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Physics-based output-feedback
consensus-formation control of networked
autonomous vehicles

Antonio Lorı́a∗, Emmanuel Nuño†, Elena Panteley∗, Esteban Restrepo‡

Abstract We describe a control method for multi-agent vehicles, to make them
adopt a formation around a non pre-specified point on the plane, and with common
but non pre-imposed orientation. The problem may be considered as part of a more
complex maneuver in which the robots are summoned to a rendezvous to advance in
formation. The novelty and most appealing feature of our control method is that it
is physics-based; it relies on the design of distributed dynamic controllers that may
be assimilated to second-order mechanical systems. The consensus task is achieved
by making the controllers, not the vehicles themselves directly, achieve consensus.
Then, the vehicles are steered into a formation by virtue of fictitious mechanical
couplings with their respective controllers. We cover different settings of increasing
technical difficulty, from consensus formation control of second-order integrators
to second-order nonholonomic vehicles and in scenarii including both state- and
output-feedback control. In addition, we address the realistic case in which the
vehicles communicate over a common WiFi network that introduces time-varying
delays. Remarkably, the same physics-based method applies to all the scenarii.

1 Introduction

For first and second-order integrators the leaderless consensus problem, which con-
sists in the state variables of all agents converging to a common value, is well-studied
and solved under many different scenarios [52]. However, the solution to this problem
is more complex if one considers the agents’ dynamics [26, 48], network constraints,
such as communication delays [64], unavailability of velocity measurements [41],
or nonholonomic constraints that restrict the systems’ motion [28].
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For autonomous vehicles, which, in contrast to mathematical models consisting
of first and second-order integrators, do occupy a physical space, the leaderless
consensus problem consists in making all robots converge to a rendezvous point. That
is, the robots are required to coordinate their motions without any pre-established
trajectory. Furthermore, because the robots can obviously not occupy the same
physical space simultaneously, a formation pattern with an unknown center must
be imposed. This is done by specifying for each robot, an offset position from the
unknown center [43]. It may be required that positions and orientations converge to
a common value [33], or that either only the positions [28] or only the orientations
[36] achieve a common equilibrium point.

Rendezvous control is useful in cases where a group of robots must converge
to postures that form a desired geometric pattern given any initial configuration in
order to subsequently maneuver as a whole [63]. This is a typical two-stage formation
problem. In the first, a rendezvous algorithm is required for the stabilization of the
agents [21, 11, 55] and in the second a formation-tracking controller is employed
[10]–[35].

From a systems viewpoint, rendezvous control of nonholonomic vehicles is inher-
ently a set-point stabilization problem. In that regard, it presents the same technical
difficulties as the stabilization of a single robot. In particular, that nonholonomic
systems are not stabilizable via time-invariant smooth feedback [6], but either via
discontinuous time-invariant control [11] or time-varying smooth feedback [62, 22].
In other words, in contrast to the case of holonomic systems, for systems with non-
holonomic constraints stabilization is not a particular case of trajectory tracking, so
controllers that solve one problem generally cannot solve the other [29]. For multi-
agent systems, necessary conditions for rendezvous are laid in [28]. Thus, neither
the numerous algorithms for consensus of linear systems nor those for formation-
tracking control, notably in a leader-follower configuration, apply to the rendezvous
problem for nonholonomic vehicles.

Here we consider a rendezvous problem for second-order (force-controlled) non-
holonomic systems interconnected over an undirected static graph and with time-
varying measurement delays for which velocity measurements are not available.
From a systems viewpoint, this is an output-feedback control problem, with output
corresponding to the vehicles’ positions and orientations. We emphasize that in spite
of the many articles on output-feedback control for the consensus of multi-agent
systems—see e.g., [14, 34, 61, 27], very few address the problem of output-feedback
control for nonholonomic vehicles; see for instance, [50] on the leader-follower con-
sensus problem and [18] where a velocity filter has been employed to obviate the
need of velocity measurements. In the latter, however, delays are not considered
and, more importantly, such problem appears to be unsolvable using the algorithm
proposed therein.

In this chapter we explore the consensus-formation control problem for nonholo-
nomic systems under various scenarii. We start by revisiting the consensus control of
second-order integrators, and then we show how output-feedback consensus control
may be achieved via dynamic feedback, even in the presence of transmission delays.
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Our controllers are completely distributed because they rely only on the information
available to each agent from its neighbors, without requiring any knowledge of the
complete network.

Some of the statements presented here are original and others appear in [44] and
[45]. In contrast to the latter, however, in this chapter we favor a pedagogical over a
technical presentation. Hence, we omit proofs and rather develop in detail the most
interesting fact that the stabilization mechanism behind our methods has a clear
physical analogy with the stabilization of (under-actuated) flexible joint robots. In
the following section we describe the dynamic model of the nonholonomic agents
and we present the formal problem statement. Then, in Section 3 we revisit the
rendezvous problem for linear second-order systems via a state-feedback controller.
In Section 4 we design an output-feedback scheme for nonholonomic vehicles for
the undelayed case. In Section 5 we see how our method applies even in the presence
of measurement delays. In Section 6 we illustrate our findings with a case-study of
realistic simulations, for which we used the Gazebo-ROS environment. As customary,
we offer some concluding remarks in Section.

2 Model and problem formulation

2.1 Single-robot model
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Fig. 1 Schematics of a differential-drive mobile robot

We consider autonomous vehicles as the one schematically represented in Figure
1. Its position on the plane may be defined as that of its center of mass, with Cartesian
coordinates (x, y) ∈ R2 and its orientation with respect to the abscissae is denoted
by the angle θ. It is assumed that the vehicle may move forward with a velocity
v := [ẋ2 + ẏ2](1/2) and turn with an angular velocity ω. The vehicle, however,
cannot move in certain directions (e.g., sideways). This restriction is encoded by the
non-integrable velocity constraint

sin(θ) ẋ = cos(θ) ẏ.
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From these expressions we obtain the velocity equations

ẋ = cos(θ)v (1a)
ẏ = sin(θ)v (1b)
θ̇ = ω, (1c)

which define a first-order model often used in the literature on control of nonholo-
nomic systems —see e.g., [10, 37, 40, 60] and [35]. In such model the control inputs
are the velocities v and ω. Being mechanical systems, however, a more complete
model includes a set of Euler-Lagrange equations for the velocity dynamics, i.e.,

v̇ = Fv (z, θ, v, ω) + uv (2a)
ω̇ = Fω (z, θ, v, ω) + uω, (2b)

where Fv and Fω are smooth functions [39]. Articles on control of nonholonomic
systems where such second-order models are used are considerably scarce in com-
parison —see, e.g., see [9] and [15] and they are more often found in a single-vehicle
setting [24, 13, 19].

Here, we employ a complete second-order model that corresponds to that of so-
called differential-drive robots [59]. For the purpose of analysis, only, we assume
that the center of mass is aligned with an axis joining the centers of the wheels—see
the illustration on the left in Figure 1, so Fω = Fv ≡ 0, but the model used to test our
algorithms in the realistic simulator Gazebo-ROS does not satisfy this assumption.

Thus, the control inputs take the form

uv :=
1

rm
[τ1 + τ2], uω :=

2R
Ir

[τ1 − τ2],

where m and I are respectively the robot’s mass and inertia whereas τ1 and τ2 are
the torques applied, independently, at each of the wheels.

An essential feature of this model, that is at the basis of the control design,
is that Equations (1)–(2) consist of two coupled second-order systems driven by
independent control inputs. One system determines the linear motion and the other
the angular one. To evidence this, we define zi := [xi yi]> ∈ R2, where we introduced
the index i ≤ N to refer to one among N robots —see the illustration on the right in
Figure 1, and rewrite the equations for the ith robot in the form:

angular-motion
dynamics

{
θ̇i = ωi (3a)
ω̇i = uωi, (3b)

linear-motion
dynamics

{ żi = ϕ(θi)vi, (4a)
v̇i = uvi, (4b)

where
ϕ(θi) := [cos(θi) sin(θi)]>. (5)
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This (apparently innocuous) observation is important because the literature is
rife with efficient controllers for second-order mechanical systems from which we
may draw inspiration for the problem at hand here, even in the context of multi-agent
systems [52]. Moreover, even though the subsystems (3) and (4) are clearly entangled
through the function ϕ they may be dealt with as if decoupled, by replacing θi with
the trajectory θi (t) since ϕ is uniformly bounded [30]. Hence, relying on a cascades
argument, we may apply a separation principle to design the controllers for the linear
and angular motion subsystems independently. These key features are at the basis of
our method to approach the rendezvous problem, which is described next.

2.2 The consensus formation problem
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Fig. 2 Vehicles initially dispersed communicating over an undirected network (are required to)
achieve formation consensus around a rendezvous point

Consider a group of N force-controlled nonholonomic vehicles modeled by (3)–
(5) like the one depicted in Figure 1, each of these robots is assumed to be equipped
with positioning sensors that deliver reliable measures of xi , yi , and θi .

The robots are required to meet in formation at a rendezvous point zc := (xc, yc)
and acquire a common orientation θc . That is, for each i ≤ N the Cartesian positions
zi must converge to zc + δi , where δi is a vector that determines the position of the
ith vehicle relative to the unknown center of the formation —see Figure 2 for an
illustration. More precisely, consider the following problem statement.

Definition 1 (Consensus formation) For each robot (resp. each i ≤ N), given a
vector δi = [δxi δyi]>, define its translated position z̄i := zi − δi (correspondingly,
let x̄i := xi − δxi and ȳi := yi − δyi).



6 A. Lorı́a, E. Nuño, E. Panteley, E. Restrepo

Then, design a distributed controller such that

lim
t→∞

vi (t) = 0, lim
t→∞

z̄i (t) = zc, (6)

lim
t→∞

ωi (t) = 0, lim
t→∞

θi (t) = θc ∀ i ≤ N . (7)

We stress that this is a leaderless consensus problem. That is, neither the coordi-
nates (xc, yc) nor the angle θc are determined a priori as a reference. They depend
on the initial postures, the systems’ nonlinear dynamics, and network features (see
farther below). In general, this problem, may not be solved using controllers de-
signed to make the vehicles advance in formation while following a leader (virtual
or otherwise).

Now, we assume that the vehicles communicate over a WiFi network. The ith
robot communicates with a set of neighbors, which we denote by Ni . It is naturally
assumed that once a communication is set between two robots i and j ∈ Ni , the
flow of information is bidirectional and is never lost. More precisely, we pose the
following.

Assumption 1 The network may be modeled using an interconnection graph that is
undirected, static, and connected.

Remark 1 In graph theory, a graph is undirected if the nodes exchange information
in both directions, it is static if the interconnection is constant, and an undirected
graph is connected if any node is reachable from any other node.

Now, because the robots communicate over a WiFi network, the communication
between the robots i and j is affected by non-constant time-delays. More precisely,
we consider the following.

Assumption 2 The communication from the jth to the ith robot is subject to a
variable time-delay denoted Tji (t) that is bounded by a known upper-bound T ji ≥ 0
and has bounded time-derivatives, up to the second.

Furthermore, we also assume that the vehicles are equipped only with position
and orientation sensors. That is,

Assumption 3 the velocities vi and ωi are not measurable.

Assumptions 1–3 coin realistic scenarii of automatic control of multi-agent sys-
tems, but all three together have been little addressed in the literature in the context of
consensus control of nonholonomic systems [45]. Yet, Assumption 2 carries certain
conservatism in imposing that the delays be differentiable and bounded. Indeed, it
must be stressed that, in general, time-delays over WiFi networks or the Internet may
rather be of a non-smooth nature [1, 2, 33]. Nonetheless, the formal analysis under
such condition is considerably intricate and escapes the scope of this document.
For a Lyapunov-based analysis of the rendezvous problem under non-differentiable
delays, albeit via state-feedback, see [32, 33].
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3 Control Architecture: state-feedback case

As previously implied, the controller that we propose relies on the system’s structural
properties that lead to a separation of the linear- and angular-motion dynamics. For
clarity of exposition, we start by revisiting the consensus problem for ordinary
second-order systems (‘double integrators’) via state-feedback and without delays.
The purpose is to underline the robustness of a commonly used distributed controller,
by presenting an original analysis that is helpful to understand the essence of the
stabilization mechanism at the basis of our method. In addition, it has the advantage
of providing a strict Lyapunov function for consensus of second-order systems.

3.1 Consensus control of second-order systems

The consensus problem for systems with dynamics—cf. Eq. (3),

ϑ̈i = ui i ≤ N, ui ∈ R (8)

(that is, steering ϑi → ϑc , ϑ̇i → 0, and ϑ̈i → 0 with ϑc constant and non-imposed a
priori) is now well understood in various settings, e.g., in the case of unmeasurable
velocities [3], of measurement delays [17], or with state constraints [51, 53].

For instance, it is well known (see [52]) that if the systems modeled by (8)
communicate over a network modeled by a directed, static, and connected graph,
and the full state is measurable, the distributed control law of proportional-derivative
(PD) type

ui = −di ϑ̇i − pi
∑
j∈Ni

ai j (ϑi − ϑ j ), di, pi > 0, (9)

where ai j > 0 if j ∈ Ni and ai j = 0 otherwise, solves the consensus problem. More
precisely, we have the following.

Proposition 1 Consider the system (8) in closed loop with (9), that is, the system

ϑ̈i + di ϑ̇i + pi
∑
j∈Ni

ai j (ϑi − ϑ j ) = 0. (10)

Then, the consensus manifold {ϑi = ϑ j } ∩ {ϑ̇i = 0}, for all i, j ≤ N is globally
exponentially stable for any positive values of di and pi .

The proof of global asymptotic stability of the consensus manifold is well reported
in the literature [52]. For further development we provide here a simple and original
proof of global exponential stability based on Lyapunov’s direct method.

Let ϑ := [ϑ1 · · · ϑN ]>,

ϑ̃ := ϑ −
1
N

1N1>Nϑ, where 1N := [1 · · · 1]>. (11)
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The ith element of the vector ϑ̃ denotes the difference between ϑi and the average of
all the states, i.e., ϑc := (1/N )1>Nϑ, so consensus is reached if and only if ϑ̃ = 0. In
addition, under Assumption 1, ϑc corresponds to the consensus equilibrium point.
Now, to abbreviate the notation, we also define

R := I −
1
N

1N1>N .

Note that R = R> and ‖R‖ ≤ 1, where ‖R‖ corresponds to the induced norm of R,
and ϑ̃ = Rϑ.

Next, we introduce the Laplacian matrix, L := [`i j] ∈ RN×N , where

`i j =



∑
k∈Ni

aik i = j

−ai j i , j .
(12)

By construction, L1N = 0 and, after Assumption 1, L is symmetric, it has a
unique zero-eigenvalue, and all of its other eigenvalues are strictly positive. Hence,
rank(L) = N − 1. Also, the last term on the right-hand side of Equation (9) satisfies

col
[ ∑

j∈Ni

ai j (ϑi − ϑ j )
]
= Lϑ̃, (13)

where col[(·)i] denotes a column vector of N elements (·)i . Indeed, by the definition
of the Laplacian, we have

col
[ ∑

j∈Ni

ai j (ϑi − ϑ j )
]
= L

[
ϑ −

1
N

1N1>Nϑ
]
+

1
N

L1N1>Nϑ.

However, L1N = 0, so the right hand side of the equation above equals to LRϑ, which
corresponds to Lϑ̃, by definition. These identities are useful to write the closed-loop
system (8)–(9) in the multi-variable form

ϑ̈ = −Dϑ̇ − PLϑ̃, (14)

where P := diag[pi] and D := diag[di]. In turn, this serves to notice that the
Lyapunov function

V1(ϑ̃, ϑ̇) :=
1
2
[
ϑ̃>Lϑ̃ + ϑ̇>P−1ϑ̇

]
(15)

is positive definite, even if L is rank deficient. Indeed, the term ϑ̃>Lϑ̃ ≥ λ2(L) |ϑ̃ |2,
where λ2(L) > 0 corresponds to the second eigenvalue of L (that is, the smallest
positive eigenvalue). We stress that V1 is positive, not for any ϑ̃ ∈ RN\{0}, but for ϑ̃
as defined in (11).

Now, evaluating the total derivative of V1 along the trajectories of (14) and using
L ˙̃ϑ = Lϑ̇ (again, this holds because L1N = 0) we see that

V̇1(ϑ̃, ϑ̇) = −ϑ̇>P−1D ϑ̇. (16)
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Global asymptotic stability of the consensus manifold {(ϑ̃, ϑ̇) = (0, 0)} may be
ascertained from (16) by invoking Barbashin-Krasovskı̆i’s theorem [4] (also, but
wrongly, known as LaSalle’s theorem).

Remark 2 Note that, in the presence of an additional input α the system (14), that is,
ϑ̈ + Dϑ̇ + PLϑ̃ = α, defines an output strictly passive map α 7→ ϑ̇. This follows by
a direct computation of V̇1 that leads to V̇1(ϑ̃, ϑ̇) = −ϑ̇>P−1D ϑ̇ + α>ϑ̇.

As a matter of fact, since the system is linear time-invariant, it is also globally
exponentially stable. To see this more clearly, using V1 it is possible to construct a
simple strict Lyapunov function. This is useful to assess the robustness of system (8)
in closed loop with the consensus control law defined in (9) in terms of input-to-state
stability.

Let ε ∈ (0, 1) and define

V2(ϑ̃, ϑ̇) := V1(ϑ̃, ϑ̇) + εϑ̃>P−1ϑ̇. (17)

In view of the properties of V1 it is clear that also V2 is positive definite and radially
unbounded, for sufficiently small values of ε. On the other hand, the total derivative
of V2 along the closed-loop trajectories of (14) yields

V̇2(ϑ̃, ϑ̇) = V̇1 + ε
[
ϑ̇>RP−1ϑ̇ − ϑ̃>P−1Dϑ̇ − ϑ̃>Lϑ̃

]
, (18)

which, in view of (16) and the fact that ‖R‖ ≤ 1, implies that

V̇2(ϑ̃, ϑ̇) ≤ −c1 |ϑ̇ |
2 − εc2 |ϑ̃ |

2 (19)

where dm and pM are the smallest and largest coefficients of D and P respectively,
c1 := dm

pM
− ε

[ 1
pm
+ dM

2λpm

]
and c2 := `2 −

λ
2
dM

pm
are positive for appropriate values

of λ and ε ∈ (0, 1) and any `2 := λ2(L) > 0.
The previous analysis is interesting because it leads to the important observation

that for perturbed systems with dynamics ϑ̈i = ui+αi where αi is a bounded external
disturbance, we have

V̇2(ϑ̃, ϑ̇) ≤ −c′1 |ϑ̇ |
2 − εc′2 |ϑ̃ |

2 + c3 |α |
2 (20)

where c′1 := c1 −
λ
2 , c′2 := c2 −

dm

2λpm
, and α := [α1 · · · αN ]>. So the closed-loop

system is input-to-state stable with respect to the input α.
We use the previously established facts in our control-design method. The con-

trollers that we present below, for nonholonomic systems, are devised as second-order
mechanical systems in closed loop with a consensus controller, that is, with dynamics
reminiscent of (14). Then, they are interconnected via virtual springs to the vehicles’
dynamics so that, by virtue of reaching consensus among themselves, they stir the
vehicles to consensus too.

Thus, following, on one hand, the previous developments for consensus of second-
order integrators and, on the other, the fact that the nonholonomic vehicle’s dynamics
consist mainly in two interconnected second-order mechanical systems, we proceed
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to design a consensus-formation controller for nonholonomic systems. The input-to-
state stability property previously underlined is fundamental to devise the controllers
separately, for the linear- and angular-motion dynamics.

3.2 State-feedback consensus control of nonholonomic vehicles

We start our control design with the angular-motion dynamics (3), which we rewrite
in the form θ̈i = uωi for convenience—cf. (8). Then, we introduce the control law

uωi = −dωi θ̇i − pi
∑
j∈Ni

ai j (θi − θ j ) dωi, pωi > 0, (21)

which is the same as (9), up to an obvious change in the notation. Hence, the
closed-loop system (3)–(21) yields

θ̈i + dωi θ̇i + pi
∑
j∈Ni

ai j (θi − θ j ) = 0. (22)

From Proposition 1 it follows that the consensus manifold {ωi = 0} ∩ {θi = θ j } is
globally exponentially stable for (22). Therefore, θi → θc for all i ≤ N .

It is left to design a consensus controller of the form (9) for the linear-motion
dynamics (4). In this case, however, the consensus error feedback must take into
account the kinematics function ϕ. That is, we pose the control law—cf. [5]. Let

uvi = −dvivi − pviϕ(θi)>
∑
j∈Ni

ai j ( z̄i − z̄ j ). (23)

Then, for the purpose of analysis we replace the state variable θi with an arbitrary
trajectory θi (t). This is possible because t 7→ θi (t), as a solution of (22), exists
on [0,∞) and so does its first derivative, that is, t 7→ ωi (t). Hence,the closed-loop
linear-motion dynamics (4)-(23) may be regarded as a time-varying subsystem1, de-
coupled from the angular motion dynamics. That is,

Σvi :



˙̄zi = ϕ(θi (t))vi, (24a)

v̇i = −dvivi − pviϕ(θi (t))>
∑
j∈Ni

ai j ( z̄i − z̄ j ). (24b)

Then, to analyze the stability of the consensus manifold for (24), akin to V1 in
(15), we define the Lyapunov function

V3(v, z̄) :=
1
2

∑
i≤N

[ 1
pvi

v2
i +

1
2

∑
j∈Ni

ai j | z̄i − z̄ j |2
]
, (25)

where v := [v1 · · · vN ]> and z̄ := [z̄1 · · · z̄N ]> —cf. (13).

1 To prove further see [23, p. 657] and [30].



Output-feedback consensus control of autonomous vehicles 11

Using the identity

1
2

∑
i≤N

∑
j∈Ni

ai j ( ˙̄zi − ˙̄z j )>( z̄i − z̄ j ) =
∑
i≤N

ai j ˙̄z>i ( z̄i − z̄ j )

—see [46] and [8, Lemma 6.1], we compute the total derivative of V3 along the
closed-loop trajectories of (24). We obtain

V̇3(v, z̄) = −v>DvP−1
v v, (26)

where Pv := diag[pvi] and Dv := diag[dvi].
Now, the system in (24) being non-autonomous, Barbashin-Krasovskı̆i’s theorem

does not apply, but we may use Barbălat’s [23] to assess global asymptotic stability.
To that end, we first remark that the function V3 is positive definite and radially
unbounded in vi and | z̄i − z̄ j | for all i, j ≤ N . Then, integrating along the trajectories
on both sides of the identity (26) and of the inequality V̇3(v(t), z̄(t)) ≤ 0, we obtain
that vi and | z̄i − z̄ j | are bounded, i.e., vi , | z̄i − z̄ j | ∈ L∞ and vi ∈ L2. In addition, (26)
implies that the consensus equilibrium defined by {vi = 0, z̄i = z̄ j } is stable. From
(24), the boundedness and continuity of ϕ(θi), of θi (t), and of ωi (t) = θ̇i (t), we see
that, also, ˙̄zi , v̇i , and, consequently, v̈i ∈ L∞. Since vi ∈ L2 ∩ L∞ and vi ∈ L∞ we
conclude that vi → 0. Hence, since

lim
t→∞

∫ t

0
v̇i (s)ds = lim

t→∞
vi (t) − vi (0),

we have
lim
t→∞

∫ t

0
v̇i (s)ds = −vi (0).

That is, the limit of v̇i “exists and is finite” whereas the boundedness of v̈i implies
that v̇i is uniformly continuous. Hence, by virtue of Barbălat’s Lemma, we conclude
that v̇i → 0 as well. In turn, after (24) we see that

lim
t→∞

ϕ(θi (t))>
∑
j∈Ni

ai j
(

z̄i (t) − z̄ j (t)
)
= 0.

This expression, however, does not imply that the consensus objective is reached.
Indeed, note that the set of equilibria of the system in (24) corresponds to points
belonging to the set

U :=
{
vi = 0 ∧ ϕ(θi)>

∑
j∈Ni

ai j ( z̄i − z̄ j ) = 0
}
, (27)

which admits points such that z̄i , z̄ j ∈ R2 because rank ϕ(θi) = 1. This means that
if orientation consensus is reached and, for instance, θi (t) → 0 then x̄i → xc , but
ȳi 6→ yc —see Eq. (5).
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Remark 3 This shows that the consensus problem for nonholonomic systems cannot
be treated as that for ordinary second-order systems like those discussed in Section
3.1 —cf. [51, 20].

To ensure consensus it is necessary that the set of equilibria correspond to the set
U ∩U⊥, where

U⊥ :=
{
vi = 0 ∧ ϕ(θi)⊥>

∑
j∈Ni

ai j ( z̄i − z̄ j ) = 0
}
,

and
ϕ(θi)⊥ := [− sin(θi) cos(θi)]>. (28)

That is, ϕ(θi)⊥ is the annihilator of ϕ(θi) hence, ϕ(θi)⊥>ϕ(θi) = ϕ(θi)>ϕ(θi)⊥ = 0.
Roughly speaking, the controller must “pull” out the trajectories that may even-

tually get “trapped” in the set U , whereas they do not belong to the set U⊥. To
that end, we endow the angular-motion controller with a term that incorporates an
external function of time (smooth and bounded) and acts as a perturbation to the
angular-motion closed-loop dynamics. This perturbation is designed to persist as
long as

ϕ(θi (t))⊥>
∑
j∈Ni

ai j
(
z̄i (t) − z̄ j (t)

)
, 0. (29)

More precisely, let ψi , ψ̇i , and ψ̈i be bounded (belong to L∞) let ψ̇i be persistently
exciting [38], that is, let there exist T and µ > 0 such that∫ t+T

t

ψ̇i (s)2ds ≥ µ ∀ t ≥ 0. (30)

Thus, we endow the control law in (21) with the additional term

αi (t, θi, z̄i) := kαiψi (t)ϕi (θi)⊥>( z̄i − z̄ j ), kαi > 0, (31)

that is, we redefine the control law (21) as

uωi = −dωi θ̇i − pi
∑
j∈Ni

ai j (θi − θ j ) + αi (t, θi, z̄i). (32)

To the angular-motion dynamics, αi acts as a bounded (see Remark 4 below),
hence innocuous, perturbation on the angular-motion closed-loop dynamics

Σωi : θ̈i + dωi θ̇i + pi
∑
j∈Ni

ai j (θi − θ j ) = αi (t, θi, z̄i) (33)

that impedes θi to remain in an unwanted manifold of equilibria, as long as the
position consensus has not been achieved, that is, as long as (29). That is, through
θ(t) in (24), the term αi injects excitation into the system, as long as the consensus
goal remains unachieved.
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Now, since the system (33) is input-to-state stable with respect to αi , the result-
ing closed-loop equations consist in the “cascaded” nonlinear time-varying system
formed by Σvi in (24) and (33), as illustrated by Figure 3 below.

Σ{8 Σl8
U(C,\8 ,Ī8)\8

Fig. 3 Schematic representation of the closed-loop system, consisting in the error equations for
the angular and the linear-motion dynamics. Even though the systems are feedback interconnected,
for the purpose of analysis, they may be regarded as in cascade [30], whence the feedback of θi is
represented by a dashed arrow.

Global asymptotic stability of the respective consensus manifolds for Σvi and Σωi

with αi ≡ 0, the input-to-state stability of (33) and a cascades argument [30] leads
to the following statement—cf. [5, 43].

Proposition 2 (State feedback formation consensus) Consider the system (3)–(5) in
closed loop with (23) and (32) with pvi , dvi , pωi , and dωi > 0, αi as in (31), ψi

and ψ̇i bounded, and ψ̇i persistently exciting. Then, the consensus-formation goal is
achieved, that is, (6) and (7) hold.

Remark 4 (Sketch of proof of Proposition 2) Technically, the proof of this statement
follows along the lines discussed above for the case in which αi ≡ 0. In this case, we
have a cascade from Σωi to Σvi . If αi . 0, the cascade structure is broken, but we
can still use the ISS property of (33) to break the loop [30].

For (33) Inequality (20) holds (up to obvious changes in the notation) for any
continuous αi . Now, let t f ≤ ∞ define the maximal length of the interval of existence
of solutions and consider (20) along the trajectories of (33). We have

V̇2(θ̃(t), ω(t)) ≤ −c′1 |ω(t) |2−εc′2 |θ̃(t) |2+c3 |α(t, θ(t), z̄(t)) |2 ∀ t ∈ [0, t f ), (34)

where θ̃ := θ − 1
N 1N1>N θ, θ = col[θi], and ω = θ̇. On the other hand, on the

interval of existence of solutions, (26) also holds along the trajectories. Thus, since
αi (t, θi, z̄) is linear in [z̄i − z̄ j], continuous and bounded in t and θi , the term
|α(t, θ(t), z̄(t)) |2 remains bounded on t ∈ [0, t f ). Moreover, there exists c > 0 such
that |α(t, θ, z̄) |2 ≤ cV3(v, z̄). It follows from (26) and (34) that, defining ν4(t) :=
V2(θ̃(t), ω(t)) + V3(v(t), z̄(t)),

ν̇4(z(t)) ≤ cν4(t) ∀ t ∈ [0, t f ). (35)

Rearranging terms and integrating on both sides of the latter from 0 to t f we see that∫ ν4 (t f )

ν4 (0)

1
cν4

dν4 ≤ t f .
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That is, ln
(
ν4(t f )/ν4(0)

)
≤ t f (without loss of generality we assume that ν4(0) > 0).

Now, since ν4(t) → ∞ as t → t f it follows that t f ≮ ∞—indeed, the postulate that
t f < ∞ leads to a contradiction. Therefore, the system is forward complete, (26)
holds along the trajectories on [0,∞), | z̄i (t)− z̄ j (t) | and vi (t) are bounded on [0,∞),
and so are θ̃(t) and ω(t) in view of the ISS property. On one hand, the presence of
αi prevents the solutions from remaining (close to) the set U in (27) and, on the
other, αi → 0 as the solutions converge toU ∩U⊥. The result follows.

Remark 5 Controllers for nonholonomic systems that make explicit use of persistency
of excitation were first used for tracking in [47] and for set-point stabilization in [31],
but the underlying ideas are already present in [56, 57]. Nowadays, persistency of
excitation is recognized as a fundamental, if not necessary, condition [29], for set-
point stabilization of nonholonomic systems via smooth feedback and they are also
frequently used in trajectory-tracking scenarii —see e.g., [12, 25].

4 Control architecture: output-feedback case

In the case that velocities are unmeasurable, the velocity-feedback terms dvivi and
dωiωi cannot be used, so we design dynamic output-feedback controllers for the
angular and linear-motion dynamics. These controllers are designed as virtual mass-
spring-damper mechanical systems hinged to the vehicles’ dynamics. In accordance
with the separation-principle approach these controllers are designed independently
for the angular and linear-motion dynamics. In addition, as before, we use persistency
of excitation to overcome the difficulties imposed by the nonholonomic constraints.

ϑωi

kωi

ϑωi

dωiθi

kvi
xi

yi

ϑωi

ϑxi

ϑyi
dvi

(ϑxi, ϑyi )

linear-motion closed-loop system Σvi

angular-motion closed-loop system

Σωi

Fig. 4 Schematic representation of coupled mass-spring-damper systems: angular motion. It is the
controller state variable, ϑωi that is transmitted to neighboring robots and, correspondingly, ϑω j

is received from Ni neighbors. The system at the intersection of the two blocks represents the
nonholonomic vehicle—cf. Figure 1.
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4.1 Output-feedback orientation consensus

Expressed as θ̈i = uωi , the angular-motion dynamics (3) corresponds to an elemen-
tary Newtonian force-balance equation with unitary inertia. The problem at hand
still is to synchronize the angular positions θi for N such systems, but sinceωi is not
available from measurement, we cannot use the control law in (21). Yet, it appears
reasonable to conjecture that the objective θi → θ j for all i, j ≤ N may be achieved
by coupling the subsystems θ̈i = uωi , via torsional springs, to virtual second-order
oscillators, whose states are available. Then, it is the controllers’ variables that are
transmitted over the network to achieve consensus among the controllers—see Figure
4 for an illustration.

More precisely, consider the dynamic system

ϑ̈ωi + dωi ϑ̇ωi + pωi

∑
j∈Ni

ai j (ϑωi − ϑω j ) = νωi (36)

where νωi is an external input to be defined, the state ϑωi ∈ R, and dωi , pωi > 0.
As we showed in Section 3.1, for (36) consensus is achieved, that is, there exists

a real constant ϑωc , such that ϑωi → ϑωc , ϑ̇ωi → 0, for all i ≤ N , provided that
dωi , pωi > 0, and νωi = 0. On the other hand, the system in (36) defines a passive
map νωi 7→ ϑ̇ωi—cf. Remark 2. Furthermore, the system (3b) also defines a passive
map, uωi 7→ ωi . Therefore, it results natural to hinge the systems (36) and (3) by
setting νωi := −uωi and

uωi := −kωi (θi − ϑωi), kωi > 0. (37)

That is, the coupling −kωi (θi − ϑωi) may be interpreted as the force exerted by
a torsional spring that hinges the (angular) positions of the two subsystems. The
closed-loop system corresponding to the vehicle’s angular dynamics is

Σωi :



θ̈i = −kωi (θi − ϑωi) (38a)

ϑ̈ωi + dωi ϑ̇ωi + pωi

∑
j∈Ni

ai j (ϑωi − ϑω j ) = kωi (θi − ϑωi). (38b)

—see Figure 4.
Note that the right-hand side of Eq. (38b) corresponds exactly to that of Eq. (10).

Therefore, we know that the dynamic controllers (36), with νωi = 0 reach position
consensus. On the other hand, since each of these systems is passive and so is the
map (3b) to which it is hinged via the fictitious torsional spring with stiffness kωi ,
the vehicles’ orientations θi are also steered to a consensus manifold {θi = θc }.
This observation stems from an interesting analogy between the control architecture
proposed above and (consensus) control of robot manipulators with flexible joints.
To better see this, consider the Euler-Lagrange equations for such systems, in closed
loop with a proportional-derivative consensus controller like the one defined in (9).
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We have—see [7, 58],

Mi (θi)θ̈i + Ci (θi, θ̇i)θ̇i + gi (θi) = −K (θi−ϑi) (39a)

ϑ̈i + di ϑ̇i + pi
∑
j∈Ni

ai j (ϑi − ϑ j ) = K (ϑi−θi) (39b)

and consensus is reached provided that di , pi > 0; this follows from the main results
in [42].

ϑi

θi

Ki

ϑi
ϑ j

θ j

ϑ j
K j

Fig. 5 Schematic representation of a pair of flexible-joint SCARA robots, which move on the plane,
unaffected by gravity—compare with the mechanism in the pink block in Figure 4. It is assumed that
the robots exchange their actuators measurements ϑi over an undirected network. As the actuators
reach consensus, so do the arms, in view of their respective mechanical couplings arm-actuator.

In (39), the generalized coordinate ϑi corresponds to the actuators’ angular po-
sition while θi corresponds to the links’ position. Hence, in the case of the angular
motion dynamics, the closed-loop equation θ̈i = −kωi (θi − ϑωi) may be assimi-
lated to Eq. (39a) with unitary inertia Mi = I and null Coriolis and gravitational
forces, i.e., Ci = gi ≡ 0. On the other hand, the dynamic controller (36) with
νωi := kωi (θi − ϑωi) corresponds, up to obvious changes in the notation, to the
actuator dynamics in closed loop, that is, Eq. (39b).

Proposition 3 (Output feedback orientation consensus) Consider the system (3)
in closed loop with the dynamic controller defined by (36), (37), and νωi := kωi (θi −
ϑωi). Let Assumption 1 hold. Then, there exist constants θc and ϑc ∈ R such that,
for all i and j ≤ N ,

lim
t→∞

θi (t) = lim
t→∞

θ j (t) = θc, lim
t→∞

ωi (t) = 0,

lim
t→∞

ϑωi (t) = lim
t→∞

ϑω j (t) = ϑc, lim
t→∞

ϑ̇ j (t) = 0.

Proof Consider the function

W3(ϑ̇ω, ϑω, θ, ω) := W1(ϑω, ϑ̇ω) +W2(θ, ω, ϑω), (40)
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where ϑω := [ϑω1 · · · ϑωN ]>,

W1(ϑω, ϑ̇ω) :=
1
2

∑
i≤N

[ ϑ̇2
ωi

pωi
+

1
2

∑
j∈Ni

ai j (ϑωi − ϑω j )2
]
, (41)

W2(θ, ω, ϑ) :=
1
2

∑
i≤N

[ ω2
i

pωi
+ kωi (θi − ϑωi)2

]
. (42)

The function W2 corresponds to the total energy of the mass-spring (closed-loop)
system θ̈i = −kωi (θi − ϑωi); the first term is the kinetic energy and the second the
potential energy “stored” in the torsional spring of stiffness kωi . The function W1
is reminiscent of V3 in (25). The function W3 is positive definite in the consensus
errors, in ω, ϑω , and ϑ̇ω . Moreover, its total derivative along the trajectories of the
closed-loop system (38)—with θ̇i = ωi— yields

Ẇ3(ϑ̇ω, ϑω, θ, ω) = −
1
2

∑
i≤N

dωi

pωi
ϑ̇2
ωi . (43)

Then, the system being autonomous, we may invoke Barbashin-Krasovskı̆i’s theo-
rem. First, we see that Ẇ3 = 0 if and only if ϑ̇ωi = 0. The latter implies that ϑ̈ωi = 0
and ϑωi = const for all i ≤ N . From (36) and νωi := kωi (θi −ϑωi) we conclude that
θi = const, i.e., ωi = ω̇i = 0. In turn, from ω̇i = −kωi (θi − ϑωi) = −νωi = 0 and
(36) it follows that∑

j∈Ni

ai j (ϑωi − ϑω j ) = 0 and θi = ϑωi ∀ i, j ≤ N .

Finally, in view of Assumption 1. The only solution to the equations above is θi =
ϑωi = ϑc for all i, j ≤ N . �

4.2 Output-feedback position consensus

Akin to the controller for the angular motion subsystem, to steer the Cartesian
positions z̄i to a consensual point on the plane zc , we use a second-order dynamic
controller system that is reminiscent of the equation (8) in closed loop with the
control (9), and an added virtual-spring coupling term, −kvi (ϑvi − z̄i). That is, let

ϑ̈vi + dvi ϑ̇vi + pvi
∑
j∈Ni

ai j (ϑvi − ϑv j ) = −kvi (ϑvi − z̄i), (44)

where ϑvi ∈ R
2 and ϑ̇vi are controller’s state variables, and all control gains dvi , pvi

and kvi are positive.
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Then, the dynamical system (44) is coupled to the double (nonholonomic) in-
tegrator (4)—see Figure 4 for an illustration. In contrast to the case of the angular
motion, however, for the linear motion the control input uvi must incorporate the
change of coordinates defined by ϕ. Therefore, we define

uvi := −ϕ(θi)>kvi ( z̄i − ϑvi), kvi > 0 (45)

—cf. Eq. (37). For the angular-motion dynamics, to overcome the effect of the
nonholonomic constraints, the angular-motion control law (37) is endowed with a
perturbation term, that is, we define

uωi := −kωi (θi − ϑωi) + αi (t, θi, ϑvi, z̄i), kωi > 0, (46)

The functions αi are designed to vanish as the control goal is reached. We pose

αi (t, θi, ϑvi, z̄i) := kαiψi (t)ϕi (θi)⊥> (ϑvi − z̄i) , (47)

which vanishes only as the plant and the controller synchronize, that is, if
ϕi (θi)⊥> (ϑvi − z̄i) ≡ 0.

Thus, the closed-loop system for the linear-motion dynamics, becomes

Σvi :




˙̄zi = ϕ(θi (t))vi, (48a)
v̇i = −ϕ(θi (t))>kvi ( z̄i − ϑvi), (48b)

ϑ̈vi + dvi ϑ̇vi + pvi
∑
j∈Ni

ai j (ϑvi − ϑv j ) = −kvi (ϑvi − z̄i); (48c)

while the closed-loop equations for the angular motion dynamics are modified from
(38) into

Σωi :



θ̈i = −kωi (θi − ϑωi) + αi (t, θi, ϑvi, z̄i) (49a)

ϑ̈ωi + dωi ϑ̇ωi + pωi

∑
j∈Ni

ai j (ϑωi − ϑω j ) = kωi (θi − ϑωi). (49b)

See the blue block in Figure 4 for an illustration.
Note that, as before, in (48) we replaced θi with θi (t), which is a valid step as a

long as the system is forward complete [23, p. 657]. The latter may be established
along similar lines as in Remark 4. Again, the advantage of this is that the overall
closed-loop system (38)-(48) may be regarded as a cascaded nonlinear time-varying
system as illustrated in Figure 3 (up to a redefinition of αi). Thus, we have the
following [44].

Proposition 4 (Output-feedback formation consensus) Consider the system (3)–(5)
in closed loop with (38b), (46), (47), (45), and (44), with pvi , dvi , pωi , and dωi > 0,
αi as in (31), ψi and ψ̇i bounded, and ψ̇i persistently exciting. Then, the consensus-
formation goal is achieved, that is, (6) and (7) hold.
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To establish the statement, we use the function

V :=
∑
i≤N



1
pvi
Evi +

1
4

∑
j∈Ni

ai j |ϑvi − ϑv j |
2

.

Evi :=
1
2
[
v2
i + |ϑ̇vi |

2 + kvi |ϑvi − z̄i |2
]
.

The function V is positive definite in the consensus errors (ϑvi − ϑv j ) and its
derivative yields V̇ ≤ −

∑
i≤N

λvi |ϑ̇vi |
2 ≤ 0. Then, based on the statement and proof

of Proposition 3 and arguing as in Remark 4 one may use Barbălat’s Lemma to
conclude the proof—see [44].

5 Output feedback control under delays

We showed previously how dynamic output-feedback controllers may be successfully
designed based on physical considerations. Mostly, by designing the controllers
as mechanical systems interconnected, on one hand, to the actual plants and, on
the other, among themselves in an undirected network. Besides the neat physical
interpretation behind, the control method is is versatile, in the sense that one can
establish consensus even in the event that the network is affected by time-varying
delays.

Technically, the step forward to cover this case, only involves using more so-
phisticated functions. More precisely, we rely on Lyapunov-Krasovskii functionals.
Remarkably, however, the control architecture remains the same as before, so we
continue to rely on the certainty-equivalence principle and we use the controllers’
dynamics (38b) and (44), except that in the present case, the measurement ϑ j that
the ith vehicle receives from its neighbors is affected by a delay. In that regard, the
consensus-error correction terms on the left-hand side of (38b) and (44) depend now
on the redefined consensus errors

evi :=
∑
j∈Ni

ai j
(
ϑvi − ϑv j (t − Tji (t))

)
, (50)

whereas for the orientations,

eωi :=
∑
j∈Ni

ai j
(
ϑωi − ϑω j (t − Tji (t))

)
. (51)

Note that in both cases, as in previous sections, the errors are defined in the con-
trollers’ coordinates and not on robots’ measured variables.
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Based on (45) and (44), the certainty-equivalence controller for the linear motion
dynamics, (4), is given by

uvi = −kviϕ(θi)> ( z̄i − ϑvi) , (52a)
ϑ̈vi = −dvi ϑ̇vi − kvi (ϑvi − z̄i) − pvievi, (52b)

whereas, for the angular motion dynamics, we use

uωi = −kωi (θi − ϑωi) + αi (t, θi, ϑvi, z̄i), (53a)
ϑ̈ωi = −dωi ϑ̇ωi − kωi (ϑωi − θωi) − pωieωi . (53b)

All constant parameters are defined as above andαi is defined in (47), so the controller
per se remains the same. That is, αi in (53a) fulfills the same role as explained above.
Only the analysis requires more advanced tools. A schematic representation of the
networked closed-loop systems is given in Figure 6 below.

kωi
kvi

kωj
kvj

ϑωj(t−Tij(t))
ϑvj(t−Tij(t)) ϑvi(t−Tji(t))

ϑωi(t−Tji(t))

θ̈i = kωi(ϑωi−θi) +αi

ϑ̈ωi + kωi(ϑi−θi) =

−dωiϑ̇ωi − pωieθi

θ̈j = kωj(ϑωj−θj) +αj

ϑ̈ωj + kωj(ϑj−θj) =

−dωj ϑ̇ωj − pωjeθj

˙̄zi = ϕi(θi)vi

v̇i = −kviϕi(θi)
> (z̄i − ϑvi)

ϑ̈vi + kvi (ϑvi − z̄i) = −dviϑ̇vi − pviezi

˙̄zj = ϕj(θj)vj

v̇j = −kvjϕj(θj)
> (z̄j − ϑvj)

ϑ̈vj + kvj (ϑvj − z̄j) = −dvj ϑ̇vj − pvjezj

Fig. 6 Schematic representation of two vehicles exchanging their measurements respectively, over
a bidirectional limk. On each end, we see the vehicles’ linear and angular dynamics coupled with
their respective controllers and transmitting the states of the latter over the network. Full consensus
of the vehicles is achieved due to the mechanical couplings and the underlying spanning tree in the
controllers’ network.

Proposition 5 (Output-feedback consensus under delay measurements) Consider
the system (3)–(5), under Assumptions 1–3, in closed loop with (52)-(53). Then, the
leaderless consensus control goal is achieved, that is, (6) and (7) hold provided that

dvi >
1
2

pvi
∑
j∈Ni

ai j
[
βi +

T
2
j i

β j

]
(54)

dωi >
1
2

pωi

∑
j∈Ni

ai j
[
εi +

T
2
j i

ε j

]
(55)

for some βi , εi > 0, for all i ≤ N .
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The closed-loop equations, according to the logic of separating the linear and the
angular-motion dynamics, correspond to

Σωi :



θ̈i = −kωi (θi − ϑωi) + αi (t, θi, ϑvi, z̄i) (56a)
ϑ̈ωi = −dωi ϑ̇ωi − kωi (ϑωi − θi) − pωieωi (56b)

Σvi :




˙̄zi = ϕ(θi (t))vi (57a)
v̇i = −kviϕ(θi (t))>( z̄i − ϑvi) (57b)
ϑ̈vi = −dvi ϑ̇vi − kvi (ϑvi − z̄i) − pvievi (57c)

The closed-loop system has the same structure as in previous cases. It is a complex
network of feedback-interconnected systems and, yet, we can identify in each node
of the network a cascaded system as schematically depicted in Figure 3 (up to a
redefinition of the arguments of the “perturbation” αi). That is, for each robot we
may replace the state variables θi with fixed, but arbitrary, trajectories θi (t) in (57a)
and (57b), so the dotted feedback line in Figure 3 is disregarded.

Then, the analysis of Σωi and Σvi may again be carried out using a cascade
argument. In a nutshell, one needs to establish that:

(i) all the trajectories are bounded: for this we employ the Lyapunov-Krasovskii
functional for the “decoupled” linear-motion dynamics (57),

V :=
∑
i≤N



1
pvi
Ei +

1
4

∑
j∈Ni

ai j |ϑvi − ϑv j |
2 +

1
2βi
Υi (t, ϑv)



Ei :=
1
2
[
v2
i + |ϑ̇vi |

2 + kvi |ϑvi − z̄i |2
]

Υi (t, ϑv) :=
∑
j∈Ni

ai jT i j

∫ 0

−T i j

∫ t

t+η
|ϑ̇v j (σ) |2dσdη.

Using the symmetry of the underlying network’s Laplacian one can show that

V̇ ≤ −
∑
i≤N

[
dvi

pvi
− c(T i j )

]
|ϑ̇vi |

2. (58)

Hence, under the assumption that (54) holds, we have V̇ ≤ 0 which implies that the
consensus errors ϑvi − ϑv j as well as vi and ϑ̇vi are bounded (at least on the interval
of existence of the solutions—see Remark 4).

On the other hand,
(ii) for Σωi with αi ≡ 0 we may use the Lyapunov-Krasovskii functional

W :=
∑
i≤N



1
pωi
Hi +

1
4

∑
j∈Ni

ai j (ϑωi − ϑω j )2 +
1

2εi
Υi (t, ϑω)
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Hi :=
1
2
[
ω2
i + ϑ̇

2
ωi + kωi (ϑωi − θi)2

]

Υi (t, ϑω) :=
∑
j∈Ni

ai jT i j

∫ 0

−T i j

∫ t

t+η
|ϑ̇ω j (σ) |2dσdη

to obtain that
Ẇ ≤ −

∑
i≤N

[
dωi

pωi
− c(T i j )

]
ϑ̇2
ωi
. (59)

Again, under condition (55) we have Ẇ ≤ 0, from which one conclude the bound-
edness of the orientation consensus errors, as well as of the angular velocities ωi .

From here, one may carry on using recursively Barbălat’s Lemma and the bound-
edness of αi to establish the convergence of multiple signals. Finally,

(iii) under the persistently exciting effect of αi , one ensures that the trajectories can
only converge to the consensus manifold, thereby avoiding the undesired equilibria
discussed in Section 3.2.

The detailed proof is available from [45].

6 An illustrative case-study

We used the simulator Gazebo-ROS and the Robot Operating System (ROS) interface
to evaluate the performance of our controller in a scenario that reproduces as closely
as possible that of a laboratory experimental benchmark. Furthermore, for the sake of
comparison, we also carried out numerical-integration simulations using Simulink
of Matlab.

Gazebo-ROS is an efficient 3D dynamic simulator of robotic systems in indoor
and outdoor environments. In contrast to pure numerical-integration based solvers
of differential equations, Gazebo-ROS accurately emulates physical phenomena and
dynamics otherwise neglected, such as friction, contact forces, actuator dynamics,
slipping, etc. In addition, it offers high-fidelity robot and sensor simulations.

For the test scenario we employed the model of a PIONEER 3-DX wheeled robot
[16], available in Gazebo’s library. It must be underlined that for this robot the center
of mass is not located on the axis joining the two wheels’ centers –cf. Figure 1, as it
is assumed at the basis of the developments in the previous sections. More precisely,
in Equations (2) the functions Fv and Fω include Coriolis terms that are quadratic
in the velocities, i.e., ri

3 ω
2
i on the left-hand side of Equation (2a) and − rimi

3Ii ωivi on
the left-hand side of Equation (2b). Akin to an actual experimentation set-up, these
constitute dynamic effects not considered in the model for which the controller is
validated analytically, nor in the simulations carried out with Simulink of Matlab.

Concretely, in the simulation scenario we consider six PIONEER 3D-X robots
starting from initial postures as defined in the 2nd-4th columns of Table 1, below.

Also, an illustration of the robots in their initial postures is showed via a screenshot
of the Gazebo-ROS simulator’s user interface in Figure 7, below.
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Table 1 Initial conditions and formation offsets

Index xi [m] yi [m] θi [rad] δxi [m] δyi [m]
1 8 7 1.57 2 0
2 2 13 0.0 1 2
3 2 9 -0.39 -1 2
4 -2 6 0.39 -2 0
5 1 3 -0.39 -1 -2
6 4 4 -0.39 1 -2

Fig. 7 Screenshot of the six PIONEER 3D-X robots’ at their initial configuration, in the Gazebo-
ROS simulator

It is assumed that the robots communicate over the undirected connected graph
like the one illustrated in Figure 8 and with piece-wise constant time-varying delays.
For simplicity, all the time delays Tji (t) are taken equal; they are generated randomly
following a normal distribution with mean µ = 0.3, variance σ2 = 0.0003 and a
sample time of 10 ms —see Figure 9. Such time delay (non-smooth but piece-wise
continuous) does not satisfy Assumption 2 since its time-derivative is bounded only
almost everywhere (that is, except at the points of discontinuity). However, it is
considered in the simulations since it is closer to what is encountered in a real-world
set-up [1]. Even though the technical Assumption 2 does not hold, full consensus
is achieved (at least practically) in both the Matlab and the realistic Gazebo-ROS
simulations. This hints at the fact that Assumption 2 might be relaxed in the analysis,
albeit using a different controller —cf. [33].
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Fig. 8 Communication topology: undirected connected graph
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Fig. 9 Variable delay between the robot 1 and the received information from neighbor 2.

The desired formation at rendezvous corresponds to a hexagon determined by
desired offsets δi = (δxi, δyi) with respect the unknown center of the formation.
These constants are presented in the last two columns of Table 1 —see Figure 2 for
an illustration of the target formation.

For a fair and meaningful comparison, the numerical simulations under Simulink
of Matlab were performed using the information available on the PIONEER 3D-X
robot, from the Gazebo-ROS simulator. For simplicity, it is assumed that all the
robots have the same inertial and geometrical parameters given by m = 5.64 kg,
I = 3.115 kg·m2, r = 0.09 m and R = 0.157 m.

In both simulators, the control gains were set to kvi = 1, kωi = 2, dvi = 3, pvi =
0.4, dωi = 2, pωi = 0.1, for all i ∈ [1, 6]. These values correspond to magnitudes
compatible with the emulated physics of the PIONEER 3D-X robots in Gazebo-
ROS and are chosen so that the poles of the 2nd-order system ẍ = −d(·) ẋ − p(·) x
have negative real parts and the system have an over-damped step-response. The
δ-persistently-exciting functions αi , for all i ∈ [1, 6], were taken as in (53) with
kαi = 0.4 and, for simplicity, (multi)periodic functions

ψi (t) = 2.5 + sin(2πt) + 0.3 cos(6πt) − 0.5 sin(8πt)
−0.1 cos(10πt) + sin(πt) ∀ i ≤ 6. (60)

Other parameters such as the sampling time, were taken equal.
As we mentioned above, however, certain physical phenomena as well as actuator

and sensor dynamics, which are hard-coded in Gazebo-ROS, cannot be reproduced
in Matlab. The consequence of this is clearly appreciated in the figures showed
below.
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The results obtained with Gazebo-ROS are showed in Figs. 11, 13, 15, and 17.
Those obtained using SimulinkTM of MatlabTM are showed in Figs. 10, 14, 16, and 18.
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zc

zc ≈ (1.356, 5.523)

Fig. 10 Paths followed by the PIONEER 3D-X robots up to full formation consensus—Matlab
simulation. A hexagonal formation is achieved with coinciding orientations (illustrated by arrows).

In both cases the robots appear to achieve consensus, i.e., to meet at a non-
predefined rendezvous point in hexagonal formation and with common non-
predefined orientation—see Figs. 10 and 11, as well as the screenshot of the final
postures from Gazebo’s graphical interface, Figure 12. Under Matlab, the center
of the formation is located at (1.356, 5.523), while under Gazebo-ROS it is at
(−3.242,−3.597). The consensual orientations are θc ≈ −2.889 rad under Gazebo-
ROS and θc≈−1.785 rad under Matlab.

Both simulations illustrate that for networks of nonholonomic vehicles, the initial
conditions do not determine the consensus point, as is the case of linear systems
interconnected over static undirected connected graphs [52]. Indeed, the consensus
point—in this case the center of the formation and the common orientation—does
not correspond to the average of the initial conditions.

The consensus equilibrium heavily depends, as well, on the systems’ nonlinear
dynamics. This is clear both, in Figure 10 which results of a Matlab simulation for
a network of nonlinear systems modeled as in (1)-(2) with Fv = Fω = 0, as well
as in Figure 11 which results from a more realistic simulation based on a model
that emulates otherwise neglected Coriolis high-order terms, friction, sensor and
actuator effects, etc. In addition, it appears fitting to recall that the controller, in both
cases, is dynamic and time-varying.
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Furthermore, it is clear from Figs. 10 and 11 that the results obtained with either
simulator differ considerably in various manners. Obvious discrepancies lay in the
position of the center of the consensus formation that is achieved, as well as in the
paths followed by the robots.
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y i
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]
i
∈
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zc ≈ (−3.242, −3.597))

Fig. 11 Paths followed by the PIONEER 3D-X robots up to full formation consensus—Gazebo-
ROS simulation. A hexagonal formation is achieved with coinciding orientations (illustrated by
arrows).

Fig. 12 Screenshot of the final configuration in the Gazebo-ROS simulator; the six robots achieving
full consensus at the rendezvous point.
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The differences in the transient behaviors for both simulations are even clearer
in the plots of the consensus errors, which, for the purpose of graphic illustration,
are defined as the difference between each robot’s variables and the corresponding
average:

ezi := z̄i −
1
N

∑
j∈Ni

z̄ j, eθi := θi −
1
N

∑
j∈Ni

θ j . (61)

That is, the limits in (6) and (7) hold if the error trajectories ezi (t) and eθi (t) as
defined above converge to zero, but the errors in (61) do not correspond to variables
actually used by the controller nor measured for that matter.

In Figure 13 one can appreciate that such errors do not actually tend to zero, but
to a steady state-error—a keen observer will notice that the hexagon in Figure 11 is
actually not quite so. In contrast to this, in the simulation obtained using Matlab—
see Figure 14— the errors converge to zero asymptotically, albeit slowly. The reason
is that in the Gazebo-ROS simulation, after a transient, the amplitude of the input
torques becomes considerably small in absolute value—see Figure 17.

The presence of a steady-state error and the persistency-of-excitation effect in
the controller maintain the input torques oscillating (periodically in this case due
to the choice of ψi (t) in (60) ), but, physically, they result insufficient to overcome
the robots’ inertia and friction forces that oppose their forward and angular mo-
tions. In contrast to this, in Figure 18 are showed the input torques obtained using
Simulink of Matlab. A similar oscillating behavior is observed, but the torques van-
ish asymptotically—notice the order of magnitude in the plots on the right column in
Figure 18, in the range of milli-Nm— as the error-dependent persistency of excitation
disappears.

It seems fitting to say at this point that the controller gains may be augmented, for
instance, to increase the convergence speed, but such values may result incompatible
with the robots’ and actuators’ physical limitations, so it is not done here to conserve
a realistic setting.
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Fig. 13 Position consensus errors—Gazebo-ROS simulation.
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Fig. 14 Position consensus errors—Matlab simulation.
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Fig. 15 Orientation consensus errors—Gazebo-ROS simulation. The consensus equilibrium θc ≈
−2.889 rad.
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Fig. 16: Input torques — Matlab simulation.

and avoid an unnatural behavior of the robots in Gazebo.
However, it is important to remark that the convergence speed
can be greatly improved by increasing the controller gains.

Note, also, that the simulated variable delay Tji(t) in Fig. 7
does not satisfy Assumption 3 since its time-derivative is
bounded almost everywhere. Despite this fact, full consensus
is achieved (at least practically) in both the Matlab and the
realistic Gazebo-ROS simulations, hinting at the fact that
Assumption 3 might be relaxed.

VII. CONCLUSIONS

We have presented a simple dynamic output feedback con-
troller for rendezvous of differential-drive robots. The novelty
of our contributions lie in the lack of velocity measurements
and the presence of time-varying delays. The controller that
we propose has the neat physical interpretation of a second
order mechanical system itself. In that regard, this technique
may be a starting point for the control of multiagent systems
under output feedback. Even though the assumptions that our
main results relie on are somewhat realistic, there are other
hypotheses whose relaxing needs further study. Some pertain
to the topology. In this work we assumed that the graph is
undirected and static. The study of multiagemnt nonholonomic
vehicles with less stringent hypotheses on the topology has
been little addressed; for instance, with prosimity constraints
in [] or under directed spanning-tree graph topologies in [].
Another significant aspect to investigate is the influence of the
nonlinear dynamics. Our theoretical results apply to the sim-
plest of second-order nonholonomic systems, but other models
in which the center of mass is not aligned with the axis joining
the centers of the wheels should be investigated. The difficulty
lies in the presence of highly nonlinear Lagrangian dynamics
[]. Yet, our numerical tests using the Gazebo simulator clearly
show the limitations of more classic integration routines in
which aspects such as unmodelled dynamics, friction and, even
the actuator dynamics are neglected.
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7 Conclusions

We described a simple and appealing control method for formation-consensus of
differential-drive robots that applies in realistic scenarii including those of vehicles
non-equipped with velocity sensors and networks affected by time-varying delays.
The controllers that we propose have the neat physical interpretation of a second
order mechanical system itself, so this technique may be a starting point for observer-
less control of multi-agent systems under output feedback. It appears interesting to
continue testing the limits of our physics-based method for output feeback control in
a multi-agent systems setting.

Notably, our hypothesis that the graph is undirected and static remains con-
servative, but the study of multi-agent nonholonomic vehicles with less stringent
hypotheses on the topology has been little addressed, even under the assumption
that full-state feedback is available. It has certainly been done for second-order in-
tegrators, as in [51], for directed-spanning-tree-graph topologies or for high-order
systems under constraints in [54], but the consensus control of nonholonomic sys-
tems networked over generic directed graphs and under output feedback remains very
little explored. A major stumbling block remains the construction of strict Lyapunov
functions to establish ISS when the graph is directed and admits cycles (hence,
beyond leader-follower configurations). Although the problem was recently solved
for linear systems in [49], to the best of our knowledge, it remains largely open for
nonholonomic systems.

Another intriguing aspect to investigate further is the influence of the nonlin-
ear dynamics on consensus. Our numerical tests using the Gazebo-ROS simulator
clearly show the effects of the nonlinearities in the consensus and the limitations of
numerical algorithms bound to solving ordinary differential equations that describe
over-simplified models, in which aspects such as unmodelled dynamics, friction and,
actuator and sensor dynamics are neglected. It is important to study formally the
consensus-formation control problems using models that include the presence of
highly nonlinear Lagrangian dynamics—cf. [24, 13, 19, 59].
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distributed consensus. IEEE Trans. Robot., 29(5):1212–1225, 2013.

37. N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for flocking of nonholonomic
agents. IEEE Trans. Autom. Control, 52(4):681–686, 2007.

38. K. S. Narendra and A. M. Annaswamy. Stable adaptive systems. Prentice-Hall, Inc., New
Jersey, 1989.

39. J. I. Neimark and F. A. Fufaev. Dynamics of Nonholonomic Systems, volume 33. A.M.S.
Translations of Mathematical Monographs, Providence, RI, 1972.

40. B. Ning and Q. Han. Prescribed finite-time consensus tracking for multiagent systems with
nonholonomic chained-form dynamics. IEEE Trans. Autom. Control, 64(4):1686–1693, 2019.

41. E. Nuño. Consensus of Euler-Lagrange systems using only position measurements. IEEE
Trans. Control Netwk. Syst., 5(1):489–498, 2018.

42. E. Nuño and R. Ortega. Achieving consensus of Euler-Lagrange agents with interconnecting
delays and without velocity measurements via passivity-based control. IEEE Trans. Control
Syst. Technol., 26(1):222–232, 2018.

43. E. Nuño, A. Lorı́a, A. T. Hernández, M. Maghenem, and E. Panteley. Distributed consensus-
formation of force-controlled nonholonomic robots with time-varying delays. Automatica,
(120):109114, 2020.

44. E. Nuño, A. Lorı́a, and E. Panteley. Leaderless consensus formation control of cooperative
multi-agent vehicles without velocity measurements. IEEE Control Systems Letters, 6:902–
907, 2022.

45. E. Nuño, A. Lorı́a, E. Panteley, and E. Restrepo-Ochoa. Rendezvous of nonholonomic robots
via output-feedback control under time-varying delays. IEEE Trans. Contr. Syst. Technol.,
30(6):2707–2716, 2022.

46. E. Nuño, I. Sarras, A. Lorı́a, M. Maghenem, E. Cruz-Zavala, and E. Panteley. Strict Lyapunov-
Krasovskii functionals for undirected networks of Euler-Lagrange systems with time-varying
delays. Syst. & Contr. Letters, 135:104579, Jan 2020.

47. E. Panteley, E. Lefeber, A. Lorı́a, and H. Nijmeijer. Exponential tracking of a mobile car
using a cascaded approach. In IFAC Workshop on Motion Control, pages 221–226, Grenoble,
France, 1998.

48. E. Panteley and A. Lorı́a. Synchronization and dynamic consensus of heterogeneous networked
systems. IEEE Trans. Autom. Control, 62(8):3758–3773, 2017.

49. E. Panteley, A. Lorı́a, and S. Sukumar. Strict lyapunov functions for consensus under di-
rected connected graphs. In Proc. European Control Conference (ECC), pages 935–940, St.
Petersburg, Russia, 2020.



Output-feedback consensus control of autonomous vehicles 33

50. H. A. Poonawala, A. C. Satici, and M. W. Spong. Leader-follower formation control of
nonholonomic wheeled mobile robots using only position measurements. In Proc. 9th Asian
Control Conf., pages 1–6, 2013.

51. H. A. Poonawala and M. W. Spong. Preserving strong connectivity in directed proximity
graphs. IEEE Trans. Autom. Control, 62(9):4392–4404, 2017.

52. W. Ren and R. W. Beard. Distributed consensus in multivehicle cooperative control. Springer
verlag, 2005.

53. E. Restrepo, A. Lorı́a, I. Sarras, and J. Marzat. Stability and robustness of edge-agreement-
based consensus protocols for undirected proximity graphs. Int. J. of Control, 2020.

54. E. Restrepo-Ochoa, A. Lorı́a, I. Sarras, and J. Marzat. Robust consensus of high-order systems
under output constraints: Application to rendezvous of underactuated UAVs. IEEE Trans. on
Automatic Control, 68(1):329–342, 2023.

55. Ashton Roza, Manfredi Maggiore, and Luca Scardovi. A Smooth Distributed Feedback for
Global Rendezvous of Unicycles. IEEE Trans. Control Netw. Syst., 5(1):640–652, March 2018.

56. C. Samson. Time-varying stabilization of a car-like mobile robot. Technical report, INRIA
Sophia-Antipolis, 1990. In Proc. in advanced robot control 162 (Springer, Berlin, 1991).

57. C. Samson. Control of chained system: Application to path following and time-varying point
stabilization of mobile robots. IEEE Trans. Autom. Control, 40(1):64–77, 1995.

58. M. Spong. Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Contr.,
109:310–319, 1987.

59. S. G. Tzafestas. Introduction to mobile robot control. Elsevier Inc, First ed., 2013.
60. P. Wang and B. Ding. Distributed RHC for tracking and formation of nonholonomic multi-

vehicle systems. IEEE Trans. Autom. Control, 59(6):1439–1453, 2014.
61. X. Wang and Y. Hong. Distributed observers for tracking a moving target by cooperative

multiple agents with time delays. In 2009 ICCAS-SICE, pages 982–987, 2009.
62. C. Yang, W. Xie, C. Lei, and B. Ma. Smooth time-varying formation control of multiple

nonholonomic agents. In Proc. Chinese Intel. Syst. Conf., pages 283–291. Springer, 2016.
63. S. Zhao. Affine formation maneuver control of multiagent systems. IEEE Trans. Autom.

Control, 63(12):4140–4155, 2018.
64. X. Zhao, X. Zheng, C. Ma, and R. Li. Distributed consensus of multiple Euler-Lagrange

systems networked by sampled-data information with transmission delays and data packet
dropouts. IEEE Trans. Autom. Sc. Engg., 14(3):1440–1450, 2017.


	Physics-based output-feedback consensus-formation control of networked autonomous vehicles
	Antonio Loría*, Emmanuel Nuño,  Elena Panteley*, Esteban Restrepo
	Introduction
	Model and problem formulation
	Single-robot model
	The consensus formation problem

	Control Architecture: state-feedback case
	Consensus control of second-order systems
	State-feedback consensus control of nonholonomic vehicles

	Control architecture: output-feedback case
	Output-feedback orientation consensus
	Output-feedback position consensus

	Output feedback control under delays
	An illustrative case-study
	Conclusions
	References
	References



