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Abstract:  13 

This chapter presents three examples of data-based machine learning on time series. The 14 

common denominator of these case studies is the sparseness of data, making machine learning 15 

results fragile and inaccurate. We show how human expertise can be effectively mobilized for 16 

building useful systems, for instance useful decision support systems, able to better meet the 17 

needs of the agri-food chain. The design and analysis of different features of machine learning 18 

coupled with human knowledge enables us to sketch future human-centered machine learning 19 

systems. This approach is very relevant for the modeling of agri-food systems, because human 20 

expertise, skills and know-how are rich and numerous, but often implicit, data are 21 

heterogeneous -- big and sparse -- and processes are complex and deeply conditioned by 22 

human needs and interactions. 23 
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1. Introduction  27 

 28 

Artificial Intelligence (AI) techniques are now commonly used in the agri-food domain 29 

(Kavalenko (2020))  and are expected to be more and more used. From a recent study of 30 

Accenture Research, AI has the potential to noticeably increase profitability of industries in the 31 

next decades (Hunkefer, 2017). While improving the productivity, AI is also and above all 32 

described as a means to meet the urgent requirements of the agroecological transition: reduce 33 

environmental impact, reduce wastage, increase traceability across the supply chain, provide 34 

markets with safe, high quality products to meet consumer demands (Vilani, 2017). 35 

Current machine learning (ML) techniques, in particular Deep Learning, have taken off 36 

thanks to the availability of a huge amount of data (big data). This has been made possible in 37 

the food chain thanks to IoT (Internet of things) (Misra, 2020) for instance. Challenges 38 

associated with IoT have been highlighted in a recent review of the GODAN (Global Open 39 

Data for Agriculture and Nutrition) to build actors' confidence in a sustainable food system 40 

(Serazetdinova et al., 2018). But when data is sparse, incomplete or inaccurate, solutions can 41 

still be found (Perrot et al., 2016)(Perrot & Baudrit, 2012). Algorithms have to be adapted, 42 

regarding uncertainty management in particular. Solutions based on the use of complex 43 

stochastic optimisation heuristics (Lutton et al., 2016) have been proposed. Another way to 44 

deal with this issue is to rely on human knowledge and expertise (implicit as well as explicit) 45 

and build more and more rich and adapted human-ML interactions (Boukhelifa et al., 2017). 46 
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This chapter deals with the integration of human knowledge and user-interactions into AI 47 

methods in the case of time dependent data sets. Three examples show how  human-centered 48 

approaches can be built to deal with sparse data:  49 

● A complex model, based on a Long-Short-Term Memory Network, built from time 50 

series data thanks to ML: it is shown that human-driven choices have a drastic 51 

influence on the quality of the results.   52 

● A tool to predict grape berries quality, thanks to a Dynamic Bayesian Network 53 

coupled with expert rules. In this system, expert knowledge has been integrated into 54 

the model thanks to an elicitation process, making it explicit into the structure of the 55 

model through the determination of the variables dependencies and discretization.  56 

● Finally, the last example deals with implicit knowledge, such as the priorities experts 57 

give to model objectives as they explore trade-offs. It has been shown that such 58 

implicit knowledge is able to provide extremely useful information if mobilized, 59 

thanks to an appropriate data visualization. It describes an exploratory analysis that 60 

explicates how experts used an interactive visualization system to explore time series 61 

datasets in the food domain.  62 

2. A Long-Short-Term Memory Network model for biscuit baking 63 
 64 
This case study describes how machine learning can be used to model a dynamic process, 65 

such as biscuit baking. Despite the efficiency of the technique, we show how an appropriate, 66 

human-curated choice of the training set can dramatically improve the final results. Long-67 

Short-Term Memory (LSTM) networks are specific to the field of Artificial Neural Networks 68 

(ANNs). LSTM networks are specifically tailored for machine learning of time series, where 69 

the outputs of a system are not just a function of their inputs, but also of an internal state. The 70 

state itself can be seen as dependent on the historical series of all inputs seen by the system up 71 

to that point in time. We present an application of LSTM networks to the modeling of biscuit 72 
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baking. Starting from 16 real-world time series of biscuit baking, gathered by the United 73 

Biscuits company under different conditions, we show how the proposed LSTM network can 74 

correctly predict unseen values. Remarkably, the network is also able to reproduce a dynamic 75 

behavior up to variations that might be overlooked as noise. 76 

The process of baking biscuits in industrial ovens involves a considerable number of different 77 

biochemical and physical phenomena, such as denaturation of proteins, Maillard reactions, 78 

and gelatinization of starch. Due to the complex interactions between these phenomena, 79 

creating a physically accurate mathematical model of the biscuit baking process is a 80 

challenging task. An alternative to a mechanistic model is to use a data-driven approach, a 81 

machine learning technique, to derive a black-box model of the whole process from 82 

experimental data. In order to assess generality, the model should then be tested on unseen 83 

data. Such an approach could also potentially be effective at modeling outputs that are 84 

traditionally harder to describe mathematically, such as the color of the biscuits. While most 85 

machine learning techniques are ill-equipped to deal with time series, there is a sub-category 86 

of algorithms specifically designed to tackle dynamic problems. LSTM networks are currently 87 

among the state of the art in the field. 88 

This case study proposes the use of a LSTM network to model the biscuit baking process.  89 

Starting from a training dataset of real-world time series of biscuit baking, collected by the 90 

company United Biscuits, the proposed approach learns the dynamics of two output variables 91 

of interest, color and weight loss, and it is then tested on an unseen test dataset. This section 92 

provides minimal information on biscuit baking and LSTM networks.   93 

2.1 Biscuit baking 94 

During the process of biscuit baking, raw biological materials are transformed into a final 95 

product that must satisfy multiple criteria. For example, the color of the product must be 96 
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pleasant enough to entice customers, or its thickness must be within given thresholds to not 97 

create issues for packaging. The industrial transformation process from dough to biscuit is 98 

usually performed resorting to tunnel ovens: interestingly, even if the process has been 99 

thoroughly studied and can be precisely controlled, there are complex coupled biochemical 100 

and physical phenomena not completely understood and controlled (Savoye et al., 1992). 101 

Phenomena involved in biscuit baking include gelatinization of starch, denaturation of 102 

proteins, and Maillard reactions, that give browned food its distinctive flavor. Such 103 

biochemical reactions are linked to water activity inside the biscuits, temperature, and 104 

humidity (Wade, 1988). Depending on the structure of the industrial baking oven, convection, 105 

radiation and conduction also contribute to baking, to different degrees. Describing 106 

mathematically the global heat-mass transfer is not simple, because very little information on 107 

the thermal properties of commercial dough is accessible, and the characteristics of the 108 

product dynamically change during the process. Furthermore, even if the control variables are 109 

known and it would be useful to represent the process, it is extremely difficult to 110 

mathematically describe the evolution of sensory properties of biscuits, such as formation of 111 

color, loss of moisture, and change in mass. 112 

Given this complexity, it is not surprising that several approaches have been proposed to 113 

model and control the industrial baking process, ranging from fuzzy logic (Perrot et al., 2000; 114 

Perrot et al., 2006), to heat-transport models (Sablani et al., 1998; Trystram et al., 1993), to 115 

models tackling air properties in tunnel ovens (Mirade et al., 2004). The United Biscuits, Inc. 116 

collected 16 time series of biscuit cooking under different conditions, in the scope of the 117 

DREAM FP7 European Project (2009-2013). The oven used during the experiments features 118 

four different zones, with different temperatures. During the cooking process, biscuits are 119 

slowly moved from one zone to the next on metal trays, while the heat flux in the oven is 120 

manually regulated by an employee. The considered input variables are: the heat flux 121 
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measured in the top part of the oven (tf in W/m2), the heat flux measured in the bottom part of 122 

the oven (bf in W/m2), the nominal heat flux in the current zone of the oven (zc in, W/m2), 123 

and the nominal heat fluxes in the previous zones of the oven that the biscuit tray has already 124 

passed (zp1-zp4 in W/m2). The considered output variables are: the color of the biscuits based 125 

on the reflected light measured, L of the CIELAB system (c), and the weight loss of the 126 

biscuits, measured (wl in g). Each variable is measured every 5 s, with each baking process 127 

lasting 350 s, with a total of 70 points per time-series. Color is always measured on the same 128 

individual reference biscuit during the whole time series, weight loss is taken as an average on 129 

the same 3 reference biscuits during the experiment. Additionally, the initial conditions of 130 

variables c, and wl are used as inputs during the experiments. 131 

Out of the 16 time-series, several are repetitions of an experiment under the same conditions 132 

(in groups of 3, 3, 2, 3, 2, 3 time series, respectively). Table 1 summarizes the features of the 133 

dataset. Figure 1 shows an example of time series, highlighting the non-negligible differences 134 

even between repetitions under the same conditions. Another notable feature is that output 135 

variable wl presents a behavior that, at a first glance, seems extremely noisy. 136 

Table 1 about here 137 

Figure 2 about here. 138 

 139 

 140 

 141 

2.2 Long-Short-Memory networks 142 

LSTM networks (Hochreiter and Schmidhuber, 1997; Gers et al., 1999) are a category of 143 

ANNs, belonging to the class of Recurrent Neural Networks (RNNs) (Hopfield,1987). 144 
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Classical ANNs (Rosenblatt, 1958) are machine learning approaches loosely inspired by 145 

neural networks in the brain that can work as general function approximators. ANNs are 146 

composed by a series of units called artificial neurons connected to each other, able to receive 147 

and send signals. Usually, the signal at a connection between artificial neurons is a real 148 

number, and the output of each artificial neuron is calculated by a non-linear function of the 149 

weighted sum of its inputs. Like most machine-learning approaches, ANNs can approximate 150 

an unknown function by learning the appropriate weights in the artificial neurons from a 151 

training dataset featuring several combinations of inputs and outputs for a target phenomenon. 152 

In order to evaluate the generalization ability of trained models, ANNs are then usually tested 153 

on a dataset of unseen values, called test dataset or test set. 154 

ANNs have success stories in applications ranging from games (Silver et al., 2016) to image 155 

classification (Sermanet et al., 2013), they are designed to model processes for which the 156 

outputs depend exclusively on the current inputs. In dynamic processes, however, the outputs 157 

are also a function of an internal state that is itself dependent on the history of inputs until that 158 

point. RNNs try to address this issue, by adding connections between units to form directed 159 

cycles. Thanks to this feedback mechanism, RNNs exhibit dynamic temporal behavior and are 160 

used in issues where the sequence of inputs is relevant for the outputs, such as speech 161 

recognition or natural language processing. 162 

LSTM networks are one of the most successful paradigms of RNNs: in a LSTM network, 163 

each unit is considerably more complex than a simple artificial neuron in an ANN (Figure 2). 164 

A LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The cell is 165 

responsible for storing values over an arbitrary time interval, while each gate regulates the 166 

flow of values that goes through the connections of the LSTM: the input gate controls the 167 

extent to which a new value flows into the cell, the forget gate controls the extent to which a 168 

value remains in the cell and the output gate controls the extent to which the value in the cell 169 
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is used to compute the output activation of the LSTM unit. Thanks to the ability of storing 170 

information over variable intervals of time, LSTM networks currently represent the state of 171 

the art in several domains, such as speech recognition (Xiong et al., 2017). 172 

Figure 2 about here. 173 

In a study by the authors, the 16 time-series were split into a training set (12 time series) and a 174 

test set (4 time series), the latter of which was unseen by the LSTM network during the 175 

training phase. The test set had been selected among the repetitions of experiments in 176 

conditions already present in the training set. All the variables had been normalized by 177 

subtracting the mean and scaling to unit variance on the basis of the values contained in the 178 

training set. After a few tentative runs, the parameters of the network were configured as 179 

follows: eight inputs (all previously described input variables plus the initial conditions for the 180 

two output variables), 50 units in a single hidden layer, two outputs (all output variables); tanh 181 

activation function (hyperbolic tangent), 3000 training epochs (iterations of the optimization 182 

process for the weights), RMSprop gradient descent optimizer (Hinton et al., 2014). All the 183 

codes of the machine learning algorithm were implemented in the Keras (Chollet et al., 2015) 184 

and scikit-learn (Pedregosa et al., 2011) Python libraries. 185 

The final model had excellent fitting on the test set, with mean squared error MSE = 0.015 186 

and R2 = 0.9863. An interesting result was that, visually, the model was able to reproduce 187 

trends in unseen data that at a first glance might be mistaken for noise. For example, in Figure 188 

3, the model is able to closely predict the behavior of the weight loss showing that the signal-189 

to-noise ratio is better than what a human expert could have considered from a superficial 190 

analysis of the data. 191 

While the results were quality-wise satisfying, it was important to remark that the correct 192 

choice of the training set could make a considerable difference in the final generalization 193 
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capabilities of the model. In a second set of experiments, the same model previously 194 

described was tested on a leave-one-out cross-validation, being iteratively trained on all 195 

available time series except one, and tested on the one being left out. From the results 196 

reported in Table 2, it is noticeable how the performance on some of the time series is subpar, 197 

probably because the type of information they contain cannot be extrapolated from the rest of 198 

the data, and thus represent a unique contribution that the machine learning model needs in 199 

order to properly characterize the phenomenon. 200 

 201 

Table 2 about here. 202 

Figure 3 about here. 203 

 204 

3. Prediction of grape berries quality for decision making 205 
 206 

 207 
The grape berries maturation is a complex process relying on physicochemical and 208 

biochemical reactions. These reactions depend on multiple factors of which the climate is the 209 

most influential, especially in the last weeks preceding the harvest. Since berries maturity 210 

plays a major role in determining wine potentialities, to anticipate the maturation process and 211 

determine the right harvesting date is a significant challenge for the wine industry. Different 212 

indicators to evaluate the maturation state can be considered, which might be chemical, and 213 

thus exactly measurable as the content of sugar, or sensory characteristics, as the seeds color, 214 

which requires an expert evaluation on a symbolic ordinated scale. Sensors have been 215 

developed in last decade measuring some grape characteristics as color, sugar content or 216 

aromatic potentialities, (Ben Ghozlen et al., 2010; Geraudie et al., 2010). Nevertheless, those 217 

analysis are most of time realized in laboratory, time consuming and generally expensive for a 218 

close monitoring of the grape berries maturity and never predictive. For the grape maturity 219 
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prediction, a model has been developed by (Baudrit et al., 2015; Perrot et al., 2015) linking 220 

chemical indicators to weather conditions on Cabernet Franc grape berries.   221 

3.1 Grape berries maturation 222 

Experimental data were generated from vineyard plots located in the Loire Valley region 223 

followed by the IFV institute over several years with weekly sample collection. It covered 224 

years from 1989 to 2017, with plots distributed between the two geographical places: “Anjou” 225 

and “Touraine” for a total of 30 parcels including between 2 to 5 points by kinetics for each 226 

parcel according to the year of the experiment. As inputs, meteorological conditions over 227 

seven days were supplied by Meteo France meteorological stations located near and/or on the 228 

parcels. :  229 

● Temperature (°C) labeled “t”,  {∑!"#	%&	'()*+ (tmin,i+tmax,i)÷2)}, 230 

● Rainfall (mm) labeled “pl”, {∑!"#	%&	'()*+ (pli)}, 231 

● Relative humidity (%) labeled “hr” {∑!"#	%&	'()*+ (hrmin,i+hrmax,i)÷2)}. 232 

The solar radiation (in hours) over seven days, labeled “Ins”, {∑!"#	%&	'()*+ (Insi)}was only 233 

given by one meteorological station located at Montreuil-Bellay, in the center of the area of 234 

study. As outputs, physicochemical and sensory measurements were achieved: 235 

●    Physico-chemical measurements selected for this study were those defined by the 236 

experts as essential: sugar(s) en g/l, total acidity (ac) in equivalent H2SO4 g/L and 237 

malic acid (ac_m) in g/L, (Barbeau, 2003; Riou, 1994). Their variations during a 238 

week (between two points) were also considered: Var_s; Var_ac; Var_ac_m. Each 239 

week, a lot of two-hundred berries of Chenin, with pedicels, were randomly picked 240 

up from each parcel at each ripening stage according to the method of Vine and 241 

Wine French Institute (ITV-France) (Cayla et al., 2002) in order to limit the effects 242 
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of the grape heterogeneity. With the lot of two-hundred berries of each sampling, a 243 

crushing was realized with a blender, then the must was filtered through a 244 

Whatman paper filter. Reducing sugars concentration (g/l) was measured with a 245 

refractometer; total acidity (g/l eq. H2SO4) by the titration method and malic acid 246 

(g/l). 247 

●    Sensory measurements were also achieved on the berries managed by the IFV 248 

institute and the ESA institute. Several measurements were described on the grape 249 

berries, the juice and the global flavor using an ordinated scale range from 0 to 5. 250 

For the DBN model were chosen to select an integrative flavor indicator: the 251 

global aromatic intensity (IntGloAro) to complete the physicochemical 252 

predictions. 253 

3.2 Expert knowledge handling 254 

Three scientists and two winegrowers experts working on the areas were interviewed during 255 

one or two sessions (2–3 h). Each of the elicitation sessions was attended by one expert and 256 

one or two interviewers. To build the interview, adapted methods proposed by Sicard et al., 257 

(2011) were applied. The elicitation process was based on a set of predetermined structured 258 

open-ended questions used to direct the interviews. Questions were designed according to 259 

techniques based on survey methods with the aim of optimizing the expression of expert 260 

knowledge. Particular attention was paid to context reinstatement. This involved having the 261 

expert think about and describe the feelings during the episodes being recalled. 262 

3.3 The Dynamic Bayesian Model (DBN)  263 

The model used was a Dynamic Bayesian Network (DBN), a probabilistic graphical model 264 

able to describe phenomena developing over time (Jensen & Nilsen, 2010; Pearl, 1988). The 265 
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structure of a DBN is an oriented graph, representing correlations between the variables was 266 

created by interacting with human experts. Once the structure of a DBN was fixed, it was then 267 

possible to compute its parameters starting from a dataset. The parameters were conditional 268 

probability tables, assessing the probability for variables taking a specific value, knowing the 269 

values of the variables they depend on. For specific application, the values of the variables 270 

needed were discretized. Differently from a classical Bayesian Network, a DBN makes it 271 

possible to estimate the variable values over several subsequent time steps. In the present 272 

case, each time step was equivalent to two weeks in the grape ripening processes. DBNs have 273 

been successfully adopted for several agri-food applications (Baudrit et al., 2015; Perrot et al., 274 

2015).  275 

More formally, a DBN is a graph-based model of a joint multivariate probability distribution, 276 

capturing properties of conditional independence between variables. Like a BN, a DBN is a 277 

directed acyclic graph (DAG) where the nodes represent variables, and the missing arcs 278 

represent conditional independence between variables. In DBNs in particular, nodes 𝑋(𝑡) =279 

(𝑋#(𝑡), … , 𝑋,(𝑡)), represent 𝑛 discrete random variables, indexed by time 𝑡 , providing a 280 

compact representation of joint probability distribution 𝑃 for a finite time interval [1, 𝜏]. In 281 

other words, the joint probability 𝑃 can be written as the product of the local probability 282 

distribution of each node and its parents, as follows: 283 

𝑃/𝑋(1), … , 𝑋(𝜏)0 = 	22𝑃(𝑋!(𝑡)|𝑈!(𝑡))
-

%"#

,

!"#

 284 

Where 𝑈!(. ) denotes the set of all parents of node 𝑋!(.), and 𝑃(𝑋!(. )|𝑈!(. )) describes the 285 

conditional probability function associated with random variable 𝑋!(. ) given the values of 286 

𝑈!(. ) . 𝑋!(𝑡) is termed “slices”, and it represents the set of all variables at time 𝑡. This 287 

factorization of the joint probability distribution, based on information from the graph, makes 288 
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it possible to straightforwardly represent large models, and use them for practical 289 

applications. In other words, DBNs represent the beliefs of possible trajectories of the 290 

variables involved in a dynamic process.  291 

In order to make the problem treatable, DBNs assume the first-order Markov property: the 292 

parents of a variable in time slice 𝑡 must appear in either slice 𝑡 − 1 or 𝑡. As a consequence, 293 

for the first-order homogeneous Markov property, the conditional probabilities are time-294 

invariant, meaning that 𝑃/𝑈(𝑡)0 = 𝑃/𝑈(2)0	∀	𝑡	 ∈ (1, 𝜏). In order to fully specify a DBN, we 295 

will then need to define the intra-slice topology (within a time slice), the inter-slice topology 296 

(between two time slices), as well as the parameters (i.e., conditional probability functions) 297 

just for the first two time slices. The structure of a model can be explicitly built on the basis of 298 

knowledge available in the literature and parameters can be automatically learned without a 299 

priori knowledge on the basis of a dataset, a processed termed parameter learning. The 300 

techniques for learning DBNs are generally extensions of the techniques for learning BNs. 301 

Specialized literature reports several methods to learn the structure or the parameters of a 302 

DBN from substantial and/or incomplete data (Geiger & Heckerman, 1997; Heckerman, 303 

1999). In this work, the topology of the graph is obtained from expert knowledge; for 304 

parameter learning, we consider the simplest and most commonly adopted methodology, 305 

simply evaluating the co-occurrence rate of values of variables in the training data. 306 

Once a DBN is fully specified, it can be used to estimate marginal probabilities for target 307 

variables, through a process also known as Bayesian inference: 308 

𝑃/𝑂(𝑡.)0 = 𝑜(𝑡.), ∀	𝑡. ∈ [1, 𝜏]		309 

Where 𝑋 is a set of variables whose values we are interested in predicting, and 𝑂 is a set of 310 

variables whose values are known (for example, in food processing 𝑋 might be the variables 311 

representing the physicochemical properties of a product and 𝑂 might be the variables 312 
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representing the observed environmental conditions). In general, given a way of calculating 313 

𝑃(𝑋(𝑡)|𝑂(𝑡.)) from the knowledge of 𝑃(𝑋(𝑡.)|𝑂(𝑡)), inference in a DBN is performed using 314 

recursive operators and Bayes’ theorem, updating the belief state of the DBN as new 315 

observations become (Murphy, 2002). The DBN previously introduced was evaluated with a 316 

leave-one-out cross-validation (LOOCV), where the model was repeatedly trained on the 317 

whole dataset, minus one sample, and the remaining sample was used for testing. The 318 

procedure was repeated until each sample was used for the testing. Considering the mean and 319 

standard deviation, the results of a LOOCV provides a better estimate of the model’s 320 

capabilities than just considering a random split of the available data between a training set 321 

and a test set (Geisser, 1993). 322 

For the choices made in this study, before training the model, it was necessary to discretize 323 

the real-valued variables in the dataset. However, in order to evaluate the performance of the 324 

model’s predictions against the ground truth, the results of the model will have to be 325 

converted back into real values. Recalling that the predictions of a DBN model for variable 326 

𝑥	will consist in a series of probabilities	𝑃! for each possible discrete class 𝑖 = 0, 1, … , 𝑛/ 327 

associated with variable 𝑥	, the predicted outcome can be converted to a real value using the 328 

following equation: 329 

𝑥012(!3%2( =?𝑥4@𝑃!

,!

!"#

 330 

Where 𝑥𝑖 is the average value of all samples of variable 𝑥	that fall under class 𝑖. 331 

The first metric used to evaluate the quality of the predictions against the ground truth is the 332 

root mean squared error (RMSE): 333 
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𝑅𝑀𝑆𝐸 = 	E
1
𝑁?(𝑥!

012(!3%2(
6

!"#

− 𝑥!&7+2182()²	 334 

Where 𝑁 is the number of predictions considered for target variable, and 𝑥&7+2182( indicates 335 

its observed value. In this study, we will also use the relative RMSE (RRMSE) that expresses 336 

the RMSE as a percentage of the range of observed values for the target variable, and it is thus 337 

more informative as an error metric: 338 

𝑅𝑅𝑀𝑆𝐸 = 	
𝑅𝑀𝑆𝐸

max	(𝑥!&7+2182() − max	(𝑥!&7+2189:)
× 100 339 

  340 

Inspired by previous work on Cabernet-Franc and Gamay wines (Baudrit et al., 2015), the 341 

network structure predicts physicochemical indicators starting from weather conditions 342 

(Figure 4). Only the climatic variables having an influence on each physicochemical maturity 343 

indicator are selected from expert knowledge and literature. In particular, relative humidity 344 

only affects the two acidities, sunshine influences sugar content, while temperature and 345 

rainfall have an impact on the four variables considered: sugar (s), total acidity (ac), acid 346 

malic (ac_m) and the global aromatic intensity (IntGloAro).  347 

Figure 4 about here 348 

As the DBN needs to be able to capture dynamical variations of the values over time, to better 349 

predict the four variables, it is necessary to define new intermediate state variables. A month 350 

before the harvest, only alterations in the weather caused a significant deviation from an 351 

established trajectory in time (see Figure 5). More formally, considering each 352 

physicochemical variable 𝑥 ∈ {𝑎𝑐, 𝑎𝑐;, 𝑠	} at time 𝑡 and 𝑡 + 1: 353 

𝑥(𝑡 + 1) = 	𝑣𝑎𝑟_𝑥(𝑡 + 1) + 𝑥(𝑡)	354 
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And consequently 355 

𝑣𝑎𝑟_𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 1)	356 

As already anticipated, the (absolute) value of a variable can be used as an indicator of the 357 

current stage of ripening, while the variation, as a function of the climatic variables, will 358 

dictate the ripening trajectory. 359 

Figure 5 about here 360 

At time  = 0, the value of each variable is observed and known; for the next two-times steps, 361 

only the climatic variables are observed and known, while the physicochemical quantities and 362 

their variations are predicted by the model.  363 

As previously described, to create the CPTs of our DBN model, it is necessary to define the 364 

discretization of the continuous variables in the problem. In this context, discretizing variable 365 

𝑥 amounts to finding several intervals U[𝑥#, 𝑥<), [𝑥<, 𝑥=), … , [𝑥,>#,𝑥,)V of continuous values 366 

such that 𝑥# < 𝑥< < ⋯ < 𝑥,	, with each interval corresponding to a discrete class. 367 

For the climatic variables, the following intervals were defined: 368 

● 𝐼𝑛𝑠	 = 	 [[15,30], [30,40], [40,55], [55,60], [60,75]] 369 

● 𝑝𝑙	 = 	 [[0,10], [10,20], [20,30], [30,45], [45,70], [70,100]] 370 

● 𝑡	 = 	 [[0,11], [11,15], [15,17], [17,19.5], [19.5,22]] 371 

● ℎ𝑟	 = 	 [[60,70], [70,75], [75,80], [80,90], [90,100]] 372 

For the grape sensory variable IntGloAro, the discretization is fixed to 1 inside the sensory 373 

scale [1,5]. It is linked to the limit of sensitivity evaluated to be 0.5 by the experts. 374 

For the physicochemical variables, an interactive semi-automated discretization approach is 375 

developed, based on the notion of co-occurrence between variable values and their variations. 376 

The methodology is based on a visualization software, EvoGraphDice, coupled with an 377 



16 

evolutionary optimization approach (Boukhelifa et al., 2017). For example, the variation of 378 

the variable sugar var_S, is fixed on the basis of the expert description, more focused on the 379 

variations of the value of the variable than on the variable itself. The optimal discretization of 380 

the sugar is then calculated to ensure the most as possible a homogeneous repartition of the 381 

var_S classes of interval for each sugar interval in the data basis. The results of the 382 

optimization, and thus, the discretization proposed for the physicochemical variables are 383 

presented Table 3. 384 

Table 3 about here 385 

After performing a LOOCV on the dataset, where at each iteration the network is trained on 386 

the whole dataset minus one sample, and then tested on that sample, a mean RRMSE for each 387 

predicted variable was obtained. For the sensory variable, the RMSE is also calculated but 388 

also the percentage of points well classified in the five classes considered with a threshold at 389 

0.25 or 0.5, 0.5 being considered as the classical sensory threshold of sensibility for those 390 

measurements. 391 

Table 4 about here 392 

The results (Table 4) showed that it was possible to predict with good results the total acidity 393 

and the sugar in a range that is satisfying for the experts (10% for the sugar, 6% for the total 394 

acidity) and so anticipate the maturation two weeks before. For the malic acid, it seemed to be 395 

more complex to have a good prediction with the only variables considered as inputs of the 396 

DBN. Probably for this variable, for a better prediction, we would have to define the state by 397 

including other parameters or variables. 398 

For the sensory variable, results were also relevant with a variable that seemed to be relatively 399 

well predicted two weeks before with less good results for a shorter time step. As regards to 400 

the integrative and more uncertain measurement represented by this sensory variable, it was 401 
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possible that the slope for two weeks indicates more the tendency of evolution than the one 402 

for one time step, which could explain this result. Nevertheless, results of the sensory 403 

prediction were quite good with 72.5% of good prediction at two time steps.  404 

4. Machine learning user interactions to understand how 405 

agronomy experts explore model simulations 406 

 407 

Machine Learning ML algorithms build models that are trained to recognize certain types of 408 

patterns (Bishop, 2006). Domain experts and decision-makers often rely on these models to 409 

reason over new data and to make informed decisions. It is generally possible to determine 410 

what predictions the machine learning model is likely to make based on new input data, how 411 

domain experts will use those model predictions for reasoning and to make inferences is 412 

uncertain. Because domain experts may not fully understand ML models and their domain 413 

knowledge may not be fully encoded in the model, conflicts may arise and they themselves 414 

may not be consistent in interpreting and responding to ML results (Valdez et al., 2017; 415 

Fernandes et al., 2018; Dimara et al., 2018). 416 

In previous work, Boukhelifa et al. (2019) conducted an observational study to understand 417 

how domain experts use ML models to explore agri-food processes. Multiple interactive 418 

sessions were organized where experts from agronomy explored model simulation datasets 419 

using an existing exploratory visualization tool (Elmqvist et al., 2008; Cancino et al., 2012) 420 

(Figure 6). These exploration sessions were video-recorded and experts' interactions with each 421 

other and with the tool were logged. The main exploration task was open-ended, but experts’ 422 

primary goal was to explore alternative trade-offs, such as between the amount of fertilizer 423 

supplied and the quantity of crop yield.   424 

Figure 6 about here 425 
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These exploration sessions were helpful to the domain experts who, guided by the views 426 

proposed by the ML model, found useful insights in the form of interesting correlations, 427 

temporal trajectories and trade-offs that they have not considered before. As a group, they 428 

were able to guide the ML component to interesting views and to reason about their data. 429 

However, the qualitative analysis of the video recordings show that experts often lose track of 430 

their analysis steps and therefore the many trade-off scenarios they were trying to compare. 431 

Domain experts also appear to structure their investigation into mini-analysis scenarios, 432 

during which they explore different hypotheses and research questions. But, when asked, they 433 

were not able to give a clear overview of past exploration, or an accurate evaluation of 434 

whether their exploration strategy was a robust or exhaustive one (Barczewski et al., 2020).  435 

Exploratory Data Analysis EDA tools (Grinstein, 1996), such as the visualization system used 436 

in this study, provide different types of visual and statistical methods to analyze the data and 437 

to examine them from different viewpoints. However, they offer limited support for viewing 438 

the exploration history, for example, by visualizing past analysis steps or data queries (Heer et 439 

al., 2008). Little support is typically provided to show high-level information to entice users 440 

to reflect upon and make sense of their past exploration. This type of information, called 441 

provenance (North et al., 2011; Bors et al., 2019; Madanagopal et al., 2019) could provide 442 

opportunities to review and share insights, but importantly, it can potentially improve user 443 

exploration practices and strategies (Carrasco et al., 2017).  444 

In what follows, ML is not only considered as a means to guide visual exploration, but also to 445 

structure and help users revisit and reflect on past exploration sessions. This work describes 446 

(a) the modelling of the user exploration history of the aforementioned exploration sessions, 447 

and (b) the visualization of provenance information to the analysts as high-level views of their 448 

past exploration (Barczewski et al., 2000). The main goal is to establish a methodology to 449 

automatically detect key analysis stages of the exploration, which correspond to the change of 450 
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focus in the trade-off analysis space. To detect such changes, unsupervised learning and time 451 

series modelling (Hidden Markov Models HMM) are applied to two use cases from 452 

agronomy.  453 

4.1 Characterizing exploratory data analysis  454 

There is an established body of work from the cognitive psychology that looks at how people 455 

make sense of data during exploratory analysis. Prominent sensemaking theories such as by 456 

Klein et al. (2007) and Pirolli et al. (2005) focused on the cognitive processes involved. Their 457 

results show that analysts continuously re-frame their research questions (Klein et al., 2007), 458 

and interleave new and refined hypotheses in a non-linear fashion (Pirolli et al., 2004). This 459 

work builds on these theories and findings, and focuses on different aspects of sensemaking 460 

such as uncertainty (Boukhelifa et al., 2017b), alternatives (Liu et al., 2019) and structures 461 

within the so-called exploration scenarios (Boukhelifa et al., 2019). These analysis scenarios 462 

correspond to the shifts of user focus in the search space at different stages of the exploration. 463 

Six types of scenarios are identified, including instances where analysts examine new and 464 

refined research questions and hypotheses, and others where they attempt to recap and 465 

establish common ground (Boukhelifa et al., 2019; Goyal et al., 2016). The approach, thus far 466 

in studying sensemaking activities has been based on the qualitative research methods such as 467 

observational studies, walkthroughs and interviews (Creswell, 2002). Although this approach 468 

can yield deep insights, it is often time and resource intensive, and findings may be hard to 469 

generalize. In a follow-up work (Barczewski et al., 2000), an automatic procedure was 470 

implemented to detect the scenarios from the logs of user interactions, and new visual designs 471 

to incite the analysts to reflect on their progress and exploration strategies. 472 

Logging user interaction is common in interactive systems. User interaction logs are often 473 

analyzed not only to evaluate how tools are operated by end-users, but also to help the end-474 

users themselves reflect and track their progress. For example, in the context of web 475 
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browsing, Carrasco et al. (2017) showed that when high level semantic information is shown, 476 

users tend to reflect on their browsing habits and are able to infer areas of improvement. Guo 477 

et al. ( 2015) found that visualization of interaction logs improves analysts’ performance in 478 

finding insights. Like in this study, they found that exploration is composed of multiple 479 

chunks which have generic analysis patterns that lead to insight.  480 

Analyzing user interaction logs is also used in analytics provenance (North et al., 2011; Bors 481 

et al., 2019; Madanagopal et al., 2019) to understand user’s reasoning processes, and to 482 

support collaborative communication and replication (Ragan et al., 2015). Mining user 483 

interactions also serves other purposes than making sense of user exploration, such as to 484 

predict users personality traits (Brown et al., 2014), or to detect cognitive biases (Wall et al., 485 

2017). In the context of exploratory data analysis, this work is similar to Aboufoul et al. 486 

(2018) and Dung et al. (2016) who used HMMs to model user’s search behavior. HMMs are 487 

powerful techniques to generate sequences of observations and to learn about the hidden 488 

states that produce those observations. In the present study, it is shown that analysis scenarios 489 

can be retrieved when considered as hidden states of a Markov chain. Results from the HMM 490 

are provided in pseudo real time, which can continuously give high-level semantic 491 

information to the analyst. 492 

4.2 Preliminary analysis of two use cases from agronomy  493 

Interaction log data were collected from an observational study based on two real-world use 494 

cases in agronomy, one for wheat fertilization and the other for wine fermentation. In each use 495 

case, experts from different domains (such as oenology and microbiological engineering for 496 

the wine use case) explored model simulation data using a scatterplot matrix (SPLOM)-based 497 

tool (Cancino et al., 2012) projected on a large shared tactile display (84'' screen, Figure 6). 498 

Videos of two exploration sessions were recorded per use case and followed the thematic 499 
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analysis method (Braun, 2012) to analyze them. Findings from this analysis were reported by 500 

Boukhelifa et al., (2019). Figure 7 showed different types of scenarios that were identified.  501 

Figure 7 about here 502 

The visualization tool domain experts used to explore their model simulations data had four 503 

key functionalities: (a) visual query selection to help experts narrow down their search to 504 

important dimensions and value ranges; (b) a history bookmark to keep track of previous 505 

views (scatterplots) they visited; (c) Favorite views album to store interesting scatter plots and 506 

findings; (d) and a dimension editor to manually specify new dimensions using a 507 

mathematical formulae. Alternatively, combined dimensions can be generated automatically, 508 

using an interactive evolutionary algorithm, which learns from user interactions and feedback. 509 

Log data events were collected pertaining to user visits of scatterplots in the SPLOM, whether 510 

this originates directly in the SPLOM through cell selection, or indirectly by retrieving views 511 

from the favorites store or the bookmark history.  512 

A preliminary analysis of the scatterplot visits data showed that the manually identified 513 

analysis scenarios often corresponded to localized areas of the search space (Figure 8). For 514 

instance, for the wine use case, scenario 1 focused on the changes in the amount of initial 515 

nitrogen (N0) at five different stages of the wine fermentation process (shown as a vertical 516 

line of colored blue dots for each stage: T0, T25, T50, T75 and T100). In scenario 2, experts 517 

examined the relationship between N0 and a target aromatic combination that they entered 518 

manually, also with regards to the different stages of fermentation (horizontal line of colored 519 

green dots). These initial findings inspired the next analysis step where the scatterplot visits 520 

data was used to cluster user interactions into different analysis scenarios.  521 

Figure 8 about here 522 
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In the following section, clustering and machine learning methods are used to detect those 523 

scenarios automatically from a sequence of user events (scatterplot visits data). Two 524 

unsupervised methods were implemented: a clustering method based on a spatiotemporal 525 

similarity measure, and a Hidden Markov Model HMM to detect transitions between 526 

scenarios.  The ground truth in both cases is the manually labelled video dataset. To evaluate 527 

the proposed methods, the existing notions of Type I and Type II classification errors were 528 

used. However, since the scenarios are chronologically structured, changes of scenarios are 529 

more important than knowing the exact identity of a class, say whether it is scenario ‘1’ 530 

instead of ‘3’. 531 

4.3 Spatiotemporal distances to cluster user interaction events 532 

To cluster the scatterplot visits events into different scenarios, there are three steps to follow: 533 

(i) Data preparation: Since the datasets the experts explored are trade-off datasets and 534 

describe biological processes that are dynamic in nature (fermentation and fertilization 535 

processes), the data dimensions are grouped into three generic types : objective dimensions 536 

(quantities experts would like to optimize, such as through minimization or maximization), 537 

parameters (model parameters experts can control or modify) and trajectories (a subset of 538 

parameters whose values change over time). 539 

(ii) Distance calculation: The distance is then calculated between area clicks on the SPLOM 540 

(cells) using the Jaccard distance. The result of this step is a distance matrix.  541 

(iii) Clustering: The DBSCAN algorithm is applied to the distance matrix from step ii. The 542 

rationale behind this method is to group user interactions with the SPLOM that are close both 543 

spatially (based on the location of cells in the SPLOM) and temporally (based on the time 544 

elapsed between two selection events). 545 
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Figure 9 (bottom timeline) shows the results of the clustering method for the wine use case. 546 

The top timeline shows the ground truth data. Each dot represents a user event (a scatterplot 547 

selection or visit) and color corresponds to scenarios S1-14 of this use case. The clustering 548 

method detects more scenarios than there are in the labelled dataset. When considering 549 

scenario transitions only, the method correctly detects 61% of scenario transitions for the 550 

wine use case, and only 55% of transitions for the wheat use case. An example of a transition 551 

that is correctly detected, is between scenarios 5 and 6 in Figure 9. Cases where the clustering 552 

method does not perform well are typically the shorter scenarios where domain experts 553 

quickly explore different areas of the search space, more likely to confirm previous 554 

knowledge. Another limitation of the clustering method concerns step (i) for the data 555 

preparation. In this step, data dimensions are grouped into three types that are identified as 556 

pertinent for the different use cases, and more generally when exploring trade-off datasets for 557 

dynamic systems. The clustering method is thus highly dependent on the order of dimensions 558 

in the SPLOM, yet this order is arbitrary. Moreover, the adopted timescale is also arbitrary 559 

and may have a big impact on the clustering performance. 560 

Figure 9 about here 561 

 562 

An alternative non-supervised clustering method that addresses these limitations is proposed in 563 

the next section. 564 

4.4 A Hidden Markov model to detect scenario transitions 565 

Hidden Markov Models HMMs are used in many real-world applications to model sequences 566 

of events where the probability of each event depends solely on the state of the previous event 567 

(Baum et al., 1966). The basic assumption which underpins HMMs is that observations are 568 

created by hidden states whose successions depend on transition probabilities. In 569 
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unsupervised use cases, studying the observations helps to find the hidden states or patterns in 570 

the data. For modelling purposes, it is assumed that the hidden states correspond to the 571 

analysis scenarios, and the observations (i.e. scatterplot visits events) fall into a Markov 572 

system. The number of hidden states in this study is the hyper parameter, which is set to two 573 

as it corresponds, conceptually, to whether or not there is a “change” or “shift” in the 574 

exploration strategy or search direction. 575 

To build HMM, two types of information are needed, which are extracted from the user 576 

interaction logs: the time-delta between observations, and the row and column combination 577 

for each scatterplot visited during the exploration. To summarize the performance of the 578 

HMM, Figure 10 presents the confusion matrix. Since the goal is to detect transitions between 579 

scenarios, rather than the scenario labels themselves, the shape of the path in Figure 10 is 580 

more important than the inferred labels (the closer to the diagonal the better). Figure 10 shows 581 

that change of scenarios are well detected for ground truth labels between 5 and 9. 582 

Overall,  the obtained HMM model is able to detect scenario transitions in 91% of cases for 583 

the wine use case, and 75% for the wheat use case. 584 

Figure 10 about here 585 

 586 

4.5 Visualizing the machine-learned storyline 587 

Besides modelling user exploration into sequences of scenarios, the results of the HMM 588 

method can be used by the analysts during or after the exploration. To design this type of 589 

visualization, user-centered design methodologies are used (Norman and Draper, 1986) to 590 

explore the design space and to gather user requirements. For example, three brainstorming 591 

sessions were organized with nine participants in total. Each session lasted roughly two hours. 592 

The first two sessions had five participants with design, HCI, or visualization background, 593 
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and the third session had four participants from an agronomy research centre in France. 594 

Participants were either researchers or PhD students.  These brainstorming sessions were 595 

organized into two parts. First, participants were trained to use the SPLOM-tool, similar to 596 

what was proposed in previous work (Boukhelifa et al, 2017a). An ideation part followed in 597 

which participants brainstormed about new features they would like to see implemented to 598 

support sensemaking of their exploration history. The design ideas were collected and 599 

organized using affinity diagramming and thematic analysis. The results are the following 600 

high-level user requirements which are ordered by how frequently they were mentioned by 601 

the participants: (1) story-tell and author; (2) highlight interesting views; (3) show trends; (4) 602 

preview and replay; (5) filter views; (6) compare views; (7) group views; (8) show overview 603 

and summary; (9) annotate; (10) save and reuse; (11) steer; (12) initialize; and (13) learn and 604 

update. 605 

The most frequent user requirements mentioned during the brainstorming sessions 606 

corresponded to the storytelling and authoring category. Here participants were interested in 607 

tools to automatically create a storyboard of their past exploration, and to annotate it such as 608 

by adding tags to places where the exploration branched out, or where they found an 609 

important insight. Other participants suggested a git-like visualization that gives both an 610 

overview of visited cells and possible branching paths. Inspired by those requirements and 611 

findings from previous work (Boukhelifa et al., 2019), a timeline of past exploration, called a 612 

“storyline”, has been implemented, where nodes are events linked through time. Figure 11 613 

shows a preliminary result of this provenance visualization integrated into an existing 614 

SPLOM-tool as a widget, which can be enabled on demand. Analysis scenarios were 615 

automatically identified using the HMM method and were then visualized using color. 616 

Figure 11 about here 617 
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For the implementation of the storyline visualization, a client-server architecture provided by 618 

Flask (a Python web framework) was used. The server side handled the logging and 619 

modelling components described earlier. User interactions with the SPLOM were collected, as 620 

well as the history bookmark and the favorites views album, which were stored in a text file. 621 

Using those events (or observations), a HMM detects the hidden states (i.e., the scenarios). 622 

Since an unsupervised approach was adopted, the model was applied each time a new set of 623 

events are recorded to our log file. The update rate for the timeline widget was arbitrarily set 624 

to five minutes, but the user could request an update at any time by pressing the update 625 

button.  The visualization and rendering were handled on the client side, which implemented a 626 

storyline widget. To facilitate the sharing of the tool, this widget was integrated into a web-627 

version of the SPLOM-Tool. The storyline widget was composed of linked nodes; each node 628 

corresponded to a scatterplot selection event, and its color corresponded to a detected 629 

scenario. Clicking on the node rendered the corresponding scatterplot in the zoomed in area of 630 

the user interface, and highlighted that cell in the SPLOM through brushing and linking. Since 631 

the storyline visualization was not the primary task for domain experts, it was placed at the 632 

bottom of the user interface to avoid interfering with the main exploration tasks. 633 

The storyline visualization provided an overview of how domain experts structure their 634 

exploratory analysis, and could be helpful for self-reflection and tracking progress. However, 635 

more work would be needed to confirm whether indeed such history visualizations 636 

encouraged reflection and resulted in a change in exploration strategies. There were three 637 

main limitations to this work. First, the log data came from two case studies where domain 638 

experts explored trade-offs between the multiple dimensions (or objectives). The ML 639 

approach needed to be tested with more use cases and different types of datasets. Second, the 640 

visualization tool used in the previous case study relied on a SPLOM representation of the 641 

data. The way domain experts structured their exploration might depend on how the tool's 642 
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user interface was organized. However, the machine learning method can be generalized and 643 

applied to other visualization types, since it only requires information about the data 644 

dimensions consulted during the exploration and the time of viewing. Third, although cases of 645 

branching were observed during the exploration, where experts explored an alternative trade-646 

off subset, the automatic method did not detect multiple, parallel or branching storylines. The 647 

machine-learned storyline visualization can be improved in future by detecting the branching 648 

and different types of scenarios, and by allowing the experts to augment these storylines with 649 

their own annotations, thus integrating their expertise and the insights gained during the 650 

exploration.  651 

5. Conclusions and perspectives 652 

 653 

This chapter offered several viewpoints and approaches for machine learning techniques, 654 

learning from the data, expert knowledge and interactions. It showed that the generalization 655 

capabilities of some ML models highly depended on the quality of the dataset, the larger the 656 

better. However, even a simple expert’s choice for building a good quality training set 657 

(representativeness, extrapolation ability) makes a considerable difference. It also showed that 658 

expertise could be made explicit (in the form of a graph model and variable discretization) 659 

and embedded into a complex model to build an efficient decision-making system. Going 660 

further, the implicit expertise, i.e., non-conscious skills or knowledge difficult to explain 661 

verbally, could be fed into a ML process, thanks to interactive visualization. The analysis of 662 

the system proposed, a SPLOM-based visualization tool, led to the design of a new tool, to 663 

assist exploratory data analysis. The proposed storyline visualization  helps domain experts 664 

self-reflect and track their progress when analyzing the complex model simulations. 665 
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The key message of the work presented in this chapter is that human expertise can be 666 

efficiently -- and finely -- nested into data-driven machine learning schemes, which is 667 

particularly beneficial in the case of sparse or uncertain data. The three examples presented 668 

above outline future components of such interactive systems. This approach is relevant 669 

specifically for food-related systems, where at the same time (i) some data still remain 670 

unusable, expensive and time consuming to acquire, (ii) human expertise, skills and know-671 

how are rich and numerous, but often implicit, and (iii) there is a strong need for efficient 672 

predictive models, decision support systems and knowledge preservation. 673 
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Figures 912 
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 921 

 922 

Figure 1 : Three time series describing the change of color (c) and weight loss (wl) during 923 
biscuit baking. It is noticeable how, even though the three datasets have been collected under 924 

the same conditions, there are relevant differences in the values. 925 
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 928 

 929 

Figure 2 : Log visualization widget prototype (integrated into the visualization tool) showing 930 
a single machine-learned storyline. Nodes indicate scatterplot selections and colour indicates 931 

scenarios. 932 

 933 

 934 

  935 
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 936 

Figure 3: Models’ predictions versus measured values for test samples, unseen during the 937 
training process. The model is able to remarkably fit the data, even for parts that might be 938 
naively believed to be noisy. The scale is different from the previous plots, as all variables 939 

have been normalized. 940 
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 941 

 942 

 943 

Figure 4 : Network structure describing the interaction between the climatic variables and the 944 
output variables: physicochemical and sensory variables quoted x in this figure. 945 

 946 

 947 

  948 
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 949 

 950 

 951 

Figure 5: the dynamical representation of the DBN. It is represented in the form of two 952 
generic slices that can be developed on several slices representing the different step times. 953 

DBNs assume the first-order Markov property which means that the parents of a variable in 954 
time slice t must occur in other slices and the conditional probabilities are time-invariant. The 955 
slice representing the time t (t measurements) is concerned at the beginning of the iterations 956 

by variables that are measured at time t0. The consecutive slice: time t+1 is dedicated to 957 
predictions. If several slices are added, for example t, t+1 and t+2, it starts at t0 with an 958 

initialization where variables are measured, followed by two slices predicted t+1 and t+2, 959 
with t+2 predicted on the basis of the prediction of t+1. 960 
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 967 

 968 

 969 

Figure 6 : The scatterplot matrix visualization tool used in our study (Boukhelifa et al., 2019; 970 
Boukhelifa et al., 2020). 971 
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 973 

 974 

Figure 7 : User exploration scenario sequences and types for four sessions with domain 975 
experts, as identified from manual video coding and qualitative analysis. 976 
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 978 

 979 

Figure 8 : The first eight analysis scenarios of the wine use case S1-8 as identified from 980 
manual video coding. Each  grid corresponds to one scenario, rows and columns are data 981 

dimensions D1-n including any combined dimensions (created manually or automatically). 982 
Circles indicate scatterplot visits, and their size the frequency of visits. Analysis scenarios are 983 

usually focused on one area of the search space. 984 
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 986 
 987 

 988 

Figure 9 : Results of clustering (bottom timeline), top timeline is the ground truth. Dots are 989 
scatterplot selections, and color corresponds to scenarios S1-14. 990 
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 992 

 993 

Figure 10 : Confusion matrix for the Hidden Markov Model, for the wine use case. 994 
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 996 

 997 

 998 

Figure 11 : Log visualization widget prototype (integrated into the visualization tool) showing 999 
a single machine-learned storyline. Nodes indicate scatterplot selections and colour indicates 1000 

scenarios. 1001 
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 1003 

Tables 1004 

 1005 

 1006 

Table 1: Summary of the 16 time series on biscuit cooking gathered by United Biscuits. 1007 
During the experiments, the temperature in different zones of the oven is changed, in order to 1008 

explore several possible behaviors. 1009 

ID Training? Heat flux (W/m2) 
z1 z2 z3 z4 z5 

std-1 yes 2500 3500 4000 4000 2000 
std-2 yes 2500 3500 4000 4000 2000 
stdval no 2500 3500 4000 4000 2000 
T1-1 yes 4000 3500 4000 4000 2000 
T1-2 yes 4000 3500 4000 4000 2000 
T1val no 4000 3500 4000 4000 2000 
T2-1 yes 2500 3500 4000 4000 3000 
T2-2 yes 2500 3500 4000 4000 3000 

 1010 
ID Training? Heat flux (W/m2) 

z1 z2 z3 z4 z5 
T3-1 yes 2500 3500 6000 4000 2000 
T3-2 yes 2500 3500 6000 4000 2000 
T3val no 2500 3500 6000 4000 2000 
T4-1 yes 2500 3500 4000 6000 2000 
T4-2 yes 2500 3500 4000 6000 2000 
T5-1 yes 2500 5000 1000 5000 2000 
T5-2 yes 2500 5000 1000 5000 2000 
T5val no 2500 5000 1000 5000 2000 
 1011 

  1012 
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 1013 

Table 2: Results of the leave-one-out cross-validation. 1014 

ID R2 MSE ID R2 MSE 
std-1 0.9557 0.0491 T3-1 0.6644 0.2535 
std-2 0.9789 0.0251 T3-2 0.4579 0.3678 
stdval 0.9785 0.0280 T3val 0.0810 1.1728 
T1-1 0.9592 0.0279 T4-1 0.4740 0.5685 
T1-2 0.5561 0.4572 T4-2 0.9718 0.0311 
T1val 0.4674 0.5844 T5-1 0.9584 0.0497 
T2-1 0.6942 0.2956 T5-2 0.9859 0.0186 
T2-2 0.1237 0.8653 T5val 0.9645 0.0241 

 1015 

 1016 

  1017 
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 1018 
 1019 
 1020 

Table 3: Discretization of the physico-chemical variables, fixed by experts for the variation 1021 
var_X and calculated by optimization for the variable X. 1022 

 1023 
 1024 

 1025 

 Discretization variable X Discretization Var_X 
s (sugar) ● Class	0	=	[[∞,156.9],	

● Class	 1	 =	
[156.9,182.86]	

● Class	 2	 =	
[182.86,201.8]	

● Class	3	=	[201.8,210]	
● Class	5	=	[210,220]	
● Class	6	=	[220,230]	
● Class	7	=	[230,240]	
● Class	8	=	[240,+∞]],	

● Classe 0 = [0, 12], 
● Classe 1 = [12, 20] 
● Classe 2 = 	[20, 35] 
● Classe 3 = [35, +∞] 

ac (total acidity) ● Class 0 = [−∞, 5.47] 
● Class 1 = [5.47, 6.33] 
● Class 2 = [	33, 7.94] 
● Class 3 = [7.94, +∞] 

● Class 0 = [−∞,−1.5] 
● Class 1 = [−1.5, −1] 
● Class 2 = [−1,−0.6] 
● Class 3 = [−0.6, 0] 

ac_m (malic acid) ● Classe 0 = [−∞, 3.66] 
● Classe 1 = [3.66, 4.6] 
● Classe 2 =	[4.6, 5.68] 
● Classe 3 = [5.68, 6.88] 
● Classe 4 = [6.88, +∞] 

● Class 0 = [−∞,−2.5] 
● Class 1 = [−2.5, −1.5] 
● Class 2 = 

	[−1.5, −0.75] 
● Class 3 = [−0.75,−0.5] 
● Class 4 = 	[−0.5, 0] 

 1026 

  1027 



49 

Table 4: Results of prediction for the four variables for two time steps of prediction 1028 
(anticipation of two weeks): 1 and 2, labeled X_1 and X_2. RMSE tolerance: for s: 12g/l; for 1029 

ac: 0.5 g/l; for ac_m: 0.5 g/l 1030 

 1031 

 1032 

Variable RMSE RRMSE % 
ac = [3.4,12.5];   ac_m = [1.7,10] ;   s = [144,271.8] 

ac_1 (g/l) 0.536 6 
ac_2 (g/l) 0.648 7 

ac_m_1 (g/l) 0.825 9 
ac_m_2 (g/l) 0.867 10 

s_1 (g /l) 11.37 8 
s_2 (g/l) 12.87 10  

 1033 
Variable RMSE Abs(Pred-Obs)<0.5 

% 
Abs(Pred-Obs)<0.25 

% 
IntGloAro_1 0.73 47.5 30 
IntGloAro_2 0.52 72.5 50 
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 1036 


