
HAL Id: hal-04298567
https://hal.science/hal-04298567

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reverse engineering DNA origami nanostructure designs
from raw scaffold and staple sequence lists

Ben Shirt-Ediss, Jordan Connolly, Juan Elezgaray, Emanuela Torelli, Silvia
Adriana Navarro, Jaume Bacardit, Natalio Krasnogor

To cite this version:
Ben Shirt-Ediss, Jordan Connolly, Juan Elezgaray, Emanuela Torelli, Silvia Adriana Navarro,
et al.. Reverse engineering DNA origami nanostructure designs from raw scaffold and staple
sequence lists. Computational and Structural Biotechnology Journal, 2023, 21, pp.3615-3626.
�10.1016/j.csbj.2023.07.011�. �hal-04298567�

https://hal.science/hal-04298567
https://hal.archives-ouvertes.fr

Reverse Engineering DNA Origami Nanostructure Designs
from Raw Scaffold and Staple Sequence Lists

Ben Shirt-Ediss,1 Jordan Connolly,1 Juan Elezgaray,2 Emanuela Torelli,1 Silvia Adriana Navarro,1 Jaume
Bacardit,1 and Natalio Krasnogor1, a)
1)Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University,
Newcastle-upon-Tyne, NE4 5TG, UK
2)Centre de Recherche Paul Pascal, CNRS, UMR5031, 33600 Pessac, France

(Dated: 3 May 2023)

Designs for scaffolded DNA origami nanostructures are commonly and minimally published as the list of DNA staple
and scaffold sequences required. In nearly all cases, high-level editable design files (e.g. caDNAno) which generated the
low-level sequences are not made available. This de facto ‘raw sequence’ exchange format allows published origami
designs to be re-attempted in the laboratory by other groups, but effectively stops designs from being significantly
modified or re-purposed for new future applications. To make the raw sequence exchange format more accessible
to further design and engineering, in this work we propose the first algorithmic solution to the inverse problem of
converting staple/scaffold sequences back to a ‘guide schematic’ resembling the original origami schematic. The guide
schematic can be used to aid the manual re-input of an origami into a CAD tool like caDNAno, hence recovering a
high-level editable design file. Creation of a guide schematic can also be used to double check that a list of staple strand
sequences does not have errors and indeed does assemble into a desired origami nanostructure prior to costly laboratory
experimentation. We tested our reverse algorithm on 36 diverse origami designs from the literature and found that 29
origamis (81%) had a good quality guide schematic recovered from raw sequences. Our software is made available at
https://revnano.readthedocs.io.

I. INTRODUCTION

DNA origami nanostructures1,2 are finding increasing ap-
plication in diverse areas of nanobiotechnology, such as in sin-
gle molecule biosensing3, targeted drug delivery4,5, cell gene
delivery6, enzyme cascade engineering7, nano-patterning8

and molecular robotics9.
While recent efforts are attempting to define a universal

nanostructure exchange format10 or to set up a centralised
database to store electronic origami design files11, origami
nanostructure designs are traditionally exchanged in their
most minimal form: as raw staple and scaffold sequence lists
in publication supplementary material. In a few cases, se-
quence lists are accompanied by a static low-resolution pic-
ture of the origami schematic (e.g. caDNAno12 diagram), of-
ten omitting sequence information and base pair locations.
Only very rarely are editable electronic source schematics
made available at publication.

This state of affairs means that published origami nanos-
tructures may be attempted in the laboratory again (in an un-
changed form) by third parties, but it is not possible to exam-
ine a structure in more detail than is initially provided, and it
is difficult to significantly tweak, modify or re-purpose a pub-
lished design for new future applications.

All current computational CAD tools for DNA
origami1,13,14 focus on the forwards problem of creating
a nanostructure design and then deriving the staple sequences
which realise it (Figure 1a). Physical self-assembly under
appropriate reaction conditions in the lab then ‘molecularly’
solves the inverse problem of assembling the staple and

a)natalio.krasnogor@ncl.ac.uk

scaffold strands back into the designed origami nanostructure.
However, the actual self-assembly reaction is an extremely
complicated and ill-understood ’black box’ process15, and
raw strand sequences mean little to human origami designers.

To make origami designs published as raw sequence lists
more accessible to further design and engineering, in this
work we propose the first algorithmic solution to the in-
verse problem of converting sequence lists back to a ‘guide
schematic’ resembling the original origami design schematic
(Figure 1b). The guide schematic is an interactive HTML
page in 2D or 3D, showing basic helix connectivity, staple
crossovers and sequence positions on the origami. Rather than
attempting to simulate the complex physical self-assembly
pathway of scaffold and staple strand hybridisation, our re-
verse engineering approach instead reconstructs an origami
guide schematic in a direct way using staple-scaffold sequence
complementarity, constraint programming and graph layout
algorithms. These techniques allow to partially recover infor-
mation lost in the forward origami design process (marked as
stages I1 and I2 in Figure 1a).

Reverse engineering an origami guide schematic from raw
published sequences is useful for a number of reasons. Firstly,
the guide schematic can be used to aid the manual re-input of
the origami nanostructure into an origami CAD design tool
of choice, hence recovering an editable electronic schematic
which can be modified and extended for future research. Dur-
ing this process, images published of the original schematic
can also be used as a complementary information source.

Secondly, the guide schematic allows to see in greater de-
tail origami design features that were not mentioned, or which
were described only vaguely in the original origami publica-
tion; for example, whether an origami possesses a loop of
excess single strand scaffold and how staples are hybridised
within the loop.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

mailto:natalio.krasnogor@ncl.ac.uk
https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

2

FORWARD DESIGN

CTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACC
GTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCT
CCCGCTCTGATTCTAACGAGGAAAGCACGTTATACGTGCT
CGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATT
AAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCG
CTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTT
CTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGT
CAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTA
GTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGG
TGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTT
TTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG
ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGG
GCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAAC
CACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGC
GTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTG
AAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAA
AAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCC
GCGCGTTGGCCGATTCATTAAT

CCGTTGAATTAA
GTCTGTCCATCACGCATAGCAATACTTCTTTGAACTCAAA
AGTAGAAGATTAGTAATAACATCAATCGGAAC
CCTAAAGGTGCCGTAAAGCACTAACTTGCCTG
CGAGAAAGGAAGGGAAGCCACCGAGTAAAAGA
CTATCGGCTGGATTATTTACATTGAGGGACAT
AGAACCCTGCTCAATCGTCTGAAACTTGCTGGTAATATCC
AGAACAATATTACCGCATACCTACATTTTGACTCTGACCT
GTGGCACAAAAAACGCTCATGGAACAGCCATTGCAACAGG
CAAATATCTAGCCCTAAAACATCGAAGAATAC
GAAAGCGTCCATTAAAAATACCGACTAAAGCATCACCTTG
TAGTCTGGCTAT
GACAATATTTTTGAATTTAATGCGCGAACTGAAAACCCTC
GTAATAAAGCAGATTCACCAGTCAATAGGGTT

a

b

Raw Published Sequences

Ground Truth
Staple-Scaffold Contact Map

Reconstructed
Staple-Scaffold Contact Map

Physical
Self-Assembly

Scaffold

Staples

Approximate
Origami
Guide Schematic
(Interactive HTML page)

Domain-Level GraphSpring Embedder

Guides manual
re-input of design
into chosen origami
CAD design
software

Hamming
Distance

ScaffoldStaples

Information Loss

REVERSE ENGINEERING

Information Loss

Cartesian positions
and orientations of bases;

insertions, deletions;
scaffold crossovers

Geometric
Origami
Design
Schematic

Positions of staple
crossovers,

loopouts and dangles

Geometry Topology Sequences

REVNANO Constraint
Programming Solver

FIG. 1. Forward Design and Reverse Engineering of DNA Origami Nanostructures. (a) In the traditional forward design process, a DNA
origami schematic has a scaffold sequence assigned from which the Watson-Crick complementary staple strands are derived. The geometric
origami schematic implicitly embeds a topological contact map detailing how the staple and scaffold bases are pairwise hybridised. The
process of going from schematic to raw sequences involves two stages of information loss, I1 and I2. (b) The inverse problem addressed in this
work, i.e. going from raw sequences back to a geometric origami schematic, involves the (partial) recovery of I2 and then I1. The REVNANO
constraint programming solver first reconstructs an approximate contact map of scaffold-staple base pair connectivity r; the latter is converted
into an equivalent graph representation of the origami domain-level connectivity D; finally a spring-embedder algorithm converts the graph
into an approximate non-crossing geometric representation in 2D or 3D using spring energy minimisation.

Thirdly, the existence of a reverse engineered guide
schematic provides validation that a particular set of staple se-
quences do indeed lead to an intended origami shape, i.e. no
strands are missing and no strands have sequence errors. This
is useful both for authors publishing sequences (to verify that
no typos or omissions are made) and for third parties wanting
to replicate published designs (to verify listed sequences are
correct before going to the expense of fabrication).

Fourthly, if a publication is not explicit about the origami
scaffold sequence used (a surprisingly common occurrence),
then the staple sequence set can be reversed against different
scaffold sequences until the correct one is found.

Finally, the ease of reverse engineering an origami design
from sequences is likely roughly correlated with decreased
likelihood of kinetic traps during origami self-assembly, as
staple addressability is improved (see Discussion).

Our reverse engineering pipeline first recovers a staple-

scaffold contact map of an origami design, detailing which
staple and scaffold bases are pairwise hybridised (see Supple-
mentary Note 1). Construction of contact maps from raw se-
quences mined from publications could also, in its own right,
underpin future data science / machine learning applications
in structural DNA nanotechnology (see Discussion).

It should be noted that simple counterexamples demonstrate
that the origami reverse engineering problem is not solvable
in the full general case. For example, if an origami design
has a pathological scaffold sequence applied, like a single-
letter sequence (e.g. polyA) or a repeating sequence (e.g.
ATATATAT...), then the complementary staple sequences de-
rived will be too homogeneous to contain sufficient informa-
tion to reconstruct the origami schematic. However, the full
general case is not of practical interest as the latter patholog-
ical sequences will likely not self-assemble properly either.
In practice, origami sequences do contain enough local se-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

3

quence variety to ascertain the original locations of staples
by sequence complementarity. Hence, in practice, the inverse
problem can be attempted.

Also, it should be noted that the reverse engineering prob-
lem does not admit a trivial solution. For instance, it may
seem that the following algorithm (to be named NAIVE)
would be sufficient to reconstruct the staple-scaffold contact
map for an origami, from just sequence information: 1) Run
a staple strand anti-parallel to the scaffold strand; 2) Record
all regions where there is a complementary staple-scaffold se-
quence match from the 5’ of the staple, over a certain mini-
mum number of base pairs µmin; 3) Take the longest of these
regions as the route of the staple; 4) Truncate the staple to not
include the matched region; 5) Repeat from (1) until all bases
of the staple strand are matched; 6) Repeat for all staples.

However, while NAIVE does work with some origamis (see
Results) it fails on other designs, such as origamis based on
the M13 scaffold with a high number of repeated sequence
regions (which can, in some instances, entirely replicate an
intended staple binding site).

In physical self-assembly, staples eventually find their cor-
rect hybridisation locations on the origami scaffold strand due
to cooperative loop formation and cascades of strand displace-
ment reactions that constantly re-arrange binding configura-
tions over a gradual temperature annealing ramp until myriad
off-target bindings are statistically cleared away. The view
that each staple binds only at one set of designed locations, as
assumed by NAIVE, is often too simplistic.

In this work, we develop a two-stage pipeline (Figure 1b) to
robustly solve the inverse problem of raw staple/scaffold se-
quences to origami guide schematic. Described in more detail
below, in the first stage of this pipeline we develop a con-
straint programming solver called REVNANO to recover the
(approximate) staple-scaffold contact map from origami se-
quences. In the second stage of the pipeline, we use graph
layout techniques to convert the topological contact map into
an approximate geometric origami schematic. In the Results
section we describe good reverse engineering performance of
our algorithms on a diverse test set of 36 origami nanostruc-
tures drawn from the literature, and analyse failure cases in
detail. In the Discussion we review current limitations of our
approach and highlight future improvements which could be
made to our work.

II. REVERSE ENGINEERING PROCEDURE

The problem of reverse engineering a DNA origami guide
schematic from raw scaffold and staple sequences can be split
into two independent sub-problems, each described below.

A. Recovery of Origami Contact Map from Sequences

The first sub-problem is to recover a good approximation
of the contact map for the origami design, given just the raw
scaffold and staple sequences. The contact map simply states
which scaffold and staple bases are hybridised together, and

which are left unpaired in the origami design (see Supplemen-
tary Note 1). With no notion of spatial positioning, a contact
map is a purely topological representation of base pair connec-
tivity within a folded origami. During the forward design pro-
cess (Figure 1a), the contact map for an origami nanostructure
is actually embedded implicitly in the geometric schematic.
However, in the reverse process, we are required to recover
the topological contact map explicitly.

Contact map recovery falls into the class of constraint sat-
isfaction problems16 (CSP) in Computer Science. In a CSP,
a set of decision variables exist where each variable may as-
sume one of a finite set of alternative values. The problem is
to find an assignment of values to the decision variables such
that a particular set of constraints are satisfied on individual-
and/or between groups of decision variables. For the origami
case, the decision variables are staples. The set of alternative
values for each staple are the set of potential Watson-Crick
complementary routes through the scaffold that each respec-
tive staple may assume. The problem is to assign one route to
each staple such that (i) all staples are routed on the scaffold
and (ii) no staple-staple overlaps exist. It will generally be the
case that only a single unique solution exists to this problem,
due to high staple packing density on a DNA origami covering
most or all of the scaffold strand.

We implemented a custom constraint programming solver
called REVNANO to solve the CSP leading from raw scaf-
fold/staple sequences to the origami contact map. The solver
leverages the unique physical features of origami nanos-
tructures as heuristics to arrive at a solution faster. DNA,
RNA17,18 or hybrid scaffolded origami19,20 are all supported.
The core principles of the solver are outlined below and
exemplified in Figure 2 using the Rothemund smiley face
origami21.

At Stage 0 of the REVNANO solver, a staple routing tree
(SRT) is constructed for each staple. In a staple routing tree,
nodes represent scaffold regions where individual sections
of a particular staple hybridise, and edges represent staple
crossovers (Figure 2a). The root node of the SRT represents
staple 5’, and tree branches represent different staple routes
through the scaffold (toward staple 3’). The SRT of each sta-
ple is computed independently of the other staples.

Two parameters are important in SRT construction. Param-
eter µmin is the minimum length complementary region be-
tween staple and scaffold that is permitted to be a routing tree
node. In practice µmin = 5bp or 6bp. Conversely, parameter
σ controls the number of alternative competitor sibling nodes
allowed in each subtree and makes SRT size computationally
tractable. To give an example, if a child node in a particular
subtree represents a match of µ = 16bp between staple and
scaffold, and this is the highest of its siblings in that subtree,
then when σ = 5, other sibling nodes must represent a match
of at least µ = 16 - 5 = 11bp in order to also be included in the
subtree. In practice, 0bp ≤ σ ≤ 10bp.

For the smiley face origami in Figure 2, 34 staples have an
SRT with exactly one route (like Staple 25, Figure 2a) and 209
staples have an SRT with more than 1 route (like Staple 176).
The latter multi-route staples have, on average, 60.2 possible
scaffold routes per staple and one staple has a staggering 1208

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

4

possible scaffold routes.
Each staple routing tree casts a ‘footprint’ on the scaffold

(red stars in inset boxes, Figure 2a), which is defined as the
set of scaffold bases that all routes in the SRT pass through:
in other words, the set of scaffold bases definitely claimed by
the staple. Footprint size increases as the number of potential
scaffold routes a staple has decreases, and reaches a maximum
when only 1 viable route exists.

Stage 0 finishes by placing definite 1-route staples on the
scaffold (Figure 2b).

In Stage 1 of the REVNANO solver, constraint propagation
happens. The full footprint (true route) of each staple grad-
ually ‘crystallises out’ over a series of iterations (Figure 2c).
In the first iteration, staples are polled either in order (deter-
ministic mode, the default used in this paper) or at random
(non-deterministic mode, see Supplementary Note 3). Each
staple prunes its routing tree in response to the current foot-
prints cast by the other staples. Some branches in the SRT of
a polled staple will no longer be viable as they intersect scaf-
fold bases already claimed by other staples. When the SRT
of a polled staple is pruned, the staple casts an enlarged foot-
print on the scaffold. After all staples have been polled once,
iteration 2 starts and all staples are polled again. The process
iterates until no staple enlarges its footprint (typically 5 - 10
iterations are required). A third REVNANO parameter is rel-
evant at this stage: parameter 0 < β ≤ 1 controls how much
overlap of staples is tolerated during staple placement. If a
staple route wants to claim a certain region of the scaffold that
has some portion already claimed by another staple footprint,
then that region is unavailable if β fraction (or greater) of its
bases are already claimed, otherwise it is available. Param-
eter β relaxes the requirement that staples should be strictly
non-overlapping in the early stages of the solver. Initial fuzzy
staple boundaries are often essential to obtain a good final so-
lution in many cases.

Constraint propagation during Stage 1 typically reduces the
majority of staples to a single route. However, a small group
of staples often resists this purely deductive approach. This
‘G1’ group of staples remain with multiple potential routes.
In the Figure 2 smiley example, the G1 group is 15% of sta-
ples. At this stage a standard CSP solver may use forward-
and back-tracking to solve the remaining decision variables.
However, REVNANO leverages the fact that origami nanos-
tructures are physical, highly connected objects to reach a so-
lution more efficiently.

At Stage 2 of the REVNANO solver, a scaffold base graph
B is constructed using the already placed staples. In the graph
B, two scaffold bases (nodes) are linked by an edge if a sta-
ple crossover exists between them, or if the scaffold backbone
connects them. Because the majority of staples are placed at
Stage 1, the scaffold base graph is a highly connected mesh
and shortest path distances between any two scaffold bases
well-approximate true shortest path distances in the hypothet-
ical base graph of the completed origami. REVNANO fails
with an error message at Stage 2 if less than 65% of staples
are placed in Stage 1 (independent of REVNANO parameter
values).

Stage 2 of the REVNANO solver uses the scaffold base

graph B with each G1 staple in the following way: it assigns
a shortest path value (i.e. the least number of bases traversed
through the scaffold base graph, from scaffold base where sta-
ple 5’ hybridises to scaffold base where staple 3’ hybridises)
to each route in the G1 staple SRT. The G1 staple with the
‘clearest shortest path’ property is forced to reduce to its short-
est path route, enlarging its staple footprint (orange staples,
Figure 2d). The staple with ‘clearest shortest path’ property
is defined as the staple with the greatest distance between its
shortest path route and its next-shortest path route (i.e. the
route when the shortest path route is prohibited). The clearest
shortest path staple is the staple most likely to have its shortest
path route correct due to the large margin to the next alterna-
tive routing path for the staple. If two or more staples share
the clearest shortest path property, the staple with the highest
ID number is selected.

Force placement of the clearest shortest path staple gener-
ally has a ripple cascade effect where other staples then also
collapse to a single route (green staples, Figure 2d). Once the
ripple cascade effect has died out, the scaffold base graph B is
updated with the newly placed staples, and the next iteration
begins. The staple with clearest shortest path in the remaining
G1 staple set is identified and again force-placed. Iterations
continue until either all G1 staples are solved or no G1 staple
with a clearest shortest path can be identified any more. Sta-
ples with more than 1 possible route after Stage 2 are omitted
from the final reverse engineered origami contact map.

The use of (i) a well-connected origami base graph B and
(ii) the concept of clearest shortest path, represents a very con-
servative heuristic to "guess" the correct locations of multi-
route staples by using physical distances. This dispenses with
the need for forward- and back-tracking at this stage of the
CSP solver.

Stage 3 of the REVNANO solver corrects any staple-staple
overlaps by remedying overshoots of staple sections. The smi-
ley example in Figure 2e has five such overlap sites.

Note that staples with end dangles and interior loop-out re-
gions that do no hybridise the scaffold (e.g. polyT ssDNA
regions) must have these subsequences pre-marked in the se-
quence input file. Before running, the solver splits these sta-
ples into a series of smaller ‘virtual’ staples, with each vir-
tual staple being one hybridising region of the original sta-
ple. Stage 4 of the solver re-assembles these virtual staples
into real physical staples once the hybridising parts have been
routed. Automatically identifying non-hybridising sections of
staples turns out to be a computationally complex and likely
intractable problem.

The REVNANO solver only uses sequence matching as
constraints on the routing of staples. DNA helix twist may
appear to be another type of geometric constraint limiting the
positions of staple crossovers. However, helix twist is not
leveraged, since many origami designs have intentional base
insertions and base deletions at selected points in order to min-
imise nanostructure bending and twisting22. Such insertions
and deletions mean that helix twist does not stay uniform at
10.5bp per helix turn (for DNA) on all parts of the origami.
Conversely, staple-scaffold complementary is universally re-
spected across all origami nanostructures, whether or not they

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

5

a Staple 176

1236: 8 970: 6 197: 6

1346: 16

1426: 8

5601: 6 4354: 6

1342: 12

1426: 8

1342: 12

1426: 8

5601: 6 4354: 6

1342: 12

1426: 8

1342: 12

1426: 8

Staple 25

6570: 9

6549: 15

6458: 8

b

s176

s25

s25

s176

Staple FootprintsStaple Routing Trees

5'
3'

32 Definite 1-Route Staples Placed

207 of 243 Staples Placed

241 of 243 Staples Placed

e

c

f

=

After
Iteration 2

After
Iteration 4

Staple Footprint Crystallisation
(Propagation of Constraints)

S
ca

ffo
ld

B
as

es
C
la
im

ed
by

S
ta
pl
es

After Iteration
0 1 2 3 4 5

1000

2000

3000

4000

5000

6000

7000

+25+250 +0

+1312

Initial

+4398

Initial
After
Iteration 3

After
Iteration 1

0 1 2 4 6 8 10 12 14 1617

0

5

10

15

20

25

30

34

After Iteration

Force Placement of
Shortest Path Staples

M
ul
ti-
R
ou

te
S
ta
pl
es

P
la
ce

d

d

=
Initial After

Iteration 13

After
Iteration 4

After
Iteration 8

After
Iteration 17

Resolved Staple Overlap ResolvedStaple Overlap

1 base
over-
shoot

1 base
overshoot

(1)

(2)

(3)

(4) AATAGATAATACATTT

ATCAACAATCACGAGG

TTATCTATTATGTAAA

TAGTTGTTAGTGCTCC

(5)

After
Iteration 1

Remaining Defects Sliding Holliday Junc.

FIG. 2. REVNANO Constraint Programming Solver: Principles Illustrated with Rothemund Smiley Origami21. (a) Stage 0: Staple
routing trees (SRTs) are constructed for all staples. Tree node (1236: 8) signifies a staple section that begins at scaffold base 1236 and runs
for 8 bases in total toward scaffold 5’. Staple 176 has 5 viable routes across the scaffold; Staple 25 has 1 single viable route and casts a larger
‘footprint’ (inset boxes, red starred bases). (b) Definite 1-route staples are identified and placed on the origami as initial hard constraints. (c)
Stage 1: SRTs are pruned by the footprints of other SRTs in an iterative process. Over successive iterations more staples (green) collapse to a
single defined route. The initial hard constraint staples placed at Stage 0 are shown in black. (d) Stage 2: ‘Problem’ staples remaining with >1
route are placed by forcing the staple with the clearest shortest path through the current origami mesh to its shortest path route, and repeating
over and over. Orange = staple forced to single route on iteration; Green = ‘ripple effect’ staples collapsing to a single defined route because of
the latter action; Purple = total problem multi-route staples placed up to the current iteration. (e) Stage 3: Staple-staple overlaps (at locations
shown by red dots) are fixed. (f) A few minor defects remain (see Results for discussion). For the REVNANO parameters used in this example
(µmin = 6bp, σ = 5bp, β = 0.5), 240 staples are placed approximately correctly, 1 staple is placed incorrectly and 2 staples are omitted. Note
that in all diagrams, staples are superimposed on top of a pre-existing smiley scaffold routing to clearly show how staples have been placed:
however, REVNANO does not know this scaffold routing a priori.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

6

have base insertions/deletions and regardless of whether the
material is DNA, RNA or hybrid.

When an approximation of the origami contact map has
been solved, the quality of the REVNANO solution is quanti-
fied by taking the base hamming distance between the ground
truth contact map g for the origami shape and the contact
map recovered from sequences r. The base hamming dis-
tance d(g,r) is simply the number of scaffold bases in r which
must be substituted (i.e. have an incorrect hybridisation part-
ner) in order to arrive at the correct solution in g. Note that
REVNANO does not have access to g when constructing the
contact map. See Supplementary Note 2 for how ground truth
contact maps were derived.

To contrast with the REVNANO solver, we also im-
plemented the NAIVE solver described in the introduction
(which replaces REVNANO Stages 0,1 and 2). The NAIVE
solver can be seen as solving the degenerate case of the CSP
problem where each staple only has one single possible route,
and thus each staple can be solved in isolation of the others.
The NAIVE solver has one single free parameter µmin.

B. Recovery of Geometric Guide Schematic from Origami
Contact Map

After an approximate contact map has been solved, the sec-
ond sub-problem is to turn the base-pair connectivity descrip-
tion of the origami into a geometric layout (guide schematic)
which embeds that connectivity into 2D or 3D Cartesian
space.

Previous studies have described the reconstruction of the
3D solution shape of DNA origami from design schematics
by using finite-element methods to solve the ground state me-
chanical structure iteratively (CanDo23–25) or by using coarse-
grain simulation (e.g. MrDNA26 or oxDNA27,28). To do so,
these works contain detailed mechanical descriptions of ss-
DNA, dsDNA and different junction types. We note that the
aim in the current work is quite different: to recover an inter-
active representation of helix connectivity in an origami de-
sign, which clearly marks out staple/scaffold crossover posi-
tions and sequences. While the final geometric layout should
approximate the final shape of the origami, mechanical accu-
racy is not a prime concern.

To approach the problem, we first convert the origami con-
tact map into a domain-level graph D, similar to that proposed
in Ref29 (see Supplementary Note 1). In D, graph edges have
five types: single-stranded domain, double-stranded domain
(where a staple section is hybridised), scaffold nick, staple
crossover (standard crossover, or staple loop-out) and staple
dangle. Nodes of the graph are base positions on the scaffold
where the above domains start and finish. The domain-level
graph D has a 1:1 mapping with the origami contact map.

The domain-level graph D is next converted to a geometric
layout (i.e. a Cartesian coordinate is derived for each graph
node) by the Kamada-Kawai spring embedder30, a generic
graph layout algorithm. In essence, the Kamada-Kawai al-
gorithm sets up a graph as a mechanical system where graph
nodes are stiff rings connected by springs. The algorithm

computes the shortest path between all graph node pairs (com-
putes an all pairs shortest path) and uses these graph-theoretic
distances as proxy for the desired euclidean distance between
node pairs. Nodes with the longest graph route separating
them are considered to be furthest away in Cartesian space.
The spring system is set up in such a way that minimising the
energy of the system corresponds to all node pairs separated
by a euclidean distance equal to their shortest path distance.

In general, Kamada-Kawai tends to produce a good lay-
out for origami schematics, since the direct euclidean dis-
tance between two points on an origami schematic is gener-
ally highly correlated with the Manhattan distance through
the scaffold and staple crossovers linking the two points.
The use of whole scaffold domains as edges in graph D
reduces the complexity of the layout task (as opposed to
representing each base individually and representing both
strands of each helix) and also ensures that DNA he-
lices are displayed as straight lines in the geometric guide
schematic. In particular, we found the Python implementa-
tion networkx.drawing.layout.kamada_kawai_layout()
to be a good candidate for producing robust geometric layouts
in both 2- and 3-dimensions, starting from a circular configu-
ration of graph nodes.

The geometric layout of graph D is then put into a further
graph-layout physics engine31,32 where small repulsive forces
are defined between graph nodes. This latter engine helps to
resolve any remaining graph edge crossing, and allows inter-
active translation, rotation and zooming of the graph on an
HTML page. It also provides a reactive physics-based re-
sponse to node dragging which can be used to manually dis-
entangle parts of a design.

Finally, we developed a general algorithm AMBIG which
uses the graph D to quantify by how much each Holliday
junction or half-crossover junction on the origami can move
and still retain sequence complementarity with the scaffold.
On the guide schematic, AMBIG explicitly highlights which
junctions are ambiguous and may not be properly placed by
the solver, and which junctions are non-ambiguous, immov-
able and are hence correctly placed. If all junctions are im-
movable then information loss I2 = 0 in Figure 1a.

III. RESULTS

A. REVNANO Performance

We first evaluated the performance of the REVNANO
solver over a heterogeneous test set of 36 origamis, compris-
ing 17 raster origamis made on hexagonal or square grids in
caDNAno12 or scadnano33, and 18 wireframe origamis routed
by the ATHENA software34. Overall, 25 origami designs
were 2-dimensional and 11 designs were 3-dimensional. All
origamis tested were DNA origami, except for one hybrid
origami with RNA scaffold and DNA staples (Origami 1).

Table I shows that, under optimal parameter settings,
REVNANO could reverse engineer an approximate contact
map for 94% of origamis tested. Further, for 81% of origamis,
over 95% of staples could be routed and for 47% of origamis,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

7

all 100% of staples could be routed. Worse case perfor-
mance was observed for Origami 9 (Membrane Nanopore)
with 83.7% of staples routed. As expected, no significant dif-
ferences existed when reverse engineering contact maps for
2D or 3D designs.

By contrast, Table I confirms that the NAIVE solver men-
tioned in the Introduction is not robust for recovering an
origami contact map from raw sequences. A contact map
could be reconstructed for only 44% of origamis tested,
and in only 22% of origamis tested were ≥95% of staples
placed. Moreover, for every origami, REVNANO consistently
achieved an equal or lower base hamming distance d(g,r) to
the ground truth contact map (final table column).

In general, performance of the REVNANO solver is sen-
sitive to all three parameters: minimum staple leg size µmin,
competitor routes allowed σ , and staple overlap tolerance β .
Figure 3 exhaustively characterises performance across the
smiley face parameter space for µmin = 6bp. Parameter sen-
sitivity typically varies significantly from origami to origami,
with optimal performance wells located at different positions
in the (σ ,β) parameter space (see Supplementary Note 5 for
examples). This is because local sequence configurations are
determined by multiple factors, such as the particular origami
scaffold and staple routing, as well as by the scaffold sequence
itself and its rotation. In general, origamis displaying the high-
est parameter sensitivity are those with many short hybridising
staple sections (e.g. 8bp or less) and/or a scaffold sequence
with many repeated sequence regions. Conversely, origamis
displaying low or no parameter sensitivity are those with long-
leg staples (e.g. 16bp) and/or a scaffold with minimal repeats.
Note that parameter σ typically has a sweet spot range: when
too low, not enough competitor staples routes are considered
and correct staple routes are omitted from staple routing trees;
conversely, when σ is too high, staple routing trees contain a
plethora of alternate staple routes and become either too large
to construct, or constraint propagation at Stage 1 cannot nar-
row down staple routes effectively.

While in the ideal case a grid search of parameter regimes
would be conducted to find optimal REVNANO parameter
combinations for a specific origami shape with specific se-
quences, in practice default ‘consensus’ parameters for raster
and wireframe shapes can be derived (see Supplementary Ta-
ble 2 and Supplementary Note 6). These default parameters
yield acceptable REVNANO performance in most cases and
are listed in Table II. Moreover, the consensus parameters rep-
resent a good starting point for parameter tweaking.

It is instructive to now examine in detail some cases where
REVNANO produces defected solutions, or fails to produce
a solution at all, in order to better understand features and
limitations of this solver.

B. Cause of Minor Defects

The smiley face reverse engineered in Figure 2 ends up with
five different minor defects (Figure 2f) which become evident
when the recovered staple routings are super-imposed on the
proper scaffold routing.

The defects are caused by the following reasons:

• In defect (1), the teal coloured staple is meant to
crossover after 16 bases to pinch a loop of the M13
scaffold closed under the smiley face. However, this
staple is actually complementary with the scaffold after
the designed crossover point for 1 more base into the
loop. Hence, sequence matching the staple (staple 5’ to
3’) with the scaffold causes the staple to be split 17-15
instead of 16-16. This is not picked up by Stage 3 over-
lap detection because the overshoot has not caused an
overlap.

• In defects (2) and (3), an independent ‘C’ shaped edge
staple should be hybridised at each of these locations.
Instead a single staple incorrectly bridges both loca-
tions in the final REVNANO solution. This happens
because of the following chain of events. The staple
meant to be at (3), referred to as ‘staple (3)’ from now
on, does not contain the correct designed route in its
SRT because of sequence matching overshoot. The de-
signed crossover point of this 12nt staple is 6-6, but the
staple actually remains complementarity to the scaffold
2nt after the crossover point. Hence sequence match-
ing splits staple (3) as 8-4 and the second section fails
to be placed since 4 < µmin. However, staple (3) does
have the bridge route in Figure 2f in its SRT. At iteration
1 in Figure 2d, when the orange staple is forced to its
clearest shortest path, staple (3) happens to collapse to
a single route, which is the latter incorrect bridge route,
and it is placed. This staple placement precludes the
staple meant to be at (2) from binding.

• In defect (4), a 3-section staple is missing because it
fails to have a routing tree made at Stage 0. Meant to
be split 8-16-8, this staple is split 9-18-5 by sequence
matching overshoot and the final section of 5nt is too
short to be matched (5 < µmin). Obviously, no other
alternative routes exist on the scaffold for this particular
staple, either.

• In defect (5), sequence matching overshoot (marked
in red) causes the axis of the Holliday junction to be
skewed toward the right by 1 base. Skewed Holliday
junctions are in fact quite common place in the smiley
face reconstruction and they increase the base hamming
distance d(g,r) error.

Generally speaking, all defects of this smiley face example
can be attributed to by-chance sequence matching overshoot at
REVNANO Stage 0. In effect, this overshoot causes the con-
straint satisfaction problem to be improperly specified in the
first instance, i.e. some staples do not contain a correct route
in their SRT. The final defects are cascade effects from the
original problem mis-specification. Sequence matching over-
shoot is, however, an artefact implicit in and non-separable
from the sequence matching approach used by REVNANO.
It can be concluded that a main challenge of the REVNANO
solver is to first set up a correct description of the CSP prob-
lem which contains a final solution, rather than the process of
actually solving the problem.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

8

NAIVE Solver REVNANO Solver
ID Raster Origami Ref Dim Staples µmin d(g,r) SP% Wall(s) µmin σ β d(g,r) SP% Wall(s) Vs.
1 RNA/DNA Hybrid Triangle 20 2 22 6 16 100.0 <1 6 0 0.10 16 100.0 <1 =
2 M1.3 Four Finger 35 2 24 6 6 100.0 <1 6 0 0.05 6 100.0 <1 =
3 Brick 36 3 45 5 920 77.8 <1 6 1 0.30 804 84.4 <1 R
4 Mini Triangle 37 2 66 6 308 87.9 <1 6 1 0.05 30 100.0 1 R
5 DeBruijn Sequence Square 38 2 70 6 44 100.0 <1 6 0 0.05 44 100.0 1 =
6 puc19 Rectangle 29 2 90 6 380 100.0 <1 6 0 0.30 380 100.0 1 =
7 6 Helix Bundle 36 3 96 – – – – 5 2 0.45 324 96.9 20 R
8 Fivewell Plate 39 2 158 – – – – 6 6 0.30 100 100.0 272 R
9 Membrane Nanopore 40 3 172 6 2366 66.3 5 6 1 0.25 1275 83.7 140 R
10 Single Staple Loop 41 2 195 6 2 100.0 1 6 0 0.05 2 100.0 4 =
11 DNA Frame 42 2 222 – – – – 6 3 0.55 174 99.5 71 R
12 Rothemund Rectangle 21 2 226 – – – – 6 3 0.25 126 100.0 65 R
13 Rectangle Variant 43 2 226 – – – – 6 3 0.30 162 100.0 57 R
14 Small Moon 44 2 234 – – – – 5 2 0.05 258 99.1 367 R
15 Rothemund Smiley 21 2 243 – – – – 5 2 0.15 172 99.2 199 R
16 Rothemund Star 21 2 244 – – – – 6 4 0.45 116 99.6 110 R
17 Capsule 45 3 264 – – – – – – – – – – –

NAIVE Solver REVNANO Solver
ID Wireframe Origami Ref Dim Staples µmin d(g,r) SP% Wall(s) µmin σ β d(g,r) SP% Wall(s) Vs.
18 Triangle 34 2 7 6 46 85.7 <1 5 0 0.05 8 100.0 <1 R
19 Square 34 2 8 6 6 100.0 <1 6 0 0.05 6 100.0 <1 =
20 Pentagon 34 2 10 6 6 100.0 <1 6 0 0.05 6 100.0 <1 =
21 Tetrahedron 34 3 13 5 141 76.9 <1 5 0 0.05 4 100.0 <1 R
22 Triangle Mesh 34 2 22 5 168 77.3 <1 5 0 0.05 35 95.5 <1 R
23 Cube 34 3 25 5 502 56.0 <1 5 0 0.05 6 100.0 <1 R
24 Star Mesh 34 2 38 6 443 76.3 <1 5 0 0.05 66 97.4 1 R
25 Dodecahedron 34 3 59 – – – – 5 0 0.10 188 96.6 3 R
26 Icosahedron 34 3 64 – – – – 5 2 0.15 355 89.1 4 R
27 Square Mesh 1 34 2 82 – – – – 5 4 0.05 284 92.7 78 R
28 Hexagon Mesh 1 34 2 84 – – – – 5 2 0.25 335 92.9 13 R
29 Annulus Mesh 1 34 2 89 – – – – 5 0 0.05 91 98.9 7 R
30 Hexagonal Tile 34 2 98 – – – – 5 0 0.05 169 98.0 12 R
31 Truncated Cube 34 3 98 – – – – 6 2 0.05 72 100.0 6 R
32 Cross Mesh 34 2 110 – – – – 5 1 0.15 176 97.3 18 R
33 vHelix Ball 46 3 132 6 115 98.5 1 6 0 0.20 18 100.0 5 R
34 Annulus Mesh 2 34 2 161 – – – – 5 3 0.05 106 100.0 131 R
35 Lotus Mesh 34 2 180 – – – – 5 3 0.05 271 97.8 255 R
36 Enneagonal Trapezohedron 34 3 318 – – – – – – – – – – –

TABLE I. REVNANO Solver Performance on 36 Origami Test Set. Performance of the NAIVE solver is listed for comparison. For
each origami, both solvers are used at their optimal parameter settings (listed). Origami 10 is similar to – but not exactly the same as – the
single staple origamis proposed in Ref41. Wireframe shapes (apart from Origami 33) were generated using default examples in the ATHENA
software34 (with 42bp edges). Sequences used were those output by the ATHENA software. For the other origamis, the published staple and
scaffold sequences were used. Shorthand: Dim = 2D or 3D origami; d(g,r) = Base hamming distance from ground truth contact map g to
reconstructed contact map r for the origami shape; SP% = percent staples placed; Wall(s) = Approx solver running time (seconds) on a modern
CPU using the optimal parameters listed. Computational time to find optimal parameters is not taken into account; Vs. = Best algorithm for
reverse engineering origami shape in terms of minimum d(g,r) achieved: (R)EVNANO, (N)AIVE or = (equal performance). Rows with ‘–’
entries signify that the origami could not be reverse engineered by the respective solver.

Origami Type REVNANO Consensus Parameters
µmin(bp) σ (bp) β

Raster 6 4 0.3
Wireframe 5 2 0.2

TABLE II. REVNANO Consensus Parameters.

C. Cause of Reverse Engineering Failure

Table I shows two instances in the test set (Origamis 17
and 36) for which a contact map cannot be reverse engineered
under any REVNANO parameterisation.

The reason for REVNANO failing on Origami 17 (Capsule)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

9

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

BETA

10

9

8

7

6

5

4

3

2

1

0

SI
GM

A

239 239

239 239 239 239 239 239 239 239 239 239 239 239 239 239

241 241 241 241 241 241 241 241 239 239 239 241 241 241 241 241 241 241

241 241 241 241 241 241 241 241 239 239 239 241 241 241 241 241 241 241

239 239 239 239 240 240 241 241 239 239 239 241 241 241 241 241 241 241

239 239 239 239 240 240 240 240 240 239 241 241 241 241 241 241 241 241

smiley [Staples Placed] Colourbar: 218 (90%) to 243 (100%) staples

220

225

230

235

240

2

bp
243

S
ta
pl
es
P
la
ce
d

218

(bp)

225
Staples
Placed

230
Staples
Placed

1 1

2

E4 E4 E4 E4
E2

100%

90%

FIG. 3. REVNANO Solver Parameter Sensitivity. Heatmap shows regions of the REVNANO parameter space (µmin = 6bp,σ ,β) where
reverse engineering of the Rothemund Smiley21 contact map is most effective in terms of total number of staples placed. REVNANO running
in deterministic staple placement mode. Smiley faces 1 and 2 (right) show how staple placement differs at (σ = 10bp,β = 0.05) and (σ =
0bp,β = 0.6) parameter points, respectively. White space at the top of the heatmap represents parameter points terminating in a REVNANO
error condition: E2 = Not enough staples placed to perform reliable shortest-path calculations; E4 = Unresolvable 3-staple overlap exists. See
Supplementary Note 5 for (µmin = 5bp,σ ,β) case, and REVNANO run times for each parameter combination.

is that this origami contains an unusually high number of sta-
ples (87) with very short (i.e. 3bp or less) hybridising sections.
When staple routing trees are built at Stage 0, either these
staples cannot be routed at all (since only sequence matches
above µmin are allowed in the SRT), or they are routed, but in-
correctly, which in turn precludes other staples from assuming
their correct route. The overall result is that, under any param-
eter setting, insufficient staples are placed in Stage 1 to allow
reliable shortest path calculations to be performed at Stage 2
and the process fails. Many staples with short hybridising sec-
tions is in fact a sufficient condition for REVNANO failure,
since the Capsule origami cannot have a contact map derived
even when the scaffold sequence is changed for a repeat defi-
cient order 7 DeBruijn sequence38. Of the origamis with less
than 95% of staples placed by REVNANO (e.g. Origamis 3,
9, 26, 27, 28), most have a notable proportion staples with
extremely short hybridising sections.

REVNANO fails on Origami 36 (Enneagonal Trapezohe-
dron) because this design features an unusually long 13530nt
scaffold (nearly twice as long as most other designs tested)
and the scaffold sequence additionally contains many repeated
sequence regions. Staples on this origami have fairly long hy-
bridising sections (the majority 10bp or more) and staple rout-
ing trees can be reliably constructed. However, the difficulty
here is that each staple has a plethora of potential routes, due
to both the scaffold length and number of repeated sequence
regions. In parameter regime (µmin = 6bp,σ = 5bp,β = 0.5)
for example, 98% of staples have more than 1 route going into
Stage 1, with an average number of 135 routes per staple. On
the upper limit, one staple has 7829 possible scaffold routes.
Such a high average number of routes per staple means that

staple footprints are very small or non-existent, and thus con-
straint propagation is ineffective at Stage 1. Stage 2 subse-
quently raises the error that insufficient staples are placed to
allow reliable shortest path calculations and REVNANO ter-
minates. Interestingly, eliminating the scaffold repeats factor
(by changing the scaffold sequence to an order 7 DeBruijn se-
quence with no repeated regions of 7nt or more) does reduce
potential staple routes and allows recovery of a contact map.

Summarising the results so far, it can be rationalised that
reduced REVNANO performance or failure is correlated with
the following origami features: (i) Origamis with many sta-
ples containing very short (below µmin threshold) hybridising
sections causing staples to be routed incorrectly, or not routed
at all; (ii) Scaffold sequences with many repeated regions,
leading to false positive staple routes; (iii) Large origami de-
signs (e.g. > 10000nt scaffold) where a longer scaffold in-
creases the total number of staple routes possible; (iv) Origami
designs with long ssDNA scaffold sections that permit uncon-
tested yet incorrect staple routes; (v) The use of sub-optimal
REVNANO parameter settings.

Typical REVNANO solve time ranged from a few seconds
up to 6 minutes on a single modern CPU (with no optimisa-
tion of the underlying Python code). The main computational
burden is the construction of the staple routing trees at Stage
0. When µmin = 5bp, staple routing trees are wider than when
µmin = 6bp and Stage 0 time increases accordingly.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

10

D. Origami Guide Schematics

Figure 4 shows eight origamis reverse engineered through
the full process of first recovering a contact map, and then
creating a geometric guide schematic embedding this connec-
tivity. Note that all guide schematics in Figure 4 are shown
as static images, but they are actually dynamic HTML pages
where origami shapes can be zoomed, rotated and re-arranged
in 2D or 3D, and where mouse tooltip text provides part iden-
tification and sequence information while moving over the
schematic.

We found that guide schematics were generally intelligible
for all reverse engineered 2D origamis and for small 3D wire-
frame origamis which formed compact shapes like cubes and
spheres (Figure 4b and c).

Conversely, we observed that guide schematics for large
raster 3D shapes, like the Brick, 6-Helix Bundle, and Mem-
brane Nanopore (Origamis 3, 7, and 9 respectively) were
not intelligible. Raster 3D shapes have many dense internal
connections which make it hard to discern staple routings,
even with an interactive schematic. Also, the layout task for
the spring embedder is less constrained in 3-dimensions with
there being 2 extra degrees of freedom in comparison to 2-
dimensions. This extra freedom tends to destroy the form of
3D shapes which are not tightly-constrained by their geome-
try. For the same reason, we found that omitted staples have a
stronger negative effect on reconstructed 3D schematics.

Generally, we found the spring embedder algorithm to have
a graceful degradation in geometric layout as staples were
omitted from an origami design. However, in two cases in
2-dimensions (Square Mesh 1 and Hex Mesh 1) the spring
embedder suddenly shifted from a good layout at 100% sta-
ples placed to a poor (locally optimal) crossed layout at 93%
staples placed.

Overall, of 34 guide schematics reconstructed from the
origami test set, 29 could be judged of sufficient quality to as-
sist the manual re-input of the origami design into an origami
CAD tool (see Supplementary Note 7).

One striking feature of geometry re-constructed by spring-
layout is that the rectilinear cells of an origami schematic have
an inflated ‘chicken wire’ appearance. This is a result of the
Kamada-Kawai spring layout algorithm trying to make the
euclidean distance between nodes equal to the shortest path
(Manhattan) distance. A similar inflation effect is observed
at the multi-arm junctions of the ATHENA wireframe shapes.
There likely exist solutions to restore more rectilinearity to
the geometry (see Discussion), but the organic spring-layout
does have the advantage that holes naturally appear in shapes
where only helix stacking interactions and not base pair hy-
drogen bonding hold the structure in place. From a design
perspective, these areas can be useful to identify.

E. Effect of Input Sequence Noise

Finally, when noise was added to input staple sequences,
as could be the case when sequences are imperfectly copied
from a publication, it was found that REVNANO performance

generally decreased (see Supplementary Note 4 for detailed
analysis). Interestingly however, the solver could still often
reconstruct the correct origami contact map when the staple
sequence pool was ’contaminated’ by surplus random DNA
staples, particularly when the surplus sequences were added
at the end of the correct staple list.

IV. DISCUSSION

In this work, we developed a two-stage computational
pipeline for reverse engineering an origami nanostructure
guide schematic from a list of origami staple sequences (plus
the scaffold sequence). In the first stage of our pipeline, we
demonstrated that the REVNANO solver was robust at recov-
ering a contact map for origamis even with challenging fea-
tures such as repeated scaffold sequence regions and staples
with short (e.g. 7 or 8bp) binding sections. In the second
stage of our pipeline, we also demonstrated that spring-graph
layout is an effective procedure for reconstructing origami
geometry from topology/connectivity. Overall, from the 36
origamis drawn from the literature, we were able to obtain an
intelligible guide schematic for 29 of them, which included all
2D origami shapes and those 3D shapes which were compact
wireframe designs. Therefore, overall, we succeeded at con-
verting unstructured origami sequence data back into a mean-
ingful geometric form.

The main limitations of our approach, with some ideas for
mitigation are as follows. Firstly, the solution accuracy of
REVNANO is critically dependent on the (µmin,σ ,β) param-
eters of the solver. It is sometimes necessary to conduct a scan
of parameter space in order to arrive at optimal performance.
However, we did derive a set of consensus parameters for both
raster and wireframe origami shapes which can serve as good
starting points in this parameter search.

3D raster origamis are typically hard to reverse engineer as
the guide schematic ends up with dense internal connectivity
which is hard to decipher. Also, some 3D shapes are poorly
constrained in their reconstructed spring-layout geometry and
feature e.g. kinks which are not in the original origami design,
for example with the 6 Helix Bundle (Origami 7) shown in
Supplementary Note 7. This is an inherent limitation with the
spring-layout reconstruction used.

Another limitation is that misplaced staples are sometimes
an undesired output of the solver (e.g. in the Smiley exam-
ple, Figure 2d). Without knowing the a priori scaffold rout-
ing of an origami nanostructure, misplaced staples are hard
to detect visually as they just manifest as complicated tan-
gled regions of the final origami guide schematic. One strat-
egy to detect misplaced staples may be to run the REVNANO
solver twice, in two opposite sequence matching directions,
one matching staples 5’ to 3’ (as is implemented) and an-
other matching staples 3’ to 5’ instead. Only those staples
placed consistently in each matching direction would be in-
cluded in the final guide schematic. Another strategy to iden-
tify/eliminate misplaced staples could be to calculate the dis-
tribution of staple crossover lengths for all placed staples and
eliminate those staples with large outlier values. This distribu-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

11

FIG. 4. Example Origami Guide Schematics Reverse Engineered from Raw Scaffold and Staple Sequence Lists. (a) Original origami
schematics. Raw sequences derived from these schematics were passed through the reverse engineering pipeline (Figure 1b) using REVNANO
with optimal parameter settings, to produce the following reconstructed guide schematics: (b) 3D Ball in staples view, 100% staples placed;
(c) 3D Dodecahedron in scaffold routing view, 96.6% staples placed (purple arrows highlight regions where staples omitted); (d) 2D Lotus
Mesh in staples view, 97.8% staples placed; (e) 2D Rothemund Star in staples view, 99.6% staples placed; (f) 2D Hexagonal Tile in staples
view, 98% staples placed; (g) 2D Pentagon in staples view, 100% staples placed; (h) 2D Annulus Mesh 2 in staples view, 100% staples placed;
(i) 2D Fivewell Plate, 100% staples placed shown in sequence-ambiguous junctions view computed by the AMBIG algorithm: immoveable
junctions in green, moveable junctions in red. When using the Fivewell Plate guide schematic to re-enter the design into an origami CAD
tool, symmetry can be used to guess the correct positions of the ambiguous red crossovers by looking at the positions of the unambiguously
positioned green crossovers. Guide schematics for all other origamis in the test set of Table 1 are given in Supplementary Note 7.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

12

tion would be constructed by considering each staple, remov-
ing each crossover in turn, and calculating the shortest path
through the origami mesh connecting the sides of the respec-
tive staple crossover in its absence. However, a risk with this
procedure is that false positives like staples closing a flat sheet
into a tube could also be eliminated.

A final limitation is that non-hybridising regions of staples
like dangles or interior loopout regions need pre-marking in
the sequence input file to REVNANO: the solver cannot auto-
matically detect these regions. Therefore, some meta-markup
in the raw staple sequences is required for some origami
shapes (notably wireframe origami shapes). Although non-
hybridising staple regions tend to be polyT, detecting these
regions is not trivial since polyT regions can also legitimately
exist in hybridised sections of staples.

An obvious extension to our reverse engineering pipeline
would be to automatically derive an editable caDNAno
schematic from the guide schematic of the origami (which
is not editable, nor on a grid). It could be envisioned that
e.g. a branch and bound search could tie the origami graph
D to a compatible square/honeycomb caDNAno lattice rep-
resentation. However, while an interesting possibility, this
transformation turns out to be possible only for a very small
subset of origami nanostructures. The transformation essen-
tially requires that information loss I1 in Figure 1a is close to
zero, which requires that an origami design meet a very strict
set of conditions, such as: (i) the existence of a single large
connected component on the design grid with no long-range
crossovers connecting non-adjacent parts of the design (ii) no
base insertions or base deletions; (iii) no single stranded scaf-
fold regions, for example at the end of helix rows or in the
form of a large loop under the shape; (iv) all junctions rigidly
fixed in place by tight sequence constraints, and so on. In the
general case, therefore, the best that can be reliably achieved
is the automatic creation of an origami guide schematic which
is then manually turned into an origami CAD schematic by
the general intelligence of a human.

A. Future Directions

An interesting future direction to our work would be to
directly convert the geometric layout of origami graph D
into the oxDNA format27, allowing the guide schematic to
be opened in tools such as oxView28 for base editing and
for direct coarse-grain dynamics simulation. This would in-
volve the replacement of ssDNA and dsDNA graph edges
with random single stranded DNA regions and standard dou-
ble helices, respectively, to give an initial non-relaxed oxDNA
configuration. In the best case, this feature would allow an
origami structure specified only as sequences (and lacking a
schematic) to be relaxed and have its equilibrium properties
computed nevertheless.

Another future improvement could be to force the origami
guide schematic to assume a more rectilinear geometry by di-
agonally bracing cells with invisible links in the origami graph
D. This approach would make Manhattan distances between
two points on the nanostructure even more closely approxi-

mate the actual euclidean distance and reduce the inflated ap-
pearance of individual cells. The challenge, of course, is to de-
velop an algorithm able to robustly identify cells in an origami
schematic when features like complex multi-arm junctions, or
even circular geometry47, may be present.

B. General Comments

To close with some general comments, it is worth mention-
ing that an topological origami contact map - without a ge-
ometric representation - can be useful in its own right. For
example, it can be used to generate new complementary sta-
ple sequences for an origami given a change of scaffold se-
quence. In future data science applications, origami contact
maps could be compared according to some distance measure
to infer which origamis may have similar folding character-
istics. Alternatively the domain-level graph of the origami
(equivalent to the contact map) could be used to provide
origami connectivity information which could act as extra fea-
tures to input into future Machine Learning models predicting
e.g. optimal self-assembly protocols. The domain-level graph
is also useful for coarse-grain kinetic simulations of origami
self-assembly29 or dis-assembly. Usefully, the contact map
for an origami can be unambiguously encoded into the sta-
ple and scaffold sequences of a nanostructure (i.e. I2 = 0 loss
in Figure 1a) if (i) REVNANO places all staples and (ii) no
junctions have sequence ambiguity. The latter property can
be trivially engineered by ensuring the scaffold base letter fol-
lowing every staple crossover point is always unequal to the
scaffold base letter on the other side of the staple crossover.

Finally, we expect a crude correlation between those
origami nanostructures which reverse engineer quickly and
completely, and those that self-assemble with few potential ki-
netic traps. This is because ease of reverse engineering is asso-
ciated with staples that have unique, or close to unique, scaf-
fold routes. The correlation can only be expected to be crude,
however, because (i) a REVNANO staple routing tree contains
only a subset of all possible binding possibilities for a sta-
ple (intentional for computational tractability) and (ii) strand
displacement and scaffold secondary structure are absent in
REVNANO solution construction but are important processes
operating in physical origami self-assembly.

V. CONCLUSION

In this study, we proposed a first algorithmic solution to
the inverse problem of converting raw staple and scaffold se-
quence lists back to a guide schematic for an origami nanos-
tructure. We demonstrated good performance of our pipeline
on a test set of 36 origamis from the literature.

Reverse engineering is not an exact science and success
in rebuilding original source data critically depends on how
much information is lost in the conversion process to final
artefact. In the case of origami nanostructure design, we
were able to partially recover two main stages of information
loss to an adequate extent to rebuild an approximate origami

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

13

guide schematic in most cases. By integrating further in-
formation such as ambiguity of junctions, symmetries in the
global origami design, and other considerations, human gen-
eral intelligence is then able to make the final bridge back to
an editable source schematic in a origami CAD design tool of
choice.

In general, our work helps to make the exchange of origami
nanostructure designs in nanobiotechnology more transparent
and reliable, if raw sequence lists continue to be the de facto
exchange format. Also, through the creation of contact maps
from origami sequences mined from publications, our work
can contribute to future data-driven approaches in the nucleic
acid nanotechnology field.

CODE AVAILABILITY

Python source code (MIT licence) and documentation is lo-
cated at https://revnano.readthedocs.io. The code includes a
Python JupyterLab notebook for reverse engineering origami
schematics from sequence lists.

FUNDING

This work was supported by a Royal Society International
Exchanges grant IES/R1/180080 to B.S-E and J.E, EPSRC
grant EP/N031962/1, Horizon 2020 project "AI-enabled RNA
nanotechnology DElivery SysTem for INformATION trans-
fer into cells." under grant agreement 899833, and a Royal
Academy of Engineering Chair in Emerging Technologies to
N.K.

REFERENCES

1S. Dey, C. Fan, K. V. Gothelf, J. Li, C. Lin, L. Liu, N. Liu, M. A. D.
Nijenhuis, B. Saccà, F. C. Simmel, H. Yan, and P. Zhan, “DNA origami,”
Nature Reviews Methods Primers 1, 13 (2021).

2F. Hong, F. Zhang, Y. Liu, and H. Yan, “DNA Origami: Scaffolds for
Creating Higher Order Structures,” Chemical Reviews 117, 12584–12640
(2017).

3M. Raveendran, A. J. Lee, R. Sharma, C. Wälti, and P. Actis, “Rational de-
sign of DNA nanostructures for single molecule biosensing,” Nature Com-
munications 11, 4384 (2020).

4A. Keller and V. Linko, “Challenges and Perspectives of DNA Nanos-
tructures in Biomedicine,” Angewandte Chemie International Edition 59,
15818–15833 (2020).

5J. Huang, S. Gambietz, and B. Saccà, “Self-Assembled Artificial DNA
Nanocompartments and Their Bioapplications,” Small , 2202253 (2022).

6E. Lin-Shiao, W. G. Pfeifer, B. R. Shy, M. Saffari Doost, E. Chen, V. S.
Vykunta, J. R. Hamilton, E. C. Stahl, D. M. Lopez, C. R. Sandoval Es-
pinoza, A. E. Deyanov, R. J. Lew, M. G. Poirer, A. Marson, C. E. Castro,
and J. A. Doudna, “CRISPR-Cas9-mediated nuclear transport and genomic
integration of nanostructured genes in human primary cells.” Nucleic acids
research 50, 1256–1268 (2022).

7A. R. Chandrasekaran, N. Anderson, M. Kizer, K. Halvorsen, and X. Wang,
“Beyond the Fold: Emerging Biological Applications of DNA Origami,”
ChemBioChem 17, 1081–1089 (2016).

8A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff,
and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles di-
rected by lithographically confined DNA origami,” Nature Nanotechnology
5, 121–126 (2010).

9A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen, S. Doroudi, Y. L. Lee,
G. Izatt, S. Wittman, N. Srinivas, D. Woods, E. Winfree, and L. Qian, “A
cargo-sorting DNA robot,” Science 357 (2017), 10.1126/science.aan6558.

10D. Kut’ák, E. Poppleton, H. Miao, P. Šulc, and I. Barišić, “Unified Nan-
otechnology Format: One Way to Store Them All,” Molecules 27, 63
(2021).

11E. Poppleton, A. Mallya, S. Dey, J. Joseph, and P. Šulc, “Nanobase.org: a
repository for DNA and RNA nanostructures,” Nucleic Acids Research 50,
D246—-D252 (2022).

12S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M.
Church, and W. M. Shih, “Rapid prototyping of 3D DNA-origami shapes
with caDNAno,” Nucleic Acids Research 37, 5001–5006 (2009).

13M. Glaser, S. Deb, F. Seier, A. Agrawal, T. Liedl, S. Douglas, M. K. Gupta,
and D. M. Smith, “The Art of Designing DNA Nanostructures with CAD
Software,” Molecules 26, 2287 (2021).

14T. Kekic and I. Barisic, “In silico modelling of DNA nanostructures,” Com-
putational and Structural Biotechnology Journal 18, 1191–1201 (2020).

15H. Ijäs, T. Liedl, V. Linko, and G. Posnjak, “A label-free light-scattering
method to resolve assembly and disassembly of DNA nanostructures,” Bio-
physical Journal 121, 4800–4809 (2022).

16S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint satisfaction
problems: Algorithms and applications,” European Journal of Operational
Research 119, 557–581 (1999).

17E. Torelli, J. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, and
N. Krasnogor, “Cotranscriptional Folding of a Bio-orthogonal Fluorescent
Scaffolded RNA Origami,” ACS Synthetic Biology 9, 1682–1692 (2020).

18E. Torelli, J. W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida,
K. Voïtchovsky, and N. Krasnogor, “Isothermal folding of a light-up bio-
orthogonal RNA origami nanoribbon,” Scientific Reports 8, 6989 (2018).

19M. F. Parsons, M. F. Allan, S. Li, T. R. Shepherd, S. Ratanalert, K. Zhang,
K. M. Pullen, W. Chiu, S. Rouskin, and M. Bathe, “3D RNA-scaffolded
wireframe origami,” Nature Communications 14, 382 (2023).

20P. Wang, S. Hyeon Ko, C. Tian, C. Hao, and C. Mao, “RNA-DNA hy-
brid origami: folding of a long RNA single strand into complex nanostruc-
tures using short DNA helper strands,” Chemical Communications 49, 5462
(2013).

21P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and pat-
terns,” Nature 440, 297–302 (2006).

22S. Woo and P. W. K. Rothemund, “Programmable molecular recognition
based on the geometry of DNA nanostructures,” Nature Chemistry 3, 620–
627 (2011).

23C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann,
M. Bathe, and H. Dietz, “A primer to scaffolded DNA origami,” Nature
Methods 8, 221–229 (2011).

24D.-N. Kim, F. Kilchherr, H. Dietz, and M. Bathe, “Quantitative prediction
of 3D solution shape and flexibility of nucleic acid nanostructures,” Nucleic
Acids Research 40, 2862–2868 (2012).

25K. Pan, D.-N. Kim, F. Zhang, M. R. Adendorff, H. Yan, and M. Bathe,
“Lattice-free prediction of three-dimensional structure of programmed
DNA assemblies,” Nature Communications 5, 5578 (2014).

26C. Maffeo and A. Aksimentiev, “MrDNA: a multi-resolution model for pre-
dicting the structure and dynamics of DNA systems,” Nucleic Acids Re-
search 48, 5135–5146 (2020).

27A. Sengar, T. E. Ouldridge, O. Henrich, L. Rovigatti, and P. Šulc, “A Primer
on the oxDNA Model of DNA: When to Use it, How to Simulate it and
How to Interpret the Results,” Frontiers in Molecular Biosciences 8 (2021),
10.3389/fmolb.2021.693710.

28E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang, and P. Šulc,
“Design, optimization and analysis of large DNA and RNA nanostructures
through interactive visualization, editing and molecular simulation,” Nu-
cleic Acids Research 48, e72–e72 (2020).

29F. Dannenberg, K. E. Dunn, J. Bath, M. Kwiatkowska, A. J. Turberfield,
and T. E. Ouldridge, “Modelling DNA origami self-assembly at the domain
level,” The Journal of Chemical Physics 143, 165102 (2015).

30T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Information Processing Letters 31, 7–15 (1989).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

http://dx.doi.org/ 10.1038/s43586-020-00009-8
http://dx.doi.org/10.1021/acs.chemrev.6b00825
http://dx.doi.org/10.1021/acs.chemrev.6b00825
http://dx.doi.org/10.1038/s41467-020-18132-1
http://dx.doi.org/10.1038/s41467-020-18132-1
http://dx.doi.org/ 10.1002/anie.201916390
http://dx.doi.org/ 10.1002/anie.201916390
http://dx.doi.org/ 10.1002/smll.202202253
http://dx.doi.org/ 10.1093/nar/gkac049
http://dx.doi.org/ 10.1093/nar/gkac049
http://dx.doi.org/10.1002/cbic.201600038
http://dx.doi.org/ 10.1038/nnano.2009.450
http://dx.doi.org/ 10.1038/nnano.2009.450
http://dx.doi.org/10.1126/science.aan6558
http://dx.doi.org/ 10.3390/molecules27010063
http://dx.doi.org/ 10.3390/molecules27010063
http://dx.doi.org/10.1093/nar/gkab1000
http://dx.doi.org/10.1093/nar/gkab1000
http://dx.doi.org/10.1093/nar/gkp436
http://dx.doi.org/ 10.3390/molecules26082287
http://dx.doi.org/ 10.1016/j.csbj.2020.05.016
http://dx.doi.org/ 10.1016/j.csbj.2020.05.016
http://dx.doi.org/ 10.1016/j.bpj.2022.10.036
http://dx.doi.org/ 10.1016/j.bpj.2022.10.036
http://dx.doi.org/ 10.1016/S0377-2217(98)00364-6
http://dx.doi.org/ 10.1016/S0377-2217(98)00364-6
http://dx.doi.org/ 10.1021/acssynbio.0c00009
http://dx.doi.org/10.1038/s41598-018-25270-6
http://dx.doi.org/ 10.1038/s41467-023-36156-1
http://dx.doi.org/10.1039/c3cc41707g
http://dx.doi.org/10.1039/c3cc41707g
http://dx.doi.org/ 10.1038/nature04586
http://dx.doi.org/10.1038/nchem.1070
http://dx.doi.org/10.1038/nchem.1070
http://dx.doi.org/ 10.1038/nmeth.1570
http://dx.doi.org/ 10.1038/nmeth.1570
http://dx.doi.org/ 10.1093/nar/gkr1173
http://dx.doi.org/ 10.1093/nar/gkr1173
http://dx.doi.org/10.1038/ncomms6578
http://dx.doi.org/10.1093/nar/gkaa200
http://dx.doi.org/10.1093/nar/gkaa200
http://dx.doi.org/10.3389/fmolb.2021.693710
http://dx.doi.org/10.3389/fmolb.2021.693710
http://dx.doi.org/10.1093/nar/gkaa417
http://dx.doi.org/10.1093/nar/gkaa417
http://dx.doi.org/10.1063/1.4933426
http://dx.doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

14

31V. Asturiano, “3D Force-Directed Graph, https://vasturiano.github.io/3d-
force-graph/, Last Accessed 19 April 2023,” ().

32V. Asturiano, “Force Graph, https://vasturiano.github.io/force-graph/, Last
Accessed 19 April 2023,” ().

33D. Doty, B. L. Lee, and T. Stérin, “scadnano: A Browser-Based, Script-
able Tool for Designing DNA Nanostructures,” in 26th International Con-
ference on DNA Computing and Molecular Programming (DNA 26), Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 174, edited by
C. Geary and M. J. Patitz (Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany, 2020) pp. 9:1—-9:17.

34H. Jun, X. Wang, M. F. Parsons, W. P. Bricker, T. John, S. Li, S. Jackson,
W. Chiu, and M. Bathe, “Rapid prototyping of arbitrary 2D and 3D wire-
frame DNA origami,” Nucleic Acids Research 49, 10265–10274 (2021).

35H. Said, V. J. Schüller, F. J. Eber, C. Wege, T. Liedl, and C. Richert, “M1.3
– a small scaffold for DNA origami,” Nanoscale 5, 284–290 (2013).

36P. M. Nafisi, T. Aksel, and S. M. Douglas, “Construction of a novel
phagemid to produce custom DNA origami scaffolds,” Synthetic Biology
3 (2018), 10.1093/synbio/ysy015.

37S. Brown, J. Majikes, A. Martínez, T. M. Girón, H. Fennell, E. C. Samano,
and T. H. LaBean, “An easy-to-prepare mini-scaffold for DNA origami,”
Nanoscale 7, 16621–16624 (2015).

38J. Kozyra, A. Ceccarelli, E. Torelli, A. Lopiccolo, J.-Y. Gu, H. Fellermann,
U. Stimming, and N. Krasnogor, “Designing Uniquely Addressable Bio-
orthogonal Synthetic Scaffolds for DNA and RNA Origami,” ACS Syn-
thetic Biology , acssynbio.6b00271 (2017).

39T. Yoshidome, M. Endo, G. Kashiwazaki, K. Hidaka, T. Bando, and
H. Sugiyama, “Sequence-Selective Single-Molecule Alkylation with a
Pyrrole-Imidazole Polyamide Visualized in a DNA Nanoscaffold,” Journal
of the American Chemical Society 134, 4654–4660 (2012).

40K. Göpfrich, C.-Y. Li, M. Ricci, S. P. Bhamidimarri, J. Yoo, B. Gyenes,
A. Ohmann, M. Winterhalter, A. Aksimentiev, and U. F. Keyser, “Large-
Conductance Transmembrane Porin Made from DNA Origami,” ACS Nano
10, 8207–8214 (2016).

41J. M. Majikes, P. N. Patrone, D. Schiffels, M. Zwolak, A. J. Kearsley,
S. P. Forry, and J. A. Liddle, “Revealing thermodynamics of DNA origami
folding via affine transformations,” Nucleic Acids Research 48, 5268–5280
(2020).

42M. Endo, Y. Yang, Y. Suzuki, K. Hidaka, and H. Sugiyama, “Single-
Molecule Visualization of the Hybridization and Dissociation of Pho-
toresponsive Oligonucleotides and Their Reversible Switching Behavior
in a DNA Nanostructure,” Angewandte Chemie International Edition 51,
10518–10522 (2012).

43Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, “Self-Assembled Water-
Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization As-
says,” Science 319, 180–183 (2008).

44A. Gopinath, C. Thachuk, A. Mitskovets, H. A. Atwater, D. Kirkpatrick,
and P. W. K. Rothemund, “Absolute and arbitrary orientation of single-
molecule shapes,” Science 371 (2021), 10.1126/science.abd6179.

45H. Ijäs, I. Hakaste, B. Shen, M. A. Kostiainen, and V. Linko, “Recon-
figurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and
Display of Cargo,” ACS Nano 13, 5959–5967 (2019).

46E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen,
and B. Högberg, “DNA rendering of polyhedral meshes at the nanoscale,”
Nature 523, 441–444 (2015).

47D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, and H. Yan, “DNA Origami
with Complex Curvatures in Three-Dimensional Space,” Science 332, 342–
346 (2011).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 4, 2023. ; https://doi.org/10.1101/2023.05.03.539261doi: bioRxiv preprint

https://vasturiano.github.io/3d-force-graph/
https://vasturiano.github.io/3d-force-graph/
https://vasturiano.github.io/force-graph/
https://vasturiano.github.io/force-graph/
http://dx.doi.org/ 10.4230/LIPIcs.DNA.2020.9
http://dx.doi.org/ 10.4230/LIPIcs.DNA.2020.9
http://dx.doi.org/10.1093/nar/gkab762
http://dx.doi.org/10.1039/C2NR32393A
http://dx.doi.org/ 10.1093/synbio/ysy015
http://dx.doi.org/ 10.1093/synbio/ysy015
http://dx.doi.org/10.1039/C5NR04921K
http://dx.doi.org/10.1021/acssynbio.6b00271
http://dx.doi.org/10.1021/acssynbio.6b00271
http://dx.doi.org/10.1021/ja209023u
http://dx.doi.org/10.1021/ja209023u
http://dx.doi.org/10.1021/acsnano.6b03759
http://dx.doi.org/10.1021/acsnano.6b03759
http://dx.doi.org/10.1093/nar/gkaa283
http://dx.doi.org/10.1093/nar/gkaa283
http://dx.doi.org/ 10.1002/anie.201205247
http://dx.doi.org/ 10.1002/anie.201205247
http://dx.doi.org/ 10.1126/science.1150082
http://dx.doi.org/10.1126/science.abd6179
http://dx.doi.org/ 10.1021/acsnano.9b01857
http://dx.doi.org/10.1038/nature14586
http://dx.doi.org/10.1126/science.1202998
http://dx.doi.org/10.1126/science.1202998
https://doi.org/10.1101/2023.05.03.539261
http://creativecommons.org/licenses/by/4.0/

	Reverse Engineering DNA Origami Nanostructure Designs from Raw Scaffold and Staple Sequence Lists
	Abstract
	Introduction
	Reverse Engineering Procedure
	Recovery of Origami Contact Map from Sequences
	Recovery of Geometric Guide Schematic from Origami Contact Map

	Results
	REVNANO Performance
	Cause of Minor Defects
	Cause of Reverse Engineering Failure
	Origami Guide Schematics
	Effect of Input Sequence Noise

	Discussion
	Future Directions
	General Comments

	Conclusion
	Code Availability
	Funding
	References

