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Application of numerical bifurcation tracking strategy to blade-tip/casing
interactions in aircraft engines

C. Delbé1, Y. Coläıtis1, A. Batailly1

Abstract
Building on the regularized-Lanczos harmonic balance method, a previously developed frequency method, this paper
presents a numerical bifurcation tracking strategy dedicated to high-dimensional nonlinear mechanical systems. In order
to demonstrate its applicability to industrial applications, it is here used to obtain original results in the context of
blade-tip/casing interactions in aircraft engines. The emphasis is put specifically on the tracking of predicted limit point
bifurcations as key parameters—such as the amplitude of the aerodynamic forcing applied on the blade, the friction
coefficient or the operating clearances—vary. Overall, presented results underline that the employed frequency method
is well-suited to tackle the numerical challenges inherent to such computations on high-dimensional systems. For the
mechanical system of interest, the industrial fan blade NASA rotor 67, it is shown that the application of the presented
strategy yields an efficient way to identify isolated branches of solutions, which may be of critical importance from a
design standpoint.

Keywords
harmonic balance method; blade-tip/casing contacts; rotor/stator interaction; bifurcation tracking; isolated branches of
solutions
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Application d’une stratégie numérique de suivi de bifurcation au contact
aube/carter dans les moteurs d’avion

C. Delbé1, Y. Coläıtis1, A. Batailly1

Résumé
S’appuyant sur la méthode de l’équilibrage harmonique avec filtrage de Lanczos et régularisation de la loi de contact,
une méthode déjà présentée dans la littérature, cet article présente une procédure de suivi de bifurcation adaptée à des
systèmes non linéaires de grande dimension. Afin de démontrer la pertinence de cette procédure à des configurations
industrielles, il est montré que son application à un cas de contact aube/carter dans les moteurs d’avion permet d’obtenir
des résultats originaux. Une attention particulière est portée au suivi des points limites en faisant varier certains
paramètres clé du système (tels que l’amplitude du forçage aérodynamique, le coefficient de frottement ou encore les
jeux en fonctionnement). Dans l’ensemble, les résultats présentés démontrent que la procédure permet de remédier à
certains défis numériques inhérents aux systèmes non linéaires de grande dimension. Plus précisément, dans le cadre de
son application sur une aube de soufflante industrielle (aube NASA rotor 67), cette procédure permet de détecter de
nouvelles branches de solutions isolées pouvant être d’un grand intérêt pour les concepteurs.

Mots-clés
méthode de l’équilibrage harmonique; contacts aube/carter; interaction rotor/stator; suivi de bifurcation; branches de
solutions isolées
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1 Introduction

In a competitive global economy, the evolution of environmental norms calls for innovative design strategies. For
aircraft engine manufacturers in particular, this implies pushing the boundaries of structural design so as to account
for nonlinear structural interactions that have long been mitigated at the expense of the engine overall efficiency. Over
the past years, considerable research efforts were made to better understand, model and predict nonlinear structural
interactions, be it at the blade/underplatform damper [1, 2, 3], the rotor/bearing [4, 5] or the blade-tip/casing [6, 7,
8, 9, 10, 11, 12, 13, 14, 15] interfaces. Because these nonlinear interactions directly impact the modal properties of
structural com- ponents, it is essential to account for them in early design stages.

Among the aforementioned nonlinear interfaces, nonlinear phenomena resulting from contacts along the blade-
tip/casing interface are still motivating researchers to develop solution methods [15, 16, 17] and full-scale experimental
facilities [7, 10, 12, 14, 18]. Indeed, the severity of contact events at this interface—related to the combination of very
high relative speeds, extreme thermal conditions and complex wear phenomena—yields a variety of sophisticated
interactions that may involve a single blade, a full bladed disk and even the surrounding casing.

Recently, a numerical frequency method, namely the regularized-Lanczos harmonic balance method (RL-HBM),
has been developed and successfully applied to the qualitative analysis of blade-tip/casing interactions [15]. While
obtained results were shown to be perfectly in line with those obtained with time integration techniques, the
RL-HBM is able to efficiently predict nonlinear resonances, which may be computationally challenging with time
integration techniques. It was also later shown that the RL-HBM is well suited to efficiently assess the stability of
predicted solutions and detect bifurcation points [19]. Knowing the location of bifurcation points is an essential
piece of information to determine the stability of the different branches of nonlinear solutions and therefore knowing
the stability limits of the system. There are several types of bifurcations, each associated with a qualitative change
in the characteristics of the system of interest. (1) Limit Point (LP) bifurcations, where the nonlinear frequency
response curve (NFRC) features a vertical tangent, refer to a change in stability between two solution branches. (2)
Branch Point (BP) bifurcations refer either to the loss of stability of a branch of solutions and to the birth of a new
stable branch, or conversely. Finally, (3) Neimark-Sacker (NS) bifurcations are associated with a transition from
periodic to quasiperiodic regimes.

Even without carrying out a stability analysis, in the context of a design process, the computational cost of
frequency analyses for different values of key parameters—be it the amplitude of the aerodynamic forcing applied on
the blade, the friction coefficient or the operating clearances for instance—may still constitute a significant roadblock.
From a general perspective, the idea of assessing the influence of a given parameter on nonlinear frequency response
curves has long been investigated. In fact, bifurcation points vary in a complex way in the global parametric space
of resolution and, in order to increase the knowledge of the stability limits, it would therefore be relevant to track
the bifurcation points in a parametric space augmented by a second control parameter. To this end, numerical
methods have been developed to track specific solutions [20] in a parametric space, such as limit point (LP) [21, 22,
23] and other types of bifurcations [21, 22, 24]. It is therefore possible to track a bifurcation in the parametric space
depending on a given physical parameter such as the amplitude of the aerodynamic forcing applied on the blade, the
friction coefficient or the operating clearances.

Bifurcation tracking is here extended to the RL-HBM. It is underlined that the RL-HBM (that features contact
regularization and Lanczos filtering of the contact forces) is particularly well-suited for bifurcation tracking and
the detection of isolated branches of solutions. It provides an efficient numerical framework in which original
blade-tip/casing interaction phenomena are numerically predicted. To the best of the authors’ knowledge, it is the
first time that bifurcation tracking is successfully applied on industrial systems in the context of blade-tip/casing
contact problems. This paper specifically focuses on the tracking of LP bifurcations, under the assumption that
a blade’s response to blade-tip/casing contacts is periodic. In the literature, proposed methodologies for such
bifurcation tracking are usually applied to low-dimensional academic systems, featuring 1 or 2 degrees of freedom [21,
22, 23, 25]. While such systems may exhibit a very rich dynamics, they are associated to fast computation times
and the application of bifurcation tracking on these systems usually does not yield the same numerical challenges
as high-dimensional systems. That is the reason why, attention is paid to underline that the proposed strategy is
well-suited for an industrial application. Indeed, the present article provides results obtained from the application of
bifurcation tracking to a 39-dof (including 27 nonlinear dof) reduced-order model of an industrial fan blade (NASA
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Rotor 67, which finite element mesh contains more than 105 dof). Section 2 presents the methodology of the HBM
and section 3 that of the bifurcation tracking. Section 4 presents the model of interest and the results obtained are
presented in section 5.

2 Numerical framework

A n-degree of freedom (dof) nonlinear mechanical system (S), characterized by its mass, damping and stiffness matrix,
denoted respectively M, C and K (all of dimensions n× n) is considered. For a given time t, the n-dimensional
column vectors of displacement, nonlinear forces and external forces are respectively denoted x(t) = [x1, . . . , xn],
fnl(ω,x, ẋ) = [fnl,1, fnl,2, . . . , fnl,n] and f ext(ω, t) = [fext,1, fext,2, . . . , fext,n]. The normalized equation of motion
reads:

α

β2
Mẍ(t) +

α

β
Cẋ(t) + αKx(t) + fnl (ω,x, ẋ) = f ext (ω,t) (1)

The space and time normalization coefficients, α and β, are calculated such that ∥αx(t)∥ ≃ 1 and ω/β ≃ 1.
Derivatives with respect to time t are marked with overdots.

2.1 Harmonic balance method

The harmonic balance method (HBM) [26, 27] is a frequency method to solve the nonlinear differential system (1). It
relies on the assumption that the solution x(t) is periodic and may thus be developped into Fourier series. Therefore,
x(t), fnl(ω,x, ẋ) and f ext(ω,t) can be written:

x(t) ≃ 1

2
a0 +

H∑
j=1

[aj cos (jωt) + bj sin (jωt)]

fnl(ω,x, ẋ) ≃
1

2
anl
0 +

H∑
j=1

[
anl
j cos (jωt) + bnlj sin (jωt)

]

f ext(ω,t) ≃
1

2
aext
0 +

H∑
j=1

[
aext
j cos (jωt) + bextj sin (jωt)

]
(2)

with aE
j and bEj , E ∈ {.,nl, ext}, the n-dimensional column vectors of real Fourier coefficients aE,ij and bE,ij for each

dof i ∈ [1, n]. The 2H + 1-dimensional row vector of the Fourier basis associated with the decomposition (2) is
introduced:

TH =

[
1

2
, cos (ωt) , sin (ωt) , . . . , cos(Hωt), sin(Hωt)

]
(3)

Time quantities x(t), fnl(ω,x, ẋ) and f ext(ω,t) are written in the frequency domain using the Kronecker product
⊗:

x(t) = (TH ⊗ In) x̃

fnl(ω,x, ẋ) = (TH ⊗ In) f̃nl

f ext(ω,t) = (TH ⊗ In) f̃ ext

(4)

where x̃, f̃nl and f̃ ext are column vectors containing the nH = n(2H + 1) coefficients of the Fourier decomposition:

x̃ = [a0,a1, b1, . . . ,aH , bH ]
⊤

f̃nl =
[
anl
0 ,anl

1 , bnl1 , . . . ,anl
H , bnlH

]⊤
f̃ ext =

[
aext
0 ,aext

1 , bext1 , . . . ,aext
H , bextH

]⊤ (5)
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Velocity and acceleration vectors, respectively ẋ(t) and ẍ(t), are also calculated from x̃ and the derivation operator
from the base TH , denoted ∇:

∇ = diagblock (0,∇1, . . . ,∇j , . . . ,∇H) (6)

with ∇j , the first derivation matrix of the jth harmonic:

∇j = j

[
0 1

−1 0

]
for j ∈ J1, HK (7)

hence:

ẋ(t) = ω [(TH∇)⊗ In] x̃

ẍ(t) = ω2
[(
TH∇2

)
⊗ In

]
x̃

(8)

Rewriting Eq.(1) with frequency variables and applying a Galerkin procedure [28, 29] to eliminate the time dependence
of the approximation functions, a nonlinear algebraic system of nH equations is obtained:

r(x̃, ω) = Z(ω)x̃+ f̃nl(x̃)− f̃ ext(ω) = 0nH
(9)

with Z(ω) the dynamic stiffness matrix of dimension nH × nH :

Z(ω) = ω2∇2 ⊗M+ ω∇⊗C+ I2H+1 ⊗K (10)

For the sake of computational efficiency, a classical block condensation involving the Schur complement is used to
reduce the size of the algebraic system (9) to qH = q(2H + 1) where q is the number of nonlinear dof. The nonlinear
reduced algebraic system of qH equations whose qH unknowns are the Fourier coefficients contained in the vector
x̃nl is therefore written:

R(x̃nl, ω) = Zred(ω)x̃
nl + f̃nl,red

(
x̃nl, ω

)
− f̃ ext,red(ω) = 0qH (11)

2.2 Arc-length continuation

The computation of the nonlinear frequency response curve (NFRC) over a range of pulsation ω requires a continuation
procedure. In this paper, the arc-length continuation technique based on a prediction-correction scheme is used
[15]. The arc-length continuation consists in imposing that the arc length between the converged solution Xi−1 and
the prediction Xk=0

i is equal to δs during the correction step. Thus, the control parameter ω therefore becomes an

unknown of the problem and the augmented unknown vector becomes X =
[
x̃nl, ω

]⊤
.

2.2.1 Prediction

The calculation of a solution Xi relies on an iterative Newton-Raphson procedure, an initial estimate X0
i is therefore

required. The latter can be calculated by different prediction techniques [15], the secant prediction is here considered.
For i ≥ 2, the prediction of the solution i is calculated from the converged solutions i− 1 and i− 2:

X0
i = Xi−1 + δs

∆Xi−1

∥∆Xi−1∥
with ∆Xi−1 = Xi−1 −Xi−2 (12)

For X0 =
[
x̃nl
0 , ω0

]⊤
, the prediction X0

0 is chosen such as ω0 = ωstart and x̃nl
0 = 0qH or, in the case where there

exists a guess for x̃nl
0 , this guess may be used as a prediction. For X1 =

[
x̃nl
1 , ω1

]⊤
, the prediction results from the

converged solution X0. So it comes X0
1 =

[
x̃nl
0 , ω0 + δω

]⊤
where δω is the pulsation increment.
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2.2.2 Parameterization

Given the control parameter ω, the parameterization equation P(x̃nl, ω, s) = 0 makes it possible to define the
system (13) consisting of qH + 1 equations:{

R(x̃nl, ω) = 0qH

P(x̃nl, ω, s) = 0
(13)

Xk
i are therefore located on the hypersphere RqH+1 of radius δs centered in Xi−1. Thus, the converged solution

Xi is located at the intersection of the curve R(x̃nl, ω) = 0qH and the hypersphere RqH+1 of radius δs centered at
Xi−1 [15].

P
(
x̃nl,k
i , ωk

i , s
)
=
∥∥∥x̃nl,k

i − x̃nl
i−1

∥∥∥2 + (ωk
i − ωi−1

)2 − δs2 = 0 (14)

2.2.3 Correction

This step corresponds to the solution of the nonlinear algebraic system (13). Xk+1
i is calculated from Xk

i using an
iterative Newton-Raphson procedure such that Xk+1

i = Xk
i + δXk

i with:[
R,x̃nl

(
Xk

i

)
R,ω

(
Xk

i

)
P⊤
,x̃nl

(
Xk

i , s
)

P,ω

(
Xk

i , s
) ] δXk

i =

[
−R

(
Xk

i

)
−P

(
Xk

i , s
) ] (15)

The prediction Xk=0
i obtained by the secant method (2.2.2) provides a suitable initial guess for the Newton-Raphson

procedure. The stopping criterion (16) relating to the approximation error R(x̃nl, ω) makes it possible to end the
iterative process. The tolerance ε will be chosen depending on the model studied.∥∥∥R(x̃nl, ω

)∥∥∥ ≤ ε (16)

2.3 Alternating Frequency/Time procedure

2.3.1 Nonlinear forces

In the nonlinear algebraic system (11), the vector of nonlinear forces f̃nl,red

(
x̃nl, ω

)
must be determined. To do so,

the Alterning Frequency/Time (AFT) [30] procedure is adopted.

First, the frequency variable x̃nl is mapped onto the time domain by means of an inverse Discrete Fourier
Transform (DFT) [31] with the Γ operator [22, 23, 29]. This allows to compute the time variables x(t) and ẋ(t). A
period is discretized into N uniformly distributed instants τi = ωti = 2iπ/N with i ∈ J0 , N − 1K.

Γ =

Iq ⊗


1/2

.

.

.

1/2

 Iq ⊗


cos (τ0)

.

.

.

cos (τN−1)

 Iq ⊗


sin (τ0)

.

.

.

sin (τN−1)

 . . .

. . . Iq ⊗


cos (Hτ0)

.

.

.

cos (HτN−1)

 Iq ⊗


sin (Hτ0)

.

.

.

sin (HτN−1)




(17)

hence

x(t) = Γx̃nl

ẋ(t) = ωΓ (∇⊗ Iq) x̃
nl

(18)

Knowing the time variables x and ẋ, the qN -vector fnl,red(x, ẋ), containing the N steps of the nonlinear forces for

each of the q nonlinear dof, is calculated analytically. Finally, the frequency variable f̃nl,red

(
x̃nl, ω

)
is obtained

Delbé et al. 6

mailto:clement.delbe@polymtl.ca


Application of numerical bifurcation tracking strategy to blade-tip/casing interactions in aircraft engines

from the time variable fnl,red(x, ẋ) using a forward DFT with the Γ−1 operator:

Γ−1 =
2

N



Iq⊗ [1 . . . 1]

Iq⊗ [cos (τ0) . . . cos (τN−1)]

Iq⊗ [sin (τ0) . . . sin (τN−1)]
...

Iq⊗ [cos (Hτ0) . . . cos (HτN−1)]

Iq⊗ [sin (Hτ0) . . . sin (HτN−1)]


(19)

hence

f̃nl,red = Γ−1fnl,red (20)

2.3.2 Jacobian and derivatives

In order to compute δXk
i , one must solve the algebraic system (15) in which appears the Jacobian matrix R,x̃nl

(
Xk

i

)
:

R,x̃nl

(
Xk

i

)
=

∂R

∂x̃nl

(
Xk

i

)
= Zred(ω) +

∂f̃nl,red

∂x̃nl

(
Xk

i

)
(21)

To compute R,x̃nl , the derivative ∂f̃nl,red/∂x̃
nl must be evaluated. The chain rule and the use of the AFT matrix

Γ−1 and Γ yield the expression:

∂f̃nl,red

∂x̃
= Γ−1 ∂fnl,red

∂x
Γ+ Γ−1 ∂fnl,red

∂ẋ
Γ (ω∇⊗ Iq) (22)

The Jacobians of the time variable fnl,red with respect to x and ẋ, respectively denoted
∂fnl,red

∂x
and

∂fnl,red

∂ẋ
,

are calculated analytically.
The derivative with respect to ω that appears in (15) is computed as follows:

R,ω

(
Xk

i

)
=

∂R

∂ω

(
Xk

i

)
= Zred,ω(ω) +

∂f̃nl,red

∂ω

(
Xk

i

)
− ∂f̃ ext,red

∂ω

(
Xk

i

)
(23)

3 Bifurcation tracking

The bifurcation tracking methodology for LP is presented in this section. First, in the subsection 3.1, the initial
algebraic system resulting from the HBM is augmented in order to characterize the LP. Then, in the section 3.2, the
continuation procedure which will make it possible to track LP is detailed.

3.1 Characterization of bifurcation points

For a given solution X =
[
x̃nl, ω

]⊤
, the condition R(x̃nl, ω) = 0qH is met. This solution is regular if the Jacobian of

the augmented system R,X verifies: rank(R,X) = neq. Should this condition not be verified, the solution is said
singular and corresponds to a bifurcation point. In particular, the identification of limit point relies on the following
test function:

τ1LP = det(R,x̃nl) for R⊤
,ωϕ ̸= 0 (24)

The Jacobian matrix R,x̃nl is therefore deficient of rank 1 and admits a zero eigenvalue associated with an eigenvector
noted ϕ. Because the computation of det(R,x̃nl) may be numerically challenging for high-dimensional systems,
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several alternative techniques have been developed [21, 23, 25]. In this paper, the selected method [21, 25] consists
in augmenting the system of equations such that:

R(y) =


R(x̃nl, ω)

R,x̃nl

(
x̃nl, ω

)
ϕ

ϕ⊤ϕ− 1

 = 02qH+1 (25)

where the first equation relates to the equilibrium of the system, the second equation characterizes the limit point
and the last one normalizes the eigenvector ϕ. The unknown vector of the augmented system (25) is:

y =

 x̃nl

ϕ

ω

 (26)

The solution vector ϕ at the limit point is the eigenvector associated with the zero eigenvalue of the Jacobian matrix.
While this formulation significantly increases the dimension of the system, its solution is less prone to numerical
instabilities.

System (25) is solved by means of a nonlinear Newton-Raphson solver:

yk+1
i = yk

i +∆yk
i and Rk

,y∆yk = −Rk (27)

with

Rk = R
(
yk
)

and Rk
,y = R,y(y

k) =
∂R(yk)

∂y
(28)

The convergence of the procedure is closely related to the accuracy of R,y(y):

R,y(y) =

 R,x̃nl 0qH ,qH R,ω(
R,x̃nlϕ

)
,x̃nl R,x̃nl

(
R,x̃nlϕ

)
,ω

0qH
⊤ 2ϕ 0

 (29)

Both R,x̃nl and R,ω are already knwon since they are required for the calculation of the NFRC. Additional terms to

compute are limited to:
(
R,x̃nlϕ

)
,x̃nl and

(
R,x̃nlϕ

)
,ω
.(

R,x̃nlϕ
)
,x̃nl is here computed by finite differences:

(
R,x̃nlϕ

)
,x̃nl ≃

1

ϵx̃nl

[
R,x̃nl

(
x̃nl + ϵx̃nlϕ

)
−R,x̃nl

(
x̃nl
)]

(30)

with ϵx̃nl = η

(
∥x̃nl∥
∥ϕ∥ + η

)
and η = 10−6.(

R,x̃nlϕ
)
,ω

is also computed by finite differences. As ϕ is independent of ω, we can extract ϕ from the derivative:(
R,x̃nlϕ

)
,ω

= R,x̃nl,ωϕ with, by finite differences:

R,x̃nl,ω ≃ 1

ϵω

[
R,x̃nl (ω + ϵω)−R,x̃nl (ω)

]
(31)

with ϵω = η (∥ω∥+ η) and η = 10−6. R,x̃nl,ω can also be obtained by deriving the expression of the Jacobian
R,x̃nl with respect to ω:

R,x̃nl,ω = Zred,ω +
∂2f̃nl,red

∂x̃nl∂ω
(32)
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3.2 Continuation of bifurcation points

At this stage, limit points are found in the parametric space (x̃nl, ω). In order to assess the location of limit points
as any given parameter of the system—denoted γ in this section—varies, the numerical strategy is augmented with
an arc-length continuation technique. The vector of unknowns Y now includes γ:

Y =


x̃nl

ϕ

ω

γ

 (33)

3.2.1 Prediction

An initial guess Y0
i is required to compute the solution Yi. For i ≥ 2, the prediction of the solution i is calculated

with secant prediction from the converged solutions i− 1 and i− 2:

Y0
i = Yi−1 + δs

∆Yi−1

∥∆Yi−1∥
with ∆Yi−1 = Yi−1 −Yi−2 (34)

The prediction Y0
0 =

[
x̃0,nl
0 ,ϕ0

0, ω
0
0 , γ

0
0

]⊤
is constructed from a NFRC. Consider a NFRC computed in the plane(

x̃nl, ω
)
for a given parameter space with γ∗. The second control parameter is therefore chosen such as γ0

0 = γ∗.

As described above, a limit point can be detected using test functions and the associated X0
0 =

[
x̃0,nl
0 , ω0

0

]⊤
is

obtained. Finally, the eigenvector ϕ0
0 is chosen as the eigenvector ϕmin associated with the eigenvalue having the

lowest absolute value: ϕ0
0 = ϕmin.

For Y1, the prediction Y0
1 is chosen identical to Y0 with a slight shift of the second control parameter γ:

Y0
1 =

[
x̃0,nl
0 ,ϕ0

0, ω
0
0 , γ

0
0 + δγ

]⊤
.

3.2.2 Parameterization

Given the second control parameter γ, the dimension of the nonlinear algebraic system (25) is increased by one.
The nonlinear augmented algebraic system S(Y) now consists of 2qH + 2 equations:

S(Y) =


R(x̃nl, ω)

R,x̃nl

(
x̃nl, ω

)
ϕ

ϕ⊤ϕ− 1

P(x̃nl,ϕ, ω, γ, s)

 = 02qH+2 (35)

The arc-length continuation procedure, presented in the section 2.2.2, leads to:

P
(
Yk

i , s
)
=
∥∥∥x̃k,nl

i − x̃nl
i−1

∥∥∥2 + ∥∥∥ϕk
i − ϕi−1

∥∥∥2
+
(
ωk
i − ωi−1

)2
+
(
γk
i − γi−1

)2 − δs2 = 0

(36)

Iterates Yk
i are therefore located on the hypersphere R2qH+2 of radius δs centered in Yi−1. Thus, the converged

solution Yi is located at the intersection of the curve S
(
Yk

i

)
= 02qH+2 and the hypersphere R2qH+2 of radius δs

centered at Yi−1.

3.2.3 Correction

The algebraic system (35) is solved using the iterative Newton-Raphson procedure (37).

Yk+1
i = Yk

i +∆Yk
i with Sk

,Y∆Yk
i = −Sk (37)
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with

Sk = S
(
Yk

i

)
and Sk

,Y = S,Y(Yk
i ) =

∂S(Yk
i )

∂Y
(38)

Yk+1
i is therefore calculated as: Yk+1

i = Yk
i + δYk

i . The prediction Yk=0
i obtained by the secant method allows to

initialize the Newton-Raphson algorithm correctly.
The Jacobian matrix of the augmented system S,Y(Y) is expressed as follows:

S,Y(Y) =


R,x̃nl 0qH ,qH R,ω R,γ(

R,x̃nlϕ
)
,x̃nl R,x̃nl

(
R,x̃nlϕ

)
,ω

(
R,x̃nlϕ

)
,γ

0qH
⊤ 2ϕ⊤ 0 0

P⊤
,x̃nl P⊤

,ϕ P,ω P,γ

 (39)

R,γ

(
Yk

i

)
can be obtained by deriving the expression (9) of the residual R

(
Yk

i

)
with respect to γ:

R,γ = Zred,γx̃
nl +

∂f̃nl,red

∂γ
− ∂f̃ ext,red

∂γ
(40)

or, through finite differences:

R,γ ≃ 1

ϵγ
[R (γ + ϵγ)−R (γ)] (41)

with ϵγ = η (∥γ∥+ η) and η = 10−6.
As ϕ is independent of γ, ϕ may be obtained from the derivative:

(
R,x̃nlϕ

)
,γ

= R,x̃nl,γϕ. R,x̃nl,γ is obtained by

deriving the expression of the Jacobian R,x̃nl

(
Yk

i

)
with respect to γ:

R,x̃nl,γ = Zred,γ +
∂2f̃nl,red

∂x̃nl∂γ
(42)

or, by finite differences:

R,x̃nl,γ ≃ 1

ϵγ

[
R,x̃nl (γ + ϵγ)−R,x̃nl (γ)

]
(43)

Derivatives of P are:

∂P
(
Yk

i

)
∂x̃nl

⊤
= 2

(
x̃k,nl
i − x̃nl

i−1

)
∂P
(
Yk

i

)
∂ϕ

⊤
= 2

(
ϕk

i − ϕi−1

)
∂P
(
Yk

i

)
∂ω

= 2
(
ωk
i − ωi−1

)
∂P
(
Yk

i

)
∂γ

= 2
(
γk
i − γi−1

)
(44)

The condition:∥∥S (Yk
i

)∥∥ ≤ ϵ (45)

is used to end the iterative process where ϵ is dependent on the system of interest.
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(a)

𝑦

𝑥

𝑧
𝜔
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TE

(b)

Figure 1. NASA rotor 67: (a) full blade disk [33], (b) finite element mesh with boundary nodes ( ) [34]

4 Blade-tip/casing interactions on NASA Rotor 67

In this paper, the proposed numerical strategy is implemented for the nonlinear analysis of NASA rotor 67 [32],
clamped at its root, as it undergoes structural contacts along its tip, see Fig.1. This open blade model has already
been used as a case study in various fields of research [6, 8, 15]. The blade mechanical model and the considered
contact scenario presented below are identical to those of the article [16] for the sake of consistency.

4.1 Blade model

The blade material is a titanium alloy of grade 5, TA6V (Ti 6Al 4V). Its properties are given in Tab.1. The CAD

Young’s modulus E Density ρ Poisson’s ratio ν

108 GPa 4400 kg·m−3 0.34

Table 1. Material properties

model of the blade is meshed with 129181 quadratic pentahedron elements. The finite element mesh is shown in
Fig.1b. The Craig-Bampton model reduction procedure [35, 36] is used in order to generate a reduced-order model:
nb = 9 boundary nodes are retained along the blade-tip (see,( ) in Fig.1b) along with η = 12 fixed-interface modes.
The reduced model is therefore composed of qH = 39 dof. A modal damping coefficient ξ1−2 = 1 · 10−3 is considered
for the first two bending modes (1B and 2B), ξ3+ = 5 · 10−3 for all other modes. The three first eigenfrequencies of
the blade are provided in Tab. 2.

Mode 1B 2B 1T

ω [rad·s−1] 2039.78 6343.69 10745.26

f [Hz] 324.640 1009.63 1710.16

Table 2. Eigenfrequencies of the first three modes

4.2 Contact scenario

The casing surrounding the bladed disk is assumed perfectly rigid, it is modelled by a cylindrical envelope. Operating
clearances, denoted cj in Fig.2, correspond to the distance between a boundary node ( ) and the casing ( ).
They are here considered constant at rest: for each of the nb boundary nodes, cj = 4 · 10−4 m. In order to initiate
contact between the blade tip and the casing, the blade is excited along the first harmonics of its first bending mode
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cj
ωj

fext

Figure 2. Blade-tip/casing modelling [17]

with a dimensionless amplitude A.

f ext (ω,t) = AMϕ1F cos (ωt) (46)

Contact forces fN
nl are calculated from the gap function g(t) = x(t)− cj using a polynomial contact regularization

law. In addition, a Lanczos filtering is applied in order to attenuate the Gibbs phenomenon [15].
As the blade is in contact with the casing, dry friction forces, respectively circumferential (47) and axial (48),

are calculated for the j-th boundary node at time ti. Permanent sliding is assumed given the high relative velocities
involved.

fθ
nl,j (ti) = µ

vθj (ti) + ρjω√(
vθj (ti) + ρjω

)2
+ vzj (ti)

2
fN
nl,j (ti) (47)

fz
nl,j (ti) = µ

vzj (ti)√(
vθj (ti) + ρjω

)2
+ vzj (ti)

2
fN
nl,j (ti) (48)

where µ = 0.15 is the dry friction coefficient, vθj and vzj , the circumferential and axial velocities and ρj , the radial
distance of the j-th boundary node from of the axis of rotation.

5 Numerical results

The bifurcation tracking methodology presented in section 3 is implemented numerically in Python 3. From an
initial NFRC calculated by RL-HBM, the tracking of detected limit points is carried out considering variations of the
following key parameters: the dimensionless amplitude A, the friction coefficient µ and the operating clearances cj .

5.1 Nonlinear Frequency Response Curve

Computations are first run for A = 140, µ = 0.15 and cj = 4 · 10−4 m ( ). RL-HBM numerical parameters are as
follows: H = 10 harmonics and N = 210 time instants are considered. The NFRC obtained for the leading and the
trailing edges ( ) are depicted in Fig. 3. A stability analysis is conducted to determine the stability of solution
branches and detect the limit points. Solid lines correspond to stable branches of solutions whereas dashed lines
correspond to unstable branches of solutions resulting from Floquet framework stability analysis [19]. In total, four
limit points ( ) are detected and denoted LPi in Fig. 3.

Over a period T , the time signals of the displacements ||ri(t)||∞ and the nonlinear forces ||fnl,i(t)||∞ at the
nonlinear resonance (LP3) are depicted in Fig. 4. The signals at the leading edge are in solid line while those at the
trailing edge are in dashed line. A very good agreement between the displacements obtained by time integration
( ) and by RL-HBM ( ) can be observed. The maximum reached by the displacement signal ||r1(t)||∞ is
−1.42 mm and by ||r9(t)||∞ -0.89mm which is in agreement with the values obtained by the NFRC in Fig. 3. In
order to better illustrate the relevance of the value of H and N , the Fourier coefficients of the nonlinear resonance
solution (LP3) are depicted in Fig. 5. This histogram indicates that main contributions relate to the harmonics a0,
a1, b1, a2 and b2. For this particular solution, contributions of harmonics higher than 6 are found negligible.
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Figure 3. Rotor 67 leading and trailing edges nonlinear frequency response curves ( ) with LP ( ) for A = 140, µ = 0.15
and cj = 4 · 10−4 m

5.2 Bifurcation tracking

The limit points detected on the NFRC (Fig. 3) are tracked according to the three aforementioned control parameters:
the dimensionless amplitude A, the friction coefficient µ and operating clearances cj .

5.2.1 Dimensionless amplitude A

The bifurcation tracking of LP2/LP3 ( ) and LP1/LP4 ( ) are depicted in Fig. 6. Figure 6. shows that the
bifurcation tracking curve of LP2 is the same as that of LP3 and that of LP1 is the same as that of LP4.

In order to validate the results obtained by bifurcation tracking, several NFRC ( ) are calculated for different
values of A: A ∈ [20, 40, 60, 80, 100, 120], depicted in Fig.6. Such a large interval is considered to simulate contact
events of distinct levels of severity. A comparison between the results of the bifurcation tracking and the bifurcations
detected on the NFRC underlines that curves ( ) and ( ) pass through the predicted bifurcation points ( ).

Looking at the NFRC ( ) obtained for each value of A, a discontinuity between the main NFRC for A = 40
and that for A = 60 can be observed. For A = 20 and A = 40, isolated branches of solutions seem not to have been
calculated. Indeed, the initialization made for the calculation of the main NFRC does not make it possible to reach
isolated branches of solutions. To compute them, it is therefore necessary to initialize the procedure for calculating
an NFRC with a point close to this isolated branch of solutions. For that, a point of the bifurcation tracking curve
( ) close to this isolated branch of solutions is taken. The calculated isolated branches of solutions ( ) are
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Figure 4. Time signals of the dispacements and the nonlinear forces obtained at LP3 by time integration ( / ) and by
RL-HBM ( / )
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Figure 5. Fourier coefficients (a0, a1, b1, . . . , aH , bH) of ||r1(t)||∞ (left) and ||r9(t)||∞ (right) at LP3

shown in Fig. 6. Again, a comparison between the results of the bifurcation tracking and the bifurcations detected
on the isolated branches of solutions underlines that curves ( ) and ( ) pass through the predicted bifurcation
points ( ).

Bifurcation tracking curves in Fig. 6 are projected onto the plane (ω,A), see Fig. 7. As A increases, a local
minimum on this curve corresponds to the appearance of isolated branches of solutions ( ). To the contrary, local
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Figure 6. Rotor 67 leading and trailing edges bifurcation tracking ( / ) between A = 20 and A = 140 with isolated
branches of solutions ( )

maxima correspond to areas where isolated branches of solutions merge between themselves or with the main NFRC
( ). Figure 7 underscores the existence of five families of isolated branches of solutions, denoted Ii.

For low values of A, the parameters for which three isolated branches of solutions (I1, I2, I3) appear are listed in
Tab. 3. As A increases, these isolated branches of solutions will progressively merge into larger branches of solutions
for the parameters listed in Tab. 4. Finally, for A ≥ 56.69, no isolated branch of solutions is predicted anymore.

These results highlight the potential of bifurcation tracking for structural design purposes. Bifurcation track-
ing makes it possible to detect isolated branches of solutions in a similar fashion to Melnikov principle-based
approaches [17] but also makes it possible to know the exact points where these isolated branches of solutions may
merge with the main NFRC. In addition, bifurcation tracking also brings further qualitative pieces of information
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Figure 7. Projection of Fig 6. Bifurcation tracking curves in the plane (ω,A)

Appearance ω [rad·s−1] A [∅]
I1 2185.31 4.49

I2 2565.77 13.03

I3 2665.37 26.03

Table 3. Appearance of isolated branches of solutions

Mergence ω [rad·s−1] A [∅]
I4 = I2 + I3 2677.91 27.68

I5 = I1 + I4 2507.32 38.68

NFRC = NFRC+ I5 2118.13 56.69

Table 4. Merging of isolated branches of solutions

with respect to the influence of A.

5.2.2 Friction coefficient µ

The bifurcation tracking of LP1/LP2 ( ) and LP3/LP4 ( ) as the friction coefficient µ varies are shown in
Fig. 8. Figure 8 shows that the bifurcation tracking curve of LP1 is the same as that of LP2 and that of LP3 is the
same as that of LP4. In order to validate the results obtained by bifurcation tracking, several NFRC ( ) are
calculated for different values of µ: µ ∈ [1 · 10−4, 0.025, 0.05, . . . , 0.2], as depicted in Fig.8.

From µ ≥ 0.2, the selected numerical parameters no longer allow to compute the NFRC. It would probably be
necesary to increase the number of harmonics (H = 10) to obtain accurate results for µ ≥ 0.2. While such results
could be of interest from an academic standpoint, it goes beyond the scope of this article as typical friction coefficients
in such blade-tip/casing contacts is usually less than 0.15. Nonetheless, even with H = 10, the bifurcation tracking
of LP3/LP4 ( ) was successful. Both very high vibration amplitudes and a complex shape of the bifurcation
tracking curve underline the intricacy of vibration phenomena occuring for µ ≥ 0.2.

5.2.3 Operating clearances cj

The bifurcation tracking of LP1/LP2 ( ), LP3 ( ) and LP4 ( ) are shown in Fig. 9.
The bifurcation tracking of LP3 is of particular interest. Indeed, the bifurcation tracking curve ( ) turns

around and returns to cj = 4 · 10−4 m towards a LP which does not belong to the main NFRC. Additional RL-HBM
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Figure 8. Rotor 67 leading and trailing edges bifurcation tracking ( / ) between µ = 0.3 and µ = 0

computations from this LP yields an isolated branch of solutions ( ). The bifurcation tracking ( ) of the
second LP belonging to this isolated solution branch yields another LP belonging to a second isolated branch of
solutions ( ). In this particular configuration, bifurcation tracking with respect to the blade-tip/casing clearance
thus yields isolated branches of solutions featuring very high vibration amplitudes that could not have been predicted
otherwise.

In order to validate the results obtained by bifurcation tracking, several NFRC ( ) and isolated branches of
solutions ( ) are calculated for different values of cj : cj ∈ [1.0, 1.6, 2.2, 2.8, 3.4, 4.0] · 10−4 m, depicted in Fig.9.
By closely comparing the results of the bifurcation tracking against the bifurcations detected on the NFRCs, the
bifurcation tracking curves pass through bifurcation points ( ).

Looking at the projection of the bifurcation tracking curves onto the plane (ω, cj), see Fig. 10, it is possible to
observe more clearly the values of cj for which isolated branches of solutions are predicted. Similarly to the analysis
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Figure 9. Rotor 67 leading and trailing edges bifurcation tracking ( / / / / ) between cj = 1 · 10−4 m and
cj = 4 · 10−4 m with isolated branches of solutions ( )

carried out above with respect to the dimensionless amplitude A, two areas—denoted I1 and I2—featuring isolated
branches of solutions are evidenced.

These results underline the intricacy of the dynamics of NASA rotor 67 as it undergoes blade-tip/casing contacts.
Should the analysis be limited to RL-HBM results, one may have the impression that vibration amplitudes at the
nonlinear resonance decrease from cj = 0.4 mm to cj = 0.22 mm before a sudden increase is evidenced for lower
values of cj , see curves ( ) and ( ) in Fig. 11. However, thanks to the proposed bifurcation tracking strategy
and the prediction of isolated branches of solutions, a very consistent decrease of the vibration amplitudes at the
nonlinear resonance is observed as cj decreases.
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Figure 10. Projection of Fig. 9. Bifurcation tracking in the plane (ω, cj)

5.3 Industrial benefit

Blade-tip/casing clearance has long been thought to be a key parameter for blade-tip/casing interactions. With
the development of advanced numerical methodologies and the proposed bifurcation tracking approach, it is now
possible to confirm that there are isolated branches of solutions with extreme vibration amplitudes that relate to
this parameter. For the configuration of interest on NASA rotor 67, the proposed approach specifically yields two
isolated branches of solutions whose relevance has been confirmed by direct comparison to time integration results,
see Fig. 12. This observation corroborates recent findings [17] made using a distinct methodology on the same
industrial model.

6 Conclusion

This paper addresses the issue of bifurcation tracking on high-dimensional industrial systems. It is shown that the
regularized-Lanczos harmonic balance method is well-suited to the application of bifurcation tracking strategies.
In particular, presented results underline the robustness of the proposed approach for the tracking of limit points
for a variety of system parameters, thus providing original results on the influence of the friction coefficient, the
forcing amplitude as well as operating blade-tip/casing clearances on the blade’s dynamics. The possibility to build
on the proposed approach to predict isolated branches of solutions is underlined in the article. Contrary to other
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Figure 11. Projection of Fig. 9a in the plane (ω, ||r1(t)||∞)
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Figure 12. Rotor 67 blade leading and trailing edge nonlinear frequency response curves ( ), isolated branches of solutions
( ) and time integration results ( ) for A = 140, µ = 0.15 and cj = 4 · 10−4 m

methodologies dedicated to isolated solution branches, the proposed approach advantageously allows to locate areas
of the design space where isolated branches of solutions may appear.
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