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EPPA Model Modeling of direct air capture (DAC)

A global multi-region, multi-sector general equilibrium model coupled with an Earth system model. | |
Major goals: Energy, economy, emissions projections CO; permit / CO; matenal CO, permit / CO; material

Model features: Theory-based; Prices are endogenous; International Trade; Inter-industry : 0.3
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Results for a scenario targeting net-zero emissions by 2070

Without DAC, BECCS s deployed massively to reach net-zero by 2070. DACCS competes with BECCS for costs below $380/tCO,. DACCU is never rolled out.
Global emissions profile without DAC (or High cost DAC)

Breakdown of global negative emissions according to DAC cost
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Africa proves to be a massive supplier of negative emissions to offset residual emissions of the
rest of the world, as the continent possesses large renewable capacities at low costs.

Cheap DAC lowers the cost of the transition and gives a positive signal to stakeholders.
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In the absence of an Emission Trading System (ETS), China and India heavily rely on In the absence of an Emission Trading System (ETS), DACCS drastically reduces the cost of
DACCS as they are unable to deploy BECCS due to limited available land. the transition for countries like China, India, Japan or South Korea.
Cumulative generation of negative emissions in selected countries with Effect of GHG trading (GT) and no GHG trading (NoGT) on the price of GHG
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