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The dynamics and the rheology of a single 2D multilobe vesicle in a confined geometry.
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A vesicle is a common model used to represent red blood cell in-silico and in-vitro. We investigate
here the dynamics and the rheology of a confined vesicle under shear flow in a wide range of applied
shear rate and the ratio between the viscosity contrast (ratio of the internal and external fluid of
the vesicle). The Helfrich model is used to describe the vesicle membrane energy and the spectral
boundary integral method to compute the velocity of the vesicle membrane. Multilobe shapes are
observed in a wide range of shear rates and viscosity contrast. A phase diagram is determined in
this parameter space. The cytoskeleton of a RBC is not necessary for the multilobe manifestation,
in contrast with recent claims. Here we show that these shapes are due to membrane tension
only. This highlights the fact that the two-dimensional (2D) vesicle model used here, besides its
relevant predictions in previous studies (slipper and parachute shapes...), can capture several other
shapes and dynamics observed for red blood cells. The 2D vesicle can thus be used as a reliable
model, at least as an exploration basis, to investigate blood flow where the 3D model may prove
to be computationally demanding, especially for dense suspensions. We investigate the rheology of
the multilobe shapes in the dilute regime, and find that the effective viscosity exhibits a significant
jump associated with a transition to multilobe dynamics. We provide simple interpretations to these
findings. We discuss the stability of the centered solutions and the emergence of the off-centered
ones.
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I. INTRODUCTION

Blood is a complex fluid, about 55% of its volume consists of plasma and 45% is composed of red blood cells
(RBCs), whereas white blood cells and platelets together account for less than 1%. The RBCs are responsible for
oxygen transport from lungs to the tissues and the removal of the carbon dioxide from the tissues to the lungs. RBCs
are not oxygen carriers only, but also they transport several other chemical species, the most prominent of which
is ATP, playing a pivotal role in blood flow regulation via a complex biochemical signaling involving endothelial
cells [1, 2]. The alteration of RBC dynamics and morphologies may influence the blood viscosity and thus blood
perfusion, impacting thus the distribution of oxygen, and other species, to tissues and organs [3]. The dynamics
and the morphology of RBCs, and of their biomimetic counterparts (vesicles and capsules) have been the subject of
intensive studies during the last two decades, theoretically [4–7], experimentally [8–16] and numerically [17–25]. In
blood circulation, RBCs have the ability to assume several morphologies. The most common shapes are, i) Parachute,
which is a symmetric shape [26, 27], ii) asymmetric shape, called Slipper[11, 19, 27, 28], to cite but a few examples.
More recent studies reported on the existence of other shapes (snaking, Pin, Peanut) [29]. Under shear flow, a single
RBC exhibits three main dynamics, i) tank-treading motion (TT) where the cell adopts a fixed orientation and its
membrane rotates like a tank tread[30–32], ii) tumbling (TB) motion where the cell flips like a solid particle [13, 31]
and iii) vacillating breathing (also called swinging) [6, 33], where the cell orients along some direction and its long
axis undergoes oscillations.

One of the main questions is to identify whether or not a given shape or dynamics is common to a wide range of
soft particles (like vesicles, capsules, RBCs), or if it is specific to a given type of particle. Most of the aforementioned
dynamics, both under shear and Poiseuille flows, are common to RBCs, vesicles and capsules [9, 13, 20, 34–40].
Vesicles are 2D incompressible fluid membranes that form a closed surface containing fluid inside. The membrane
is composed of two layers of phospholipid molecules, each having a hydrophilic head and two hydrophobic tails [41].
Vesicles are characterized by a bending rigidity of the membrane and the ratio between the viscosities of the internal
and the external fluids. Contrary to vesicles, capsules are endowed with shear elasticity, mimicking the cytoskeleton
of RBCs. The bending of membrane is generally described by the Helfrich model [42] which involves the membrane
curvature. The Skalak model [43] is generally used to describe the shear elasticity of the cytoskeleton of RBCs
(spectrin network). From mechanical point of view vesicles differ from RBCs by the absence of shear elasticity due to
cytoskeleton. Despite this simplification, vesicles have often revealed to have many shapes and dynamics in common
with RBCs. The comparison between vesicles and RBCs can help identifying features which are specific or not to
cytoskeleton. For example, at low shear rates the RBC model exhibits TB, whereas vesicles show TT at low enough
viscosity contrast for any shear rate. The occurrence of TB for RBCs at low shear rates is due to cytoskeleton, since
TT of RBCs would be accompanied by a distortion of cytoskeleton that is significant in comparison to a TB regime.
It is only at high enough shear rate (when hydrodynamic shear stress overcomes elastic stress due to cytoskeleton)
that RBCs show TT. Regarding shapes, such as slipper, parachute, they are known to be exhibited both by RBCs
and vesicles, and the role of cytoskeleton affects only their occurence region in the parameter space.

In a more recent study [44], Lanotte et al. have reported experimentally on a type of shapes exhibited by RBCs
at high enough shear rates, which has been named multilobe shape (see later). This shape was briefly discussed
earlier by Fischer [45]. Subsequently, a systematic numerical study [46] was devoted to these morphologies using two
different simulation techniques (dissipative particle dynamics and volume of fluid method), taking into account the
cytoskeleton shear elasticity, bending rigidity and cytosol viscosity. A rich phase diagram showing a transition from
TB to multilobe (MB) shapes at high viscosity contrast and high shear rate has been reported. It has been concluded
that the cytoskeleton elasticity has an essential role in the manifestation of the MB shape.

The purpose of this paper is to contribute to the understanding of the minimal ingredients for the occurrence of
the MB shapes and investigate the effect of this shape on the rheology. We have thus conducted 2D simulations for
a confined vesicle model (only membrane bending is included). Our results show that MB do exist in this model,
ruling thus out the necessity of cytoskeleton. In addition, as these shapes appear at high enough shear rates, bending
elasticity is not essential neither (they occur in a regime where hydrodynamic shear stress overcome bending stress).
Our results clearly show that the birth of MB is due to competition between the applied flow and tension of the
membrane. We will present a full phase diagram, in the plane of flow strength and viscosity contrast. The MB shapes
appear at high enough shear rates and high enough viscosity contrast, as obtained in 3D for the RBC model [46].
We shall see that MB can either be regular or irregular in time depending on parameters. The next step will be
dedicated to the study of rheological properties, namely the effective viscosity and normal stress difference. We find
that the MB transition is accompanied with a significant change of the intrinsic viscosity as well as the normal stress
difference. We will provide few qualitative explanations for these behaviors.
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II. MODEL

A. Fluid flow

We focus here on the simplest model (2D phospholipid vesicle), where only bending elasticity and membrane
incompressibility are included. The 2D vesicle model has been shown to capture several known characteristics for
RBCs. Shapes like parachute and slipper[19, 47], dynamics such as TB and TT [21, 48] are manifested by both
systems (RBCs and 2D vesicles). Other phenomena such as lateral migration of RBCs [49], and the shapes of RBCs
within aggregates [50–52] have been shown to be captured by the 2D vesicle model.

The 2D vesicle is represented by a membrane contour that contains a viscous fluid inside and is suspended in another
fluid filling the channel. The internal fluid viscosity is denoted as η1 and the suspending fluid viscosity as η0. The
system is bounded by two rigid walls located at y = 0 and y = Ly, where Ly is the channel width. The fluid in the
channel is subject to a linear shear flow v∞x (y) = γ̇(y−Ly/2) where γ̇ is the shear rate. Periodic boundary conditions
are used along x axis (the flow direction). The period Lx is taken large enough in order to avoid any artifact due to
periodic boundary conditions. Typically Lx = 4Ly has proven to be sufficient for our purposes.

The RBCs typical linear size is about 3µm, and under physiological conditions the typical shear rate value at the
vessel wall, which depends on vessel diameter, ranges from 102s−1 to 104s−1 [53]. The blood plasma viscosity is about
η0 = 10−3mPa.s. The Reynolds number, by taking the RBC size as a length scale, is quite small (in the range 10−4

to 10−2), so that it is legitimate to take the zero Reynolds number limit. In this case the velocity of the inner (i.e.
inside the vesicle) and the outer fluids is described by the Stokes equations:

−∇P + ηi∆v = 0, (1)

∇ · v = 0, (2)

where i = 0 inside the vesicle and i = 1 outside the vesicle, P is the pressure and v is the velocity field. The Stokes
equations (1) and (2) are supplemented by the following boundary conditions:

• The no-slip boundary conditions at the walls,

• The periodic boundary conditions for the velocity v and the pressure P ,

• The continuity of the fluid velocity at the membrane,

• The force balance at the membrane, which dictates that the sum of the viscous forces applied by the inner and
outer fluids on the membrane is balanced by the membrane force f , the expression for which is given below.

These boundary conditions define a unique solution of the equations (1) and (2), which depends on the membrane
conformation and forces f .

B. Membrane forces

The force applied by the membrane on the surrounding fluid is obtained by a functional derivative of the follow-
ing energy, which is the sum two contributions: the bending energy (the Helfrich energy[54]) and the membrane
incompressiblity contribution:

E =
kb
2

∮
m

c2ds+

∮
m

ζds, (3)

where s represents the curvilinear coordinate on the vesicle contour, c is the local curvature of the membrane, kb is
the membrane bending rigidity, and ζ is a local Lagrange multiplier associated with the constraint of local perimeter
inextensibility. The functional derivative (providing the force) of the bending energy can be found in [55]. The total
force has the following form:

f = kb[
d2c

ds2
+

1

2
c3]n− cζn +

dζ

ds
t, (4)

n and t are the normal and tangential unit vectors respectively. The force can be rewritten in a dimensionless form:

f̄ = [
d2c̄

ds̄2
+

1

2
c̄3]n− c̄ζ̄n +

dζ̄

ds̄
t, (5)
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where dimensionless variables are defined as follows:

f̄ =
R3

0f

kb
, c̄ = cR0, s̄ =

s

R0
. (6)

Here R0 = (A/π)1/2 is the characteristic size of the vesicle. Due to some computational reasons, we do not use
ζ̄ directly in the numerical scheme of the force. The local extension of the membrane is instead prevented by the
penalization energy Etens that replaces the second term in the right hand side of Eq. (3):

Etens =
ks
2

∫ 1

0

(
ds

dα
− L

)2

dα, (7)

where ks is the extension modulus of the membrane, L is the prescribed perimeter of the vesicle, and α is the reference
coordinate. The reference coordinate is used to parametrize the position of the membrane points as rmem(α). We
choose the parametrization in such a way that the position rmem(α) travels exactly the whole membrane as α increases
continuously from 0 to 1. The parametrization is continued periodically for other values of alpha: rmem(α + 1) =
rmem(α).

The tension force energy (7) is

ftens =
dζ̃

ds
t− cζ̃n, where ζ̃ = ks(ds/dα− L), (8)

which coincides with the tension contribution in Eq. (4) with the Lagrange multiplier ζ replaced by the local tension

ζ̃. Furthermore, the tension ζ̃ in Eq. (8) tends to the Lagrange multiplier ζ as ks is increased to infinity.

Equation (8) provides an explicit link between the stretching of the membrane and the local tension. The cost of
this simplification is that the local arc length is never exactly equal to the prescribed value p0. However, this difference
is negligible for large enough ks. We set ksR

3
0/kb = 4 · 103 in our simulations which results in a good conservation of

local arc length for all parameters explored in this study.

C. Dimensionless parameters

Dimensionless numbers are used to describe the vesicle and the flow characteristics:

• The capillary number: allows to quantify the flow strength over bending rigidity of the membrane

Ca =
η0γ̇R

3
0

kb
≡ γ̇τc. (9)

• The confinement: describes the ratio between the effective diameter of the vesicle and the channel width

Cn =
2R0

Ly
. (10)

• The viscosity contrast: the ratio between the viscosities of the internal and external fluids

λ =
η1
η0
. (11)

• The reduced area: combining the vesicle perimeter L and its enclosed area A

τ =
(A/π)

(L/2π)2
. (12)

Throughout this paper, we will use the following scales: R0 for the distance, τc for the time and η0 for the viscosity.
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III. NUMERICAL PROCEDURE

A. General outline

In order to preserve high accuracy we use Fourier basis for discretization of all functions on the membrane contour
and compute all derivatives in Fourier domain[56, 57]. The shape of the vesicle at time t is described by a periodic
function rmem(α, t) of the reference coordinate α, as defined above. We parametrize this function by a Fourier series

rmem,x(α) + irmem,y(α) =

kmax∑
k=−kmax

rke
2πikα, (13)

where the complex amplitudes rk are the shape parameters of the membrane and kmax defines the number of Fourier
harmonics used to represent the membrane shape (typically, we use kmax = 31, which gives 63 harmonics in total).

One time step of the simulation takes a set of values of rk and proceeds as follows:

1. We use rk to reconstruct the shape of the membrane rmem(α, t), and the derivatives ∂αrmem(α, t), ∂ααrmem(α, t).

2. We use rmem(α, t), ∂αrmem(α, t), and ∂ααrmem(α, t) to compute the membrane force, membrane normal, arc
length element of the membrane, perimeter, enclosed area, and so on.

3. We use the above force, shape, normal and arc element to compute the flow in the channel.

4. We expand the velocity field at the membrane into a Fourier series and update the Fourier components rk.

The implementation details for the steps 2 and 3 are given below. The step 4 is done using a simple explicit
Euler scheme. This step also involves a procedure to conserve exactly the area enclosed by the membrane contour.
Physically, this area is conserved by the incompressibility of the enclosed fluid and the impermeability of the memrbane
but this exact conservation is lost after numerical discretization. We thus use homogeneous deflation or inflation along
the normal direction to conserve the area inside the vesicle at each time step.

B. Force calculation

We compute the force directly in the Fourier space by taking the variation of the membrane energies (3) and (7) with
respect to the amplitudes rk. The energy itself is calculated in the coordinate space, by discretizing the membrane
contour by a large number of points homogeneously distributed in the α space αi = i/Nmem, i ∈ {0, 1, ..., Nmem− 1}.
Here Nmem is the number of points used to discretize the membrane, we take Nmem ≥ 2(kmax + 1).

The derivatives with respect to the arc length are calculated as ∂s = ∂α/(ds/dα). The integration with respect
to the arc length element is reduced to the integration with respect to α by the substitution ds = dα(ds/dα). Here
ds/dα = |drmem/dα|. The integration with respect to α is performed using the trapezoid rule (here the sum over
all αi divided by Nmem). This method shows super-algebraic convergence with Nmem for smooth periodic functions.
The Fourier components of the membrane force are calculated from the virtual work principle, using the variation
E → E + δE of the energy upon a small variation of the membrane shape rmem(α)→ rmem(α) + δrmem(α):

δE = −
∮

f · δrmemds = −<
∫ 1

0

(
kmax∑

k=−kmax

Fke
2πkiα

)∗( kmax∑
k′=−kmax

δrke
2πk′iα

)
dα = −

kmax∑
k=−kmax

<(F ∗k δrk), (14)

where Fk and δrk are the coefficients of the Fourier series for (fx(α) + ify(α))ds/dα and δrmem,x(α) + iδrmem,y(α),
respectively. We thus define the force amplitudes from Eq. (14) as

<Fk = − ∂E

∂<rk
, =Fk = − ∂E

∂=rk
. (15)

Calculating the amplitudes Fk allows us to reconstruct the forces fds/dα which are used to calculate the fluid velocity
as explained below.
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C. Flow solver

Due to the linearity of Stokes equations we can transform the set of fluid equations into an integral equation which
is nonlocal. This is based on the use of Green’s function techniques[58]. This method enjoys quite a good precision.
We used the Green’s functions that satisfy directly the no-slip boundary condition at the channel walls in our previous
works. Those Green’s functions do not have an explicit representation in elementary functions. Instead, the Green’s
function values were calculated numerically on a fixed grid and stored in a table. The values for arbitrary positions
were obtained by interpolation. Here we use a different approach which we have found to result in lower computational
cost of the simulation, in particular for a dense suspension. We take the Green’s functions that satisfy the periodic
boundary conditions along the x direction and use an explicit discretization of the wall. The wall force and residual
velocity at the wall are parametrized by a Fourier series thanks to the periodicity in x direction, as explained below.
The advantage of this method is that a relatively small number of Fourier harmonics is sufficient to reduce the residual
velocity at the wall to machine precision, unless there are membrane points very close to the wall. This is because
the self-interactions of the walls are calculated exactly in Fourier space using analytical expressions.

The velocity at any point r in the simulation domain satisfies the following equation

Λ(r)v(r) = v∞(r) + vves(r) + vwall(r), (16)

where v∞(r) is the imposed velocity field (a linear shear flow as defined above), vves is the velocity field produced by
the vesicles, and vwall is the velocity field produced by the wall. The coefficient Λ is defined as

Λ(r) =


λ if r is inside a vesicle.

(1 + λ)/2 if r is on a vesicle membrane.

1 if r is outside all vesicles or is on a wall.

(17)

Here λ is the viscosity contrast defined as λ =
η1
η0

. The vesicle contribution is defined as

vves(r) =
1

η0

∮
m

G(r0, r) · f(r0)ds(r0) + (1− λ)

∮
m

v(r0) · T (r0, r) · n(r0)ds(r0), (18)

whereG(r0, r) and T are the Green’s functions (Gij refers to the so-called single-layer contribution, while Tijk accounts

for the double-layer contribution). Here we take the Green’s functions satisfying periodic boundary conditions in x
direction, which have a known expression in terms of elementary functions[58]. These functions reduce the integration
over an infinite array of image vesicles arranged periodically in the x direction to an integral over a single vesicle
inside the computational domain. The integration in Eq. (18) is thus taken along the membranes of all vesicles in the
computational domain.

Note that the above Green’s functions do not satisfy the no-slip boundary condition at the walls (in contrast to
one of our previous studies[59]), therefore the contribution of the walls to the velocity field has to be taken explicitly.
This contribution should precisely guarantee the no-slip condition at the walls. The wall contribution is written as

vwall(r) =
1

η0

∮
walls

G(rw, r) · fw(rw)dx, (19)

where rw is wall position and fw(rw) is the density of forces applied by the wall on the fluid at a position rw. The
wall force is not known a priori and needs to be solved for to satisfy the no-slip condition at the wall, as described
below. The contour integral along the walls is simplified to the integral with respect to the x coordinate in Eq. (19).
Note that the above contribution is similar in form to the first contribution in (18), because in applying the Green’s
theorem one has to integrate over all boundaries (vesicle and bounding walls).

The no-slip boundary conditions at the walls are implemented in the following way: Because the velocity of the
walls is defined by the imposed shear flow (v∞ in Eq. (16)), the no-slip condition reduces to

vves(rw) + vwall(rw) = 0 (20)

for all rw at the wall. The first term in Eq. (20) is given explicitly by Eq. (18), while the second term is related
by a linear operator to the wall forces. We thus need to solve Eq. (20) for the wall forces. The next step is to use
the obtained wall forces to calculate the flow vwall on the vesicle membranes, using Eq. (19). The wall forces and
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the velocity fields measured at the wall remain invariant after translation by Lx in x direction thanks to the periodic
boundary conditions. We thus represent these three fields by Fourier series in x:

vvesx (x, Ly/2± Ly/2) + ivvesy (x, Ly/2± Ly/2) =

(Nw−1)/2∑
k=(1−Nw)/2

vvesk,u/le
2πikx/Lx ,

vwallx (x, Ly/2± Ly/2) + ivwally (x, Ly/2± Ly/2) =

(Nw−1)/2∑
k=(1−Nw)/2

vwallk,u/le
2πikx/Lx ,

fwallx (x, Ly/2± Ly/2) + ifwally (x, Ly/2± Ly/2) =

(Nw−1)/2∑
k=(1−Nw)/2

fwallk,u/le
2πikx/Lx ,

(21)

where vvesk,u/l, v
wall
k,u/l, and fwallk,u/l are the corresponding Fourier components. The second index u in vvesk,u/l refers to the

upper wall (y = Ly in the left hand side of Eq. (21)), while l refers to the lower wall (y = 0 in the left hand side of
Eq. (21)). Nw sets the number of Fourier harmonics used for wall discretization.

The coefficients vvesk,u/l can be calculated directly without calculating the velocity at the wall in the coordinate space:

vvesk,u/l =
1

η0

∮
m

Gk,u/l(r0) · f(r0)ds(r0) + (1− λ)

∮
m

v(r0) · T
k,u/l

(r0) · n(r0)ds(r0), (22)

where the kernels Gk,u/l(r0) and T
k,u/l

(r0) depend only on the wall position and Lx. These kernels can be expressed

in elementary functions as shown in [58].
The amplitudes vwall±k,u/l and fwall±k,u/l can be related to each other as

(vwall±k,u/l) =
1

η0
Gwall(k)(fwall±k,u/l), (23)

where (vwall±k,u/l) and (fwall±k,u/l) are 4D complex vectors composed of the corresponding components and Gwall(k) is a

4x4 complex matrix, which depends only on Lx and Ly and whose explicit expression is given in [58].
The wall force amplitudes are thus obtained by solving

(vvesk,u/l) +
1

η0
Gwall(k)(fwall±k,u/l) = 0, k ≥ 0 (24)

for the 4D complex vector (vvesk,u/l) computed from Eq. (22). Note that Eq. (24) is degenerate for k = 0, since normal

forces with constant amplitude produce no flow.
Finally, the wall contribution to the velocity field in the fluid domain can be obtained from known (fwall±k,u/l) as

vwall(r) =
1

η0

∑
j∈{u,l}

(Nw−1)/2∑
k=(1−Nw)/2

Gk,j(r)fwallk,j . (25)

Parameters Simulation unit Physical unit
kb 0.1 4 × 10−19J
R0 1.0 3µm
η0 1.0 1mPa.s
τc 10.0 0.54s

TABLE I. Simulation parameters

IV. RESULTS

A. The effect of the confinement on the phase diagram

We have fixed the reduced area to 0.65 which is the typical value for RBCs, and we have analyzed systematically
the vesicle dynamics at low confinement (Cn = 0.2), where the walls play a minor role. The vesicle center was located
on the central axis of the channel. The stability of such centered solutions is discussed below.
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We have produced a phase diagram (Fig. 1-a) in a wide range of capillary number Ca and viscosity contrast λ. Many
previous studies [48, 60–63] have investigated the dynamics of a single vesicle under shear flow using 2D simulations,
but we are not aware of a previous report on a multilobe vesicle. Despite quite high values of shear rates the perimeter
and the surface of the vesicle are well conserved during the simulation; the relative error of the perimeter is less than
1% in all our simulations. Three regimes have been identified : Tank-treading (TT), tumbling (TB) and multilobe
(MB). The present phase diagram is in a good qualitative agreement with [46] (their Fig.2). In other words, the
topologies of both phase diagrams are quite similar, in the sense that the relative positions of the three modes in
the phase diagram present the same typical picture: at low viscosity contrast λ TT always prevails as shown in [48].
In our phase diagram TT remains stable at high capillary number showing no transition, whereas at high viscosity
contrast λ, the TB prevails at small shear rate γ̇ and undergoes a transition towards MB at high shear rate γ̇. Note
that the rolling stomacyte, dyscocyte and tumbling stomatocytes in 3D[46] all degenerate into TB in 2D, since there
is no other analogue in 2D. Figure. 1-a shows three transitions, from TB to MB occuring at λ ≥ 5.8 and in the range
of 35 ≤ Ca ≤ 50, the second transition takes place from TT to MB occurring at λ ≥ 5.7 and Ca ≥ 38, and the last
transition is between TT and TB at Ca < 35 and 5.5 ≤ λ ≤ 5.8.

FIG. 1. Phase diagrams showing the dynamics of a single vesicle. The simulation data are shown as dots. (a) Cn = 0.2, (b)
Cn = 0.4. Top and bottom have the same code color

We have investigated the effect of confinement on the evolution of the phase diagram. By reducing the distance
between the two walls (Cn = 0.4) we have observed that the confinement plays an essential role regarding the MB
shape (Figure. 1-b). Indeed the area of MB phase shrinks by about twice when the confinement is doubled, and TT
prevails in this case. It is likely that walls affect excursion of membrane protrusions (which are pronounced for MB),
and tend to reduce the domain of existence of MB phase.

Figure 2 shows snapshots of the MB mode (see corresponding movie in supplemental material [64]). The MB shape
becomes more and more regular as viscosity contrast λ increases. This agrees also with experiments on RBCs[44] (their
Fig. 4B). During the transition between TT and TB at 5.8 ≤ λ < 6.0 the vesicle adopts a deformed multilobe shape
as shown in (Fig. 2 (a)) and moves along the flow direction as shown in the movie 1 (see movie 1 [64]). Beyond this
region the vesicle adopts a deformed multilobe shape with multiple irregular lobes. Increasing the viscosity contrast
λ up to a certain value around λ ' 11.0 the multilobe displays a regular and symmetric character and the vesicle
becomes more rigid. This highlighted the contribution of the viscosity contrast on the MB manifestation and their
dynamics.

In all our simulations the initial configuration is prepared to be an elliptical vesicle in the channel center as shown
in Fig. 3. In the multilobe regime the elliptical vesicle starts tumbling and after a few τ ′cs it undergoes a transition
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FIG. 2. Snapshots showing dynamics of a single vesicle. Here we set Cn = 0.2 and Ca = 60.0. (a) λ = 5.8, (b) λ = 7.0, (c)
λ = 14.0. Snapshots (a) show the evolution of the vesicle shape (see movie 1 [64]). (b) and (c) show the dynamics of a vesicle
over one period(see movie 1 [64]).

FIG. 3. Snapshots show the evolution of the vesicle shape from the initial configuration to the steady state. Here we set the
confinement Cn = 0.2, the capillary number Ca = 60.0 and the viscosity contrast λ = 7.0 (see movie 2 [64]). The steady state
dynamic is shown in movie 1 [64].

towards a quadrilobe shape which is unstable (transient state) and persists for less than 1000τc. Over long time the
shape becomes a trilobe (a stable shape). Note, in agreement with our finding, the quadrilobe shape is not observed
as a permanent state in the 3D simulations of [44, 46].

We clearly see that the MB shape occurrence does not require a shear elasticity of the cytoskeleton. The MB shapes
occur at large enough capillary numbers where also the bending rigidity is not essential (large capillary number, where
MB occurs, means that bending stress is small in comparison to imposed hydrodynamic stress) . These shapes result
solely from an interplay between tension (resisting compressibility) and the imposed flow. This finding corroborates
the fact that most of the shapes and dynamics observed so far for RBCs are also common to pure lipid vesicles.
Typical examples are parachute shape, slipper, bullets, croissant and so on, exhibited by vesicles and RBCs both
experimentally and numerically.
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Finally, it is interesting to note that the topology of phase diagram (Fig. 1-a) is very reminiscent of that studied
in 3D for vesicles by several groups [20, 65–69], where the relative position of TT, TB and MB phases (obtained
here) are to be compared to those corresponding to TT, TB and VB (vacillating breathing, aka swinging, trembling,
initially reported in [6]). It is tempting to speculate that the mechanism behinds the manifestation of MB mode is
similar to that of VB mode. Initially the VB phase was studied for a quasi-spherical vesicle, in which the amplitude
of membrane deformation in the VB phase is small. Later, a numerical study dealing with more deflated vesicles [70]
shows shapes similar, to some extent, to the MB ones (see Figs. 2 and 3 in Ref. [70]). Like the VB mode [6] the
MB mode takes place from TT mode when the angle of orientation of the vesicle with respect to the flow direction is
close to zero (positive or negative small values of the angle). Figure 4 shows the behavior of this angle as a function
of viscosity contrast λ. This type of behavior is also reported for 3D simulations of RBCs [46]; the MB shape takes
place when the orientation angle is close to zero.

FIG. 4. Vesicle orientation angle as a function of viscosity contrast λ.

B. The rheology of multilobe vesicles

The aim of this section is to investigate the effect of the MB shape discussed above on the rheological behavior
of a single vesicle. We quantify the normalized viscosity and the normalized normal stress difference. The effective
viscosity has the following form:

η = η0(1 + [η]φ), (26)

where φ is the suspension concentration, equal to the ratio between the vesicle area and the area of the calculation
domain, and [η] is the normalized viscosity (called also the intrinsic viscosity when φ → 0) representing the vesicle
contribution to the viscosity. The effective viscosity is the ratio between the xy component of stress tensor and the
applied shear rate:

η =
< σxy >

γ̇
(27)

where bracket < ... > denotes an average over the wall length. Alternatively the viscosity can also be obtained as an
integral over the vesicle perimeter. Following Batchelor formula [71], the normalized effective viscosity is given by:

[η] =
η − η0
η0φ

=
1

η0Aγ̇
[−
∫
m

yfxds+ η0(λ− 1)

∫
m

(nxvy + nyvx)ds]. (28)

The first term of the normalized viscosity describes the dynamical contribution which is due to the membrane force,
and the second term is the kinematic contribution of the vesicle (the membrane velocity). The normalized stress
difference is defined as:

[N ] =
< σxx > − < σyy >

(η − η0)γ̇
(29)
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Where the stress tensor is given by

< σij >=
1

A

∫
box

(−Pδij + η0(∂ivj + ∂jvi))dA−
1

A

∫
m

rjfids+ η0
(1− λ)

A

∫
m

(nivj + njvi)ds (30)

δij is the Kronecker symbol, and ri is a component (x or y) of the membrane position vector. The first integral is
performed over the calculation domain. Here, the vesicle dynamic plays a crucial role on the rheology. The pertinent
parameters of interest are the viscosity contrast and the capillary number. It has been reported in Ref. [72, 73] that
the effective viscosity of a single vesicle is not monotonous with the viscosity contrast λ, the minimum of the effective
viscosity is associated with the critical value of the viscosity contrast of the transition between tank-treading and
tumbling. The effective viscosity was found to decrease with the viscosity contrast in the TT regime and suddenly
increases after the transition to the TB regime. Figure 5 shows the behavior of the effective viscosity as a function
of viscosity contrast λ. We see there the above feature, namely that the viscosity decreases with λ in the TT regime
and increases in the TB one. Here we find that the viscosity increases in the MB regime, as with the TB one, but
here the increase is relatively more pronounced. Despite the fact that the area spanned by a TB vesicle is larger than
with a MB vesicle, the resulting effect on viscosity due to a MB vesicle is larger. We believe that the presence of
protuberance in the MB shape cause a stronger dissipation in the surrounding fluid, resulting in a higher dissipation.
During tumbling of MB the presence of 3 protuberances causes a higher average (over a period) cross section against
flow as compared to a TB vesicle.

FIG. 5. The normalized effective viscosity [η] as a function of viscosity contrast λ for different capillary number Ca. Circle
symbols correspond to tumbling, crosses to tank-treading, and triangles to multilobes. Left : Cn = 0.4, right : Cn = 0.2

Let us analyze the evolution of viscosity as a function of capillary number. It has been reported that the effective
viscosity of a vesicle suspension may exhibit both shear-thinning and shear-thickening depending on the viscosity
contrast [74]. For a given viscosity contrast and upon increasing capillary number, we have a transition from TB to
MB (Fig. 1). In the TB regime we find a weak shear thinning (Fig. 6). At the TB-MB transition the viscosity exhibits
a large jump. In this sense the system exhibits a sudden shear thickening. Within the MB regime, and for not too
large viscosity contrast, the suspension shows a shear thinning. For a large enough viscosity contrast the suspension
viscosity exhibits a plateau. The sudden increase of the viscosity in the MB regime is traced back to a higher cross
section (as explained above). The increase of viscosity in the MB regime is consistent with the experimental report
shown in Fig. 4 of Ref. [44]. The shear-thinning in the MB regime (red triangles in is due to the fact Fig. 6), is due
to the fact that the MB shape explores less space as the capillary number increases. To quantify this effect, we plot
the center of mass as a function of time for two capillary numbers (Fig. 7). For each case the center of mass describes
an ellipse with an area which decreases with Ca, causing a smaller viscosity.

We have further analyzed the origin of the behavior of the viscosity. We determine the average (over long time) of
the occupancy of the cell in the channel. This is reported in Fig. 8 as a function of Ca for different values of viscosity
contrast λ. We find the following features: (i) when we cross the boundary (as a function of Ca) of the TB-MB phase
(occurring at about Ca ∼ 40) the average occupancy jumps meaning the cell explores more the channel width, and
this triggers a jump in the viscosity. (ii) For the upper panel, in the MB occupancy decreases with Ca, explaining the
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FIG. 6. The normalized viscosity [η] as a function of capillary number Ca for different viscosity contrast λ. The confinement
is Ca = 0.2. Circles correspond to the TB and triangles to MB dynamics.

FIG. 7. The center of mass trajectory for two capillary numbers.

shear thinning for λ = 7. (iii) In the lower panel the occupancy in the MB phase remains practically constant leading
to a plateau in the viscosity behavior.

The interpretation of the normalized normal stress difference is more complicated than the normalized effective
viscosity. In the TB regime the normal stress difference (Fig. 9) is almost zero, before becoming negative (meaning
contractile stress) and then acquires a large enough positive value in the MB regime. The membrane incompressibility
is a main ingredient, but it enters in an indirect way. The sign of the normal stress difference in the TT regime is
fixed by the angle between the flow direction and the long axis of the vesicle (see analytical study in [72]). In the
TB regime there is periodic evolution of normal stress difference during time (the modulus of the maximum and the
minimum are equal), and because it switches from positive to negative and it vanishes when averaged over a period.
In the MB regime the vesicle undergoes a complex dynamics. In the vicinity of the TB-MB transition N is negative
(contractile), before becoming positive. Sufficiently far from the transition point the vesicle with a lower viscosity
contrast has the highest value of normal stress difference. This is traced back to the flexible nature of the shape
deformation for low enough viscosity contrast. In Ref. [72] it has been shown that normal stress difference depends
quadratically with shape amplitude deformation. This gives a hint that less viscous vesicles provide a higher stress
due to their larger flexibility. It would be interesting to perform systematically a perturbative theory, as in [6, 65–67],
in order to analyze analytically the behaviors reported here.



13

FIG. 8. The average occupancy as a function of Ca for two different values of λ.

FIG. 9. The normalized normal stress difference [N ] as a function of capillary number Ca for different viscosity contrast λ.
Ca = 0.2. Circles correspond to TB and triangles to MB dynamics.

C. Relation between normal stress difference and migration

It is known that the sign of normal stress difference is related to the lateral migration of particles in a suspension[75].
Here we use this relation and the measurements of N , obtained above, to analyze the stability of the centered position
of the vesicle. Let us first write the relation between N and migration velocity in a channel which will inform us on
the direction of migration as a function of the sign of the normal stress difference. For a semi-confined geometry,
in which the migration is caused by a single wall (or in a channel so wide that the effect of the farther wall can be
neglected), the migration velocity vm can be calculated analytically and reads:

vm =
N

8πη0(y0 − ywall)
, (31)
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where y0 is the lateral position of the vesicle center and ywall is the wall position. Equation (31) is an asymptotic
expression, valid for |y0 − ywall| � R0. This equation is valid whether the wall is above (y0 − ywall < 0) or below
(y0 − ywall > 0) the vesicle.

For a vesicle close to the channel center the contributions of both walls have to be taken into account. The sum of
the expressions (31) with ywall equal to the upper and lower wall positions gives the migration velocity that is only
qualitatively correct. This sum however gives the correct scaling for the migration velocity close to the channel center:

vm = −χN(y0 − Ly/2)

η0L2
y

, (32)

where χ is a numerical constant independent of the channel geometry (as discussed in supplemental material of [76]).
The asymptotic expression (32) is valid under assumptions |y − Ly/2| � R0 � Ly. We find χ = 0.488 by analyzing
the flow due to a point stresslet in an infinite channel.

FIG. 10. Rescaled migration velocity as a function of the lateral position, measured numerically and predicted with eq. (32).
The viscosity contrast is set to 3 for W = 40R0 in order to prevent the transition to tumbling.

Figure 10 shows the comparison between the migration velocity predicted by eq. (32) and the numerical simulation:
We place a vesicle close to a wall and measure the lateral migration velocity vm as a function of the lateral position
y. We then compare the rescaled velocity vmL

2
y/(γ̇R

3
0[N ]) with the theoretical prediction −χ(y0 − Ly/2)/R0. As

can be seen, the agreement is only qualitative for W = 10R0 because of the effect of higher-order multipoles in the
flow perturbation produced by the vesicle. Increasing W to 20R0 gives a much better agreement because the effect
of higher-order multipoles neglected in (32) diminishes with increasing channel width. Further increasing W to 40R0

makes the numerical curve almost coincide with the analytical expression close to the channel center. We also observe
that changing vesicle parameters, such as viscosity contrast, or reduced area (not shown) does not affect the validity
of (32).

Expressions (31) and (32) show that both the particle’s migration close to a wall and the stability its centered
position are intimately linked to the sign of the normal stress difference generated by the particle.

According to formula (32), the migration is directed towards center of the channel when N > 0 and away from
center in the opposite case. We have investigated the migration for N > 0 and N < 0 by considering a vesicle which
is initially localized at different initial positions. When N > 0 we have found that an initial position away from
center always leads to an inward migration that pushes the vesicle towards the center. The steady final position
is at the center (Fig.11) (red circles; the channel width is W = 10R0 and center of the channel is at y/R0 = 5).
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FIG. 11. Final vesicle position yf/R0 for different values of Ca. W = 10R0; the center of the channel is at yf/R0 = 5. λ = 14.
The red circles correspond to final position with N > 0, the red crosses to N < 0. The blue symbols represent positions which
depend on initial conditions. The green symbols represent the normal stress difference.

When N < 0 the migration is found to be outwards, and the vesicle settles at an off-centered position (red crosses
in Fig.11). It is seen that the value of Ca at which there is a transition from an off-centered to a centered position
occurs is approximately equal to that corresponding to the passage of N from positive to negative (see Fig.9). The
blue symbols in Fig.11 refer to situations where the final position depends on initial position. These position values
correspond to a coexistence zone between a centered and off-centered position. The bifurcation structure in Fig.11
reveals a subcritical nature. Thus we see that the migration and the normal stress difference are intimately related.

V. SUMMARY AND CONCLUDING REMARKS

A main outcome here is the fact that the cytoskeleton of a RBC in not essential for the MB shape manifestation;
only membrane tension is responsible for this effect, since the MB phase takes place at high enough capillary number,
meaning that shear stress overcomes bending resistance. It is already known that many shapes known for 2D and 3D
vesicles (slipper, croissant, parachute...) [77–83] are shared by RBCs models. The present finding provides further
evidence highlighting that a 2D vesicle model already captures many important features. The 2D model can be
(due to its rapid handling from computational point of view) very useful in exploring new phenomena, especially
for dense suspensions, before resorting to the computationally more expensive RBC model. An interesting line of
future investigation is the analytical study of MB shapes, following the methods exposed in [6, 65–67]. In those
studies either second spherical harmonic [6, 65, 66] (this is the first excited mode in a linear shear flow), or the fourth
order harmonic [67] have been included; including fourth order harmonic turned out to be decisive to account for full
numerical simulations. In that study centrosymmetry was imposed, an assumption which is clearly not valid for a MB
shape. It will be essential to relax this assumption if we wish to account for this new phase. It is hoped to investigate
this matter in the future.

Appendix A: Details of the numerical simulation method

1. Green’s functions for periodic boundary conditions

The periodic boundary conditions respect the translational invariance of the Green’s kernels, which depend only
on the relative positions of the source and target points, as in the free-space case: G(r0, r) = G(r0 − r), T (r0, r) =
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T (r0 − r). The explicit expressions and their presentation are copied from [58]. We have made a small correction, as

explained below.
Following [58], we assume the periodicity direction of the system to be oriented along the x axis and the period

of the system is given by Lx. This defines the wave number q = 2π/Lx. Following [58], we introduce a function A,
defined as

A(r) =
1

2
ln[cosh(qry)− cos(qrx)]− 1

2
ln 2. (A1)

The function A represents a solution of the Poisson’s equation for a periodic array of point charges. Using this
function, the Green’s kernels for the Stokes equation can be written as [58]

G(r) =
1

4π

(
1−A− ry∂ryA ry∂rxA

ry∂rxA −A+ ry∂ryA

)
(A2)

Txxx(r) =
1

2π
∇ · [−A,−ry∂rxA],

Txxy(r) = Txyx(r) = Tyxx(r) =
1

2π
∇ · [ry∂rxA,−A],

Txyy(r) = Tyxy(r) = Tyyx(r) =
1

2π
∇ · [−A, ry∂rxA],

Tyyy(r) =
1

2π
∇ · [−ry∂rxA,−A].

(A3)

Note that we have changed the Txxx expression compared to [58] (written as ∇ · [−A,−ry∂ryA] there). We have
verified that ∇· [−A,−ry∂rxA] is the correct expression by taking the limit of small q, in which the free-space kernel
is recovered, as Txxx(r) = −r3x/(πr4) +O(q2).

2. Discretization of Eq. (18)

Numerical integration of Eq. (18) requires particular care due to the singular nature of the kernels G and T , which

diverge when the distance between r and r0 tends to 0. We overcome this challenge by a combination of several
techniques:

• The kernel G is regularized for r = r0 by singularity subtraction technique, in which we subtract an exact
identity from the integral in Eq. (18) to make the first integral in Eq. (18) go to zero at r = r0 [39].

• While the kernel T diverges at r0 = r, the product T (r0, r).n(r0) has a finite limit when r0 approaches r along

the particle contour. It is thus sufficient to replace the undefined value of the second integral of Eq. (18) for
r0 = r with this limit to regularize the second integral [84].

• We further improve the precision of computing the integrals in Eq. (18) by using refined meshes to compute the
contributions of near-singular points, for which the distance |r0 − r| is comparable to the spacing between the
discretization points for the original coarse mesh. This technique is based on decomposing the Green’s kernels
into a sum of their smoothly varying long-range part and several short-range parts with finite support[85]. The
long-range part is then integrated using the most coarse mesh, while the short-range parts are integrated using
more refined meshes, where the mesh refinement is consistent with the characteristic length-scale of the given
short-range contribution to the Green’s kernel, which is defined by its support. This method provides a good
balance between the computational cost, since the number of kernel evaluations is of the same order for each
mesh, and the precision of the method, since the discretization errors due to the singular behavior of the kernels
are also of the same order for each mesh.

3. Explanation of the Eq. (31)

For more details and explanations on the Eq. (31) see [86].
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Appendix B: Membrane discretization quality and benchmarking

The vesicle is described at time t by a closed curve r(α, t) in (x, y) plane. The membrane is discretized into Nmem
points. To study the effect of the membrane discretization on the shape of the vesicle, we examine the effect of the
variation of the Nmem on the vesicle shape as shown in the (Fig.12). We see clearly in the (Fig.12) that all the vesicle
configurations are very close. We set Nmem = 1024 in all the simulations presented in this article.

FIG. 12. The configure of the shape while showing a tank-treading. Here we set C0.2, Ca = 1.0 and λ = 1.0. Left figure is a
zoom of the right figure.

We also investigated the effect of the time step dt on the simulation precision. To do this, We calculated the
normalized effective viscosity as described in the Eq. (29) for different values of capillary number Ca and the viscosity
contrast λ. We see clearly in the (Fig.13) that the time step value dt = 10−5 is the typical value which is independent
on the capillary number Ca and the viscosity contrast λ. For calculation speed and accuracy purposes, the time step
value is fixed to dt = 10−5 in all our simulations in this article.

FIG. 13. The normalized effective viscosity as function of the time step for different values of capillary number Ca and viscosity
contrast λ. We set here τ = 0.65 and Cn = 0.2

Finally, we present here a qualitative and quantitative comparison of our simulations with other method. The
selected method is lattice Boltzmann method (LBM). For comparison purposes and code validation we show in the
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(Fig.14) the steady inclination angle of the vesicle as function of the confinement Cn, our simulation result is in a
good qualitative and quantitative agreement with LBM [60].

FIG. 14. The variation of the steady inclination angle associated to a vesicle performing tank-treading motion in confined
geometries as function of the confinement Cn. We set here τ = 0.9 and Ca = 1.0 and λ = 1.0
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