij

s +Di,j
s) . (A54)

From equations A6 and A14, and neglecting associations involving more than two loci,

one obtains:

Dij
s ≈ [1− 2 (α + βn)]Dij

t − (α + βn)
(
Dij,i

t +Dij,j
t
)

− β
(
Diijj

t +Dij,ij
t +Diij,j

t +Dijj,i
t
)
.

(A55)

The associations appearing on the second line of equation A55 are given by Diijj
t ≈165

pipj, Diij,j
t = Dijj,i

t ≈ F pipj and Dij,ij
t ≈ φij pipj, where φij is the probability of

joint identity-by-descent at loci i and j (that equals 1 under complete selfing). In the

following, we will consider that the outcrossing rate o = 1 − s is small, in which case

one can show that Dij,i
t ≈ F Dij

t, leading to:

Dij
s ≈ [1− 2 (α + βn) (1 + F )]Dij

t − β (1 + 2F + φjk) pj pk. (A56)

Similarly, we have:170

Di,j
s ≈ [1− 2 (α + βn)]Di,j

t + 2F (α + βn)Dij
t − β (1 + 2F + φjk) pj pk. (A57)

The effects of transposition and excision are given by:

Dij
t ≈ Dij

e +
u

2L

[
(pi + pj) (1 + F ) +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

]
, (A58)

Di,j
t ≈ Di,j

e +
u

2L

[
(pi + pj) (1 + F ) +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

]
, (A59)

Dij
e ≈ (1− 2v)Dij, Di,j

e ≈ (1− 2v)Di,j. (A60)
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Assuming that the outcrossing rate o is small (so that φij ≈ F ≈ 1− 2o), one obtains,

at equilibrium:175

Dij +Di,j ≈
1 + 2rij

orij + u (1 + 2rij)

×

[
u

2L

(
2pi + 2pj +

∑
k

(Dik +Di,k) +
∑
k

(Djk +Dj,k)

)
− 4β pipj

]
(A61)

and the contribution of genetic associations between TEs at different sites to the

variance in n is thus given by:

2
∑
i 6=j

(Dij +Di,j) ≈
E3

1− u E3
(u+ v + 2α)n (A62)

where E3 is the average over all pairs of possible insertion sites of the fraction on the

first line of equation A61. In the case of a linear map of length R, we have:

E3 =
2

R2

∫ R

0

(R− x) [1 + 2r(x)]

or(x) + u [1 + 2r(x)]
dx (A63)

with r(x) = [1− e−2x] /2, yielding:180

E3 =
2R
[
R (1 + 4ρo)− ln

(
− 2ρo

1+2ρo

)]
+ Li2

(
1+4ρo
1+2ρo

)
− Li2

(
e2R 1+4ρo

1+2ρo

)
R2o (1 + 2ρo) (1 + 4ρo)

(A64)

where ρo = u/o and Li2(x) is the polylogarithm function
∑∞

k=1 z
k/k2. Under weak

outcrossing, the inflation in variance caused by genetic associations between loci is

thus given by:
Var (n)

n (1 + F )
≈ 1 +

E3
1− u E3

u+ v + 2α

2
. (A65)

6. The Hill-Robertson effect. In a finite population, the Hill-Robertson effect tends185

to generate negative LD between TE copies. Assuming that the mean number of TEs

per genome n is sufficiently large, so that the coefficient of epistasis β is small relative

to the coefficient of selection ai = α+βn, the contribution of the Hill-Robertson effect

to the linkage disequilibrium between TE copies should be approximately the same

as between two deleterious alleles with additive fitness effects (h = 1/2), replacing190

−sh by ai. Denoting 〈X〉 the expected value of quantity X at mutation–selection–

drift equilibrium and assuming that deleterious alleles stay near mutation–selection
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balance (at low frequency), Roze (2021) showed that an approximation for the average

LD 〈Dij〉 generated by the Hill-Robertson effect between two deleterious alleles with

selection coefficients si, sj and dominance coefficients hi, hj in a population of size N195

is given by: 〈
Dij

2
〉
≈ pipj

4N (rij + sihi + sjhj)
(A66)

〈piDij〉 ≈ −
sjhj 〈Dij

2〉
rij + 2sihi + sjhj

(A67)

〈Dij〉 ≈
si (2hi − di) 〈piDij〉+ sj (2hj − dj) 〈pjDij〉

rij + sihi + sjhj
(A68)

where di = 1− 2hi. These equations can be adapted to our model of TE dynamics by

setting di, dj to zero (no dominance), and replacing sihi and sjhj in the numerators of200

equations A67 – A68 by α + βn ≈ u − v. However, because excision tends to reduce

insertion frequencies and associations, extra terms in v appear in the denominators, so

that sihi and sjhj in the denominators of equations A66 – A68 must simply be replaced

by u. Combining the different sources of LD (transposition, epistasis, Hill-Robertson

effect) and assuming that the genome map length is sufficiently large so that
∑

i 6=j Dij205

remains small, one obtains:

〈Dij〉 ≈
u
2L

(pi + pj)− β pipj
rij + 2u

− (u− v)2 pipj

N (rij + 2u)2 (rij + 3u)
. (A69)

Approximating pi and pj by the frequencies of insertions at sites i and j in the deter-

ministic limit, (u− v − α) / (2Lβ), yields:

〈Dij〉
〈pqij〉

≈ (u+ v + α) β

(u− v − α) (rij + 2u)
− (u− v)2

N (rij + 2u)2 (rij + 3u)
(A70)

with pqij = piqipjqj. This result can be extended to the case of partially selfing

populations and tightly linked loci using separation of timescales arguments (e.g.,210

Nordborg, 1997; Roze, 2016; Stetsenko and Roze, 2022): this is achieved by replacing

N by N/ (1 + F ) and rij by rij (1− F ) in the right part of equation A70 (note that

the effective strength of selection against TE insertions is not affected by selfing and

stays ≈ u − v, as shown above). From this, and using the expressions given in the

previous subsection for deterministic effects, one obtains:215

〈Dij〉
〈pqij〉

≈ [[1 + F (1 + 2F )]u+ (1 + 3F ) [v + α (1 + F )]] β

[u− v − α (1 + F )] [rij (1− F ) + 2u]

− (u− v)2 (1 + F )

N [rij (1− F ) + 2u]2 [rij (1− F ) + 3u]

(A71)
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which can be expressed in terms of the outcrossing rate o using F = (1− o) / (1 + o).

7. Hill-Robertson effect: more accurate expression for small map length.

When deleterious alleles segregate at many linked loci, N in equation A66 should be

replaced by the effective population size Ne, which is reduced by background selection220

(Charlesworth et al., 1993; Charlesworth, 1996). When recombination is sufficiently

high, and assuming a uniform rate of mutation and crossing-over along the chromo-

some, Ne should be approximately the same at all loci (e.g., Roze, 2021). In the case

of a tight linkage map, however, Ne may be different at loci i and j (depending on

their position along the chromosome). In order to incorporate the effect of background225

selection on 〈Dij〉 in this situation, we can extend the method used to compute the ef-

fect of background selection on diversity at a neutral locus (e.g., Hudson and Kaplan,

1995), namely, compute the effect of a third selected locus k on 〈Dij〉, and assume

that all other loci have multiplicative effects of 〈Dij〉. Assuming random mating and

measuring genetic associations at the gametic stage, the method of Roze (2021) can230

be extended to include a third selected locus, yielding (see Mathematica notebook

available as Supplementary Material for derivation):〈
Dijk

2
〉
≈ pipj pk

4N (rijk + sihi + sjhj + skhk)
(A72)

〈DijDijk〉 ≈ −
skhk 〈Dijk

2〉
rijk + rij + 2sihi + 2sjhj + skhk

(A73)

〈DijDik〉 ≈ −
sjhj 〈DijDijk〉+ skhk 〈DikDijk〉
rij + rik + 2sihi + sjhj + skhk

(A74)

235

〈piDijk〉 ≈ −
sjhj 〈DijDijk〉+ skhk 〈DikDijk〉
rijk + 2sihi + sjhj + skhk

(A75)

〈Dijk〉 ≈
1

rijk + sihi + sjhj + skhk

×
[
2sihi 〈DijDik〉+ 2sjhj 〈DijDjk〉+ 2skhk 〈DikDjk〉

+ si (2hi − di) 〈piDijk〉+ sj (2hj − dj) 〈pjDijk〉

+ sk (2hk − dk) 〈pkDijk〉
]

(A76)

〈
Dij

2
〉
≈ pipj

4N (rij + sihi + sjhj)
− skhk 〈DijDijk〉
rij + sihi + sjhj

(A77)

〈piDij〉 ≈ −
sjhj 〈Dij

2〉+ skhk (〈DijDik〉+ 〈piDijk〉)
rij + 2sihi + sjhj

(A78)
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〈Dij〉 ≈
1

rij + sihi + sjhj

×
[
si (2hi − di) 〈piDij〉+ sj (2hj − dj) 〈pjDij〉

− skhk 〈Dijk〉 − skdk 〈pkDijk〉
] (A79)

where rijk = (rij + rik + rjk) /2 is the probability that at least one recombination240

event occurs between loci i, j and k (note that equations A72 – A79 remain valid

for any ordering of the three loci along the chromosome). As before, these equations

can be adapted to our model of TE dynamics by setting di, dj and dk to zero (no

dominance), replacing sihi, sjhj and skhk in the numerators of equations A72 – A79

by α + βn ≈ u− v, and replacing sihi, sjhj and skhk in the denominators by u. One245

obtains:

〈Dij〉 ≈ −
(u− v)2 pipj

N (rij + 2u)2 (rij + 3u)

[
1 + (u− v)2 Tijkpk

]
(A80)

where Tijk is a positive function of rij, rik, rjk and u (available in the Mathematica

notebook available as Supplementary Material). Assuming that all TEs at different

sites have multiplicative effects on 〈Dij〉 yields:

〈Dij〉 ≈ −
(u− v)2 pipj

N (rij + 2u)2 (rij + 3u)
exp

[
(u− v)2 n

2R

∫ R

0

Tijk dxk

]
(A81)

where xk is the position of insertion site k along the genetic map (from 0 to R).250

Combining equations A33 and A81 in order to take into account the joint effects of

transposition, epistasis and the Hill-Robertson effect yields:

〈Dij〉 ≈
u
2L

(pi + pj +
∑

k 〈Dik〉+
∑

k 〈Djk〉)− β pipj
rij + 2u

− (u− v)2 pipj

N (rij + 2u)2 (rij + 3u)
exp

[
(u− v)2 n

2R

∫ R

0

Tijk dxk

]
,

(A82)

giving:

2
∑
i 6=j

Dij ≈
1

1− u E1

[
E1
u+ v + α

2
n− E4

(u− v)2

2N
n2

]
, (A83)

where E1 is given by equation A39, while

E4 =
1

R2

∫∫ R

0

exp
[
(u−v)2n

2R

∫ R
0
Tijk dxk

]
(rij + 2u)2 (rij + 3u)

dxi dxj (A84)
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which can be computed numerically using Mathematica (see Supplementary Material).255

For this, rij, rik and rjk are approximated by |xj−xi|, |xk−xi| and |xk−xj|, respectively.

From equation A83, the relative effect of LD on the variance in n is given by:

Var(n)

n
≈ 1

1− u E1

[
E1
u+ v + α

2
− E4

(u− v)2

2N

u− v − α
β

]
. (A85)

One can note that equations A83 and A85 only depend on the Nu, Nv, Nα, Nβ and

NR products. In particular, equation A85 can be written as:

Var(n)

n
≈ 1

1−Nu Ẽ1

[
Ẽ1
Nu+Nv +Nα

2
− Ẽ4

(Nu−Nv)2 (Nu−Nv −Nα)

2Nβ

]
(A86)

with:260

Ẽ1 =
E1
N

=
2

(NR)2

∫ NR

0

NR− y
y + 2Nu

dy, (A87)

Ẽ4 =
E4
N3

=
1

(NR)2

∫∫ NR

0

exp
[
(Nu−Nv)2n

2NR

∫ NR
0

T̃ijk dyk

]
(Nrij + 2Nu)2 (Nrij + 3Nu)

dyi dyj, (A88)

T̃ijk = Tijk/N
2 and Nrij = |yj − yi|.

8. Extension to multiple TE families. The previous analyses can be extended to

the case where f different TE families co-exist in the genome. Assuming for simplicity265

that α, β, u and v are the same for all families and that ectopic recombination can

only occur between TEs from the same family, the fitness of an individual is given by:

W = exp

(
−α

f∑
y=1

ny − β
f∑
y=1

np,y

)
(A89)

where ny is the number of TEs from family y, and np,y the number of pairs of TEs from

family y present in the genome. Denoting Diyjz the linkage disequilibrium between TEs

from families y and z present at sites i and j, and using the results above, the sum of270

all LD between transposons from the same family is given by:

2
∑
y

∑
i 6=j

Diyjy ≈
f

1− u E1

[
E1
u+ v + α

2
n− E4

(u− v)2

2N
n2

]
(A90)

where E4 is now given by:

E4 =
1

R2

∫∫ R

0

exp
[
(u−v)2nf

2R

∫ R
0
Tijk dxk

]
(rij + 2u)2 (rij + 3u)

dxi dxj . (A91)
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The sum of LD between transposons from different families is only generated by the

Hill-Robertson effect, and thus given by:

2
∑
y 6=z

∑
i 6=j

Diyjz ≈ −f (f − 1)
E4

1− u E1
(u− v)2

2N
n2 . (A92)

275

9. Evolution of recombination: deterministic model. We now consider how

transposable elements present along a linear chromosome will affect the evolution of a

modifier affecting the genetic map length R of the chromosome, in an infinite popula-

tion. We assume that two alleles M and m segregate at the modifier locus, allele m

increasing the chromosome map length by an amount δR/2 when heterozygous and δR280

when homozygous. The following derivations assume that R stays sufficiently large,

so that the contribution of linkage disequilibria to the variance in TE number among

individuals remains small (e.g., NR ≥ 103 for the parameter values used in Figure 1).

For simplicity, the modifier is supposed to be located at the mid-point of the chromo-

some (but the exact position of the modifier should not affect too much the results as285

long as R is not too small). From equations 1 and 10 in the main text, the fitness of

an individual can be written as:

W = exp

[
−α
∑
i

(Xi,∅ +X∅,i)

− β̃

2

[
1− θ + θ

[
R +

δR

2
(Xm,∅ +X∅,m)

]]∑
i 6=j

(Xi,∅ +X∅,i) (Xj,∅ +X∅,j)

]
(A93)

where Xm,∅ and X∅,m equal 1 if allele m is present on the first or second haplotype of
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the individual, and 0 otherwise. To the first order in ε, we thus have:

W

W
= 1−

(
α + βn

)∑
i

(ζi,∅ + ζ∅,i)

− β

2

∑
i 6=j

(ζij,∅ + ζ∅,ij − 2Dij + ζi,j + ζj,i − 2Di,j)

− δR

2

β̃θn2

2
(ζm,∅ + ζ∅,m)

− δR

2
β̃θn

∑
i

(ζmi,∅ + ζ∅,mi − 2Dmi + ζm,i + ζi,m − 2Dm,i)

− δR

2

β̃θ

2

∑
i 6=j

(
ζmij,∅ + ζ∅,mij − 2Dmij + ζmi,j + ζj,mi − 2Dmi,j

+ ζmj,i + ζi,mj − 2Dmj,i + ζm,ij + ζij,m − 2Dm,ij

)
+ o(ε)

(A94)

with β = β + δRβ̃ θpm. The change in frequency of allele m over a generation is given290

by:

∆pm = E

[
W

W

ζm,∅ + ζ∅,m
2

]
. (A95)

Using A94 and assuming that
∑

i 6=j Dij stays small relative to n2, this yields, to the

first order in δR:

∆pm ≈ −
δR

2

β̃θn2

2
pmqm − (α + βn)

∑
i

Dmi −
β

2

∑
i 6=j

Dmij . (A96)

If an inherent fitness cost c per crossover is included into the model, an extra term

− (δR/2) cpmqm must be added to equation A96. The first term of equation A96295

corresponds to the effect of the direct fitness cost of recombination generated by ectopic

recombination events among TEs. The second term favors the modifier allele that tends

to be less associated with TE insertions (i.e., that tends to be found on better purged

genetic backgrounds), while the third term favors the modifier allele that tends to be

more associated with intermediate genotypes (over all possible pairs of polymorphic300

insertion sites) than with extreme genotypes, given that intermediate genotypes have

a higher mean fitness than extreme genotypes under negative epistasis.

Throughout the following, recombination rates are assumed to be small, as

indirect selection on the modifier should mostly be driven by tightly linked loci (Barton,

1995; Roze, 2021). In this case, a recurrence equation on Dmi is given by:305

Dmi
′ ≈ (1− rmi)Dmi

s (A97)
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with

Dmi
s ≈ E

[
W

W

ζmi,∅ + ζ∅,mi
2

]
. (A98)

From equation A94, using α+βn ≈ u− v and assuming n� 1 (so that βn� β), one

obtains:

Dmi
s ≈ [1− (u− v)]Dmi

t − (u− v)
∑
j 6=i

Dmij −
δR

2
β̃θnpipmqm (A99)

(the term in δR being generated from the term on the fourth line of equation A94).

The effect of transposition on Dmi is found to be negligible under our assumptions,310

while excision multiplies Dmi by a factor 1− v, yielding at equilibrium:

Dmi ≈ −
u− v
rmi + u

∑
j 6=i

Dmij −
δR

2

β̃θn

rmi + u
pipmqm . (A100)

The first term of equation A100 shows that allele m tends to be found on better purged

backgrounds (Dmi < 0) if m is more often associated than M with extreme genotypes

at pairs of segregating insertions sites (Dmij > 0), as selection is more efficient among

extreme genotypes. Additionally, m tends to be found on better purged backgrounds315

if it increases selection against TEs by increasing the rate of ectopic recombination

(i.e., if θ > 0; second term of equation A100).

Under the same assumptions, a recurrence equation on Dmij is given by (e.g.,

Barton, 1995):

Dmij
′ ≈ (1− rmij)Dmij

s − δrij
2
Dij pmqm (A101)

where rmij = (rmi + rmj + rij) /2 is the probability that at least one recombination320

event occurs among the three loci, and δrij the effect of allele m on rij. We then have

(Barton and Turelli, 1991):

Dmij
s ≈ E

[
W

W

ζmij,∅ + ζ∅,mij
2

]
−∆pmDij

≈ E

[
W

W

ζmij,∅ + ζ∅,mij
2

]
+
δR

2

β̃θn2

2
Dij pmqm .

(A102)

Using equation A94, one arrives at:

Dmij
s ≈ [1− 2 (u− v)]Dmij

t − δRβ̃ θnDij pmqm −
δR

2
β̃ θpipj pmqm, (A103)

the second and third terms being generated by the fourth and fifth lines of equation

A94, respectively. Again, the effect of transposition on Dmij can be neglected under325
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our assumptions, while excision multiplies Dmij by a factor (1− v)2 ≈ 1 − 2v, giving

at equilibrium:

Dmij ≈ −
1

rmij + 2u

(
δrij
2
Dij + δRβ̃ θnDij +

δR

2
β̃ θpipj

)
pmqm. (A104)

The first term within the brackets of equation A104 corresponds to the fact that LD

among insertion sites tend to be weaker in the background of allele m, as this allele

increases recombination. The fact that m increases the rate of ectopic recombination330

and therefore the strength of selection against TEs (when θ > 0) also reduces LD in

the background of allele m, by decreasing the frequency of insertions (second term).

Finally, the third term corresponds to the fact that by increasing ectopic recombina-

tion, m increases the strength of negative epistasis among insertions, which tends to

make LD less positive in the m than in the M background.335

Using the fact that recombination rates can be approximated by genetic dis-

tances in the case of closely linked loci, we have δrij ≈ δR rij/R (Roze, 2021), while

under our assumptions the linkage disequilibrium Dij is approximately:

Dij ≈
1

rij + 2u

[ u
2L

(pi + pj)− β pipj
]
. (A105)

Using 2
∑

i pi = n, equations A96, A100, A104 and A105 yield an expression for the

change in frequency of the modifier in terms of the different parameters of the model340

and of various averages of functions of recombination rates, that can be obtained by

numerical integration over the genetic map (see Mathematica notebook available as

Supplementary Material).

When θ = 0 (no effect of the modifier on the rate of ectopic recombination),

the results take a similar form as in Barton’s (1995) model on the effect of epistasis on345

selection for recombination, except that in the present model Dij is positive despite the

fact that epistasis is negative. As a consequence, the frequency of extreme genotypes at

pairs of insertions sites is lower in the m than in the M background (Dmij < 0), which

benefits the modifier since extreme genotypes have a lower average fitness than inter-

mediate genotypes under negative epistasis (third term of equation A96) — increasing350

recombination thus tends to increase the mean fitness of offspring. However, reducing

the frequency of extreme genotypes decreases the efficiency of selection against TEs

(increasing recombination decreases the variance in fitness among offspring), causing
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a higher TE load on the m background (first term of equation A100), which disfavors

allele m (second term of equation A96). Overall, the second effect is generally stronger355

than the first, so that indirect selection disfavors recombination due to the higher TE

load associated with m. Indirect selection may become positive for some parameter

values (the effect on mean fitness being stronger than the effect on the variance in

fitness), but only when R is large and n is small, in which case indirect selection is

extremely weak and easily overwhelmed by any slight direct fitness effect of the mod-360

ifier. In parameter regions where indirect selection is stronger (lower R and/or higher

n), it tends to be dominated by the effect of recombination on the variance in fitness

among offspring (second term of equation A96), which from the above equations takes

the form sind,det pmqm with:

sind,det ≈ −
δR

2R
(u− v)2 E

[
rij

(rmi + u) (rmij + 2u) (rij + 2u)

]
u+ v + α

4
n (A106)

where E is the average over all possible pairs of insertions sites i and j.365

When θ > 0, allele m has the additional effect of increasing the rate of ectopic

recombination. This generates a direct selective pressure against m due to the fitness

cost of ectopic recombination (first term of equation A96), but also several indirect

effects: (i) TEs are purged more efficiently (second term of equation A100), (ii) LD

among TEs is reduced due to their elimination (second term of equation A104), (iii) LD370

among TEs tends to be less positive in the m background due to the stronger negative

epistasis (third term of equation A104). Effect (i) favors allele m, while effects (ii)

and (iii) favor m through the effect on the mean fitness of offspring (third term of

equation A96), but disfavor m through the effect on the variance in fitness among

offspring (second term of equation A96). Numerical analysis show that these indirect375

effects are always weaker than the direct fitness cost of ectopic recombination, however

(while among indirect effects, (ii) and (iii) generally stay weak relative to (i)), so that

increasing the rate of ectopic recombination is always disadvantageous, at least under

the present assumptions (R not too small).

Overall, TEs thus tend to favor lower recombination rates in the deterministic380

model, both due to direct cost of ectopic recombination and to the fact that recom-

bination decreases the efficiency of selection against TEs by breaking the positive LD

generated by transposition. Increased recombination can be favored in some cases
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(high R, low n, no correlation between meiotic recombination rates and ectopic re-

combination) due to the fact that breaking positive LD increases the mean fitness of385

offspring in the short term, but selection for recombination is extremely weak in this

case.

10. Evolution of recombination: Hill-Robertson effect. In finite populations,

the Hill-Robertson effect tends to generate negative LD among TEs, which may select390

for increased rates of recombination. The expected change in frequency of the modifier

is now given by:

〈∆pm〉 ≈ (sdir + sind,det + sind,HR) pmqm (A107)

where sdir corresponds to direct selection against recombination (first term of equa-

tion A96) and sind,det to deterministic indirect selection (detailed in the previous

subsection), while sind,HR represents indirect selection caused by the Hill-Robertson395

effect. Assuming α, v � u, and assuming that epistasis among TEs is weak rela-

tive to the effective strength of selection acting against insertions (that is, assuming

β � α + βn ≈ u), the strength of selection for recombination caused by the Hill-

Robertson effect can be obtained from Roze’s (2021) analysis of selection for recom-

bination caused by interference between deleterious alleles, the strength of selection400

against heterozygous mutations (sh in Roze, 2021) being replaced by u. One obtains:

sind,HR ≈
δR

NeR
E [ρij × g(ρmi, ρmj, ρij)]

n2

4
(A108)

where g(ρmi, ρmj, ρij) is a function of the scaled recombination rates ρmi = rmi/u,

ρmj = rmj/u and ρij = rij/u (available in the Supplementary Material), and E corre-

sponds to the average over all possible pairs of insertion sites i and j. Equation A108

yields:405

sind,HR ≈
δR u2

NeR3

[∫ R
2u

0

∫ R
2u

0

(x+ y) g(x, y, x+ y) dxdy

+

∫ R
2u

0

∫ R
2u

0

|x− y| g(x, y, |x− y|) dxdy

]
n2

2
.

(A109)

The first double integral in equation A109 corresponds to the overall effect of pairs

of TEs located on opposite sides of the modifier locus on the chromosome, and the

second to the overall effect of pairs of loci located on the same side of the modifier.
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These integrals can be evaluated numerically using Mathematica (see Supplementary

Material). When R � u, they can be approximated by the same integrals evaluated410

between zero and infinity (Roze, 2021), giving:

sind,HR ≈ 1.8
δR u2 n2

8NeR3
. (A110)

Note that the effective population size Ne is reduced by background selection effects

caused by TEs. Assuming that R is not too small, Ne should stay approximately con-

stant along the chromosome, and can be expressed from classical models of background

selection (Hudson and Kaplan, 1995; Charlesworth, 1996), yielding:415

Ne ≈ N exp

[
−un
R

]
. (A111)

Finally, when f different TE families (with identical characteristics) are present in the

genome, the results above extend to:

sdir ≈ −
δR

2

β̃ θf n2

2
, (A112)

sind,det ≈ −
δR

8R
E
[

rij
(rmi + u) (rmij + 2u) (rij + 2u)

]
u3f n, (A113)

sind,HR ≈
δR

NeR
E [ρij × g(ρmi, ρmj, ρij)]

(f n)2

4
≈ 1.8

δR u2f 2n2

8NeR3
, (A114)

420

Ne ≈ N exp

[
−uf n

R

]
. (A115)

11. Simulation programs. The C++ simulation programs (available from Zenodo,

doi.org/10.5281/zenodo.7233938) are similar to the programs used in Roze (2021):

individuals carry two copies of a linear chromosome with an effectively infinite number

of insertion sites. A chromosome is represented by a C++ vector, holding the positions425

of TEs present on the chromosome (between 0 and 1). When f TE families are

segregating, a chromosome is represented by f vectors, holding the positions of TEs

from the different families. The initial number of elements from each family is drawn

from a Poisson distribution with parameter ninit = 10 for each individual, and the

position of each TE (on a random chromosome) is drawn from a uniform distribution430

between 0 and 1 (ninit was set to 100 in some simulations with n = 100, as explained in

the figure legends). Every generation, each TE insertion is eliminated with probability
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v (excision rate); transposition then occurs, the number of new elements in a given

individual being drawn from a binomial distribution with parameters u and n (where

n is the number of elements present in the individual before transposition), while the435

position of each new element (on a random chromosome) is drawn from a uniform

distribution between 0 and 1. To form the next generation of individuals, parents are

sampled according to their fitness; during meiosis the number of crossovers is drawn

from a Poisson distribution with parameter R, and the position of each crossover is

drawn from a uniform distribution between 0 and 1. The mean and variance in the440

number of elements per individual are measured at the beginning of generations (before

excision), while
∑

i pi
2 is estimated from the mean number of shared insertions between

pairs of chromosomes sampled at random from the population (over 1000 chromosome

pairs). A second program includes a recombination modifier locus affecting the genetic

map length of the chromosome R. The modifier is located at the mid-point of the445

chromosome and mutates at a rate µ per generation. When a mutation occurs, with

probability 0.95 the map length coded by the allele is multiplied by a number drawn

from a Gaussian distribution with average 1 and variance 0.04, while with probability

0.05 a number drawn from a uniform distribution between -1 and 1 is added to the

value coded by the allele (to allow for large effect mutations), the new value being set450

to zero if it is negative. The map length R of an individual corresponds to the average

between the values coded by its two modifier alleles (additivity). Each simulation lasts

106 generations, R being fixed to 1 during the first 20,000 generations in order to let

the number of TEs per individual equilibrate. The mutation rate µ at the modifier

locus was either set to 10−3 or to 10−4 depending on simulation runs: when the average455

chromosome map length R at equilibrium is not too small (roughly, R > 0.05) both

values of µ generally lead to very similar R, but equilibrium is reached after a larger

number of generations when µ = 10−4. However, for small equilibrium values of R,

simulations with µ = 10−3 lead to higher values of R than simulations with µ = 10−4,

probably due to the fact that mutation is biased towards higher values of R when R is460

near zero. Therefore, µ was set to 10−3 when the predicted evolutionarily stable value

of R was higher than 0.05 (in order to reduce execution time), and to 10−4 when the

predicted equilibrium value of R was less than 0.05 (in order to reduce the effect of

mutation bias).
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