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Abstract

The Lotka-Volterra (LV) model is a simple, robust, and versatile model used to describe large inter-
acting systems such as food webs or microbiomes. The model consists of n coupled differential equations
linking the abundances of n different species. We consider a large random interaction matrix with in-
dependent entries and a block variance profile. The ith diagonal block represents the intra-community
interaction in community i, while the off-diagonal blocks represent the inter-community interactions. The
variance remains constant within each block, but may vary across blocks.

We investigate the important case of two communities of interacting species, study how interactions
affect their respective equilibrium. We also describe equilibrium with feasibility (i.e., whether there exists
an equilibrium with all species at non-zero abundances) and the existence of an attrition phenomenon
(some species may vanish) within each community.

Information about the general case of b communities (b > 2) is provided in the appendix.

Keywords: Lotka-Volterra model, Block structure, Linear Complementarity Problems, Large Random Ma-
trices, Stability of food webs.
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1 Introduction

Understanding large ecosystems and the underlying mechanisms that support high species diversity is a
major challenge in theoretical ecology. Motivated by the seminal work of May [May72], the introduction of
random matrices has been a key mathematical step in modeling high-dimensional ecosystems. These tools
have expanded our ability to understand the nature of interactions and how food webs can resist to small
perturbations (stability) [AT12, TPA14].

Differential equations are frequently used in ecology to describe a system of interacting species. One of
the most common models is the Lotka-Volterra (LV) model [Lot25, Vol26], which has been the subject of
research in both ecology [Wan78, Jan87, LB92] and mathematics [GJ77, Goh77, Tay88, HS98, Tak96]. Certain
properties of this model, such as its stability [GGRA18], have raised much interest. The conditions under
which all species survive, referred to as feasibility, have also motivated many works [BN21, GAS+17, Sto18].

In nature, ecological networks are rather structured, and many studies have investigated the network
structures that contribute to the stability of a given community [TF10, AGB+15]. One common network
structure is food web compartmentalization, also known as modularity. The underlying concept is that the
network is structured in the form of groups of nodes that interact more strongly within their group and
more weakly between groups. A mathematical formulation of modularity was defined by Newman [New06].
Subsequently, modularity has been of great importance in ecology [GSSP+10], in complex networks [VML04],
and in community detection (for a complete review, see Fortunato [For10]).

May had already mentioned that a multi-community structure should improve stability [May72], a hy-
pothesis later investigated by Pimm [Pim79]. In the same framework as May, Grilli et al. [GRA16] studied
the effect of modularity on the stability of the Jacobian of a system, the so-called “community matrix”. How-
ever, studies show that modularity improves the persistence (:= non-extinction of species, generally related
to their resistance to external perturbations) of species in the dynamical system [SB11].

In this article, we study the Lotka-Volterra model where we consider a block structure network repre-
senting the inter- and intra-community interactions. Of particular interest are the interactions between the
communities that affect their respective equilibrium and stability.

Each block is identified by its interaction strength, which is the standard deviation of the random part
of the interactions. The idea that interaction strength plays a key role in the stability of ecosystems was
introduced by May [May72]. For the sake of mathematical simplicity, we limit our model to two communities,
although we can extend the model to more complex food webs and multi-community frameworks.

We study the existence and stability of an equilibrium, together with its properties. When an attrition
phenomenon occurs (some species may vanish), we describe the proportion of surviving species and their
distribution. We also provide conditions for which the equilibrium is feasible (i.e., whether there exists an
equilibrium with all species at non-zero abundances).

Model and assumptions. The LV model is a standard model in ecology to study the dynamics of a
community of species over time. It is defined by a system of n differential equations

dxk

dt
(t) = xk(t)

rk − xk(t) +
∑
ℓ∈[n]

Bkℓxℓ(t)

 , k ∈ [n] = {1, · · · , n} . (1)

The abundance of species k at time t is represented by xk(t) with x = (x1, · · · , xn) the vector of abundances.
Parameter rk corresponds to the growth rate of species k. The coefficient Bkℓ represents the impact of species
ℓ on species k. The n × n matrix B = (Bkℓ), which represents the interaction network, is decomposed into
a block structure. This structure differentiates various groups of species in the form of communities that
interact with each other. On the one hand, the diagonal blocks of B correspond to interactions within each
community, each with its own interaction strength. On the other hand, the off-diagonal blocks correspond to
the impact of the communities on each other. Analytically and within the framework of two communities,
the matrix B = (Bkℓ)n,n is defined by blocks using random matrices Aij and interaction strengths sij :

B =
1√
n

(
s11A11 s12A12

s21A21 s22A22

)
, (2)
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where I1 = [n1] (resp I2 = {n1+1, · · · , n}), the subset of [n] of size |I1| = n1 (resp |I2| = n2 - here and below
n = n1 + n2) matching the index of species belonging to community 1 (resp community 2) and β = (β1, β2)
with β1 = n1/n , β2 = 1 − β1 = n2/n. The random matrix Aij is non-Hermitian of size |Ii| × |Ij | with
standard Gaussian entries i.e. N (0, 1). The Gaussianity assumption clarifies the explanations, but can be
relaxed under certain circumstances (see the corresponding sections for details).

Notice a normalization parameter 1/
√
n in the matrix B. This enables the interaction matrix B to have

a macroscopic effect on system (1):

E

∑
ℓ∈[n]

Bkℓxℓ(t)

 ∼ O(1) ; Var

∑
ℓ∈[n]

Bkℓxℓ(t)

 ∼ O(1) .

From an ecological perspective, an increase in the number of species may not necessarily lead to a corre-
sponding increase in the overall strength of interactions between one species and all others.

The relative strength of interactions within and between blocks is controlled by the four sij coefficients,
which can be grouped together in a matrix s:

s =

(
s11 s12
s21 s22

)
.

The diagonal terms (s11, s22) represent the interaction strength in each community. The off-diagonal term
s12 (resp. s21) represents the interaction strength of the impact of community 2 on community 1 (resp.
community 1 on community 2). The lower the value of sij , the lower the rates of interaction between species.
Note that in the case of a unique community, s is the interaction strength coefficient, i.e. the standard
deviation of the interspecific coefficients of the LV model.

Remark 1. For the sake of simplicity, the results are presented in the case of two interacting communities
but can be extended to the case of b communities, see Appendix E.

There are two scenarios of interest: Let us consider two separate groups of species that follow the dynamics
described in model (1). The matrices Aij are each sampled once. In the first scenario, we consider a very
weak interaction between the two communities

s =

(
1/2 ε
ε 1/2

)
, ε > 0 ,

and the intra-communities interactions are small enough (Fig 1a). We observe that both communities dynam-
ics converge to a feasible equilibrium in the sense that all species survive (Fig. 1b). In the second scenario,
we increase the interactions between the communities, i.e. the standard deviation matrix is defined by

s =

(
1/2 1
1 1/2

)
.

It is no longer possible for both communities to maintain the feasibility of all species. Some species are likely
to disappear (Fig. 2).

Properties of the dynamical system. We are interested in the effect of a block structure on the food
web, limit our study to the 2-blocks case (2) and focus on the model with constant growth rate1 rk = 1:

dxk

dt
= xk (1− xk + (Bx)k) , k ∈ [n] . (3)

Of major interest is the existence and uniqueness of an equilibrium x∗ = (x∗
k)k∈[n]. The LV system is an

autonomous differential system. If the initial conditions are positive i.e. x(0) > 0 (componentwise), it implies

1The simplifying assumption rk = 1 allows tractable computations and could be extended to rk = c with c > 0. However,
if the growth rate is different for each species, the mathematical development and result may be strongly affected and will be
discussed in each section.
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(a) Interaction matrix (b) Abundance dynamics of two communities of five species

Figure 1: Dynamics of the model (1) with 2 distinct communities of 5 species each and interaction matrix
given by (2). The two communities converge to their feasible equilibrium point and do not interact. In Fig.
(a), a heat map illustrates the interaction matrix (2). Figure (b) shows the dynamics where the species of
each community reach a feasible equilibrium.

x(t) > 0 for every t > 0. However, some of the components xk(t) may converge to zero if the equilibrium
x∗ has components equal to zero. An equilibrium to the LV system should hence satisfy the following set of
constraints: {

x∗
k (1− x∗

k + (Bx∗)k) = 0 , ∀k ∈ [n] ,

x∗
k ≥ 0 .

(4)

Two substantially different situations arise, that we will study hereafter.
First, if x∗ has vanishing components, the equilibrium equations are cast into a nonlinear optimization

problem, which has been studied by Clenet et al. [CMN23] in the case of a single community.
If the equilibrium is feasible, that is x∗ > 0, then the equilibrium set of equations becomes a linear

equation:
x∗ = 1+Bx∗ . (5)

In the context of a single community, the existence of a positive solution has been studied by Bizeul and
Najim [BN21] and extended for more complex food webs in [AN22, CEFN22, LCP23].

A further consideration which will be addressed is whether the equilibrium x∗ is asymptotically globally
stable, i.e. if for every initial vector x0 > 0 the solution of (3), which starts at x(0) = x0, satisfies

x(t) −−−→
t→∞

x∗ .

In the sequel, the term “stability” will refer to “asymptotic stability”.

Outline of the article. In Section 2, we describe sufficient conditions for the existence and uniqueness of
a stable equilibrium in the model (3), see Theorem 3. Section 3 is devoted to the study of the properties of
the species that survive in each of the communities. Finally, in Section 4 we provide conditions under which
the equilibrium is feasible, see Theorem 4.

2 Existence of a unique equilibrium

In Figures 1 and 2, we notice that for different interaction coefficients s, the system converges to an equilibrium
(with or without vanishing species). Theorem 3 below will provide the adequate theoretical framework.
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(a) Interaction matrix (b) Abundance dynamics of two communities of five species

Figure 2: Dynamics of Model (1) with 2 distinct communities of 5 species each with interaction matrix given by
(2). In Fig. (a), representation of the interaction matrix (2) when the interactions between the communities
are strong. Fig. (b) shows the dynamics where the species of each community reach an equilibrium. Notice
that there are vanishing species in each community.

2.1 Theoretical background

Non-invadability condition. The research of equilibrium points of (3) is equivalent to the identification
of solutions of system (4). However, the number of potential solutions can be extremely large. In order for
the equilibrium x∗ to be stable, there exists a necessary condition, known in ecology as the non-invadability
condition [LM96], namely that

1− x∗
k + (Bx∗)k ≤ 0 . (6)

In model (3), the non-invadability condition for a given species k ∈ [n] is equivalent to(
1

xk

dxk

dt

)
xk→0+

≤ 0 . (7)

Condition (7) describes the fact that if we add a species to the system at a very low abundance, it will not
be able to invade the system. As a consequence, the number of possible solutions should solve the following
set of constraints:  x∗

k (1− x∗
k + (Bx∗)k) = 0 for k ∈ [n] ,

1− x∗
k + (Bx∗)k ≤ 0 for k ∈ [n] ,

x∗ ≥ 0 componentwise .
(8)

This casts the search of a nonnegative equilibrium problem into the class of linear complementarity
problems (LCP). For a reminder of the definition of an LCP problem, see for instance [CMN23]. In the
following, we recall the main Theorem for proving the existence and uniqueness of a single equilibrium.

The equilibrium x∗ and its stability. Let X⊤ be the transpose of the matrix X.

Definition 1 (Lyapunov diagonal stability). A matrix M is called Lyapunov diagonally stable, denoted by
M ∈ D, if and only if there exists a diagonal matrix D with positive diagonal elements such that DM+M⊤D
is negative definite, i.e. all eigenvalues are negative.

This class of matrix was already mentioned in Volterra’s historical paper [Vol31] and in Logofet’s book
[Log93, Chap. 4], in relation with the stability of LV models.
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Proposition 1 (Takeuchi et al. [TAT78]). If M ∈ D then −M is a P-matrix i.e. all its principal minors
(sub-determinants) are strictly positive:

det(MI) > 0 , ∀ I ⊂ [n] , MI = (Mkℓ)k,ℓ∈I .

Recall System (1) with different growth rates for each species and consider matrix B is arbitrary,

d yk
dt

= yk(rk + ((−I +B)y)k) , k ∈ [n] . (9)

The LCP associated with (9) is as follows y∗k (rk − y∗k + (By∗)k) = 0 for k ∈ [n] ,
rk − y∗k + (By∗)k ≤ 0 for k ∈ [n] ,
y∗ ≥ 0 componentwise .

(10)

Takeuchi and Adachi [Tak96, Th. 3.2.1] establish a criterion for the existence of a unique globally stable
equilibrium y∗ of (9).

Theorem 2 (Takeuchi and Adachi [TA80]). If −I +B ∈ D, then System (10) admits a unique solution. In
particular, for every r ∈ Rn, there is a unique equilibrium y∗ to (9), which is globally stable in the sense that
for every y0 > 0, the solution to (9) which starts at y(0) = y0 satisfies: y(t) −−−→

t→∞
y∗.

2.2 Sufficient condition in the block model (3)

We recall the definition of the Stieltjes transform and some of its properties in Appendix A (for more details,
see [BS10]). For a wide range of parameters (β, s), we aim to ensure the existence of a globally stable
equilibrium x∗ of (3) associated to LCP (8). Denote by ∥x∥∞ the sup norm of a vector and by ∥X∥∞ its
induced operator norm, i.e.

∥x∥∞ = max
k∈[n]

|xk| and ∥X∥∞ = max
k∈[n]

n∑
ℓ=1

|Xkℓ| .

Let X,Y be matrices of the same size, then X ◦ Y is their Hadamard product i.e. (X ◦ Y )ij = XijYij and
consider

s ◦ s =

(
s211 s212
s221 s222

)
.

Theorem 3. Assume that ∥∥diag(β) ((s ◦ s) + (s ◦ s)⊤
)∥∥

∞ < 1 ,

then a.s. matrix (I − B) + (I − B)⊤ is eventually positive definite: with probability one, there exists N
depending on matrix B’s realization such that for n ≥ N , (I − B) + (I − B)⊤ is positive definite. In
particular, I − B ∈ D. There exists a unique vector solution to the LCP (8). This vector x∗ is the unique
(random) globally stable equilibrium of (3).

Remark 2. Theorem 3 can be extended in two directions. The Gaussianity assumption can be relaxed to
any reasonable distribution with finite second moment, and growth rates different from one i.e. rk ̸= 1 can
be considered (see for instance [BN21, Sections 4.2 and 4.3] in the context of a single community).

Sketch of proof. From Theorem 2, we need to verify the Lyapunov diagonally stable condition of the matrix
(−I +B) ∈ D by analyzing its largest eigenvalue

(−I +B) + (−I +B⊤) = −2I +
1√
n

(
s11(A11 +A⊤

11) s12A12 + s21A
⊤
21

s21A21 + s12A
⊤
12 s22(A22 +A⊤

22)

)
.
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Denote by H the symmetric matrix

H =
1√
n

(
H11 H12

H21 H22

)
=

1√
n

(
s11(A11 +A⊤

11) s12A12 + s21A
⊤
21

s21A21 + s12A
⊤
12 s22(A22 +A⊤

22)

)
,

whereHij is a matrix of size |Ii|×|Ij | and each off-diagonal entries follow a Gaussian distributionN
(
0, s2ij + s2ji

)
for all i, j ∈ {1, 2}.

A matrix is negative definite if and only if all its eigenvalues are negative. Note here that −2I + H is
negative definite if and only if the upper eigenvalue of H is less than 2. The goal of the proof is to give a
condition on the parameter s such that

λmax (H) < 2 .

The matrix H has a variance profile, such a model has been studied in great details by Erdös et al. and
is linked to the theory of the Quadratic Vector Equation (QVE, see [AEK17, AEK19] for more technical
information). Given m(z) = (m1(z), · · · ,mn(z)), the QVE associated to the matrix H is decomposed as

k ∈ I1 , − 1

mk(z)
= z +

∑
ℓ∈I1

2s211
n

mℓ(z) +
∑
ℓ∈I2

1

n

(
s212 + s221

)
mℓ(z) ,

k ∈ I2 , − 1

mk(z)
= z +

∑
ℓ∈I1

1

n

(
s212 + s221

)
mℓ(z) +

∑
ℓ∈I2

2s222
n

mℓ(z) .

Denote by 1/m(z) = (1/m1(z), · · · , 1/mn(z))
⊤, 1Ii

a vector whose entries are 1’s of size |Ii| and

S =
1

n

(
2s2111I1

1⊤
I1

(s212 + s221)1I1
1⊤
I2

(s212 + s221)1I2
1⊤
I1

2s2221I2
1⊤
I2

)
,

the QVE can be written in the standard form

− 1

m(z)
= z + Sm(z) . (11)

Following Theorem 2.1 in Ajanki et al. [AEK19], ∀z ∈ C+, Equation (11) has a unique solution m = m(z)
where n−1

∑
mi is the Stieltjes transform of a probability measure and the support of the associated measure

is included in [−Σ,Σ], where Σ = 2 ∥S∥1/2∞ .
This information gives an asymptotic bound on the support of the matrix H associated with (11), i.e.

asymptotically ∀ ε > 0 there exists N depending on matrix B’s realization, such that for n ≥ N

λmax (H) ≤ 2 ∥S∥1/2∞ + ε .

Recall that −2I +H is negative definite iff λmax (H) < 2. This condition is fulfilled if

2 ∥S∥1/2∞ < 2 ,

or equivalently
∥S∥∞ < 1 .

Note that this condition is sufficient but not necessary. Given the particular shape of the matrix S, computing
its norm is equivalent to computing the norm of a matrix of size 2× 2

∥S∥∞ =
∥∥diag(β) ((s ◦ s) + (s ◦ s)⊤

)∥∥
∞ =

∥∥∥∥(β1 0
0 β2

)(
2s211 s212 + s221

s212 + s221 2s222

)∥∥∥∥
∞

,

which completes the proof. We can then rely on Theorem 2 to conclude.

Remark 3.
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1. In the context of a unique community, suppose that s = s11⊤, then the previous condition takes
the simpler form s < 1/

√
2, a condition already mentionned in [CMN23]. Indeed, starting from the

condition of Theorem 3, the condition on the matrix is∥∥∥∥∥
(
1/2 0
0 1/2

)1/2(
2s2 2s2

2s2 2s2

)(
1/2 0
0 1/2

)1/2
∥∥∥∥∥
∞

=

∥∥∥∥(1s2 1s2

1s2 1s2

)∥∥∥∥
∞

= 2s2 ,

The same sufficient condition is obtained 2s2 < 1 ⇔ s < 1/
√
2.

2. The condition given in Theorem 3 is sufficient to guarantee a stable unique solution to LCP (8) but
not necessary. Even in the single community case, finding optimal thresholds remains an open question
(see [ABC+22, Table 1]).

3 Surviving species

In Section 2, we have given conditions on matrix s and on β = (β1, β2) for the existence of a globally
stable equilibrium x∗ to (3) under the non-invadability condition. The equilibrium vector x∗ is random and
depends on the realization of matrix B. Moreover since s has fixed components and does not depend on n,
the equilibrium x∗ will feature vanishing components (see the original argument for a unique community in
[DVR+18] and the discussion in [BN21]). In an ecological context, we differentiate two kind of components in
vector x∗, the non-vanishing components x∗

k > 0 corresponding to surviving species and the vanishing ones
x∗
k = 0 corresponding to the species going to extinction:

xk(t) −−−→
t→∞

0 .

Hereafter, we describe statistical properties of x∗: the proportion of surviving species in each community,
the distribution of the corresponding abundances, which turns out to be a truncated Gaussian, etc.

3.1 Heuristics for the properties of surviving species

Starting from the model (3), the set of surviving species in community i ∈ {1, 2} is defined as

S1 = {k ∈ I1, x∗
k > 0} ; I1 = [1, β1n] ,

S2 = {k ∈ I2, x∗
k > 0} ; I2 = [β1n+ 1, n] .

Given the random equilibrium x∗, we introduce the following quantities for each community i ∈ {1, 2}

p̂i =
|Si|
|Ii|

, m̂i =
1

|Si|
∑
k∈Ii

x∗
k , σ̂2

i =
1

|Si|
∑
k∈Ii

(x∗
k)

2 .

Quantity p̂i represents the proportion of surviving species in community i, m̂i the empirical mean of the
abundances of the surviving species in community i and σ̂2

i , the empirical mean square of the surviving
species in community i.

Denote by Z ∼ N (0, 1) a standard Gaussian random variable and by Φ the cumulative Gaussian distri-
bution function:

Φ(x) =

∫ x

−∞

e−
u2

2

√
2π

du .

Heuristics 1. Let s be the 2× 2 matrix of interaction strengths and assume that the condition of Theorem
3 holds, then the following system of four equations and four unknowns (p1, p2, σ1, σ2)

p1 = 1− Φ(δ1) , (12)

p2 = 1− Φ(δ2) , (13)

(σ1)
2 = 1 + 2∆1E(Z|Z > δ1) + ∆2

1E(Z2|Z > δ1) , (14)

(σ2)
2 = 1 + 2∆2E(Z|Z > δ2) + ∆2

2E(Z2|Z > δ2) , (15)

8



where

∆i =
√
p1(σ1)2β1s2i1 + p2(σ2)2β2s2i2 and δi =

−1

∆i
, (16)

admits a unique solution (p∗1, p
∗
2, σ

∗
1 , σ

∗
2) and for i ∈ {1, 2}

p̂i
a.s.−−−−→

n→∞
p∗i and σ̂i

a.s.−−−−→
n→∞

σ∗
i .

In order to simplify the following calculations, we denote by

∆∗
i =

√
p∗1(σ

∗
1)

2β1s2i1 + p∗2(σ
∗
2)

2β2s2i2 and δ∗i =
−1

∆∗
i

.

There is a strong matching between the solutions obtained by solving (12)-(15) and their empirical coun-
terparts obtained by Monte-Carlo simulations. This is illustrated in Fig. 3.

(a) Parameters (p∗1, σ
∗
1) versus (s21, s12). (b) Parameters (p∗2, σ

∗
2) versus (s21, s12).

Figure 3: Comparison between the theoretical solutions (p∗1, p
∗
2, σ

∗
1 , σ

∗
2) of (12)-(15) and their empirical Monte

Carlo counterpart (the star marker) as functions of the off-diagonal block interaction strength (s12, s21). The
left column is associated to the properties of community 1. The right column is associated to the properties of
community 2. Matrix B has size n = 500 and the number of Monte Carlo experiments is 500. The parameters

are s =

(
1/3 s12
s21 1/

√
2

)
, β =

(
1
2 ,

1
2

)
. When off-diagonal block interactions s12, s21 increase, the proportion

of surviving species p∗ decreases but the root mean square of their equilibrium abundances σ∗ increases.

3.2 Construction of the heuristics

Obtaining information about the fixed point is equivalent to solving the LCP problem

x∗
k

(
1− x∗

k +

n∑
ℓ=1

Bkℓx
∗
ℓ

)
= 0 , ∀k ∈ [n] .

9



Consider the random variables:
∀k ∈ [n], Žk =

∑
ℓ∈S1∪S2

Bkℓx
∗
ℓ .

We assume that asymptotically the x∗
ℓ ’s are independent from the Bkℓ’s, an assumption supported by the

chaos hypothesis, see for instance Geman and Hwang [GH82]. Denote by Ex∗ = E( · | x∗) the conditional
expectation with respect to x∗. Notice that conditionally to x∗, the Žk’s are independent Gaussian random
variables, whose first two moments can easily be computed, see Appendix C for the details:

∀k ∈ Ii, Varx∗(Žk) = p̂1σ̂
2
1β1s

2
i1 + p̂2σ̂

2
2β2s

2
i2 .

Notice that the fact that Varx∗(Žk) only depends on p̂1, p̂2, σ̂1, σ̂2 (which are converging quantities when
n → ∞) supports the idea that Žk is unconditionally a Gaussian random variable with second moment:

Var(Žk) = p∗1(σ
∗
1)

2β1s
2
i1 + p∗2(σ

∗
2)

2β2s
2
i2 ,

where p∗1, p
∗
2, σ

∗
1 , σ

∗
2 are resp. the limits of p̂1, p̂2, σ̂1, σ̂2. We can introduce two families of standard Gaussian

random variables (Zk)k∈I1 and (Zk)k∈I2 :

∀k ∈ Ii, Zk =
Žk√

var(Žk)
=

Žk√
p∗1(σ

∗
1)

2β1s2i1 + p∗2(σ
∗
2)

2β2s2i2
.

Consider the equilibrium x∗ = (x∗
k)k∈[n], the definition of the LCP equilibrium implies if k ∈ S1 ∪ S2:

x∗
k(1− x∗

k + (Bx∗)k) = 0 and 1 + (Bx∗)k = 1 + Žk > 0 .

We finally obtain the following relationship for the surviving species:

x∗
k = 1 +∆∗

iZk for k ∈ Si . (17)

Note that ∆∗
i corresponds to the average variance of the interactions on community i.

Heuristics (12)-(13). We can write the first two equations:

P(x∗
k ≥ 0 | k ∈ S1) = P(Zk < δ∗1 | k ∈ S1) = 1− Φ(δ∗1) ,

P(x∗
k ≥ 0 | k ∈ S2) = P(Zk < δ∗2 | k ∈ S2) = 1− Φ(δ∗2) ,

and finally obtain (12) and (13):

p∗1 = 1− Φ(δ∗1) and p∗2 = 1− Φ(δ∗2) .

Heuristics (14)-(15). Our starting point is the following generic representation of an abundance at equi-
librium (either of a surviving or vanishing species) in the case k ∈ Si:

x∗
k = (1 +∆∗

iZk)1{Zk>δ∗i } = 1{Zk>δ∗i } + (∆∗
iZk)1{Zk>δ∗i } .

Taking the square, we get:

(x∗
k)

2 = (1 +∆∗
iZk)

2
1{Zk>δ∗i } = 1{Zk>δ∗i } + 2∆∗

iZk1{Zk>δ∗i } +
(
(∆∗

i )
2Z2

k

)
1{Zk>δ∗i } .

Summing over Si and normalizing, we get

1

|Si|
∑
k∈Si

(x∗
k)

2 =
1

|Si|
∑
k∈Si

1{Zk>−δ∗i } + 2∆∗
i

1

|Si|
∑
k∈Si

Zk1{Zk>−δ∗i } + (∆∗
i )

2 1

|Si|
∑
k∈Si

Z2
k1{Zk>δ∗i } ,

σ̂2
i

(a)
= 1 + 2∆∗

i

|Ii|
|Si|

1

|Ii|
∑
k∈Ii

Zk1{Zk>δ∗i } + (∆∗
i )

2 |Ii|
|Si|

1

|Ii|
∑
k∈Ii

Z2
k1{Zk>δ∗i },

σ̂2
i

(b)
≃ 1 + 2∆∗

i

1

P(Z > δ∗i )
E(Z1{Z>δ∗i }) + (∆∗

i )
2 1

P(Z > δ∗i )
E(Z21{Z>δ∗i }),

σ̂2
i ≃ 1 + 2∆∗

iE(Z | Z > δ∗i ) + (∆∗
i )

2E(Z2 | Z > δ∗i ).
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where (a) follows from the fact that |Si| =
∑

k∈Si
1{Zk>δ∗i } (by definition of Si), (b) from the law of large

numbers 1
|Ii|
∑

k∈Ii
Zj
k1{Zk>δi} −−−−→

n→∞
EZj1{Z>δ∗i }, j = 1, 2 and |Si|

|Ii| −−−−→n→∞
P(Z > δ∗i ) with Z ∼ N (0, 1).

It remains to replace σ̂i by its limit σ∗
i to obtain (14)-(15). We finally obtain the third and fourth equations:

(σ∗
1)

2 = (1 + λ∗
1)

2 + 2(1 + λ∗
1)∆

∗
1E(Z | Z > δ∗1) + (∆∗

1)
2E(Z2 | Z > δ∗1) ,

(σ∗
2)

2 = (1 + λ∗
2)

2 + 2(1 + λ∗
2)∆

∗
2E(Z | Z > δ∗2) + (∆∗

2)
2E(Z2 | Z > δ∗2) .

3.3 General properties of the ecosystem

The properties at equilibrium, such as the proportion and mean square of the abundance of surviving species,
can be computed for each community by solving the system of equations in Heuristics 1. An additional
property, the mean abundance of the surviving species at equilibrium for each community (m∗

1,m
∗
2), can be

calculated using a method similar to the mean square of the abundances (see Appendix C.2 for the details
of the computations).

m∗
1 = 1 +∆∗

1E(Z|Z > δ∗1) , (18)

m∗
2 = 1 +∆∗

2E(Z|Z > δ∗2) . (19)

The two equations are not necessary for solving Heuristics 1, but they provide new information. In particular,
strong inter- or intra-community interactions increase the mean abundance of the surviving species (see Fig.
4).

Conditional on each community, one can easily extend the properties of each community to the whole
ecosystem. We denote by p∗ the proportion, (σ∗)2 the mean square and m∗ the mean of surviving species.
We observe the linear effect of community size β on general properties:

1. Proportion of surviving species.

P(x∗
k ≥ 0) = P(x∗

k ≥ 0 | k ∈ I1)P(k ∈ I1) + P(x∗
k ≥ 0 | k ∈ I2)P(k ∈ I2) ,

p∗ = p∗1β1 + p∗2β2 .

2. Mean square of the abundance of the surviving species.

E((x∗
k)

2) = E((x∗
k)

2 | k ∈ I1)P(k ∈ I1) + E((x∗
k)

2 | k ∈ I2)P(k ∈ I2) ,
(σ∗)2 = (σ∗

1)
2β1 + (σ∗

2)
2β2 .

3. Mean of the abundance of the surviving species

E(x∗
k) = E(x∗

k | k ∈ I1)P(k ∈ I1) + E(x∗
k | k ∈ I2)P(k ∈ I2) ,

m∗ = m∗
1β1 +m∗

2β2 .

3.4 Distribution of the surviving species

We may recall the following representation of the abundance x∗
k of a surviving species when k ∈ Si:

x∗
k = 1 +∆∗

iZk if k ∈ Si,

where Zk ∼ N (0, 1) and Zk > δ∗i = δi(p
∗
i , σ

∗
i ) defined in (17). This representation allows to characterize the

distribution of x∗
k of each community. It turns out that the surviving species of each community follow a

truncated Gaussian distribution.

Heuristics 2. Let s be the 2× 2 matrix of interaction strengths and assume that the condition of Theorem
3 holds and let (p∗1, p

∗
2, σ

∗
1 , σ

∗
2) be the solution of the system (12)-(15). Recall the definition (16) of ∆i and δi

11



and denote by δ∗i = δi(p
∗
i , σ

∗
i ). Let x∗

k > 0 be a positive component of x∗ belonging to the community i, then
the law of x∗

k is
L(x∗

k) −−−−→
n→∞

L (1 + ∆∗
iZ | Z > δ∗i ) ,

where Z ∼ N (0, 1). Otherwise stated, asymptotically for k ∈ Si, x
∗
k admits the following density

fk(y) =
1{y>0}

Φ(−δ∗i )

1

∆∗
i

√
2π

exp

{
−1

2

(
y

∆∗
i

+ δ∗i

)2
}

. (20)

The heuristics simply follows from the fact that if x∗
k is a surviving species and k ∈ Si then

x∗
k = 1 +∆∗

iZk ,

conditionally on the fact that the right-hand side of the equation is positive, that is Zk > δ∗i . A simple change
of variable yields the density - details are provided in Appendix C.

Fig. 4 illustrates the matching between the theoretical distribution obtained by equation (20) and a
histogram obtained by generating the interaction matrix for 2 communities. In Fig. 5, the validity of
heuristics in the case of non-Gaussian entries is illustrated.

Remark 4. The proof relies on the Gaussianity assumption, but we are convinced that it could be extended
beyond. In particular, in Figure 5, non-Gaussian entries centered E(Bkℓ) = 0 with variance one E(|Bkℓ|2) = 1
are considered. The distribution of surviving species still fits the truncated Gaussian in this case.

Figure 4: Distribution of surviving species in each community. The x-axis represents the value of the
abundances and the histogram is built upon the positive components of equilibrium x∗ associated to each
community. The blue-solid line (resp. red-solid line) represents the theoretical distribution of community 1
(resp. community 2) for parameters s as given by Heuristics 2. The blue-dashed vertical line (resp. red-
dashed vertical line) corresponds to the mean abundance of community 1 (resp. community 2) given by
equations (18)-(19). All th ematrix entries Aij ’s are independent Gaussian N (0, 1); the parameters are set

to n = 2000, β = (0.75, 0.25) and s =
(
1/2 1/

√
2

1/5 1/9

)
.
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Figure 5: Distribution of surviving species in each community with non-Gaussian entries. The x-axis rep-
resents the value of the abundances. The histogram is built upon the positive components of equilibrium
x∗ associated to each community. (blue for community 1, red for community 2). The solid lines represent
the theoretical distributions associated to parameters s as given by Heuristics 2. The entries of the Aij

matrices are uniform U(−
√
3,
√
3) with variance 1 and the parameters are set to n = 2000, β = (0.5, 0.5)

and s =
(
1/2 2/3
1/3 1/4

)
. Notice in particular that the histogram is well predicted by the theoretical distributions

even if the entries are non-Gaussian.

4 Feasibility

Recall s the interaction parameter in the case of a unique community. According to the work of Dougoud et
al.. [DVR+18], if s is fixed (i.e. does not depend on n) then there can be no feasible equilibrium at large n.
Following this work, Bizeul and Najim [BN21] provided the appropriate normalization of s to have a feasible
equilibrium. The threshold corresponds to s ∼ 1/

√
2 log(n). The equilibrium is feasible almost surely when

s is less than this threshold value, i.e. when elements of random matrix B are divided by
√

2n log(n) or a
larger factor. Some extensions of these results have been made in the sparse case [AN22] and with a mean
and pairwise correlated entries [CEFN22]. In this section, conditions are given on the matrices s to get a
feasible equilibrium in each community, called co-feasibility. We then provide some ecological interpretations.

4.1 Theoretical analysis of the threshold

Recall the notation x = (xk)k∈[n] and denote by ∥x∥∞ = max
k∈[n]

|xk|. We are interested in the existence of

a feasible solution of the fixed point problem associated with the model (3). To consider this problem, we
extend the computations of Bizeul and Najim in the framework of a block structure network. Consider s
such that I −B is invertible. The problem is defined by

x∗ = 1+Bx∗ ⇔ x∗ = (I −B)−11 , (21)

The problem (21) admits a unique solution. We consider a matrix s which depends on n, i.e. s = sn such
that:

sn −−−−→
n→∞

0 ⇔ ∀ i, j ∈ {1, 2} , sij −−−−→
n→∞

0 .
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Note that for sufficiently large n, the problem satisfies the sufficient condition of Theorem 3 to have a unique
globally stable equilibrium.

Let matrix Bn depending on the interaction matrix sn defined by

Bn = V snV
⊤ ◦ 1√

n

(
A11 A12

A21 A22

)
, (22)

where

V ∈ Mn×2, V =

(
1I1

0
0 1I2

)
.

The spectral radius of 1√
n

(
A11 A12

A21 A22

)
a.s. converges to 1 due to the circular law [TVK10]. So as long as

sn is close to zero, the matrix I −Bn is eventually (for large enough values of n) invertible.

Theorem 4 (Co-feasibility for the 2-blocks model). Assume that matrix Bn is defined by the 2-blocks model
(22). Let β = (β1, β2), β1 + β2 = 1 represents the proportion of each community. Let sn −−−−→

n→∞
0 and denote

by s∗n = 1/
√
2 log n the critical threshold. Let xn = (xk)k∈[n] be the solution of (21).

1. If there exists ε > 0 such that eventually
∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

≥ (1 + ε)(s∗n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

0 .

2. If there exists ε > 0 such that eventually
∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

≤ (1− ε)(s∗n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

1 .

A sketch of proof is postponed to Appendix D, the extension to the b-blocks case can be found in Appendix
E.

Proof of Theorem 4 strongly depends on the assumption of Gaussianity and equal growth rates of each
species. However, according to the approach of Bizeul et al. [BN21], these assumptions could be relaxed.
In particular, the phenomenon seems to be universal, i.e. the feasibility threshold works for a wide range of
distribution choices.

n the critical regime s ∝ 1/
√
log(n) or equivalently s−1 ∝

√
log(n). We thus introduce matrix κ defined

by

κ =
1√

log(n)

(
s−1
11 s−1

12

s−1
21 s−1

22

)
.

Notice that at criticality κ will be of order O(1). This will be convenient for ecological interpretations. Using
the inequality of Theorem 4, the co-feasibility condition on κ writes∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

< (s∗n)
2 ⇔ max

(
2β1

κ2
11

+
2β2

κ2
12

,
2β1

κ2
21

+
2β2

κ2
22

)
< 1 . (23)

If for i = 1, 2, βi = 1
2 and the entry of the matrix κ are equal, then condition (23) gives the threshold

κij >
√
2, and we recover the same critical threshold

√
2 log(n) as in [BN21].

Remark 5. Assume κ11 = κ22 = ν1 and κ12 = κ21 = ν2, condition (23) is reformulated as:

max

(
2β1

ν21
+

2β2

ν22
,
2β1

ν22
+

2β2

ν21

)
< 1 .
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If β1, β2 and ν2 are fixed, then the phase transition on the intra-community interactions occurs at

ν1 > min

√ β1

1
2 − β2

ν2
2

,

√
β2

1
2 − β1

ν2
2

 .

In Fig. 6, the phase transition is represented for a selected set of parameters. Note that the transition is
rather smooth. The threshold depends on ν2. Increasing ν2 (decreasing the inter-block interactions) lowers
the co-feasibility threshold to at least 1 (for communities of the same size).

Figure 6: Transition towards co-feasibility for the 2-blocks model (2). For each value ν1 on the x-axis, we
simulate 500 matrices B of size n = 5000 with two communities of the same size (β1 = β2 = 0.5) with the
inter-block interactions fixed at s21(ν2) = s21(ν2) = 1/2

√
log(n) and compute the solution x of Theorem 4

at the scaling for the intra-block interactions s11(ν1) = s22(ν1) = 1/ν1
√

log(n). The curve represents the
proportion of feasible solutions x obtained for the 500 simulations. The dotdashed vertical line corresponds

to ν1 =
√

β1
1
2−

β2
ν2
2

= 2/
√
3.

4.2 Preservation of co-feasibility

Equation (23) defines a “co-feasibility domain” and gives a constraint in five dimensions. The two communities
of species can be studied independently i.e. the two components of equation (23) respectively give the
feasibility condition for each community:{

If 2β1

κ2
11

+ 2β2

κ2
12

< 1, then community 1 is feasible.

If 2β1

κ2
21

+ 2β2

κ2
22

< 1, then community 2 is feasible.

The first community (resp. the second one) will be affected by changing κ11, κ12 (resp. κ21, κ22). In
general, increasing the inter- or intra- interaction strength will decrease the probability of having a co-feasible
equilibrium.
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If κ12 = κ21 = ∞, then condition (23) gives the co-feasibility conditions for each community:

s11 <
1√

2β1 log(n)
and s22 <

1√
2β2 log(n)

.

For the same s, it means

s <
1√

2 log(n)max(β1, β2)
.

As an example of application, suppose we start with co-feasible communities of equal size (β1 = β2 = 0.5)
and add interactions between these two groups, co-feasibility may be dropped (see Fig. 2). The co-feasibility
domain is illustrated in Fig. 7. It shows a threshold where the co-feasibility property is satisfied above the
curve. This means that the lower the values of κ11 and κ22, i.e. the stronger the interactions within the groups,
the more likely the co-feasibility property is lost. We can conclude that an independent group structure is
more likely to be co-feasible and therefore stable, which supports previous work on compartmentalization
models [SB11].

Com
mun

ity 
1 (

11
)1.6

2.0

2.4

2.8
Community 2 ( 22)

1.5
1.8

2.1
2.4

2.7
3.0

Inter-com
m

unities (
12 ,

21 )
1.08

1.14

1.20

1.26

1.32

1.10

1.15

1.20

1.25

1.30

Figure 7: Representation of the co-feasibility phase diagram. The co-feasible domain is above the surface.
The z-axis (resp x-axis) is the strength of interaction within community 1 - κ11 (resp community 2 - κ22).
The y-axis is the inter-community interactions κ12 = κ21. The colored area illustrates the threshold between
the co-feasible and non-co-feasible domains in the system (3).
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4.3 Impact of the community size

For a fixed matrix κ, the condition to have a co-feasible fixed point can be computed as a function of the
size of each community i.e. the pair β = (β1, β2). Starting from the co-feasibility inequality (23):

max

(
2β1

κ2
11

+
2β2

κ2
12

,
2β1

κ2
21

+
2β2

κ2
22

)
< 1 ,

the two components are studied independently,

2β1

κ2
11

+
2(1− β1)

κ2
12

< 1 ⇔ β1

(
2

κ2
11

− 2

κ2
12

)
< 1− 2

κ2
12

⇒ β1 <
1− 2

κ2
12(

2
κ2
11

− 2
κ2
12

) if κ11 < κ12 .

Similarly, one has √
2β1

κ2
21

+
2(1− β1)

κ2
22

< 1 ⇒ β1 >
1− 2

κ2
22(

2
κ2
21

− 2
κ2
22

) if κ22 < κ21 .

In the case where the intra-community interactions (κ11 , κ22) are smaller than the inter-community interac-
tions (κ12 , κ21), we obtain an upper and a lower bound for the admissible size of each community β1, β2 to
have a co-feasible equilibrium. In Fig. 8, different cases of the co-feasibility zone are represented according to
the inter-community interactions (κ12 , κ21). If the intra-community interactions are different, the community
with the lowest interaction κii is advantaged i.e. the size of the community can be larger.

(a) κ11 = 1.2, κ22 = 1.2 (b) κ11 = 1.2, κ22 = 1.4 (c) κ11 = 1.4, κ22 = 0.9

Figure 8: Representation of the co-feasibility domain depending on the fixed intra-community interaction.
In (a), (b), (c), a different scenario of intra-community interaction is presented. Each panel represents the
upper-bound (blue curve) and the lower-bound (red curve) of the size of community 1 as a function of the
interaction between two communities (κ12, κ21). The blue area is the admissible zone to have a co-feasible
fixed point in (3). The size of community 2 is equal to β2 = 1− β1.

4.4 Connection increases co-feasibility

In Section 4.2, we analyzed the co-feasibility condition for a scenario involving two communities. We presented
a co-feasibility domain defined by∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

<
1

2 log(n)
:= (s∗n)

2 ,

⇔ max
(
β1s

2
11 + β2s

2
12, β1s

2
21 + β2s

2
22

)
<

1

2 log(n)
,

⇔ β1s
2
11 + β2s

2
12 <

1

2 log(n)
and β1s

2
21 + β2s

2
22 <

1

2 log(n)
. (24)

These two distinct conditions within the communities have led us to the conclusion that community isolation
is beneficial for coexistence. However, general constraints that affect all interactions could be considered
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at the ecosystem scale. To this end, we introduce a complementary condition: the global variance of the
interaction coefficients in the ecosystem remains invariant, i.e.

β1s
2
11 + β2s

2
12 + β1s

2
21 + β2s

2
22 = Γ ,

with Γ > 0.
In order to remove the n dependency, we define γ2

ij = s2ij log(n) and Γn = Γ log(n) (note that the
γ coefficients are defined differently from the κ coefficients). Combined with condition (24), we get the
following system of equations:

β1γ
2
11 + β2γ

2
12 + β1γ

2
21 + β2γ

2
22 = Γn ,

2β1γ
2
11 + 2β2γ

2
12 < 1, (feasibility condition for community 1) ,

2β1γ
2
21 + 2β2γ

2
22 < 1, (feasibility condition for community 2) .

(25)

Assuming the fixed intra-community variances γ11 and γ22, we seek to determine the co-feasibility conditions
for the inter-community variances γ12 and γ21. In this case, the constraint on the total variance corresponds
to the equation of an ellipse in the (γ12, γ21) plane:

β1γ
2
11 + β2γ

2
12 + β1γ

2
21 + β2γ

2
22 = Γn ,

⇔
(

β2

Γn − β1γ2
11 − β2γ2

22

)
γ2
12 +

(
β1

Γn − β1γ2
11 − β2γ2

22

)
γ2
21 = 1 ,

The equations below provide the values for the semi-major axis a and the semi-minor axis b of the ellipse:

a =

√
Γn − β1γ2

11 − β2γ2
22

β2
, b =

√
Γn − β1γ2

11 − β2γ2
22

β1
.

Note that if both communities are of equal size (β1 = β2), a circle with radius a is obtained.

From a visual standpoint, the conditions (25) are depicted in Figure 9. Since the coefficients (γ12, γ21)
are non-negative, we are only interested in the positive orthant. The feasibility condition for community 1 is
given by the horizontal axis defined by

2β1γ
2
11 + 2β2γ

2
12 < 1 ⇔ γ12 <

√
1− 2β1γ2

11

2β2
,

and the one of community 2 is given by the vertical axis defined by

2β1γ
2
21 + 2β2γ

2
22 < 1 ⇔ γ21 <

√
1− 2β2γ2

22

2β1
.

The intersection between the vertical (resp. horizontal) line and the ellipse occurs when the semi-major
axis (resp. semi-minor axis) exceeds the vertical condition a >

√
(1− 2β1γ2

11)/(2β2) (resp. horizontal

condition b >
√
(1− 2β2γ2

22)/(2β1)).

Remark 6. By replacing the feasibility condition of γ21 in the equation of the ellipse, we can derive the
intersection between the vertical axis and the ellipse as follows:

γ2
21 =

Γn − β2γ
2
22 − 1/2

β1
,

equivalent to the feasibility condition of γ12 (by replacing Γn):

γ12 <

√
1− 2β1γ2

11

2β2
.

18



We identify the range of co-feasibility between the two groups for γ21

Γn − β2γ
2
22 − 1/2

β1
< γ2

21 <
1− 2β2γ

2
22

2β1
.

This simple framework allows for testing different scenarios. Figure 9a is the reference figure. It represents
a situation where all the potential interactions between communities lead to co-feasibility. In Figure 9b, the
total system variance is increased, which results in a reduction of co-feasibility options: the interactions
between the two communities must be high γ12, γ21 ≫ 0. When the intra-community variances are increased
as shown in Figure 9c, the ellipse shrinks, and the set of inter-community interaction variances is reduced.
This observation reinforces the findings of Section 4.2 where large interaction between communities enables
co-feasibility through community isolation. In the concluding example in Figure 9d, we reduce only the γ11
interaction in community 1. We observe that the impact of community 1 on 2 γ21 must be weaker, but the
impact of community 2 on 1 γ12 can no longer be weak. Weaker interactions within community 1 imply a
stronger connection between the communities for co-feasibility.

(a) γ11 = γ22 = 0.5, Γn = 0.6. (b) γ11 = γ22 = 0.5, Γn = 0.8.

(c) γ11 = γ22 = 0.7, Γn = 0.6. (d) γ11 = 0.2, γ22 = 0.5, Γn = 0.6.

Figure 9: Graphical representation of equation system (25). The solid line circle constrains the total variance
of the system (equation 1 in (25)), while the dashed and dotted lines correspond to feasibility conditions for
community 1 (equation 2 in (25)) and 2 (equation 3 in (25)), respectively. In each figure, two communities
of equal size are considered with β1 = β2 = 1/2, creating the solid line circle (rather than an ellipse) in this
particular case. Each figure illustrates a distinct interaction situation between two communities outlined in
the caption. Figure (a) serves as the reference against which the other figures (b)-(c)-(d) are compared. The
co-feasibility arises only for the values of (γ12, γ21) on the line found within the inner square at the bottom
left-hand corner of the figure. When values of (γ12, γ21) on the line are outside this inner square, then one
or the other community is not feasible anymore.
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5 Discussion

In this paper, we described a model of the dynamics of species abundances when the interaction among
species is structured in multiple communities. The main interest is to outline the effect of a block structure
on the stability and persistence of species. We defined an interaction matrix per block which has several
characteristics such as the strength of the interactions s and the size of the community β. Specifically, we
described the dynamics and properties of each community in the system (feasibility, proportion of surviving
species, mean and root mean square of the abundances of surviving species) and their effect on each other.
In this context, we focused most of our analysis on the case of two interacting communities. However, our
results can be extended to more than 2 communities (see Appendix E).

First, theoretical conditions were given for a unique globally stable equilibrium in the model (3) with
surviving and vanishing species. This follows from Lyapunov conditions related to a result of Takeuchi and
Adachi [TA80] and random matrix theory. These stability results had been found in the case of a single
community by Clenet et al. [CMN23]. This complements the stability properties in the Lotka-Volterra
system studied by Stone [Sto18] and Gibbs et al. [GGRA18]. Recent random matrix methods allow us to
describe the spectrum of a block matrix and plot it numerically. For a detailed discussion of random matrices
in the Lotka-Volterra model, see Akjouj et al. [ABC+22].

Subsequently, we gave heuristics on the surviving species (proportion, mean and root mean square of
their abundances). These heuristics have also been found in the case of a single community by Clenet et al.
[CMN23]. From a physicist’s point of view and using the methods of Bunin [Bun17] and Galla [Gal18], Barbier
et al. [BABL18] and Poley et al. [PBG23] have extended the heuristics in the block and cascade model.
Previously, obtaining properties on surviving species in the LV model (not normalized by

√
n) was already

done by Servan et al. [SCG+18] where they consider a different growth rate for each species. The study of
the stability and properties of surviving species in the LV system has also been carried out by Pettersson
et al. [PSJ20a, PSJ20b]. From an ecological point of view, heuristics are derived from the properties of
interactions between multiple communities.

In a third part, we studied the condition under which the feasibility threshold exists where all species co-
exist. We extend the feasibility results found by Bizeul and Najim [BN21] in the case of a block structure. A
co-feasibility threshold was found in the form of an inequality that must be verified to have a feasible commu-
nity set. This complements the recent results on interactions with a sparse structure [AN22] and interactions
with a correlation profile [CEFN22]. We notice that to maximize the probability of co-feasibility, we need
to minimize the interactions between the communities. Additionally, a community with weaker interactions
can exhibit a larger total abundance in the ecosystem while maintaining the co-feasibility threshold. At the
ecosystem level, when a generic constraint that affects all interactions is added, weaker interactions within
one of the communities suggest a stronger connection between the communities for co-feasibility.

There are still many mathematical and ecological questions that remain unanswered in this type of model.
First, a rigorous mathematical proof of the heuristics presented here would be of interest, although the

LCP procedure induces an a priori statistical bias that is difficult to handle. This issue is still pending in the
single community case [CMN23] and appears to be challenging to address. Recently, Akjouj et al. [AHMN23]
provided a rigorous proof using an approximate message passing (AMP) approach in the single community
model with an interaction matrix taken from the Gaussian Orthogonal Ensemble (GOE). Their approach
was based on work by Hachem [Hac23].

Second, we could extend the heuristics for two different scenarios. On the one hand, it would be interesting
to add pairwise correlations between species coefficients Aij . This has already been done by physicists, see
[BABL18, PBG23]. In the study of feasibility, it was shown that a correlation profile does not change the
feasibility threshold [CEFN22]. On the other hand, for the sake of simplicity, we have chosen to set the
growth rates equal to the same value rk = 1 for k ∈ [n]. It would be relevant to control the distribution of
the growth rate as in [SCG+18] or to consider structural stability as in Saavedra et al. [SRB+17], i.e. how
much can the growth rates be perturbed (initially all equal to 1) without changing the type of equilibrium
x∗ obtained.

There are many applications of this kind of models in ecology. We could consider a spatial structure that
accounts for spatial proximity in the sense that two nearby communities tend to be more strongly connected.
For example, in an aquatic environment, we could imagine the existence of an up/down gradient in a water
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column. Fig. 10 illustrates a situation where three communities are involved.

(a) (b)

Figure 10: In (a), a representation of the gradient of interaction between three communities in a water column
is represented. The blue arrows correspond to strong interaction strength due to their spatial proximity. On
the opposite, the communities 1 and 3 are separated, the green arrow represents a weaker interaction. In (b),
the block matrix associated with this type of model is displayed. The colors of the blocks corresponds to the
colors of the arrows. The red colored block corresponds to intra-community interactions.

Originally introduced by R.T. Paine [Pai66, Pai69], the concept of keystone species is widely used in
ecology i.e. one species controls the coexistence of the others and species are lost after the removal of
this keystone species. Mouquet et al. [MGMC13] suggested extending the concept of keystone species to
communities. In the block system, one could analyze the existence of a keystone community that would
have disproportionately large effect on other communities. In a metacommunity dynamic, Resetarits et al.
[RCL18] have explored the concept of keystone communities, where some patches have stronger effect on
others.

One could imagine that the same species is present several times in the system, but in different blocks,
see Gravel et al. [GML16]. In this case, the inter-blocks represent interactions between spatially isolated
communities (so should be less strong). If each diagonal or non-diagonal block is a copy of the same interaction
pattern (possibly slightly perturbed) and we can add linear effects to the system to represent emigration and
immigration, then we could study the feasibility properties of this system. In [GML16], they found that
stability is most likely when dispersal (which controls off-diagonal blocks) is intermediate.

Last but not least, it would be relevant to compare the patterns obtained with data in ecology, as in the
recent article by Hu et al. [HAB+22] in the case of a single community.
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A Stieljes transform

We provide some reminders regarding Stieltjes transforms, a central element of proofs in random matrix
theory. We denote by

C+ := {z ∈ C : Im(z) > 0}

the upper half of the complex plane.

Definition 2 (Stieltjes transform). Let ν ∈ P(R) be a probability measure. The Stieltjes transform of ν,
denoted by gν : C+ → C, is defined by

gν(z) =

∫
1

λ− z
ν(dλ) , z ∈ C+ .

Remark 7. Let νX be the empirical measure of the eigenvalues λ1(X), · · · , λn(X) of the symmetric matrix
X ∈ Mn(C) define by

νX :=
1

n

n∑
k=1

δλk(X).

then the associated Stieltjes transform is given by

gνX
(z) =

∫
1

λ− z
νX(dλ) =

1

n

n∑
i=1

1

λi − z
=

1

n
Tr
(
(X − zI)−1

)
,

where Q = (X − zI)−1 is the resolvent of the matrix X and Tr(Q) is the trace of matrix Q.

Proposition 5 (Stieltjes inversion). Let gν the Stieltjes transform of the measure ν of finite mass ν(R). If
a, b ∈ R and ν({a}) = ν({b}) = 0, then

ν(a, b) =
1

π
lim

y→0+
Im

∫ b

a

gν(x+ iy)dx ,

and

∀x ∈ R, ν({x}) = 1

π
lim

y→0+
Im(gν(x+ iy)) .

B Numerical methods

All figures and code are available on Github [Cle23]. The code is written in Python.
To verify the system of equations of heuristics 1, the simulations on the properties of surviving species are

performed in two distinct methods (see Fig. 3). On the one hand, we use a standard solver (cf. scipy.optimize)
to find the theoretical solutions by finding a local minimum of the system of equations (a modification of the
Powell hybrid method). On the other hand, we simulate a large number of matrix B, each corresponding to
an experiment, and we resolve the associated LCP problem using the Lemke’s algorithm (see the lemkelcp
package [Lam19]). The empirical solutions are computed using a Monte Carlo experiment, i.e. we use the
LCP solution to compute the properties of the surviving species and we make an average over the ensemble
of experiments. As a baseline, the dynamics of Lotka-Volterra are achieved by a Runge-Kutta method of
order 4 (RK4) implemented in the code.

Spectrum: a computer based approach. Theorem 3 only provides sufficient conditions for the existence

of a unique stable equilibrium and is based on the rough asymptotic upper bound estimation Σ = 2 ∥S∥1/2∞ .
We can assess the sharpness of this bound by comparing it to the limiting spectrum of matrix H, which can
be plotted via numerical simulations. An efficient way to compute numerically the spectrum of the matrix
H comes from the system of non linear equations (11).
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Starting from the QVE (11) associated to the matrix H, the system takes the simpler form{
− 1

µ(z) = z + 2β1s
2
11µ(z) + β2(s

2
12 + s221)ν(z)

− 1
ν(z) = z + β1(s

2
12 + s221)µ(z) + 2β2s

2
22ν(z)

,

where ∀k ∈ I1, mk(z) = µ(z) and ∀k ∈ I2, mk(z) = ν(z). All the knowledge of equation (11) relies on
the functions µ(z) and ν(z). Then, using RMT theory, the resolvent G of the symmetric matrix H can be
approximated by

G(z) = (H − zI)−1 ≃ diag(µ(z)1⊤
I1
, ν(z)1⊤

I2
) .

From Remark 7, the trace of the resolvent is equal to the Stieltjes transform

g(z) =
1

n
Tr(G) ≃ β1µ(z) + β2ν(z)

of the spectral measure. Finally, the spectral density can be obtained using a the Stieltjes inversion (Prop.
5). The spectral density of the matrix H can be computed numerically by an iterative scheme. The initial
condition of the two measurements (µ, ν) is µ0 = ν0 = − 1

z . Then, the iterative scheme{
− 1

µp
= z + 2β1s

2
11µp−1 + β2(s

2
12 + s221)νp−1

− 1
νp

= z + β1(s
2
12 + s221)µp−1 + 2β2s

2
22νp−1

,

converge to µ∞ = lim
p→+∞

µp and ν∞ = lim
p→+∞

νp. The last step consist of using the property of the Stieltjes

inversion (Prop.5).

Remark 8. To handle the Stieltjes inversion (Prop.5) numerically, it is similar as starting with z = x+ϵi, ϵ ≈
10−3.

In Fig. 11, we present the numerical estimation of the spectral density for different types of interactions
of the matrix H.

C Remaining computations

C.1 Moments of Žk

We compute hereafter the conditional variance of Žk = (Bx∗)k with respect to x∗. We rely on the following
identities ∀k ∈ Ii, ∀ℓ ∈ Ij and ∀o ∈ Iq:

EBkℓ = 0 , E(B2
kℓ) =

s2ij
n

, EBkℓBko = 0 (ℓ ̸= o) .

We first compute the conditional mean:

∀k ∈ Ii, Ex∗(Žk) =
∑
ℓ∈[n]

E(Bkℓ)x
∗
ℓ =

∑
ℓ∈S1

E(Bkℓ)x
∗
ℓ +

∑
ℓ∈S2

E(Bkℓ)x
∗
ℓ = 0 .

We now compute the second moment:

∀k ∈ Ii, Ex∗(Ž2
k) = Ex∗

∑
ℓ∈[n]

Bkℓx
∗
ℓ

2

= Ex∗

∑
ℓ,o∈[n]

BkℓBkox
∗
ℓx

∗
o ,

=
∑

ℓ∈S1∪S2

E(B2
kℓ)x

∗2
ℓ +

∑
ℓ ̸=o

E(BkℓBko)x
∗
ℓx

∗
o,

=
s2i1
n

∑
ℓ∈S1

x∗2
ℓ +

s2i2
n

∑
ℓ∈S2

x∗2
ℓ ,

(a)
≃ β1p̂1σ̂

2
1s

2
i1 + β2p̂2σ̂

2
2s

2
i2 ,
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(a) β = [1/2, 1/2], s =

(
1/

√
2 1/

√
2

1/
√
2 1/

√
2

)
(b) β = [1/2, 1/2], s =

(
1/2 1
1 1/8

)

(c) β = [1/2, 1/2], s =

(
1 1/2

1/8 1

)
(d) β = [3/4, 1/4], s =

(
1/3 1/5
1 1/2

)
Figure 11: Spectrum (histogram) of the Hermitian random matrix H (n = 1000), conditions on (β, s) are
given in each panel. The numerical approach is used to compute the solid line spectrum distribution. An

upper bound for the largest eigenvalue of H, given by 2 ∥S∥1/2∞ , is denoted by the dashed vertical line.

where the approximation in (a) follows from the fact that

1

n2

∑
ℓ,o∈[n]

x∗
ℓx

∗
o =

1

n2

∑
ℓ ̸=o

x∗
ℓx

∗
o +O

(
1

n

)
.

We can now compute the variance:

∀ k ∈ Ii, Varx∗
(
Žk

)
= Ex∗

(
Ž2
k

)
−
(
Ex∗Žk

)2
= β1p̂1σ̂

2
1s

2
i1 + β2p̂2σ̂

2
2s

2
i2 .

C.2 Details of heuristics of the mean

Our starting point is the following generic representation of an abundance at equilibrium (either of a surviving
or vanishing species) in the case k ∈ Si:

x∗
k = (1 +∆∗

iZk)1{Zk>δ∗i } = 1{Zk>δ∗i } + (∆∗
iZk)1{Zk>δ∗i } .
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Summing over Si and normalizing,

1

|Si|
∑
k∈Si

x∗
k =

1

|Si|
∑
k∈Si

1{Zk>δ∗i } +∆∗
i

1

|Si|
∑
k∈Si

Zk1{Zk>δ∗i },

m̂i
(a)
= 1 +∆∗

i

|Ii|
|Si|

1

|Ii|
∑
k∈Ii

Zk1{Zk>δ∗i },

m̂i

(b)
≃ 1 + ∆∗

i

1

P(Z > δ∗i )
E(Z1{Z>δ∗i }),

m̂i ≃ 1 + ∆∗
iE(Z | Z > δ∗i ).

where (a) follows from the fact that |Si| =
∑

k∈Si
1{Zk>δ∗i } (by definition of Si), (b) from the law of large

numbers 1
|Ii|
∑

k∈Ii
Zk1{Zk>δi} −−−−→

n→∞
EZ1{Z>δ∗i } and |Si|

|Ii| −−−−→
n→∞

P(Z > δ∗i ) with Z ∼ N (0, 1). It remains

to replace m̂i by its limit m∗
i to obtain the heuristics of the mean:

m∗
1 = 1 +∆∗

1E(Z | Z > δ∗1) ,

m∗
2 = 1 +∆∗

2E(Z | Z > δ∗2) .

C.3 Density of the distribution of the surviving species.

Assume that x∗ > 0, and let f = R → R be a bounded continuous test function, then ∀k ∈ Si

Ef(x∗
k) = E

[
f (1 + λ∗

i +∆∗
iZk)

∣∣∣∣ Zk > δ∗i

]
,

=

∫ ∞

−∞
f (1 + λ∗

i +∆∗
i u)

1{u>δ∗i }

1− Φ(δ∗i )

e−
u2

2

√
2π

du ,

=

∫ ∞

0

f(y)e
− 1

2

(
y

∆∗
i
+δ∗i

)2

1√
2πΦ(−δ∗i )∆

∗
i

dy ,

hence the density of x∗
k, ∀k ∈ Si .

D Sketch of proof of Theorem 4

The first step consists in decomposing the equilibrium x∗:

x∗
k = e⊤k x

∗ = e⊤k (I −B)−11 =

∞∑
ℓ=0

e⊤k B
ℓ1 = 1 + e⊤k B1+ e⊤k B

2(I −B)−11 ,

= 1 + Zk +Rk ,

where Zk =
∑n

ℓ=1 Bkℓ , ∀k ∈ [n].
One can prove that ∀k ∈ [n], Rk is a negligible term if n is sufficiently large. From a technical point, it

relies on Gaussian concentration of Lipschitz functionnals and we are confident that the techniques applied
in [BN21] will succeed in handling Rk. However, this part of the proof is not been treated here since we want
to stick a concise argumentation of the proof which gives the reader information about the critical bound of
the feasibility threshold.

The feasibility of the two communities is studied independently. Using Gaussian addition properties, a
simpler form of Zk is first deduced. Consider a family (Žk)k∈[n] of i.i.d. random variables N (0, 1).

If k ∈ I1, Zk =
∑
ℓ∈I1

Bkℓ +
∑
ℓ∈I2

Bkℓ ,

∼ N
(
0 , β1s

2
11

)
+N

(
0 , β2s

2
12

)
,

∼
√

β1s211 + β2s212Žk .
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Similarly

if k ∈ I2, Zk ∼
√

β1s221 + β2s222Žk .

Given β = (β1, β2), conditions on the matrix s are inferred to have:

P
(
min
k∈[n]

xk > 0

)
= 1 ⇔ P

(
min
k∈[n]

Zk > −1

)
= 1 . (26)

In order to compute a tractable form of min
k∈[n]

Zk, an additional approximation is made, if n is large enough

∀i ∈ {1, 2}, min
k∈Ii

Žk ∼ −
√
2 log(βin) ≈ −

√
2 log(n) (27)

min
k∈[n]

Zk = min

(√
β1s211 + β2s212min

k∈I1

Žk,
√

β1s221 + β2s222min
k∈I2

Žk

)
,

(a)
≃ min

(√
β1s211 + β2s212

(
−
√

2 log(n)
)
,
√
β1s221 + β2s222

(
−
√
2 log(n)

))
,

= min

(
−
√
2β1s211 log(n) + 2β2s212 log(n),−

√
2β1s221 log(n) + 2β2s222 log(n)

)
,

= −max

(√
2β1s211 log(n) + 2β2s212 log(n),

√
2β1s221 log(n) + 2β2s222 log(n)

)
.

where (a) comes from the approximation (27). The condition min
k∈[n]

Zk > −1 asymptotically boils down to

max

(√
2β1s211 log(n) + 2β2s212 log(n),

√
2β1s221 log(n) + 2β2s222 log(n)

)
< 1 ,

⇔ max
(
2β1s

2
11 log(n) + 2β2s

2
12 log(n), 2β1s

2
21 log(n) + 2β2s

2
22 log(n)

)
< 1 ,

⇔ max
(
β1s

2
11 + β2s

2
12, β1s

2
21 + β2s

2
22

)
<

1

2 log(n)
,

⇔
∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

<
1

2 log(n)
:= (s∗n)

2 .

E Extension to the b-blocks model

E.1 Interaction matrix with b communities

Within the framework of b communities, the matrix B = (Bkℓ)n,n is defined as

B = V sV ⊤ ◦ 1√
n
A , (28)

where

V ∈ Mn×b, V =


1I1 0 · · · 0
0 1I2

· · · 0
...

...
. . .

...
0 0 · · · 1Ib

 , A =

A11 · · · A1b

...
. . .

...
Ab1 · · · Abb

 , s =

s11 · · · s1b
...

. . .
...

sb1 · · · sbb

 ,

where I1 = [n1], I2 = {n1 + 1, · · · , n1 + n2},. . . , Ib = {n1 + · · · + nb−1 + 1, · · · , n} the subset of [n]
of size |Ii| := ni matching the index of species belonging to community i and β = (β1, β2, .., βb) with

∀i ∈ [b], βi = ni/n and
∑b

i=1 βi = 1. The random matrix Aij is non-Hermitian of size |Ii| × |Ij | with
standard Gaussian entries i.e. N (0, 1). Recall that 1Ii

be the element-wise vector of 1 with size |Ii|.
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E.2 Existence of a unique equilibrium

Let H be the symmetric matrix

H = B +B⊤ =
1√
n

H11 · · · H1b

...
. . .

...
Hb1 · · · Hbb

 ,

where ∀ i, j ∈ [b], Hij is a matrix of size |Ii|× |Ij | and each off-diagonal entries follow a Gaussian distribution
N (0, s2ij + s2ji). The QVE associated to the matrix H is decomposed as

k ∈ Ii , −
1

mk(z)
= z +

b∑
j=1

∑
ℓ∈Ij

1

n

(
s2ij + s2ji

)
mℓ(z) .

Given m(z) = (m1(z), · · · ,mn(z)), denote by 1/m(z) = (1/m1(z), · · · , 1/mn(z)) and S = 1
nV (s + s⊤)V ⊤

the QVE can be written in the standard form

− 1

m(z)
= z + Sm(z) . (29)

Following the same arguments as in Theorem 3 and relying on Theorem 2, given the particular shape of
the matrix S, computing its norm is equivalent to computing the norm of a matrix of size b

∥S∥∞ =
∥∥diag(β) ((s ◦ s) + (s ◦ s)⊤

)∥∥
∞ .

E.3 Surviving species

Heuristics 3. Let s be the b × b matrix of interaction strengths and assume that the condition of Theorem
3 holds, then the following system of 2b equations and 2b unknowns p = (p1, p2, .., pb), σ = (σ1, σ2, .., σb)

∀i ∈ [b] , pi = 1− Φ(δi) ,

∀i ∈ [b] , (σi)
2 = 1 + 2∆iE(Z|Z > δi) + ∆2

iE(Z2|Z > δi) ,

where

∆i =

√√√√ b∑
j=1

pj(σj)2βjs2ij ; δi = − 1

∆i
,

admits a unique solution (p∗, σ∗) and ∀ i ∈ [b]

p̂i
a.s.−−−−→

n→∞
p∗i and σ̂i

a.s.−−−−→
n→∞

σ∗
i .

E.4 Distribution of the surviving species

Let s be the b× b matrix of interaction strengths and assume that the condition of Theorem 3 holds. Let x∗

the solution of (8) and (p∗, σ∗) the solution of the heuristic 3. Recall the definition of ∆i, δi and denote by
δ∗i = δi(p

∗
i , σ

∗
i ). Let x

∗
k > 0 a positive component of x∗ belonging to the community i, then:

L(x∗
k) −−−−→

n→∞
L
(
1 + ∆∗

iZ

∣∣∣∣ Z > δ∗i

)
,

where Z ∼ N (0, 1). Otherwise stated, asymptotically ∀k ∈ Si, x
∗
k admits the following density

fk(y) =
1{y>0}

Φ(−δ∗i )

1

∆∗
i

√
2π

exp

{
−1

2

(
y

∆∗
i

+ δ∗i

)2
}

. (30)

31



E.5 Feasibility

We consider a growing scaling matrix

sn −−−−→
n→∞

0 ⇔ ∀i, j ∈ {1, b}, sij −−−−→
n→∞

0 .

Let Bn a matrix defined by

Bn = V snV
⊤ ◦ 1√

n
A . (31)

The spectral radius of 1√
n
A a.s. converges to 1 (circular law). So as long as sn is close to zero, the matrix

I −Bn is eventually invertible.
Recall the problem which admits a unique solution defined by

x∗ = 1+Bx∗ ⇔ x∗ = (I −B)−11 , (32)

Theorem 6 (Co-feasibility for the b-blocks model). Assume that matrix Bn is defined by the b-blocks model

(31). Let β = (β1, β2, .., βb),
∑b

i=1 βi = 1 represents the proportion of each community. Let sn −−−−→
n→∞

0 and

denote by s∗n = 1/
√
2 log n. Let xn = (xk)k∈[n] be the solution of (32).

1. If there exists ε > 0 such that eventually
∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

≥ (1 + ε)(s∗n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

0 .

2. If there exists ε > 0 such that eventually
∥∥∥(sn ◦ sn)β⊤

∥∥∥
∞

≤ (1− ε)(s∗n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

1 .

Sketch of proof. Starting from the decomposition, the equilibrium x∗:

x∗
k = 1 + Zk +Rk ,

where Zk =
∑n

ℓ=1 Bkℓ , ∀ k ∈ [n] and we assume that ∀ k ∈ [n] , Rk is a negligible term if n is sufficiently
large.

The feasibility of the b communities is studied independently. Using Gaussian addition properties, a
simpler form of Zk is derived. Consider a family (Žk)k∈[n] of i.i.d. random variables N (0, 1).

If k ∈ Ii, Zk =

b∑
j=1

∑
ℓ∈Ij

Bkℓ ,

∼
b∑

j=1

N
(
0 , βjs

2
ij

)
,

∼

√√√√ b∑
j=1

βjs2ijŽk .

Given β = (β1, β2, .., βb), conditions on the matrix s are inferred to have

P(min
k∈[n]

xk > 0) = 1 ⇔ P(min
k∈[n]

Zk > −1) = 1 .
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In order to compute a tractable form of min
k∈[n]

Zk, an additional approximation is made, if n is large enough

min
k∈Ii

Žk ∼ −
√

2 log(βin) ≃ −
√
2 log(n) . (33)

min
k∈[n]

Zk = min
i∈[b]

√√√√ b∑
j=1

βjs2ijmin
k∈Ii

Žk

 ,

≃ min
i∈[b]

√√√√ b∑
j=1

βjs2ij

(
−
√
2 log(n)

) ,

= min
i∈[b]

−

√√√√ b∑
j=1

2βjs2ij log(n)

 ,

= −max
i∈[b]

√√√√ b∑
j=1

2βjs2ij log(n)

 .

Following the approximation (33), the condition min
k∈[n]

Zk > −1 asymptotically boils down to

max
i∈[b]

√√√√ b∑
j=1

2βjs2ij log(n)

 < 1 ,

⇔ max
i∈[b]

 b∑
j=1

2βjs
2
ij log(n)

 < 1 ,

⇔ max
i∈[b]

 b∑
j=1

βjs
2
ij

 <
1

2 log(n)
,

⇔
∥∥∥(sn ◦ sn)2β⊤

∥∥∥
∞

<
1

2 log(n)
:= (s∗n)

2 .
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