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Abstract: The power transfer efficiency of a partially obstructed wireless link operating in the
Fresnel region is studied in this work. The wireless link consists of two equal apertures, axially
aligned, radiating weakly-diffractive beams (truncated Bessel beams). A metallic obstacle is
considered along the propagation path of the radiated beam to analyze its impact on the power
transfer efficiency with respect to a clear line of sight link. The power transfer efficiency in the
obstructed case is derived by resorting to a scattered field formulation. In the proposed approach,
the distance between the apertures is considered larger than their radius, which is also bigger
than the operating wavelength. A paraxial approximation is then applied to the formulation.
Numerical results validate the proposed approach. It appears that the transverse propagation
constant of the Bessel Beam and resulting non-diffractive range strongly affects the distance of
operation of the wireless link in both the clear and obstructed cases. In addition, we observe how
the self-healing property of Bessel beams preserves the efficiency of the partially obstructed link
by establishing a resilient link under defined conditions for the propagating beam and size of the
obstruction.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Bessel beams [1] are electromagnetic beams known for their unique property of not experiencing
electromagnetic diffraction. These beams are exact solutions to the Helmholtz equation and are
characterized by Bessel functions. They also possess the remarkable ability to self-reconstruct
their initial intensity profile after propagating around obstacles [2–4]. In [5], the authors employ
a wave-optics framework to explain this ability, also known as self-healing. They ultimately
conclude that it can be explained in terms of the propagation of plane waves with radial wave
vectors situated on a ring. The literature also contains quantitative descriptions of the self-healing
property [4,6], as well as studies of non-diffractive beams encountering non-opaque obstacles [7].

These ideal Bessel beams require infinite power and infinite apertures [8], however, in practical
applications, Bessel beams are generated with finite radiating apertures and power. Annular slits,
axicons, metasurfaces, and hologram are among the technologies used to generate Bessel beams
[9]. Some examples of the generation of Bessel Beams are presented in [10–16]. Bessel beams
have a wide range of applications, such as optical trapping, material processing, and optical
coherence tomography [17]. Also, their potential in wireless communications is particularly
promising. With the increasing demand for faster and more reliable networks [18], wireless
communication systems are transitioning to millimeter waves with larger operating bands.
However, this transition comes at the cost of increased propagation losses [19], primarily due to
electromagnetic diffraction [20]. In the light of this, Bessel beams offer are an attractive solution
for enhancing wireless communication systems.

#499123 https://doi.org/10.1364/OE.499123
Journal © 2023 Received 27 Jun 2023; revised 18 Sep 2023; accepted 22 Sep 2023; published 9 Oct 2023

https://orcid.org/0000-0001-8365-3848
https://orcid.org/0000-0002-4618-5931
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.499123&amp;domain=pdf&amp;date_stamp=2023-10-09


Research Article Vol. 31, No. 22 / 23 Oct 2023 / Optics Express 35494

This paper focuses on the effect of truncation on Bessel beams. A key aspect of truncated Bessel
beams is the existence of a non-diffractive range (NDR) [20,21], which delineates two distinct
regions. Within the NDR, the truncated beams slightly spread while propagating, preserving
their field profile as compared to other kinds of beams such as Gaussian beams [22]. However,
beyond the NDR, Bessel beams undergo diffraction. Notably, the NDR falls within the Fresnel
region [23], implying that the link budget of a wireless link cannot be directly derived using the
Friis formula typically applied for far-field links [19].

In this study we are interested in deriving the power transfer efficiency of a partially obstructed
wireless link, expressed as the ratio between the accepted power at the receiving side and the
available power at the transmitter. Previous works in literature considered the link budget for
wireless links using truncated Bessel beams without obstructions [22,24–26]. The contribution
of this paper is to extend the wireless power transfer efficiency (WPTE) formulation [22,27,28]
to partially obstructed wireless links, in order to develop a model that can predict the impact of
the size and position of an obstruction on the efficiency of the link.

The direct application of the WPTE formulation requires the calculation of the electric and
magnetic fields between the radiating apertures for a given excitation [27]. We will consider two
planar axially aligned radiating apertures as in [28]. This approach is followed in [22] and leads
to a very complete study of the WPTE for apertures radiating cylindrical Bessel beam. More
recently, in [24], the radiating apertures are assumed to be cut in infinite ground planes affecting
the overall link budget. In particular, the two ground planes behave as a parallel-plate waveguide
(PPW) environment [29] with the appearance of resonances due to mode traveling within the
PPW. In this paper, we focus on the WPTE between apertures at distances much larger than
their size. In such a configuration, considering a PPW environment appears irrelevant, and the
approach by [22,28] is preferred. In addition, in [22], it is shown that radially polarized Bessel
beams outperform radially polarized Gaussian beams for WPTE in the Fresnel region.

This work focuses on utilizing large apertures of radii equal to or larger than 50λ, where λ
is the free space wavelength at the operating frequency. The purpose is to create a wireless
link operating at distances larger than 4000λ, which is more than 40 times the apertures’ size,
fully justifying the use of the paraxial approximation [22] for the formulation. In the following,
radially polarized transverse magnetic (TM) fields will be considered over the radiating apertures.
However, other field distributions may be considered without affecting the overall approach and
general conclusions of the work.

The paper is structured as follows. In Section 2, the WPTE formula is provided and analyzed
and then extended to the obstructed case. Next, in Section 3, the TM radially polarized and
truncated Bessel beams are detailed. Also in this section, the formulation is first validated and
then used to perform a thorough study of an obstructed wireless link from a power transfer
efficiency point of view. We chose an axially aligned Perfect electric conductor (PEC) disk as
a canonical scatterer. The conclusions with the most salient and counterintuitive results are
presented in section 4.

2. Wireless power transfer efficiency

2.1. Clear line of sight

The WPTE for a general system of two conjugately matched lossless antennas, in a time-harmonic
regime, was first derived in [27]. For two antennas, a and b, the WPTE formula is given by
[22,28]:

Γ =
|⟨a, b⟩|2

16PaPb
(1)

where Pa(b) is the total power radiated by antenna a(b) when antenna a(b) is emitting while
antenna b(a) is receiving, and ⟨a, b⟩ is the so-called electromagnetic reaction [30] between
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antennas a and b. Throughout this paper, the time-harmonic dependence e−iωt, where ω is the
angular frequency, is assumed and suppressed.

The system we analyze in this paper is shown in Fig. 1. A cylindrical coordinate system (ρ, ϕ, z)
is adopted to describe the geometry of the problem. The TX (aperture a) and RX (aperture
b) are two identical circular radiating apertures, facing each other and axially aligned, located
respectively at z = 0 and z = L. TX and RX can be considered radiating apertures supporting a
single operating mode [31]. In particular, we consider a radially polarized TM mode with respect
to z (TMz) [29]. Therefore, the transverse components are Eρ(ρ, z) and Hφ(ρ, z).

Fig. 1. Schematic view of the wireless link without obstruction.

The modes in both apertures are described by a common mode function K(ρ) and complex
scalars Va(b) and Ia(b). The mode function K(ρ) is real-valued, limited by the radius ra = rb of
the apertures : K(ρ>ra) = 0, and writes as an Hankel transform [32], yielding:

K(ρ) =

∫ ∞

0
K̃(kρ)J1(kρρ) kρ dkρ (2)

where kρ is the spectral variable, and K(ρ) is furthermore normalized as:

2π
∫ ra

0
K2(ρ) ρ dρ = 2π

∫ ∞

0
|K̃(kρ)|2 kρ dkρ = 1 (3)

The electric field in both excitation conditions, assuming a complete non-reflection condition
at z = 0+ and z = L− can be written as:

Ea
ρ(ρ, z) = Va

∫ ∞

0
eikzzK̃(kρ)J1(kρρ) kρ dkρ (4)

for a emitting while b is receiving, and for the reciprocal excitation where b is emitting while a is
receiving, as:

Eb
ρ(ρ, z) = Vb

∫ ∞

0
eikz(L−z)K̃(kρ)J1(kρρ) kρ dkρ (5)

kz is derived from the wavenumber in vacuum k0 = ω/c by:

kz =

⎧⎪⎪⎨⎪⎪⎩
√︂

k2
0 − k2

ρ kρ<k0

i
√︂

k2
ρ − k2

0 kρ>k0
(6)

The magnetic fields are derived considering the wave admittance as the intrinsic admittance of
vacuum Y0. This paraxial approximation can be justified by two arguments. First, the distance L
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between the apertures is much larger than their radius r. Second, r is assumed much larger than
the wavelength in vacuum, λ = 2π/k0. The magnetic fields thus write:

Ha
φ(ρ, z) = Y0Va

∫ ∞

0
eikzzK̃(kρ)J1(kρρ) kρ dkρ (7)

Hb
φ(ρ, z) = −Y0Vb

∫ ∞

0
eikz(L−z)K̃(kρ)J1(kρρ) kρ dkρ (8)

Total power Pa and Pb of formula (1) are thus:

Pa = πY0 |Va |
2ℜe

∫ ∞

0
|K̃(kρ)|2 kρ dkρ (9)

Pb = πY0 |Vb |
2ℜe

∫ ∞

0
|K̃(kρ)|2 kρ dkρ (10)

while the reaction writes, using the generalized reciprocity theorem [27] on any plane of abscissa
z for 0 ≤ z ≤ L:

⟨a, b⟩ = 4πY0VaVb

∫ ∞

0
eikzL |K̃(kρ)|2 kρ dkρ (11)

finally leading to the WPTE expression:

Γ =

|︁|︁|︁∫ ∞

0 eikzL |K̃(kρ)|2 kρ dkρ
|︁|︁|︁2(︂

ℜe
[︂∫ ∞

0 |K̃(kρ)|2 kρ dkρ
]︂ )︂2 (12)

2.2. Obstructed links

The formulation presented in section 2.1 was derived for systems operating in clear line of sight
(CLOS). However, in a real case scenario, an obstacle may appear in the propagation path, and so
it is interesting to extend this formulation to obstructed links, as shown in Fig. 2.

Fig. 2. Schematic view of a wireless link with a metallic obstruction. The obstruction has a
radius ro, zero thickness, and is placed at z = Lo

To proceed with this formulation, we recall that the reaction is a linear operation. Therefore, if
we have three sources (a, b and c) radiating in the same region and at the same frequency [30],
the reaction term will be:

⟨(a + c), b⟩ = ⟨a, b⟩ + ⟨c, b⟩ (13)

where a, b and c represent the emitter, the receiver and the obstacle, respectively. In this case,
the source c is created due to the fields radiated by a, generating currents over c radiating the
scattered fields E⃗s

a and H⃗s
a. If b is acting as the emitter, c is dependent on b and it radiates the
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scattered fields E⃗s
b and H⃗s

b. We also define the incident fields as the ones radiating from the
apertures without the obstacle. Thus, if a is the emitter, the incident fields are E⃗i

a and H⃗i
a, while

if b is emitting, the incident fields are E⃗i
b and H⃗i

b.
We replace the obstacle by a the current distribution on its surface, named source c (scattered

source). We also define the total reaction, ⟨a, b⟩T , as the reaction of a and b with the scattered
source c present. The total reaction is composed by two terms, the incident reaction and the
scattered reaction [33], and it can be written as:

⟨a, b⟩T = ⟨a, b⟩i + ⟨a, b⟩s = ⟨a, b⟩i + ⟨c, b⟩ (14)

⟨a, b⟩i =

∫
E⃗i

a(r⃗) · J⃗i
b(r⃗) − H⃗i

a(r⃗) · M⃗i
b(r⃗) dr⃗ (15)

⟨a, b⟩s =

∫
E⃗s

a(r⃗) · J⃗i
b(r⃗) − H⃗s

a(r⃗) · M⃗i
b(r⃗) dr⃗ =

∫
E⃗i

b(r⃗) · J⃗c(r⃗) − H⃗i
b(r⃗) · M⃗c(r⃗) dr⃗ (16)

where ⟨a, b⟩i represents the reaction of the incident components, ⟨a, b⟩s the reaction of the scattered
components. M⃗i

b and J⃗i
b represent the magnetic and electric current on the source b, respectively,

when b is emitting without the obstacle. Furthermore, J⃗c(M⃗c) is the electric(magnetic) current on
the surface of the obstacle. The expression on the right side of Eq. (16) is obtained using the
reciprocity theorem [23]. Finally, we can use Eq. (14) to extend Eq. (1) to the obstructed case:

Γ =
|⟨a, b⟩i + ⟨a, b⟩s |2

16PaPb
(17)

The incident reaction can be easily calculated, as discussed in Subsection 2.1. The scattered
reaction can be estimated using an approximation technique, such as the Method of Moments
(MOM) [34,35] or Physical Optics (PO) [23,33].

The formulation which we are deriving is focused on perfectly electric conducting (PEC)
obstacle. Consequently, Eq. (16) reduces to:

⟨a, b⟩s =

∫ ro

0
Eb
ρ(ρ, Lo) · Jc

ρ(ρ)ρ dρ (18)

where ro is the radius of the obstacle, which is placed at z = Lo, and J⃗c reduces to its tangential
component Jc

ρ. Furthermore, we have the following boundary conditions on the surface of the
obstacle [30]:

Ea
ρ(ρ, Lo) = −Eas

ρ (ρ, Lo) (19)

Eb
ρ(ρ, Lo) = −Ebs

ρ (ρ, Lo) (20)

where Eas
ρ (Ebs

ρ ) is the scattered tangential electric fields when a(b) is the emitter. Then, using
Eq. (20) we can derive:

⟨a, b⟩s = −

∫ ro

0
Ebs
ρ (ρ, Lo) · Jc

ρ(ρ)ρ dρ (21)

To reduce the difference between the correct and the approximated value of ⟨a, b⟩s due to the
estimated current, we propose using a variational approach [29,36]. The variational procedure
is used here to obtain a formula that is almost insensitive to relatively small variations around
the correct value [29]. This stationary formula, or variational solution, is derived treating the
problem as a differential scattering problem [30,33].

We now consider that when a is the emitter, the exact current on the obstacle is defined by
ca and its approximation is g. Similarly, when b is emitting, the exact current on the obstacle
is defined by cb and its approximation by h. These approximated currents must have the same
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self-reaction term as on their respective correct currents [29]. To ensure this condition, we
impose:

⟨g, h⟩ ≈ ⟨a, b⟩s (22)
⟨g, h⟩ = ⟨cb, g⟩ = ⟨h, ca⟩ (23)

Also, Eq. (23) can be related to the sources a and b if we use Eq. (19) and (20):

⟨g, h⟩ = −⟨b, g⟩ = −⟨a, h⟩ (24)

⟨g, h⟩⟨g, h⟩ = ⟨b, g⟩⟨a, h⟩ (25)

⟨a, b⟩s ≈ ⟨g, h⟩ =
⟨b, g⟩⟨a, h⟩

⟨g, h⟩
(26)

The relation expressed in (26) can be combined with Eq. (21) to obtain the stationary formula
for ⟨a, b⟩s [29,30]:

⟨a, b⟩s ≈

∫ ro

0 Eb
ρ(ρ, Lo) · Jg

ρ(ρ)ρ dρ
∫ ro

0 Ea
ρ(ρ, Lo) · Jh

ρ(ρ)ρ dρ∫ ro

0 Eh
ρ(ρ, Lo) · Jg

ρ(ρ)ρ dρ
(27)

where Jg
ρ is electric current of g and Jh

ρ is the one due to the source h. Furthermore, Eh
ρ is

the free-space field radiated by Jh
ρ(ρ). To calculate the WPTE for obstructed links, we need to

calculate the reaction of the scattered components, ⟨a, b⟩s, and it can be calculated using Eq. (18)
or Eq. (27). We define the WPTE variational solution (VS) as the WPTE solution in which we use
Eq. (27) to obtain the scattered reaction. For this solution, Jg

ρ and Jh
ρ, in Eq. (27), are calculated

using the the Physical Optics approximation [23]. Additionally, we also define the WPTE Pure
PO solution (PPO) as the WPTE solution in which the scattered reaction is calculated using
Eq. (18), in which the Physical Optics approximation is used to calculate Jc

ρ.

3. Numerical analysis

3.1. TMz Bessel beam and NDR

We present, in this section, the numerical results of the obstructed formulation of the WPTE
between two apertures radiating radially polarized, TMz, weakly-diffractive Bessel beams. The
mode function K̃(kρ) of a radially polarized Bessel beam can be written as:

K̃(kρ) =
Ara

[︁
kρJ0(kρra)J1(knra) − knJ0(knra)J1(kρra)

]︁
k2

n − k2
ρ

(28)

kn =
j0n

r
(29)

where A is the normalization factor, ra is the radius of the aperture, j0n is the n-th zero of the
Bessel function of the 0-th order and first kind, J0(knρ). The function K(ρ) is, then, written as
a Hankel Transform using Eq. (2), and Ea

ρ(ρ, z), Eb
ρ(ρ, z), Ha

φ(ρ, z) and Hb
φ(ρ, z) can be easily

obtained as derived in Subsection 2.1. The NDR is obtained using the radius of the aperture ra,
k0 and kn, as shown in Eq. (30). As j0n<j0(n+1), and therefore kn<kn+1, it is clear that for the same
aperture radius the largest NDR is achieved when kn = k1. This indicates that, considering the
same aperture size and separation distance, the largest operating range is obtained using k1.

NDR = ra

√︄(︃
k0
kn

)︃2
− 1 (30)

Figure 3 illustrates the amplitude of the tangential component of two distinct radially polarized
TMz Bessel beams: one with with kn = k1 and the other with kn = k4. We observe the Bessel
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beam has one lobe for kn = k1 and four lobes for kn = k4. For both cases, we have zero field
amplitude along the axis z. The impact of beam truncation becomes apparent when we observe
diffraction occurring around the edges of the aperture.

Fig. 3. Normalized amplitude of the tangential component of radially polarized TMz Bessel
Beams with different kn. The chosen aperture radius is 50λ, and the NDR is 6531λ and
1331λ for kk1 and k4, respectively.

On Fig. 4, the wireless power transfer efficiency of an unobstructed link as a function of the
separation distance for a TMz Bessel distribution is presented. The WPTE is calculated using
Eq. (1). The aperture radius is set to ra = 50λ, kn = k1 and NDR = 6531λ. We can notice, on
Fig. 4, that the NDR marks the limit between two different regimes for the WPTE. For z<NDR,
the efficiency decreases almost linearly with the distance, mostly due to the weakly diffractive
nature of the beam. For z>NDR, the Bessel beam is more impacted by diffraction and so the link
efficiency decreases more rapidly and quadratically.

3.2. Validation of the approach

Initially, the PPO and VS solutions are compared, considering equal apertures facing each other.
On this comparison, and also for the remaining numerical evaluations, the obstacle is a perfectly
electric PEC disk axially aligned to the apertures. The obstacle is placed at z = 0.2NDR, its
radius, ro, is 30% of the aperture radii, ra, and 2λ ≤ ra ≤ 50λ. For this analysis, we define ∆Γ
as the impact of the scattered reaction, ⟨a, b⟩s, on the WPTE. ∆Γ is calculated using Eq. (31).
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Fig. 4. WPTE as a function of the separation distance. The system operates with CLOS.
The red dashed line indicates the NDR limit The used parameters are: ra = 50λ, kn = k1,
and NDR = 6531λ.

Figure 5 shows ∆Γ as a function of the separation distance between the apertures.

∆Γ =
|⟨a, b⟩i + ⟨a, b⟩s |2 − |⟨a, b⟩i |2

16PaPb
(31)

On Fig. 5, we can see that when ra = 2λ, the PPO and VS results do not closely agree. The
maximum relative difference between the two solutions observed is around 70%. As we increase
the dimensions of the problem (aperture radius and separation distance) this difference rapidly
decreases. For the larger apertures, the maximum relative difference observed do not exceed 3 %.
Furthermore, this confirm that single scattering is the dominant mechanism here.

The VS and the full-wave commercial software COMSOL Multiphysics [37] are compared in
order to validate the proposed approach. We evaluate the WPTE as a function of the separation
distance between the apertures. Furthermore, the distance is normalized by the NDR. For this
validation, the radius of aperture a and b are defined as ra and rb, respectively, and ra = rb = 4λ.
The obstacle is a PEC disk axially aligned to the apertures, its radius is ro = 0.3ra, k1 = 20.04,
and the NDR = 41λ. These parameters were chosen to reduce the computational time without
affecting the overall conclusions. The results are presented in Fig. 6 and Fig. 7.

On Fig. 6, the WPTE of an unobstructed link is verified to establish a reference. The numerical
results are compared with those of COMSOL. Overall, we observe, in average, small differences
of about 0.01. Close to z =NDR, the difference is not greater than 0.02 for an efficiency of 0.25.
Fig. 7(a) and 7(b) show the results of the VS formulation and COMSOL for an obstructed link.
On Fig. 7(a), the obstacle is placed at z = 0.1NDR, while on Fig. 7(b) the obstacle is placed at
z = 0.2NDR. We can see a close agreement between the results. The differences are smaller than
0.02.

The dimensions of the problem studied are not ideal for the VS formulation developed because,
as stated earlier, it assumes that the radii of the apertures is much smaller than the separation
distance between the apertures. Therefore we can expect our model to be much more accurate
than 0.02 on the efficiency. As a conclusion, this comparison shows that our model is sufficiently
accurate in order to quantify the influence of obstructions on the link efficiency.

3.3. Numerical results

In the numerical analysis, ra = rb = 50λ, and ro assumes three values: 0.1ra, 0.2ra and 0.3ra.
Again, the WPTE is evaluated as a function of the distance. All calculations are performed using
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Fig. 5. ∆Γ of VS and PPO solutions compared as function of the separation distance
between the radiating apertures. The used parameters are: ro = 0.3ra, kn = k1 and the
obstacle is placed at z = 0.2NDR.

Fig. 6. WPTE as a function of the separation distance. The system operates with CLOS.
The blue line shows the results of the numerical calculations and the yellow circles those
obtained with COMSOL. The used parameters are: ra = 4λ, kn = k1, and NDR=41λ.
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Fig. 7. WPTE as a function of the separation distance for obstructed links. The blue line is
the WPTE for an unobstructed link, the dashed red line is the numerical calculation of the
obstructed link and the circles are numerical results by COMSOL. The used parameters are:
ra = 4λ, kn = k1, and NDR=41λ.

the VS solution derived in subsection 2.2. The results of this configuration are shown in Fig. 8, 9
and 10.

Figure 8 shows the WPTE as a function of the separation distance for a partially obstructed link.
The obstacle is placed at four different positions along the z axis. The separation distance goes
from the obstacle until the NDR (NDR= 6531λ). We can notice that the obstacle of 0.1ra does not
disturb the WPTE, regardless of its position. When the obstacle radius is 0.2ra, we can see a drop
in efficiency and its gradual recovery to the level of the unobstructed link. For an obstacle with a
radius equal to 0.3ra, we can also see a drop in efficiency and its consequent recovery. However,
the efficiency is not fully restored to the level of the unobstructed link. In Fig. 8, the complete (or
almost complete) recovery of the efficiency to the level of the unobstructed link constitutes an
impressive illustration of the self-healing properties of Bessel Beams. Contra-intuitively, we see
that the link efficiency is more disturbed when the obstacle is placed halfway between the two
apertures, and not close to the apertures. Therefore, for focused systems [22], we can expect even
greater disturbances on the efficiency for obstacles located near the focal point. According to
the Geometrical Optics theory, the shadow due to an obstacle, which is the region where the
electromagnetic fields are yet not reconstructed, is s ≈ rok0/2kn [2]. However, the results of our
wave model do not show a direct relationship between the shadow region and the WPTE.

Figure 9 illustrates the relation between the WPTE the obstacle radius for a given configuration.
For this study, we considered ra = 50λ, kn = k1, 0<ro ≤ ra, and the obstruction was placed at
z = 0.2NDR. The WPTE was evaluated at z = 0.8NDR in order to evaluate the influence of the
obstacle radius on the efficiency for distances within the NDR. We observe that when ro ≤ 0.2ra
the impact of the efficiency is almost negligible. As the obstacle radius increases to the range of
0.2ra ≤ ro ≤ 0.4ra, the impact of the obstacle becomes more visible although the efficiency drop
is not greater than 0.07 in this region. For obstacles greater than 0.4ra, we observe a notable
change in the curve’s trend, indicating that the link becomes more sensitive to the radius of
obstacle. This can be clearly seen as the efficiency drops 0.15 when the radius increases from
0.4ra to 0.6ra.

On Fig. 10(a), we verify the impact of kn on the efficiency of the unobstructed link for a
constant aperture radii. The variable kn is calculated using the first four zeros of J0(knρ), so
1 ≤ n ≤ 4. We have four different Bessel beams with different NDR as imposed by the different
transverse propagation constants, kn (k1, k2, k3 and k4). Each beam is identified by its kn. In our
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Fig. 8. WPTE for obstructed links for different obstacles placed at different locations along
z. The WPT is evaluated as a function of the distance. The distance is normalized with
respect to the NDR. The dashed line represents the WPTE for the unobstructed link. The
used parameters are: ra = 50λ, kn = k1, and NDR = 6531λ.

Fig. 9. WPTE as a function of the obstacle radius. The obstacle is placed at z = 0.2NDR
and the WPTE is evaluated at z = 0.8NDR. The dashed red line shows the value of the WPTE
of an unobstructed link with a separation distance of L = 0.8NDR. The used parameters are:
ra = 50λ, kn = k1, and NDR = 6531λ.
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Fig. 10. WPTE for unobstructed and obstructed links for different kn. The obstacle is placed
at z = 0.2NDR. Aperture radius ra = 50λ. Figure 10(a) shows the WPTE for unobstructed
links. The dashed line represents the WPTE of an unobstructed link

example, the NDR of k1, k2, k3 and k4 are 6531λ, 2845λ, 1815λ and 1331λ, respectively. As
indicated by the larger NDR, we obtain the highest efficiency using k1. Furthermore, in Fig. 10,
we can see that for k4 the efficiency is disturbed even for obstacles with ro = 0.1ra. For k2 and k3
the smallest obstruction affects the efficiency but it is regenerated to its original value. For the
obstacles with ro = 0.2ra and ro = 0.3ra, the efficiency is disturbed and not completely healed
when kn is different than k1.

4. Conclusion

In this paper, we have studied the wireless power transfer efficiency between two radiating
apertures in a wireless link within the Fresnel region. These apertures radiate truncated Bessel
beams. In particular, we extended the WPTE formulation to partially obstructed links resorting
to a scattering approach. This formulation was implemented using the PO approximation in a
variational framework and validated by full-wave results by a commercial software.

It was observed that for distances smaller than the NDR, the WPTE of unobstructed links
decrease in an almost linear fashion, while when the system is operating with a separation
distance greater than the NDR, the link efficiency decreases quadratically. For the same aperture
and separation distance, Bessel beam with small transverse propagation constants provides the
highest efficiency.
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Finally, we analyzed the effect of the self-healing property of Bessel beams for obstructed
wireless links. The impact of the obstacle on the WPTE was studied considering its position and
size. The obtained results illustrate how the size of the obstacle with respect to the radiating
aperture radius affect the capability of the Bessel beam to self-heal after an obstruction and thus
on the possibility to establish a resilient link. Particularly, for obstacles with radius up to 30%
of the aperture radius, the WPTE is fully restored to its unobstructed level. It also appears that
Bessel beams with smaller transverse propagation constant can overcome larger obstacles. We
saw that WPTE is most affected when the obstacle is located halfway between the apertures and
its size is comparable to the radius of the generated beam. Furthermore, the results indicate that
the length of the shadow region is not directly related to the WPTE of obstructed links for the
studied configuration.
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