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Abstract

We show that the Wald-Zoupas prescription for gravitational charges is valid in the presence
of anomalies and field-dependent diffeomorphism, but only if these are related to one another in
a specific way. The geometric interpretation of the allowed anomalies is exposed looking at the
example of BMS symmetries: They correspond to soft terms in the charges. We determine if the
Wald-Zoupas prescription coincides with an improved Noether charge. The necessary condition is
a certain differential equation, and when it is satisfied, the boundary Lagrangian of the resulting
improved Noether charge contains in general a non-trivial corner term that can be identified a
priori from a condition of anomaly-freeness. Our results explain why the Wald-Zoupas prescription
works in spite of the anomalous behaviour of BMS transformations, and should be helpful to relate
different branches of the literature on surface charges.
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1 Introduction

The seminal Wald-Zoupas (WZ) paper [1] provides a prescription for the gravitational charges in the
two cases of conservative boundary conditions and of leaky boundary conditions, with the latter that
make the system non-conservative and thus the infinitesimal Hamiltonian generators non-integrable.
It reproduces the Arnowitt-Deser-Misner (ADM) charges for the Poincaré group at spatial infinity in
the first case, the Geroch and Dray-Streubel charges for the Bondi-van der Burg-Metzner-Sachs (BMS)
group at future null infinity in the second case; It has been recently extended to null hypersurfaces at
finite distance and non-expanding horizons [2, 3]. On the other hand, a more general framework has
been developed by various authors in the last few years [4, 5, 6, 7, 8, 9, 10, 12, 11]. In particular, [10, 12]
have shown how to include in the covariant phase space arbitrary field-dependent diffeomorphisms and
anomalies – quantities whose field-space transformation under diffeomorphisms differs from the Lie
derivative. Can the WZ prescription be applied in this more general context? Answering this question
is useful for future research, but also to better understand the precise relation between the recent
literature and [1]. In particular, both field-dependent diffeomorphisms and anomalies appear in the
study of the BMS group; How come Wald and Zoupas were able to derive the BMS charges without
including either of these two features in their description? Answering these two related questions
motivates the analysis presented in this paper.

The answers lie in the fact that even if Wald and Zoupas didn’t explicitly consider field-dependent
diffeomorphisms and anomalies, they made some precise assumptions about covariance. Our first
result is to translate these assumptions to the formalism of [10, 12]. We find that the WZ prescription
can be applied also in the presence of a certain class of field-dependent diffeomorphisms and anomalies,
contrarily to what one may initially expect, but only provided these satisfy a precise relation relating
one to the other. We refer to the allowed anomalies as soft anomalies. Their presence and the relation
they satisfy are instrumental to understanding why the procedure works at future null infinity, thus
answering our motivational question.

Our second result is to present a detailed comparison between the WZ prescription for the charges,
and the prescription used in [4, 5, 6, 7, 10, 12], which we refer to as boundary-improved, or improved
for short, Noether charges. These are always well-defined, so the question is whether they can be used
to reproduce the WZ charges when the prescription for the latter is fulfilled. We find that a positive
answer requires finding a corner Lagrangian satisfying a certain differential equation determined by
the symmetry vector fields. When this equation can be solved, the WZ charges can be derived as
improved Noether charges. Furthermore, the resulting Noether charges can be identified a priori, as
those associated with a symplectic potential and boundary Lagrangian which are both anomaly-free:
Anomalies can be present only in the corner terms. What makes this construction possible is (i) the
existence of a covariant bulk Lagrangian given by the Einstein-Hilbert action or the tetrad action, and
(ii) the relation satisfied by the soft anomalies. This result provides an independent definition of the
WZ charges which fits very naturally in the language of [10, 12].

We complete our analysis looking at the four examples of spatial infinity, conservative boundary
conditions on a time-like boundary, leaky boundary conditions on arbitrary null hypersurfaces and at
future null infinity. In all cases we show how to reproduce the WZ expressions as improved Noether
charges satisfying our criteria. The first three cases are rather trivial, but we include them because we
believe they have useful pedagogical value. The non-trivial and most interesting example we consider
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is future null infinity. There we can see all the details of our analysis coming into play, understand
how the allowed anomalies play a key role in order to get the standard BMS charges, and also explain
how WZ were able to obtain them without addressing anomalies explicitly. This example further
allows us to endow the WZ-allowed anomalies with a physical interpretation: They correspond to soft
terms in the BMS flux-balance laws, those responsible for memory effects. One of the effects of the
WZ prescription is to ensure that the anomaly contribution is entirely removed from the flux of the
improved Noether charge, and placed instead in the definition of the charge. This example prompts
us to refer to the anomalies allowed by the WZ prescription as soft.

To be clear, the fact that the BMS charges can be derived as improved Noether charges is not
new: it was already shown in [9] and [12]. These two papers however derive the required boundary
Lagrangian and the corner shift a posteriori, from the prior knowledge of the BMS charges. What we
do here is instead deriving them a priori, based on our criteria ensuing from a direct translation of
the WZ conditions.

To conclude the introduction, let us briefly remind the reader of the general importance of including
field-dependent diffeomorphism and anomalies in the covariant phase space, so to put potential future
applications of our results in context. Field-dependent diffeomorphisms appear in various physical
circumstances. As a first example, consider bulk extension of boundary symmetry vectors. It is
often convenient to fix a specific extension, for instance Tamburino-Winicour [13] or Geroch-Winicour
[14], or preserving the gauge-fixing made by a bulk coordinate choice [15, 16, 17]. These requirements
make the extension field-dependent, and extensions can be relevant in the study of sub-leading charges,
e.g. [18, 19, 20, 21, 22, 23]. Field-dependence of the boundary symmetry vectors themselves occurs
in enlargements of the BMS symmetry [15, 24, 16, 9], generically turning the Lie algebra into an
algebroid [15], and in investigations of integrability using the ‘slicing’ method, see e.g. [25, 26].
Finally, field-dependent gauge parameters are familiar in the canonical approach, where they can be
used to simplify the structure of the constraints, see e.g. [27] for recent work using this idea. As
for the anomalies [28, 4, 6], they can appear whenever background structures are present, and are
central to the program of boundary observables in general. Taking them into account systematically
helps us deepening our understanding of the covariant phase space and extending its applications.
For instance, anomalies allow one to compute the cocyle of the Barnich-Troessaert bracket from first
principles [29], and explain the difference between the WZ charges and the Brown-York charges on
null hypersurfaces [30]. We hope that our paper will help shed light on how these various structures
come together, and contribute to new applications of the formalism to address outstanding questions.
In particular, in the study of extensions of the BMS symmetries and modifications of the charges that
arise in that context [16, 21, 22, 31].

In the Appendix we give a brief review of the definition and evaluation of anomalies, and provide
all explicit formulas relevant to the case of future null infinity. We also add some considerations on
the subsequent derivations of the BMS charges that appeared in [32, 33, 34].

We use mostly-plus spacetime signature. Greek letters are for spacetime indices, and we will some-
times denote scalar products by a dot. When needed, lower case latin letters a, b, ... are hypersurface
indices, and upper case latin letters A,B, ... are indices for the 2d cross-sections of the hypersurface.
In all cases, (, ) denotes symmetrization, 〈, 〉 trace-free symmetrization, and [, ] antisymmetrization.
An arrow ← under a p-form or p-form index means pull-back, and =̂ means on-shell of the field
equations. We use units 16πG = c = 1.

3



2 Charge prescriptions

The starting point for the covariant phase space is a symplectic potential θ related to the variation of
the Lagrangian by

δL =̂ dθ, (2.1)

from which one reads the (pre)-symplectic 2-form current ω := δθ, which satisfies dω =̂ 0. We use small
greek letters for the currents, namely the integrands, and capital letters for the integrated quantities.
However, we will loosely speak of both as symplectic potentials and 2-form, for ease of language. We
are interested in the general situation that includes field-dependent diffeomorphisms, hence δξ 6= 0, and
anomalies, namely non-covariant quantities whose field space transformation under a diffeomorphism
differs from the Lie derivative. We follow [10] for notation and the general framework, and define the
anomaly operator

∆ξ := δξ −£ξ − Iδξ. (2.2)

Here £ξ is the Lie derivative in spacetime, and δξ the Lie derivative in field space. See Appendix (A)
for more details and the definition of the field-space inner product Iδξ. This term only acts on field-
space forms. We call covariant a field-space quantity such that δξ = £ξ. We see from (2.2) that
this amounts to a vanishing anomaly for field-space scalars. But for field-space forms, covariance in
the presence of field-dependent diffeomorphisms may require a non-vanishing anomaly, compensating
the action of Iδξ. Accordingly, it is ∆ξ + Iδξ that measure the non-covariance, and not the anomaly
operator alone. The lack of covariance can occur in the presence of background structures which are
described by spacetime fields but constant under variations in field space, and it will be necessary
to understand the charges on null hypersurfaces. The only restriction made in [10] and also here, is
that the non-covariance of the Lagrangian should at most be a boundary term, namely that there are
choices of Lagrangians such that the background structure that may lead to a breaking of covariance
only enters through boundary terms.1 Accordingly, L = Lcov + d` with ∆ξL

cov = 0 and ∆ξL = daξ,
and we define the Lagrangian and symplectic anomalies aξ and Aξ via

∆ξ` = aξ, ∆ξθ = δaξ − aδξ + dAξ. (2.3)

If such anomalies are present, they show up in the formula for the Noether charges as well as for
the Hamiltonian generators: Following the standard procedure [35] but allowing for non-vanishing
anomalies and field-dependent diffeomorphisms, one obtains [10]

jξ := Iξθ − iξL− aξ =̂ dqξ, (2.4)

/δdhξ := −Iξω =̂ d (δqξ − iξθ − qδξ −Aξ) . (2.5)

The Lagrangian and symplectic anomalies enter respectively the Noether charge qξ and (infinitesimal)
Hamiltonian generator dhξ. Notice that the Hamiltonian generator depends only on θ, whereas the
Noether charge depends on θ but also explicitly on the boundary Lagrangian via its anomaly.

To understand the meaning of aξ in the first formula, consider the pull-back on a given hypersurface.
If the hypersurface is a boundary used to define the covariant phase space, then the relevant symmetry
vectors ξ are those tangent to it, since they are the only ones preserving the boundary and thus the
phase space. Then the pull-back of iξL = 0 vanishes, and the variation of the Noether charge along
the boundary has two contributions: one is the symplectic flux of the symmetry, and this is the

1This includes the treatment of anomalous bulk Lagrangians like ADM, since it differs from the covariant Einstein-
Hilbert Lagrangian by a boundary term.
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contribution due to physical degrees of freedom crossing the hypersurface. The other is the anomaly.
This term induces a charge variation caused by the background structure, thus introducing a non-
dynamical contribution to the flux. For instance, this term is non-zero if one uses a normal that
depends on the foliation to which the boundary belongs. 2.

In the second formula, Aξ contributes as an additional potential obstruction to integrabillity. If the
right-hand side of (2.5) is not integrable, the diffeomorphism transformation fails to be a Hamiltonian
vector field, whence the thermodynamical notation /δ [37]. Non-integrability happens for instance in
the presence of a lateral boundary B joining two space-like slices, because in this case the property
dω =̂ 0 is not enough to guarantee that the symplectic form is conserved between the two space-like
slices. When there is flux leaking through the lateral boundary, (2.5) will in general not define a
Hamiltonian generator, and one needs a prescription for the charges. The obvious choice of taking
the Noether charge via (2.4) leads for the Einstein-Hilbert action to the Komar formulas. These have
various useful properties, but also shortcomings that have been known for a long time (such as wrong
factors of 2 in the energy at both spatial and future null infinity, generically non-invariant flux-balance
laws, and so forth, see e.g. [35, 38]), hence the motivation for a different prescription.3

In order to understand the prescriptions, it is important to recall that the covariant phase space
constructed above is not unique, because of the existing freedom in choosing the symplectic potential.
This freedom is two-fold [42]: first, given any θ satisfying (2.1) we can add to it any spacetime exact
3-form dα; second, we can add a boundary term to the Lagrangian, which doesn’t change the field
equations nor the symplectic structure. These two cohomological ambiguities (one in spacetime and
one in field space) are summarized by

L→ L+ dY, θ → θ + dα+ δY, ω → ω + δdα. (2.6)

In particular, the Noether charge defined via (2.4) depends on the choice of representative, and trans-
forms as

qξ → qξ + iξY + Iξα. (2.7)

For a given L, we refer to the choice of θ obtained simply removing d as the ‘bare’ choice. This choice
follows if the symplectic potential is defined using Anderson’s homotopy operator [35, 43, 44, 45, 5],
which is the approach taken in [10]. Another mathematical way to eliminate the freedom is to require
the Noether current (2.4) to be weakly vanishing [45]. These choices are convenient for bookkeeping
and can always be made, but they are however not needed to obtain the results used and derived here.
In the rest of the paper, we will consider arbitrary θ’s, without any a priori mathematical prescription.

2A different situation occurs if the background structure breaks diffeomorphism invariance entirely, for instance if we
have matter fields but the (curved) metric is treated as a fixed background, the anomaly term aξ is nothing but the
energy-momentum tensor of matter, and one recovers the non-general-covariant notion of bulk Noether charge. This
observation allows one to reverse the standard viewpoint that sees Noether charges as global, becoming surface charges
in the special case of local gauge symmetries; and consider instead that all Noether charges are surface charges, becoming
global only in the presence of anomalies introduced by background structures [36]

3The literature contains various interesting proposals on how to achieve integrability, for instance enlarging the phase
space introducing embedding fields that move the boundary in such a way that the outgoing flux is absorbed into the
definition of the charge [39, 40]. Another approach uses a new Leibnizian bracket with respect to which the charges are
integrable [41]. At least in non-dynamical cases, there exists also the possibility of obtaining integrability finding an
appropriate field-dependence of ξ so that the qδξ term cancels the obstruction, a procedure known as ‘slicing’, see e.g.
[25]. We will not consider these alternative constructions here, and only discuss the WZ prescription.
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2.1 Improved Noether charge from phase space polarization

The main idea that we would like to recall from the WZ paper is that one should resolve the ambiguities
in the definition of the charges by deciding under which physical requirements they are to be conserved.
Mathematically, this can be controlled trading the initial symplectic potential θ (be it the bare one
or any other chosen one) for a symplectic potential such that its pull-back on the lateral boundary B
vanishes in the subset of the phase space corresponding to a desirable physical requirement, such as
a choice of conservative boundary conditions, or a choice of stationarity conditions. In practise, one
takes the pull-back on the lateral boundary and decomposes it as follows,

θ
←

= θ′ − δ`+ dϑ, (2.8)

where θ′ is required to be in the form pδq for some choice of polarization of the phase space. The
new θ′ corresponds to L′ := L+ d`, namely a theory with the same field equations, and is equivalent
to θ under the freedom (2.6). The idea of changing from the initial θ to a physically motivated θ′

dates back to [46] and [1], was generalized in [47] and [4] to include the corner potential ϑ, and takes
a central role in various follow-up works [5, 6, 7, 10, 12].

The terms ` and ϑ appearing above are produced by the manipulations needed to put (the pull-
back of) θ in the chosen θ′ form. The explicit form of ϑ depends also on the representatives chosen for
θ and θ′. Since we require θ′ = pδq, ` is manifestly the boundary term to be added to the Lagrangian
to have a well-defined variational principle with those boundary conditions. However (2.8) does not
identify a unique `, since the condition is still satisfied under the replacement

(`, ϑ)→ (`+ dc, ϑ+ δc). (2.9)

Therefore, for a given representative θ, one can compute a unique ϑ only once a choice for θ′ and ` is
made.4 For instance, a non-vanishing ϑ occurs for Dirichlet boundary conditions if L is the Einstein-
Hilbert Lagrangian and ` is the Gibbons-Hakwing-York term, as established as early as [48]. As there
observed, the resulting ϑ shifts the symplectic 2-form,

ω′ = δθ′ = ω − dδϑ. (2.10)

We want to characterize the physical situations in which the new symplectic potential vanishes on
the lateral boundary B, namely

θ′
B
= 0. (2.11)

Since it is in the form θ′ = pδq, we can distinguish two cases, depending on whether it is δq or p to
vanish, and which we name following [1].

Case I: We impose conservative boundary conditions δq
B
= 0. The new symplectic 2-form ω′ also vanishes

on the lateral boundary,
ω
←
B
= 0, (2.12)

4Unique ϑ up to addition of exact 2-forms, but these will be irrelevant in the following since we will only look at
compact corners. Accordingly, we will ignore all 2d-exact forms in the rest of the paper. Notice also that fixing both θ′

and ` can be equivalently seen as fixing θ′ and ϑ. This is the viewpoint taken in [12], where the chosen quantities are
referred to respectively as boundary and corner (symplectic) fluxes. The freely choosable ϑ’s have to be related by (2.9),
just like the freely choosable θ’s have to be related by (2.8).
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and therefore is preserved between the initial and final space-like hypersurfaces. This makes
the system conservative, hence the name. In other words, the system is in case I within each
cotangent space at fixed q, but not for trajectories that vary both p and q.

Clearly, different choices of conservative boundary conditions are possible, corresponding to
different choices of polarizations, and this turns out to affect the charges. Most literature focuses
on Dirichlet boundary conditions, but the charges obtained from Neumann and York boundary
conditions were computed in [49] for a time-like lateral boundary. They turn out to be different,
and in agreement with what can be computed using 3 + 1 canonical methods. See [50] for an
exploration of alternative boundary conditions in the case of a null boundary.

Case II: There exist solutions for which p
B
= 0. They provide a notion of stationary backgrounds, whose

precise nature depends on the form of p, namely on the polarization chosen. We can distinguish
two situations, one in which all p’s vanish, and one in which only some vanish, and (2.11) is
achieved by the vanishing of the complementary δq’s. Either way, the symplectic 2-form ω′ is
not conserved,

ω
←

B
6= 0, (2.13)

because there are no restrictions on the variations δp and at least some of the δq’s. Therefore
these are radiative or leaky boundary conditions.

It should be stressed that we are making these characterizations with the goal of resolving the
ambiguities in the charges, and not of restricting the phase space. Once the corresponding θ′ is
chosen, we compute the associated charges, and then we use them in the full phase space. This
means that charges defined using conservative boundary conditions will not be conserved in the full
phase space, and charges defining using a specific stationarity condition will not be conserved when
evaluated around any other solution not respecting it. Clearly, charges constructed using the different
perspectives of Case I and II but corresponding to the same polarization are equal and have equal
properties.

The formulas for charges associated with the new symplectic potential θ′ take exactly the same
form as before, namely [10]

j′ξ := Iξθ
′ − iξL′ − a′ξ =̂ dq′ξ, (2.14)

/δdhξ := −Iξω′ =̂ d
(
δq′ξ − iξθ′ − q′δξ −A′ξ

)
, (2.15)

where L′ = L + d` and ω′ = δθ′. In other words, the formalism allows one to treat all choices on
equal footing. Again, the infinitesimal Hamiltonian generator depends only on θ′, whereas the Noether
charge depends on θ′ but also explicitly on the boundary Lagrangian ` via its anomaly: (θ′, `) 7→ q′ξ.
In particular, q′ξ depends on any corner term that may be present in the choice of `, which is not
visible from L′ and θ′. The relation between the Noether charges associated to (θ′, `) and the initial
ones is5

q′ξ = qξ + iξ`− Iξϑ. (2.16)

5The reader may notice a notational hiccup at this point. Logically, it would make more sense to denote the boundary
Lagrangian `′, so that one can use ` to refer to whatever choice of corner was present in the initial qξ. Accordingly,
one should add primes on both ` and ϑ on the right-hand side of (2.8), and following formulas. We choose not to do
so and instead follow the notation of [10]. This allows us to keep the notation lighter, and also refer to that paper for
all proofs. Notice also that the practical use we will make of the unprimed notation will be to specialize to the bulk
covariant Lagrangian with no boundary term, so no confusion will arise as to what ` refers to.
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Keeping the primed notation is useful if we want to compare boundary-improved charges to specific
bare charges. For instance, take L to be the Einstein-Hilbert Lagrangian, and θ its bare symplectic
potential. Then qξ is the original Noether charge [35], given by the Komar formulas and their limita-
tions. If we add the boundary Lagrangian ` given by the Gibbons-Hawking-York term and choose the
Dirichlet polarization for θ′, the improved Noether charges give the Brown-York formulas [46, 4]. In
[49] we referred to this prescription as Freidel-Geiller-Pranzetti formula, since we used the notation
of [5], but given the number of authors contributing to these developments, it seems fair to simply
talk about improved Noether charges. The improvement with respect to the original, ‘bare’ Noether
charges, is two-fold. First, the Brown-York formulas give the correct ADM charges at spatial infinity
[51], unlike the Komar formulas. Second, (2.16) can be made invariant under the cohomological am-
biguities (2.6) [7, 12]. Indeed, if we require that the choice of polarization θ′ is kept fixed under (2.6),
we have (`, ϑ)→ (`−Y, ϑ+α), therefore even if qξ changes as in (2.7), q′ξ is invariant. In other words,
it is the prescription of working with a unique θ′ that eliminates these ambiguities.

On the other hand, fixing θ′ alone is not sufficient to obtain a unique charge, because as anticipated
above, q′ξ depends also on the boundary Lagrangian chosen. This can be seen explicitly observing that
(2.16) is affected by the corner ambiguity (2.9), which leads to [12]

q′ξ → q′ξ −∆ξc. (2.17)

Therefore even if the cohomology ambiguities (Y, α) are fixed by the choice of θ′, there is still an
ambiguity in the charge if anomalies are present. This ambiguity is removed if one does not prescribe
only θ′ but also a specific choice of `, thus fixing c.6

Let us now discuss how the restriction (2.11) affects integrability, and the ensuing relation between
the improved Noether charge and the Hamiltonian generator. Consider first the familiar case of no
anomalies and δξ = 0. When (2.11) holds, the improved Noether charge q′ξ is conserved (this follows
because the ξ’s allowed in the covariant phase space are tangent to the boundary, and thus the second
term in (2.14) vanishes taking the pull-back). The Hamiltonian generator (2.15) is integrable, and
the Hamiltonian coincides with q′ξ, up to constant terms in field space. Such terms can be fixed for
instance looking at a reference solution [1], requiring the Hamiltonian charges to vanish there. Having
established this, one can take the prescription of using the improved Noether charges in the full phase
space. This prescription gives charges that by definition have the useful property of being conserved
and Hamiltonian generators in the conservative or stationary subspace. Notice that this prescription
is equivalent to defining the charges starting from the Hamiltonian generator and subtracting the flux,
since −Iξω′ + diξθ

′ = dδq′ξ. The important point to stress is that q′ξ is not associated to an arbitrary
choice of symplectic potential, but to the physically preferred θ′. This removes any ambiguity in the
procedure.

In the general case with δξ 6= 0 and anomalies, we can compare the Hamiltonian generator and the
improved Noether charge as follows. When (2.11) holds, the Hamiltonian generators are integrable iff

6This may be taken as a suggestion that what matters to get unique charges is prescribing a specific action principle
including boundary and corner terms, as pointed out in [7, 12]. However more work is needed in our opinion before this
suggestion is borne out, because counter-examples exist, both ways. Going one way, one can think of the example of
adding an anomalous corner term (hence changing the charge) but which is globally defined (hence not entering as corner
terms in the action principle). Going the other way, the example of time-like boundaries with non-orthogonal corners
reviewed below in Section 3.1 shows that there is no corner shift needed to get the BY charges corresponding to the
WZ prescription even though there are corner terms in the action principle. At least in the case of the WZ prescription,
what we will find is that the corner shift is not related to corner terms in the action principle, but rather in removing
anomalies from the boundary Lagrangian.
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there exists a functional X such that
dY = δX, (2.18)

where
Y = −q′δξ −A′ξ. (2.19)

This requirement means that
X = dsξ + Cξ, δsξ = Y, (2.20)

and Cξ is a constant in field-space. If this condition is satisfied, we can again prescribe the charges on
the full phase space subtracting the symplectic flux, via

δdhξ:=− Iξω′ + diξθ
′ =̂ d

(
δq′ξ − q′δξ −A′ξ

)
= δd(q′ξ + sξ). (2.21)

The first equality follows from (2.15), and the second from (2.20). This formula provides a definition for
the Hamiltonian charge associated to the physically selected θ′, and works only if the anomalies satisfy
the descent-type equation (2.18). This is not yet the WZ prescription but a generalization thereof,
since as we will review in the next Section, the WZ prescription makes additional requirements than
just a specific pδq form of θ′.

From the definition (2.21) it follows that

hξ = q′ξ + sξ, (2.22)

up to field-space constants as before (the constant Cξ above drops out on the other hand). Because
of the extra term sξ, the prescription (2.21) associated with the chosen θ′ does not coincide in general
with the improved Noether charge q′ξ associated with a given (θ′, `). However, there are two interesting
remarks to make at this point. First, the formula (2.15) is invariant under the corner Lagrangian shift
(2.9), unlike the improved Noether charge which changes according to (2.17). Therefore, we can
change the boundary Lagrangian by a corner term without affecting the Hamiltonian generator, and
use this freedom to find a corner-improved Noether charge that matches the Hamiltonian charge. In
other words, one can ask whether there is a choice of ` compatible with (2.8) such that its Noether
charges match the Hamiltonian prescription. Comparing (2.17) with (2.22), we see that the matching
is possible if there exists a corner term c whose anomaly reproduces the integrable anomalies appearing
in (2.20), namely

∆ξc = −sξ. (2.23)

If such c exists, the corner-improved Noether charge associated with θc = θ′ and `c = `+ dc matches
the Hamiltonian charge,7

qcξ = q′ξ + sξ ≡ hξ. (2.24)

To be precise, the last equivalence is only up to the field-space constants mentioned above, since
these can be freely added to hξ in order to satisfy special vanishing requirements, but not to qcξ which
is defined uniquely. The condition (2.23) is a partial differential equation that relates the corner
improvement to the allowed anomalies of the symmetry vectors ξ. We will see below in the case of
future null infinity an example of this equation and of its solution. In general, we don’t know whether
it is always possible or not to solve it. Whenever it is, the generalized WZ charge (2.21) can always

7The notation c stands for corner-improved, and should not be confused with the notation for covariant used in [12].
We don’t use any specific notation for covariant quantities, although typically we will associate them with the initial,
unprimed quantities.
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be derived as an improved Noether charge. We will show in the next Section that the WZ additional
requirements allows us to get a more explicit form for sξ, and we will make more comments about
solving it then.

The second remark is that the flux of this corner-improved Noether charge is still anomalous, since
it is given by

dq
←

c
ξ = Iξθ

c − ac
ξ = Iξθ

′ − a′ξ + dsξ. (2.25)

This provides also the flux of the Hamiltonian charge (up to the usual field-space constants), since the
δ-variation of the above expression must match (2.21). Therefore, the charges are not automatically
conserved when (2.11) holds. Clearly, additional physical requirements could be useful to achieve
conservation when θ′ vanishes on the lateral boundary. We will see next that the WZ prescription
provides precisely such missing requirements, by forcing ac

ξ = 0. As a result, Iξθ
′ gives the flux

responsible for the variation of the charges, and one obtains charges that are conserved under the
desired circumstances for which θ′ vanishes.8

2.2 Wald-Zoupas prescription

We now review the WZ prescription from [1] and highlight the additional inputs that are brought in
with respect to the previous general discussion. The prescription is based on removing the radiative
part from the symplectic flux, identified making use of a background structure that can be attributed
to the lateral boundary. To do so, one selects a symplectic potential θ̄ based on three criteria:

0. It must be a potential for the pull-back of the symplectic 2-form on the boundary, namely

ω
←

= δθ̄. (2.26)

1. It must be a local and covariant functional of the dynamical fields and background structure.
This is sometimes assumed to imply vanishing anomalies and field-independent diffeomorphisms,
but we will see shortly that it is more general than that – and this is crucial to understand the
future null infinity results.

2. It should vanish for conservative boundary conditions, case I presented earlier, or for arbitrary
perturbations around stationary solutions, case II. The latter means that it must be of the form
F (g)δg where F (gstationary) = 0. In reference to the earlier discussion, if we think of θ̄ as a
certain pδq polarization, then WZ stationarity is of the type p = 0.

Ideally, these criteria should be enough to single out a unique choice for θ̄, and this is indeed the
case in the examples that we will review below. In case II, the preferred θ̄ satisfying all criteria is
identified as the radiative symplectic flux, namely, a quantity whose vanishing means that all metrics
sharing the background structure agree that the solution is stationary. As a consequence of the
requirements made, one typically obtains

θ̄ = θ
←

+ δb, (2.27)

8Even if the variation of the charges is given in the end by Iξθ
′, it is still preferable to characterize the physical

requirements such as stationarity in terms of θ′, as requirements on Iξθ
′ may be ambiguous. We will see in [50] an

example of such ambiguity.
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for some non-vanishing b defined on N . We can interpret this formula as a special case of (2.8), where
θ′ = θ̄ has to satisfy the WZ requirements above, b is the pull-back of a boundary Lagrangian up to
the corner ambiguity (2.9), and ϑ vanishes or is at most a total variation so that it can be reabsorbed
in b. An arbitrary dϑ cannot be present because it would violate (2.26) hence condition 0.

The WZ prescription for the integrable charges is then to subtract the radiative flux on N ,

/δdq
←

WZ
ξ :=− Iξω + diξ θ̄ =̂ d

(
δq̄ξ − q̄δξ − Āξ

)
. (2.28)

This is the same formula that we discussed in the previous Section. The novelty is the additional
restriction given by conditions 0 and 1. To study the most general situation under which the WZ
prescription works (namely if we can replace /δ with δ), let us look closely at the covariance requirement.
This property, as spelled out in footnote 9 of [1], translates in our notation to9

∆ξ θ̄ + Iδξ θ̄ = 0 ⇔ (δξ −£ξ)θ̄ = 0. (2.29)

In other words, the anomaly of θ̄ and the allowed field-dependent diffeomorphisms are constrained,
so that θ̄ is covariant: its field-space derivative coincides with the spacetime Lie derivative. This
condition is indeed sufficient to guarantee integrability, since we can rewrite (2.28) using

− Iξω + diξ θ̄ = δIξ θ̄ −∆ξ θ̄ − Iδξ θ̄ ⇒ /δdq
←

WZ
ξ = δdq

←
WZ
ξ = δIξ θ̄, (2.30)

namely
dq
←

WZ
ξ =Iξ θ̄ (2.31)

up to (spacetime exact) field-space constants, that can be used as described earlier if one needs to set
the charges to zero for a specific reference solution.

On the other hand, the WZ covariance requirement does not imply that all anomalies vanish.
However, it implies some restrictions. Indeed, we know that :

∆ξ θ̄ = ∆ξ θ←
+ δ∆ξb−∆δξb = δāξ − āδξ + dĀξ (2.32a)

Iδξ θ̄
←

= dq̄δξ + aδξ. (2.32b)

In the first we used ∆ξθ
←−

= ∆ξ θ←
which is valid for tangent ξ. Hence, (2.29) gives :

∆ξ θ̄ + Iδξ θ̄ = δāξ + d(Āξ + q̄δξ) = 0 (2.33)

or :
δāξ = −d(q̄δξ + Āξ). (2.34)

9Referring to the background fields as χ and the dynamical fields as φ, the requirement spelled out in that footnote is
θ̄(χ, ϕ∗φ, ϕ∗δφ) = ϕ∗θ̄(χ, φ, δφ), and assumes the transformation law δφ 7→ ϕ∗δφ. This transformation law is fine if the
diffeomorphism is field-independent, but if it is field-dependent, one has to use δφ 7→ δ(ϕ∗φ) in order for the total system
background+perturbation to be physically equivalent after the diffeomorphism. Accordingly, the WZ requirement should
be modified to θ̄(χ, ϕ∗φ, δ(ϕ∗φ)) = ϕ∗θ̄(χ, φ, δφ). At the linearized level, this gives

θ̄(χ,£ξφ, δφ) + θ̄(χ, φ, δ£ξφ) = £ξ θ̄(χ, φ, δφ) = θ̄(£ξχ, φ, δφ) + θ̄(χ,£ξφ, δφ) + θ̄(χ, φ,£ξδφ),

from which (2.29) follows. In a previous version of the paper on arXiv, we considered a stronger condition in which ∆ξ θ̄
and Iδξ θ̄ vanish individually. This is not necessary, and the correct version leads us to simpler equations when applied
to the BMS analysis.
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In the above formula one can freely replace Āξ with Aξ, since anyways there is no corner difference
between θ̄ and θ. This relation is a special case of (2.18), in which X is determined by the Lagrangian
anomaly āξ. As a consequence,

āξ = dsξ + Cξ, δsξ = −q̄δξ −Aξ. (2.35)

We see that the WZ covariance requirements (2.29) are compatible with the presence of field-
dependent diffeomorphisms and anomalies, provided δξ, aξ and ∆ξb are related by (2.34). We refer to
such WZ-compatible anomalies as mild or soft anomalies. We will see below an example that justifies
this name. This is the most general situation allowed by the WZ requirements, and as seen above
it is enough to guarantee integrability of their prescription for the charges. If we compare with the
generalized WZ prescription (2.21), we see that (2.34) is a special case of the integrability condition
(2.18). The restriction comes from having added conditions 0 and 1.

We stress that we have done nothing new concerning the charges: we have merely re-derived the
same formula of WZ, namely (2.31), under the same conditions as they did. Our only contribution
is to point out that such conditions, and therefore the derivation, do admit anomalies, provided they
are soft in the above sense.

Now that we have clarified that the WZ prescriptions also works in the presence of the soft
anomalies, we can ask if it is possible to interpret the resulting charges as improved Noether charges
for some specific choice of boundary Lagrangian. The reason why this is not obvious is that since
āξ 6= 0, we have

Iξ θ̄
←

= dq̄ξ + āξ, (2.36)

where
q̄ξ := qξ + iξb, āξ := aξ + ∆ξb. (2.37)

This can be proved from (2.27), or read off directly from (2.14) using the fact that we can interpret b
as a boundary Lagrangian.10 The compatibility of this equation with (2.31) follows from (2.34), and
if āξ 6= 0 there is a mismatch.

Accordingly, we can distinguish three situations, depending on what anomalies are present:

(a) The preferred symplectic flux θ̄ is associated to a total Lagrangian L + db without anomalies.
Then āξ = 0, and we have

qWZ
ξ = q̄ξ = qξ + iξb. (2.38)

In this case, the WZ charge coincides with an improved Noether charge with boundary La-
grangian ` = b and vanishing ϑ. The flux formula (2.31) is consistent with (2.36) since the
anomaly vanishes.

Remark: covariance of both θ and θ̄ is not enough to guarantee āξ = 0, see (2.3).

(b) There are soft anomalies, and Cξ = 0. Then

āξ = dsξ, δsξ = −q̄δξ −Aξ. (2.39)

Then
qWZ
ξ = qξ + iξb+ sξ. (2.40)

10That fact that b is only defined on the boundary, namely that db ≡ 0, does not affect the derivation.
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It differs from the improved Noether charge q̄ξ that would be immediately associated with
(2.27), namely with boundary Lagrangian ` = b and ϑ = 0. Notice that the additional term sξ is
precisely the shift in the charge required so that the anomaly is removed from its flux, and this
is how (2.36) is mapped to (2.31). When anomalies are present, the WZ prescription eliminates
them from the flux, and puts them in the definition of the charge.

Next, we can ask if there exists a choice of boundary Lagrangian whose improved Noether charges
reproduce the same shift. This is possible if q̄ξ and qWZ

ξ are related by (2.16), namely if we can
find a corner term that satisfies (2.23), the same general equation of the previous Section applies
here. If a solution to this equation exists, then the WZ charge is the improved Noether charge
qc with boundary Lagrangian `c = b+dc. This fixes the corner ambiguity in the charges. Notice
that ∆ξ`

c = −aξ and that `c is not unique, since any further shift by an anomaly-free corner
term will also work, and produce the same charges.

Remark: If we start from a covariant Lagrangian, aξ = 0 and the required shift can be identified
computing the anomaly of b,

āξ = ∆ξb = dsξ. (2.41)

As a consequence, the corner-improved boundary Lagrangian is covariant,

∆ξ`
c = ∆ξb+ d∆ξc = 0. (2.42)

If furthermore the starting θ is also covariant, then Aξ = 0 and

δsξ = −q̄δξ. (2.43)

This means that q̄δξ is integrable, and exposes an interesting interplay that occurs between
soft anomalies and field-dependent diffeomorphisms. This interplay will be crucial below to
understand why one can do calculations for the BMS group passing over anomalies.

From this analysis we deduce that when it is possible to reproduce the WZ charges as improved
Noether charges, the latter can be identified a priori as those associated with a covariant choice of
bulk and boundary Lagrangians. All allowed anomalies can be restricted to corner terms. Again
`c is not unique, since adding anomaly-free corner terms will give the same charges. Therefore,
it is enough to pick any representative in the class of anomaly-free Lagrangians.

(c) A general soft anomaly is present, including Cξ. The flux of the improved Noether charge
contains an extra term with respect to the WZ flux. The two equations are still compatible
because (2.31) is valid up to field-space constant terms. If Cξ is spacetime-exact it can be
reabsorbed in the Hamiltonian charge, and the matching with an improved Noether charge can
be obtained following the same analysis as case (b). If Cξ is not spacetime-exact, the matching
is not possible. We could not find any examples in which this situation occurs, but we have no
arguments to rule it out either. Lacking both, we refrain from drawing any conclusions about
this case.

Notice that (2.43) can also be proven directly from Noether’s theorem, as follows. For an arbitrary
δξ and assuming no anomalies in the initial Lagrangian and symplectic potential, we have

dqδξ
←

= Iδξθ
←
− iδξL
←

= Iδξ θ←
− iδξL
←

= (δξ − Lξ −∆ξ)θ←
− iδξL
←

= (δξ − Lξ)(θ̄ − δb)− iδξL
←

= −(δξ −£ξ −∆ξ)δb− iδξL
←

= −δ∆ξb−£δξb− iδξL
←
. (2.44)
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If δξ is now restricted to a symmetry vector, it is tangent and thus the last term vanishes. Using
this and £δξb = diδξb, we recover (2.43). This alternative derivation highlights that a non-vanishing
qδξ means that one is working with a symplectic potential that is not covariant, in spite of not being
anomalous, because Iδξθ 6= 0. In this case, the covariance requirement of the WZ flux means trading

∆ξθ = 0, Iδξθ 6= 0 ⇒ ∆ξ θ̄ = −Iδξ θ̄ 6= 0. (2.45)

Summarizing, the WZ covariance requirement is enough to guarantee that the anomaly and field-
dependent diffeomorphism contributions to (2.5) are integrable. The WZ prescription (2.28) can be
interpreted as an improved Noether charge constructed so to have the anomalous term āξ shifted from
the flux to the definition of the charge. This shift can be identified a priori if it possible to find a
covariant boundary Lagrangian. In other words, it is premature to conclude from (2.27) that b is the
boundary Lagrangian. If ∆ξb 6= 0, one should rather look for a covariant `c = b+ dc.

This leads to the following independent definition of the WZ charges. First, evaluate (2.27),
choosing a covariant θ̄, namely such that

(δξ − Lξ)θ̄ = 0, (2.46a)

plus the conservative or stationarity requirement chosen as described in Cases I and II. Second, identify
a corner term c such that

`c := b+ dc, ∆ξ`
c = 0. (2.46b)

Finally, compute the improved Noether charge associated with (θ̄, `c), or in other words with the split

θ
←

= θ̄ − δ`c + dδc. (2.47)

2.3 Extending the WZ prescription to non-field-exact corners

This prescription can be immediately generalizing condition 0 to (2.8), as pointed out in [4]. All
that will change is that the identification of `c will start from (2.8) instead of from b. We repeat the
procedure in this case, for the sake of clarity and ease of reference.

First, evaluate (2.8), choosing θ′ such that

(δξ − Lξ)θ′ = 0, (2.48a)

plus the conservative or stationarity requirement chosen as described in Cases I and II. Second, identify
a corner term c such that

`c := `+ dc, ∆ξ`
c = 0. (2.48b)

Finally, compute the improved Noether charge associated with (θ′, `c), or in other words with the split

θ
←

= θ′ − δ`c + d(ϑ+ δc). (2.49)

This means computing

qcξ = q′ξ −∆ξc = qξ + iξ`
c − Iξϑc, ϑc := ϑ+ δc, (2.50)

where qξ is the Noether charge associated with the covariant bulk Lagrangian, and q′ξ is the Noether
charge associated with the pair (θ′, `). The resulting flux is anomaly-free, dqcξ = Iξθ

′− iξL′, as opposed
to the anomalous flux of q′ξ, given by (2.14). Of course, if we choose directly an anomaly-free `, then
q′ξ ≡ qcξ.
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3 Examples

We review here some well-known explicit examples, which will be useful to provide some physical
meaning to the anomaly āξ. The examples are all based on the Einstein-Hilbert Lagrangian, hence
aξ = 0. We always start from the bare potential, which is not anomalous,

θ =
1

3!
θµεµνρσdx

ν ∧ dxρ ∧ dxσ, θµ = 2gρ[σδΓµ]
ρσ = 2gµ[ρgν]σ∇νδgρσ, ∆ξθ = 0. (3.1)

On the other hand, notice that Iδξθ needs not vanish for arbitrary δξ. Therefore, while this potential is
covariant in the absence of field-dependent diffeomorphisms, in general we can only say that it is non-
anomalous, and it may well be non-covariant. Indeed, we will see that in the case of asymptotic Killing
vectors at I with a field-dependent extension, this is not zero, and therefore the bare Einstein-Hilbert
potential is not covariant.

For each example below, we review the WZ prescription, determine in which of the cases (a, b, c)
we are, and compute when needed the anomaly contribution to obtain the WZ charges as improved
Noether charges. The first two examples concern case I, and the latter two concern case II. As we
will see the first three examples are somewhat trivial, therefore our discussion may appear slightly
pedantic there. However we believe they allow us to explain our logic before the more involved fourth
example, and also to provide a useful comparative of the literature.

3.1 Conservative time-like boundary

Recasting the pull-back of the bare Einstein-Hilbert symplectic potential in Dirichlet form on a time-
like hypersurface T with normal nµ, one finds (see e.g. [48])

θ
←

= Πµνδq
µνεT − δ`+ dϑ, Πµν := Kµν − qµνK (3.2)

where ` = 2KεT is the Gibbons-Hawking-York term. The explicit form of ϑ can be found in [48, 46]
or more recent references, and will not be needed in the following. Suffices to say that it can be made
to vanish with an appropriate choice of coordinates, corresponding to orthogonal corners [46, 49].11

Restricting to this situation, the non-integrable term in (2.27) is a good candidate for the preferred
symplectic potential θ̄. It satisfies condition 0 with b = `, and condition 2 with conservative boundary

conditions qµρqνσδqρσ
T
= 0, or with a notion of stationarity given by Π = 0. To discuss its covariance,

we evaluate
(δξ −£ξ) (Πµνδq

µν) = ∆ξΠµνδq
µν + Πµνδ∆ξq

µν + Πµν£δξq
µν . (3.3)

The residual diffeomorphisms that preserve the phase space must preserve the boundary, hence be
tangent to it. As a consequence δξqµν = £ξqµν , and ∆ξnµ = 0 provided we work with a unit-norm
normal (see Appendix A). Therefore

∆ξqµν = ∆ξεT = ∆ξKµν = 0. (3.4)

We conclude that this θ̄ is covariant for field-independent diffeomorphisms. The boundary symmetry
group is Diff(T ), and the charges will be conserved for arbitrary variations around solutions with

11If the time-like boundary is at r =constant and the cross sections are defined by the space-like hypersurfaces with
time-like unit normal τ := −Ndt, the restriction is a vanishing r-component of the shift vector. This means that
the time-like boundary is orthogonal with all t =constant hypersurfaces, condition preserved by variations such that
τµnνδg

µν = 0. This restriction implies ϑ = 0.
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Π = 0, and around arbitrary solutions but only for variations restricted to preserve the boundary
conditions. In the latter case the only allowed symmetries of the conservative subset of the phase
space are the Killing vectors of the boundary metric.

Following the prescription used in [46] and adopted in the WZ paper, we take conservative boundary
conditions, as in Case I. Now that we have chosen θ̄ and identified b with the Gibbons-Hawking-York
(GHY) term, the next step is to look at the anomalies. We have aξ = 0 from the initial choice of
the Einstein-Hilbert Lagrangian, and ∆ξb = 0 from (3.4). Therefore all anomalies vanish and we are
in case (a). According to (2.38), the WZ charge is given by the improved Noether charge qξ + iξb.
One can easily check that this is indeed the WZ charge computed in [46, 1], and which gives the
Brown-York formulas at finite distance.

Let us also comment about the importance of the contribution of [4]. If we relax the corner-
orthogonality condition, we have ϑ 6= 0 hence condition 0 is violated. This brings us outside of the
hypothesis used in [46, 1]. However conditions 1 and 2 are still valid. The crucial insight of [4] was
to show that the modification (2.10) of the symplectic two-form caused by ϑ is not only acceptable,
but indeed leads to the correct Brown-York formulas in the case of non-orthogonal corners. This
calculation is an example of the generalized WZ prescription (2.50), and the insight on the relevance
of the redefined symplectic form ω′ played an important role in the general developments reviewed in
Section 2.1.

The WZ charges so obtained are still improved Noether charges with boundary Lagrangian b,
namely case (a), even with non-orthogonal corners. In fact, the presence of a second normal in ϑ will
make some of the boundary diffeomorphisms anomalous, but (3.4) still holds, and the GHY Lagrangian
remains covariant even with non-orthogonal corners. Therefore no corner shift is needed to obtain the
WZ charges. The BY formulas follow indeed from (2.38) with b given by the GHY Lagrangian also
with non-orthogonal corners [4, 49].12

Finally, one can consider different θ̄’s associated with other boundary conditions, and this leads to
a modification of the Brown-York formulas [49].

3.2 Spatial infinity

Lack of radiation makes the case of spatial infinity trivial. Using ADM fall-off conditions, we have

θ
←

= δb, b = lim
r→∞

(
(∂rgtt − ∂tgrt) + rcqab (∂aqbc − ∂cqab)

)
εT , (3.5)

and εT is the volume element on the time-like slices of constant r. The residual diffeomorphisms with
non-trivial charges correspond to the asymptotic Poincaré group, and regarding them as limits of the
analysis at finite distances shows that there are no anomalies. Hence we can take θ̄ ≡ 0. Spatial
infinity corresponds to case I in the WZ paper, namely the pull-back of the symplectic 2-form on the
lateral boundary vanishes identically. From (3.5) we see that the WZ prescription trivializes, since
the Hamiltonian generator is manifestly integrable, with charge given by qξ + iξb [35], and as shown
there it reproduces the ADM formulas.

From the improved Noether charge perspective, this is just like the case at finite distances, we are
in case (a) since ∆ξb = 0, hence the formula coincides with taking b as boundary Lagrangian. While it

12This should be compared with the 3+1 canonical calculation with conservative boundary conditions [52, 4, 49], where
the 2d Hayward corner term is needed in order to obtain the BY formulas with non-orthogonal corners. Its role is to
secure the right Legendre transform on the boundary. There appears to be no relation between the Hayward term in the
action and the corner shift (2.17) in the covariant improved Noether charge, which we use only to remove non-covariance
from the boundary Lagrangian and satisfy the WZ conditions, and is not needed here.
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is not immediately clear which boundary conditions are identified by this choice, the limiting procedure
obtained starting from a time-like boundary at finite distance shows that b corresponds to Dirichlet
boundary conditions up to a renormalization term, see e.g. [49]. The renormalization term depends
on a chosen Minkowski background and therefore can potentially introduce anomalies, however these
vanish because of (3.4) and the restriction to Poincaré transformations of the asymptotic symmetries.

It would be interesting to see if the situation changes relaxing boundary conditions as to have non-
trivial super-translations and super-rotation charges, as investigated in [17]. Finally, we mention that
leaky boundary conditions at infinity (with non-vanishing cosmological constant) have been studied
in [8].

3.3 Finite null hypersurfaces and NEH

Restricting the variations to preserve the universal structure defined in [2], one has

θ
←

=
(
σµν − θ

2
γµν
)
δγµνεN + 2δ(θεN ), (3.6)

where σµν and θ on the RHS are the shear and expansion of the null hypersurface, and we hope
that no confusion arises from the use of the same letter as for the bare symplectic potential. The
non-integrable first term is the preferred θ̄ put forward in [2], and satisfies all WZ requirements:
covariance restricts the variations in phase space to preserve the normal and its inaffinity (see [2] and
the related discussion in [50]), and field-independence of the symmetry vector fields on the boundary;13

the stationarity requirement is satisfied for arbitrary variations around hypersurfaces with vanishing
shear and expansion, which are related to non-expanding horizons (NEH) [3]. It follows that

b = −2θεN = −2dεS . (3.7)

One can check that this quantity has vanishing anomaly [6, 50], namely ∆ξb = 0. Furthermore, aξ = 0
since we started from the covariant Einstein-Hilbert Lagrangian, hence āξ = 0. We conclude that we
are in case (a), the WZ charge coincides with the improved Noether charge with ` = b and ϑ = 0.

Notice that even if the boundary Lagrangian is covariant, anomalies are present, and it has been
shown that this charge is different that what one could call the null Brown-York tensor [30]. Finally,
alternative choices of stationarity and their effect on charges are explored in [50].

3.4 Future null infinity

At future null infinity, using for instance Bondi coordinates,14 one has

θ
←

= −
(

2δM − 1

2
δ(DADBC

AB) +
1

2
NABδC

AB − 1

8
δ(NABC

AB)
)
εI . (3.8)

See Appendix B for definitions and some details. At a first sight, one may identify the physical flux with
the non-integrable third term, namely the Bondi news NAB := ∂uCAB contracted with the variation
of the shear CAB. The stationarity requirement is then satisfied by all spacetimes with vanishing
news, for arbitrary variations. The issue though is that this term does not satisfy the covariance
requirement, because NAB is not covariant. The resolution of this issue was found by Geroch [55] with

13It requires δk = 0 because otherwise θ̄ depends on k which in turns depends on the representative chosen and not
on the universal structure. This in fact is because it is not class III invariant.

14For descriptions with geometric quantities only and avoiding reference to Bondi coordinates, see e.g. [53, 54, 34].
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the introduction of a background tensor ρAB carrying his name, and whose transformation property
is ∆ξρ〈AB〉 = ∆ξNAB, so that

N̂AB := NAB − ρ〈AB〉 (3.9)

is covariant. The Wald-Zoupas criteria thus single out as preferred potential [1]15

θ̄ = −1

2
N̂ABδC

AB εI . (3.10)

The remainder is a total variation and identifies

b =
(

2M − 1

2
D̄AD̄BC

AB − 1

8
NABC

AB +
1

2
ρABC

AB
)
εI . (3.11)

Therefore all three conditions for the WZ prescription are met.
A key property of ρ〈AB〉 is to vanish identically when the background metric is the round 2-sphere.

This makes the choice NδC numerically correct in such Bondi frames, however one should keep in
mind that the correct potential secretly depends on the Geroch tensor in order to secure covariance.
This is relevant for us, because calculation of the anomaly involves derivatives in field space, and the
anomaly of b would be different if we forgot the term necessary to the covariance of θ̄.

From (3.11) and the anomaly-freeness of the Einstein-Hilbert Lagrangian we compute

āξ = ∆ξb = dsξ, where sξ :=
1

4
CABD̄AD̄Bτ, (3.12)

and τ := ξu = T + u
2DAY

A. Details of this calculation are in the Appendix. We see that we are in
case (b): there is a shift, caused by the fact that the ‘naive’ boundary Lagrangian b has an anomaly.

The shift can furthermore be obtained from the corner ambiguity. In fact, using the anomalous
transformations reported in Appendix B, it is easy to find a local functional c solving (2.23):

c :=
1

16
CABC

ABεS , ∆ξc = −sξ. (3.13)

Therefore the BMS charges obtained from the WZ prescription can also be obtained as improved
Noether charges, choosing an anomaly-free boundary Lagrangian such as

`c = b+ dc =
(

2M − 1

2
D̄AD̄BC

AB +
1

2
ρABC

AB
)
εI , ∆ξ`

c = 0. (3.14)

This choice of boundary Lagrangian is of course not unique: any further shift by an anomaly-free corner
term would give the same charges. In this case, it means that we can add an arbitrary contribution
proportional to

(NABC
AB − 2D̄AD̄BC

AB)εI , (3.15)

15In [1], the covariant news N̂ are denoted N , referred to as Bondi news, and one keeps in mind that the expression
∂uCAB is only valid in the special set of Bondi frames. This is indeed a better nomenclature in our opinion. We maintain
however the N and N̂ notation here to match more easily with the contemporary literature, where Geroch’s analysis
seems to have been forgotten at some point. Notice also that N̂ can be defined in geometric terms as the Lie derivative
of the shear [34], which makes its covariance manifest. Geroch’s construction on the other hand used the Schouten tensor
of the (pull-back of the) unphysical Riemann tensor, hence a non-covariant quantity, and which coincides with ∂uCAB
in Bondi coordinates.
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which is both a corner term and anomaly-free. In other words, one can equivalently use any element
in the family

`cx =
(

2M − 1 + x

2
D̄AD̄BC

AB +
x

4
NABC

AB +
1

2
ρABC

AB
)
εI , x ∈ R. (3.16)

Summarizing, the WZ charges for the BMS group can be obtained as improved Noether charges
following the prescription (2.46), namely starting from the covariant Einstein-Hilbert Lagrangian and
bare symplectic potential, and choosing (θ̄, `c) given by (3.10) and (3.16) respectively. The resulting
corner term in (2.47) is (3.13).

The fact that the the BMS charges can be obtained as improved Noether charges is consistent
with what observed in [9, 12], where relevant boundary Lagrangians were identified a posteriori. The
novelty of our derivation is the identification of the boundary Lagrangians and charges from first
principles, thanks to the attention paid to anomalies.16

As a final remark, the WZ-compatible anomaly (3.12) has the structure of the soft term in the
flux-balance laws for the BMS charges. This example provides a physical example of the meaning
of the anomaly contribution to the variation of the improved Noether charge (2.14): an improved
Noether charge with boundary Lagrangian (3.11) as opposed to (3.14), or with an arbitrary corner
improvement not selected by the covariance requirement (2.42), would differ from the standard BMS
charges by soft terms. One consequence would be that they would measure different memory effects,
another that the boost part of the charges would fail to be conserved on stationary spacetimes. The
relation between the soft terms and anomalies is further explained by the detailed calculations reported
in the Appendix B, which highlight how the bridge between the two lies in the first-order extension
of the symmetry vector fields. We also report there the calculation of the charges (App. B), as well
as the explanation of how (2.43) allows one to do the calculation à la Wald-Zoupas without the need
to take explicitly into account the anomalies (App. C).

4 Conclusions

We have studied the WZ prescription in the light of the recent extensions of the covariant phase space.
The WZ prescription introduced two precise and valuable physical requirements, spelled by conditions

16When comparing our quantitative results with the literature, some attention is however needed. The corner term
(3.12) differs from the one used in [9] by a factor of 2 (mind the different units used, 16πG = 1 here, 8πG = 1 there). This
follows from the fact that [9] uses the tetrad Lagrangian, whose bare symplectic potential differs from the Einstein-Hilbert
one by a corner term [56, 57]. We explain this comparison in App. E, and our results here perfectly agree with those
of [9]. We find on the contrary a disagreement with the conclusions of [12], which find (1) no anomalous shift, namely
they claim qWZ

ξ = q̄ξ + iξb, and (2) no restriction of the boundary Lagrangian to be anomaly-free, namely they consider
four different options of which only their (6.17) is in our family, with x = 0. The remaining (6.9), (6.18) and (6.18) are
anomalous. Disagreement (1) is in our opinion due to a computational mistake, we believe that their equation (6.15)
lacks a factor 1/2 in the third term, the one that reads UDf . Their numerical factor would indeed make the anomalous
shift unnecessary in order to obtain the BMS charges, but it is in contradiction with our calculation reported in App. B,
as well as with the calculations of [32, 16] which use the qδξ term, and which we report in App. C. Since the presence
of a non-zero anomaly is crucial to our paper, we made multiple checks of our calculations and the presence of this
contribution. But of course we welcome further feedback on this point, should the mistake be on our end. Disagreement
(2) is on the other hand not an issue, provided (1) is fixed. Every time their boundary Lagrangian is anomalous, they
redefine the charge by hand to remove what the anomalous contribution to the flux, via the quantity they denote h̃ξ.
What we have shown here is that h̃ξ is in general not an improved Noether charge in the sense of (2.16), and that there
is no need to do this redefinition by hand, because it is possible to identify the charge uniquely working with a covariant
pair of bulk and boundary Lagrangians.
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1 and 2 in Section 2.2. First, the importance of covariance with respect to the background structure,
and second, the importance of a physical notion of stationarity in the radiative case. On the other
hand, the WZ prescription appears to be too restrictive concerning condition 0, which forbids allowing
changes in the corner potential, the quantity we referred to as ϑ in this paper. The importance of
changing the corner potential was stressed in [4] and elaborated further in [5] and subsequent literature.
In particular, it is necessary in case I if one wants to recover the Brown-York charges with non-
orthogonal corners at finite distance[4, 49], and in case II if one wants to consider generalizations of
the BMS group [31]. Our discussion hopefully highlights the importance of taking physical principles,
as opposed to a mathematical prescription alone, in selecting the symplectic potential defining the
charges. This is possibly the key lesson of the WZ paper.

The first result that emerges from our study is that the WZ prescription works also in the presence
of anomalies and field-dependent diffeomorphisms. These cannot be arbitrary, but are restricted from
the covariance requirement (2.29) to satisfy the condition (2.34). We referred to the allowed anomalies
as soft because of their physical meaning at future null infinity. This example also shows that the
bare Einstein-Hilbert symplectic potential is not covariant, in spite of being non-anomalous, because
it is sensitive to the possibly field-dependent extensions of the asymptotic Killing vectors. The WZ
requirement of covariance balances this dependence with an anomaly as in (2.29).

The second result is that the WZ charges are not straightforwardly improved Noether charges in
the sense of [4], namely they cannot necessarily be obtained from the formula (2.16). It only happens
if (2.23) admits solutions. This is the case for the BMS charges, but we don’t know if it is always
possible. It would surely be interesting to further study this differential equation and understand its
general solution. There may also be hybrid situations in which the WZ charges are improved Noether
charges only for a subset of the boundary symmetry algebra.

When (2.23) can be solved, the WZ charges are improved Noether charges, up at most to field-
constant terms. Solving that equation has the compelling meaning that one has to find a boundary
Lagrangian that is anomaly-free, when starting from a covariant bulk Lagrangian. In other words,
the boundary Lagrangian needed to derived the WZ charges from (2.16) is not necessarily the term b
that appears in (2.27), nor the initial ` that appears in (2.8).

This understanding allows us to provide an independent definition of WZ charges as the improved
Noether charges satisfying (2.46), and to generalize it relaxing condition 0 by requiring (2.48).

A non-trivial property of the soft anomalies is to be strongly related to the allowed field-dependent
diffeomorphisms, via (2.34) in general, and via (2.43) if one starts from a covariant bulk Lagrangian
and its bare potential. A consequence of this is that one can effectively perform some calculations
ignoring anomalies, and this is the reason why Wald and Zoupas could compute the BMS charges
without the need to talk about anomalies. Nonetheless, we believe it does not affect the relevance of
taking anomalies into account. We hope that our new derivation of the BMS charges in the main text
and in the Appendix shows that using the formalism with anomalies enriches our understanding of
the mathematics as well as the physics.

One example of what can be learnt is how anomalies capture the difference between future null
infinity and a null hypersurface at a finite distance, such as an event horizon. It is well known that the
BMS symmetries are different from the symmetries of a null hypersurface in spacetime. For example,
in BMS, dilations are not independent while on a finite null hypersurface they are independent and
their associated charge is given by the area.17 In both cases the anomaly comes from the boundary
normal. At a finite distance, the background structure only provides the location of the boundary.

17Matching the two symmetries is possible relaxing the fall-off conditions so that the BMS group is enhanced to the
BMSW group [9]. See also [58, 59, 25] for related work on charges at horizons.
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But at future null infinity, it also provides the compactification factor. As a consequence, the metric
on the cross-section is anomaly-free at finite distance, but not on I. This introduces a second source
of anomalous transformations, given by the inhomogeneous terms of the metric functionals on I. It
is also interesting to remark that the difference can be seen looking at the first-order extension of the
symmetry vector fields. More details on these aspects appear in Appendix A and D.
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A Anomalies and boundaries

In this Appendix we review how to compute the anomaly associated with a background structure, and
prove the absence of anomalies in the case of time-like boundaries parametrized by a unit-normal, the
result used in (3.4).

Anomalies arise when the covariant phase space contains background structures. Let us denote by
φ the dynamical fields, and by χ the background fields. For the dynamical fields we define δξφ := £ξφ,
whereas the background fields satisfy δξχ = 0, whence the anomaly ∆ξχ = −£ξχ. To understand
the third term in (2.2), consider a functional of the fields that is a one-form in field space, namely
F (φ, χ)δφ. In this case we have

δξ(Fδφ) = ∂φFδξφδφ+ Fδδξφ = ∂φF£ξφδφ+ Fδ£ξφ = £ξ(Fδφ)− ∂χF£ξχδφ+ F£δξφ, (A.1)

where we used [δ, δξ] = 0 in the first equality, and [δ,£ξ] = £δξ in the last. Hence,

∆ξ(Fδφ) = −∂χF£ξχδφ = (δξ −£ξ − Iδξ)Fδφ. (A.2)

The first example of background structure we consider in the following is a spacetime boundary
B. We define it by its Cartesian equation as χ(xµ) = 0, and associated with it a normal 1-form
nµ := −f∂µχ. The field χ is a fixed background structure, with δχ = 0. Since £ξχ = ξµ∂µχ, every
diffeomorphism that does not preserve the boundary is anomalous. When constructing the covariant
phase space associated to this boundary, the only relevant diffeomorphisms are those that preserve
the boundary, namely

ξµnµ
B
= 0 ⇒ ξµ = ξ̄µ + χξ̂µ, (A.3)

where ξ̄µnµ = 0. The boundary is shared by all metrics in the phase space. The diffeomorphisms that
preserve the boundary are also called residual diffeomorphisms, or symmetry vector fields, hinting at
the physical relevance that boundary diffeomorphisms can acquire. In different situations, one may
add additional background structure on top of the presence of the boundary, still shared by all metrics
in the phase space and usually referred to as universal structure. Any additional requirement in the
universal structure can restrict the symmetry group.

From (A.3) it follows that £ξχ
B
= 0, and therefore ∆ξχ = 0: the boundary is covariant with

respect to the diffeomorphisms that preserve it. However, anomalies can still appear when we look at
derivatives of χ, for instance through the normal 1-form. In fact, a simple calculation shows that

∆ξnµ = wξnµ, wξ := ∆ξ ln f − ξ̂µ∂µχ. (A.4)
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If we take a gradient as normal, say f = 1, then the anomaly comes entirely from ξ̂µ∂µχ, namely
from how much the extension of ξ off B does not preserve the neighbouring leaves of the χ foliation.
However, as long as the foliation is not null, the anomaly associated with a non-trivial extension ξ̂ can
be eliminated choosing f so that the normal is unit-norm: in this case in fact,

nµ = s
∂µχ√

sgρσ∂ρχ∂σχ
, n2 = s := ±1, (A.5)

and

∆ξnµ = −s 1√
sgρσ∂ρχ∂σχ

(
£ξ∂µχ− sgνλ

∂νχ£ξ∂λχ

sgρσ∂ρχ∂σχ
∂µχ

)
= −s 1√

sgρσ∂ρχ∂σχ

(
δνµ − snνnµ

)
£ξ∂νχ = −qνµ£ξnν = 0 (A.6)

because of the condition that ξ preserves the boundary. Recalling that unit-norm means foliation
independence of the normal, we see that what this anomaly is capturing is not so much the presence
of the boundary, but rather any foliation-dependence in its description, namely non-invariance under
χ 7→ χ′(χ, xµ).

In the case of a null hypersurface, there is no choice of f that would make the normal foliation-
independent, hence anomalies (A.4) are generically present. Furthermore, in order to distinguish
physical solutions on the covariant phase space, one typically reduces the allowed variations to pre-
serve a certain universal structure [1, 2]. This reduces the symmetry group and can lead to a fixed,
non-vanishing first-order extension, hence anomalies. An interesting difference arises between a null
hypersurface at a finite distance and future null infinity. In both cases, we have a background field
describing the presence of the boundary. But at future null infinity, the same structure is used as
conformal factor Ω in the compactification. As a consequence, reparametrizing χ at finite distance
changes the normal 1-form nµ, but reparametrizing Ω changes both the normal and the unphysical
metric which induces the metric on the cross-sections, leading to two sources of anomalies. To see this
difference in formulas, consider the volume elements. At finite distance we have

εN = ilε = −l ∧ εS , (A.7)

where l · n = −1 is the auxiliary vector, hence (A.4) implies [6]

∆ξεN = −wξεN , ∆ξεS = 0. (A.8)

But the volume element of future null infinity is determined from the unphysical metric g̃µν := Ω2gµν ,
which is anomalous:

∆ξΩ = 0, ∆ξnµ = wξnµ, ∆ξ g̃µν = 2wξ g̃µν , ∆ξ ε̃ = 4wξ ε̃. (A.9)

Therefore taking
εI = ilε̃ = −l ∧ εS , (A.10)

we have
∆ξεI = 3wξεN , ∆ξεS = 2wξεS . (A.11)

The first difference is that the anomalous dimension of the induce volume element changes from −1 to
+3, and the second difference is that tensors on the cross-sections are now anomalous as well, unlike
in the finite dimensional case. This comes as explained above from the fact that the background
structure has the double role of determining the boundary and providing the unphysical metric.

22



B BMS anomalies

We review here some basic formulas of the BMS transformations, and show how to compute the
associated anomalies and the shift between the WZ and improved Noether charges. We follow [9]
for the notation. While the general logic remains the same described in the main text, performing
the calculations explicitly requires paying attention to two special features. The limit to I and the
difference between a symmetry vector field on I and its bulk extension, and the fact that we choose to
work with a specific coordinate system. Working in Bondi coordinates (u, r, θ, φ) and with conformal
factor Ω := 1/r, the asymptotic Killing vectors are

ξ := τ∂u + Y A∂A + Ω(τ̇ ∂Ω − ∂Aτ∂A) +O(Ω2). (B.1)

For the BMS group, τ = T + u
2DAY

A, where T (θ, φ) is the supertranslation parameter, and Y A(θ φ) a
conformal Killing vector on the two-sphere. For the BMSW enlargement [9], which encompasses both
extended [15] and generalized [24, 16] BMS groups, τ = T (θ, φ) + uW (θ, φ), and Y A is an arbitrary
vector, which we take to be globally defined. From

∆ξ g̃µν = −gµν£ξΩ
2 = − 2

Ω
ξΩg̃µν = −2τ̇ g̃µν , (B.2)

we see that
wξ = −τ̇ . (B.3)

The covariant phase space at future null infinity is parametrized by the functionals q̄AB, CAB,
respectively the leading and first sub-leading orders of the 2d metric, and the mass and angular
momentum aspects M, P̄A. The parametrization is chosen so that P̄A coincide with the definition of
Dray and Streubel in these coordinates. All quantities depend on (u, θ, φ), except for the background
metric q̄AB which is constant in u.18 The phase space transformations generated by the asymptotic
BMSW symmetries are [9]

δξ q̄AB = (£Y − 2τ̇)q̄AB, (B.4a)

δξ CAB = (τ∂u + £Y − τ̇)CAB − 2D̄〈A∂B〉τ, (B.4b)

δξNAB = (τ∂u + £Y )NAB − 2D̄〈A∂B〉τ̇ , (B.4c)

δξM = (τ∂u + £Y + 3τ̇)M +

(
1

2
D̄AN

AB + ∂BF̄

)
∂Bτ +

1

4
∂u(CABD̄A∂Bτ), (B.4d)

δξ P̄A = (τ∂u + £Y + 2τ̇)P̄A + 3M∂Aτ −
1

8
NBCC

BC∂Aτ +
1

2

(
CCANBC

)
∂Bτ (B.4e)

+
3

4

(
D̄AD̄CCB

C − D̄BD̄CCAC
)
∂Bτ +

1

4
∂A
(
CBCD̄BD̄Cτ

)
+

1

2
D̄〈AD̄B〉τD̄CC

BC + CAB

(
F̄ ∂Bτ +

1

4
∂B∆τ

)
.

Here £Y is a slight abuse of notation and should be understood as the Lie derivative for tensors on
the two-sphere. The functionals transform in general not as scalars but rather as densities in the u
variable, because of the τ̇ shifts, and as tensors on the sphere in the A indices, plus inhomogeneous

18With Penrose’s definition of asymptotic flatness (see e.g. [1, 54]), one can always choose a conformal factor satisfying
the Bondi condition ∇̃µnµ = 0, and then £nq̄AB = 0. This is the case with the choice of Ω taken here, from which the
asymptotic Einstein’s equations impose ∂uq̄AB = 0.
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terms. Because of this algebraic structure, I is endowed with the structure of a fiber bundle S2 × R
in which the fibers are the conformal weights. The density shifts and the inhomogeneous terms are
responsible for the anomalies.

To see that explicitly, we need first to explain how the covariant Lie derivative is mapped to a
gauge-fixed description associated with the Bondi coordinates used above. Consider a 3-form on I.
This is a spacetime covariant quantity, which in Bondi coordinates will read like a scalar on the 2-
sphere times the volume form, e.g. vAw

AεI . For an example, see the symplectic potential at I given
by (3.8). Using the asymptotic symmetry vectors (B.1), we have

£ξ(vAw
AεI) = £ξ(vAw

A)εI + vAw
A£ξεI . (B.5)

Now we can write

£ξ(vAw
A) = ξµ∂µ(vAw

A) = τ∂u(vAw
A) + Y B∂B(vAw

A) = τ∂u(vAw
A) + £Y (vAw

A) = Lξ(vAw
A),

where we introduced the Bondi-frame Lie derivative

Lξ := τ∂u + £Y , (B.6)

or Bondi Lie derivative for short. Its action is that of a Lie derivative on the conformal bundle of
u-dependent 2-sphere tensors.

The anomalies of the phase space functionals are thus given by ∆ξ = δξ − Lξ (the last term from
the definition (2.2) drops out because we are acting on field-space scalars), namely

∆ξ q̄AB = −2τ̇ q̄AB, (B.7a)

∆ξ CAB = −τ̇CAB − 2D̄〈A∂B〉τ, (B.7b)

∆ξNAB = −2D̄〈A∂B〉τ̇ , (B.7c)

∆ξM = 3τ̇M +

(
1

2
D̄AN

AB + ∂BF̄

)
∂Bτ +

1

4
∂u(CABD̄A∂Bτ), (B.7d)

and similarly for P̄A, which won’t be needed in the following. These formulas are identical for BMSW
and BMS, with the only simplification for BMS being that τ̇ = D̄AY

A/2, and that taking the round
sphere F̄ = R̄/4 = 1/2, so one term in ∆ξM drops out. From now on, we restrict attention to the
BMS case.

The anomaly of the background metric is familiar from the BMS literature: the 2d metric – aka
‘Bondi frame’ – is a background structure, hence δq̄AB = 0, while an asymptotic symmetry changes
the Bondi frame by a conformal transformation given by 2τ̇ = D̄AY

A. Hence the RHS of (B.7a).
In the generalized BMS and in BMSW the phase space is enlarged to include the Bondi frame as a
variable, hence δq̄AB 6= 0, but the resulting anomaly is again just a conformal transformation, albeit
with an arbitrary factor instead of just the Lorentz boost D̄AY

A. From this expression we can also
derive ∆ξ

√
q̄ =
√
q̄q̄AB∆ξ q̄AB/2 = −2τ̇

√
q̄.

The anomaly of the news (B.7c) is also familiar from the seminal work of Geroch [55], which
introduced the tensor carrying his name, and whose traceless part is

ρ〈AB〉 := 2D̄〈AϕD̄B〉ϕ+ 2D̄〈AD̄B〉ϕ, (B.8)

where 2ϕ is the conformal factor relating the metric q̄AB to a round 2-sphere metric. It vanishes for
the round 2-sphere. From this expression and the condition ∂uq̄AB = 0 we deduce that £ξρ〈AB〉 =
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2D̄〈AD̄B〉τ̇ . Notice that it is crucial that ρAB has a trace part that does not vanish on a round 2-sphere,
otherwise this Lie derivative would vanish as well. Geroch also proves that this tensor is universal.
Hence δρ〈AB〉=0, and

∆ξ ρAB = −2D̄〈A∂B〉τ̇ ≡ ∆ξNAB. (B.9)

It follows that N̂AB := NAB − ρAB is covariant, i.e. its anomaly vanishes.
The anomaly of the volume form εI is given by (A.11) with (B.3), namely19

∆ξεI = −3τ̇ εI . (B.10)

Putting together these results, we find

(δξ −£ξ)
(
N̂ABδC

ABεI

)
= (δξ − Lξ)N̂ABδC

ABεI + N̂AB(δξ − Lξ)δCABεI + N̂ABδC
AB(δξ − Lξ)εI

= ∆ξN̂ABδC
ABεI + N̂ABδ∆ξC

ABεI + N̂ABLδξC
AB + N̂ABδC

AB∆ξεI

= N̂ABδ∆ξC
ABεI − 3τ̇ N̂ABδC

ABεI = 0. (B.11)

In the third equality we used LδξC
AB = 0, since δξ = O(Ω2) as follows from (B.1). In the last we

used ∆ξ C
AB = 3τ̇CAB − 2D̄〈A∂B〉τ which follows from (B.7). As a consequence, the non-integrable

term that can be read naively from (3.8) is not covariant, whereas θ̄ defined in (3.10) is.
Next, we compute the anomaly of (3.11), here copied for convenience:

b =
(

2M +DAŪ
A − 1

8
NABC

AB +
1

2
ρABC

AB
)
εI , (B.12)

with ŪA = −1
2D̄BC

AB. For this term, we have20

∆ξ(D̄AŪ
AεI) = D̄A(∆ξŪ

A)εI + D̄AŪ
A∆ξεI + [∆ξ, D̄A]ŪAεI

= D̄A(∆ξŪ
A)εI − 3τ̇ D̄AŪ

AεI + ( ˙̄UA∂Aτ − 2ŪA∂Aτ̇)εI

= D̄A

(
(∆ξ − 3τ̇)ŪA

)
εI +

1

2
∂u(CABD̄AD̄Bτ). (B.13)

The total derivatives on the sphere can be dropped. As a consequence, we don’t need to know the
explicit form of the anomaly of ŪA. For the interested reader, it can be found in [9]. For the other
terms in b, we have

∆ξ

(
(2M − 1

8
NABC

AB +
1

2
ρABC

AB)εI

)
= −1

4
∂u(CABD̄AD̄Bτ) +

1

2
ρAB∆ξ(C

ABεI). (B.14)

19It is also possible to derive this writing εI = du ∧ εS . The 1-form du is an anomalous quantity on the scale bundle,
with anomaly given by ∆ξdu = −£ξdu = −τ̇ du, and ∆ξεS = −2τ̇ εS . Care is needed when writing εS =

√
q̄d2θ and

using the anomaly for
√
q̄ previously derived. This is because

√
q̄ is a density, therefore we should remember that

d2θ is an invariant. This is a familiar result for Lie derivatives of volume forms: if we write ε =
√
−gd4x, where

d4x := 1
n!
ε˜µνρσdxµ ∧ dν ∧ dxρ ∧ dxσ is a density, we have £ξ

√
−g =

√
−g∇µξµ and £ξd

4x = 0.
20The second equality below follows from the fact that for BMS

[∆ξ, D̄A] = −[£ξ, D̄A],

which can be computed from

[τ∂u, D̄A]fB = −∂ufBD̄Aτ,

[LY , D̄A]fB = fAD̄BD̄CY
C − R

2
(2fBYA − δBAYCfC), [LY , D̄A]fA = fAD̄AD̄CY

C ,

and we also observe that [∂u,LY ] = 0.
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Adding up and using the vanishing of the Geroch tensor on the round 2-sphere, we conclude that

∆ξb = dsξ, sξ =
1

4
CABD̄AD̄Bτ εS . (B.15)

This proves (3.12) used in the main text.21 As for (3.13), this follows immediately computing the
anomaly of β̄ := − 1

32CABC
AB, which gives

c := −2β̄εS , ∆ξc = −1

4
CABD̄AD̄Bτ εS . (B.16)

Let’s check that the shift (3.12) indeed reproduces the known expressions of the WZ charges at
I. The expansion of the Komar two-form gives (to lighten the notation, we drop in the following the
sphere indices A)

qξ = τ(2M −DŪ +
1

8
CN − 1

4
DDC) + 2Y (−rŪ + P̄ + ∂β̄) + 2W (−r2 + 2β̄). (B.17)

The divergent terms vanish for BMS, and can be renormalized away for BMSW [60], so we will drop
them in the following.22 Then we have

iξεI = −ξ · l εS , −ξ · l = τ, iξb = τ
(

2M + D̄Ū − 1

8
NC +

1

2
ρC
)
εS , (B.18)

hence

qξ + iξb =

(
τ(4M − 1

4
D̄D̄C) + 2Y P̄

)
εS . (B.19)

This shows that without the right corner shift, the improved Noether charge with b as boundary
Lagrangian doesn’t give the standard BMS charges. The difference is a soft term. This charge would
not measure the standard memory effects, and furthermore has a flux determined not only by the
physical symplectic potential θ̄, but by the anomalous contribution as well. In particular, the part of
the charges corresponding to Lorentz boosts would not be conserved in stationary spacetimes.

Finally, adding up (B.15), which after a trivial integration by parts on the 2-sphere can be rewritten
as

sξ = −τ
2
D̄ŪεS , (B.20)

we obtain the desired result23

qWZ
ξ = qξ + iξb+ sξ =

(
4τM + 2Y P̄

)
εS . (B.21)

These charges vanish exactly on the Minkowski solution, therefore there is no need of any shift by field-
space integration constants. The calculation proves that the WZ charges can be obtained without ever
talking about Hamiltonian generators, but just as an improved Noether charge with the prescriptions

21Notice that the contribution of the density weights to the anomaly drops out, and it is only the inhomogeneous
terms of (B.7) that matter in the end. Hence the calculations are consistent with those of [9], where the densities were
not included in the definition of the anomaly.

22Taking the on-shell value of Ū , the second and fourth terms add up to − 1
2
D̄Ū . Our Ū coincides with the U used in

[12], and our 1/2 instead of their 1 in the third term of their (6.15) is the mismatch we referred to in the main text.
23Recall we are using the notation from [9] and units 16πG = 1. The relation to the angular momentum aspect used

in [32, 16] is NA = P̄A + ∂Aβ̄.
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(2.46). The anomaly-free boundary Lagrangian can be read from (B.16) to be (3.14), which we report
here for convenience,

`c =

(
2M + D̄Ū +

1

2
ρC

)
εI . (B.22)

We also notice that(
D̄Ū +

1

4
CN

)
εI = d

(
1

8
C2εS + iŪ εI

)
, Ūµ := (0, 0, ŪA). (B.23)

This corner term is also anomaly-free once we integrate on the 2-sphere to get rid of the total derivatives
that appear when using (B.13). We conclude that the WZ charges can be obtained starting from the
family of boundary Lagrangians (3.16), that all differ from (B.22) by a term proportional to (B.23).

C Charges’ archeology

In this Appendix we comment on the importance of the interplay relation (2.43). This allows one to
understand how Wald and Zoupas were able to get away without ever talking about anomalies, and
will also be the opportunity for us to add some comments about [32, 33, 34] that we think may be
useful to the reader. If we start from the Einstein-Hilbert Lagrangian there are no anomalies, and

− Iξω = δqξ − qδξ − iξθ. (C.1)

Then, the WZ prescription (2.28) gives

−Iξω + iξ θ̄ = δqξ − qδξ − iξθ + iξ θ̄ = δqξ − qδξ + iξδb (C.2)

= δ(qξ + iξb)− qδξ − iδξb.

If we take the bare Eistein-Hilbert θ, this is covariant and qξ is Komar; the covariance requirement
for θ̄ guarantees not only (2.34) but also (2.43). Therefore, δsξ = −q̄δξ = −qδξ − iδξb. Using this
equality in (C.2) we recover the calculation of the charges done at the end of the previous Section,
namely adding sξ as computed from the anomaly of b. But we can also forget about the anomalous
origin of sξ, and compute directly qδξ and iδξb in (C.2). On first thought, one may imagine that
these vanish, since there is no field dependence in ξ at zeroth or first order, see (B.1). However, it
had been observed as early as [14] that the limit of the Komar 2-form to future null infinity depends
on the second-order extension as well, and in fact it even depends on the third order insofar as the
radial component is concerned. This can be trivially checked using for instance Bondi coordinates and
Ω = 1/r. The Komar formula then contains ∂rξ

r, which when integrated against the r2 area 2-form
fishes a contribution O(r−1) in ξr, which is O(Ω3). But then, the second and higher-order terms are
generically field-dependent. Using the Tamburino-Winicour extension, equivalent to preserving the
bulk Bondi coordinates used in the previous Section, we have

δξ =

(
Ω2

2
δ(CAB∂Bτ) +O(Ω3)

)
∂A +

(
Ω3

2
δ(D̄AC

AB∂Bτ +
1

2
CABD̄A∂Bτ) +O(Ω4)

)
∂r. (C.3)

This vector gives a vanishing contribution when hooked with b, but not when plugged in the Komar
form. There, it replaces a divergent term that was a total divergence on the sphere (hence integrating
to zero) if ξ was used, with a finite term that is no longer a total 2d-divergence, but rather gives on
the cross-sections

− qδξ =
1

4
δ(τD̄D̄C)εS . (C.4)
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This is precisely the same contribution of sξ, as expected from the general equivalence (2.43). As a
consequence, one can do the calculation using the first line of (C.2), and obtain the correct result
without ever talking about anomalies, and instead properly taking into account the qδξ term (C.4).
This is the way the calculation is done for instance in [16], even though the contribution of the
term (C.4) is not explicitly reported.24 Notice also that the neat result of this term is to make Iξω
independent of the field-dependent extension, because (C.4) cancels the O(Ω3) term that appears
when computing δqξ, As for the second-order terms in qξ, they drop out when taking the pull-back on
a fixed u cross-section of I. The final result depends only on the zeroth and first orders of ξ, which
are field-independent.

This term is also taken into account in the formula used in [32], following [45, 61], and this is for
us the only reference in the literature where all aspects of the calculation of the BMS charges are
properly and explicitly discussed.25

Coming back to the WZ paper, there are actually two difficulties with the way the BMS calculations
are presented. The first is that since they assume δξ = 0, they write −Iξω = δqξ − iξθ. This is not too
bad, because it can be easily corrected: the effective consequence of the qδξ term in (C.2) is that one
should take the variation of qξ treating ξ as a c-number even if it is field-dependent. With this caveat
in mind, the calculations are correct. Otherwise, (94) of [1] is missing an additional finite term coming
from the O(Ω2) terms of ξ. Notice that WZ discuss the independence of (C.1) from the arbitrary part
of the extension of the asymptotic symmetry vector, below their equation (22). This independence
is taken there as a definition of equivalent representatives, but it can be proved explicitly as done in
[34], Lemma 5.2. The proof is given there only for field-independent higher-order extensions, but can
be trivially generalized to our case if δqξ is replaced by δqξ − qδξ. Or alternatively, with the caveat
that ξ is always a c-number for δ. This way of understanding the action of δ and the RHS of Iξω for
field-dependent diffeomorphisms was made more explicit shortly after in [62]. We suppose that this
is the approach taken also in [34], even though it is nowhere explicitly stated, otherwise some of their
calculations are missing intermediate terms that cancel out in the end result. We remark that having
extended the proof of independence from higher-order extensions to the field-dependent case, one can
also compute the RHS of (C.1) ignoring such terms, instead of computing them and see that they
cancel out. This means in particular ignoring the qδξ term altogether. This provides another way of
interpreting the results of of [1, 34] as correct. With these caveats in mind, [34] is a very clear and
explicit paper, and has the further advantage of presenting the calculations in two different gauges as
well as in covariant language.

The second difficulty of the WZ paper concerns the boost charges. Inspection of (B.1) shows that
these get a contribution from the vertical part, and therefore are not generated purely by a vector
tangential to the cross-section. In other words, restricting ξ to be tangential is a stronger condition
than setting the super-translation parameter to zero. Nonetheless, Wald and Zoupas tried to recover
all Lorentz charges, rotations as well as boosts, from a purely tangential vector. The interest in doing
so is possibly that for a field-independent and purely tangential vector, the Hamiltonian generator is
integrable since the pull-back of iξθ vanishes, and one does not need any prescription. The result is
the Komar formula, which they knew gives the Dray-Streubel charges for angular momentum but not
for boosts, unless the extension is chosen to satisfy the Geroch-Winicour condition. So what Wald
and Zoupas set up to do is to prove that the variation of the Komar formula is unchanged if the
Geroch-Winicour condition is imposed, because then they can claim that the Dray-Streubel charges

24We thank Adrien Fiorucci for sharing his calculations.
25Mind however that [32] does not start from −Iξω but adds to it a term proportional to the Killing equation, see e.g.

(9.10) in [57]. This additional term has vanishing limit to I.
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are recovered when they further impose the condition that all charges vanish in Minkowski spacetime.
This is arguably a more tortuous path than straightforwardly including the vertical part of the vector
in the boost contribution, which is the reason the calculation works no matter what extension is taken.

The same result of [32] then appeared again in [33]. Both papers use the Tamburino-Winicour
extension described above. However [33] claims that the result matches Dray-Streubel because the
Geroch-Winicour condition ∇µξµ = 0 can be relaxed to ∇µξµ = O(Ω2), which is satisfied by the
Tamburino-Winicour extension that they use. This argument is wrong in our opinion, because the
Tamburino-Winicour extension precisely requires the linkage term in order to reproduce the right
boost charges [13]. The reason why [33] gets the right charges is for us not that the linkage is not
needed because of the chosen extension, but because of the correct inclusion of the vertical term, just
as in [32].

As a final comment, notice that (C.4) shows that Iδξθ 6= 0 for the Einstein-Hilbert bare potential,
by consistency with the Noether theorem (2.14) with ξ replaced by δξ. To verify this explicitly
some care is needed, because δξ is not a symmetry vector.26 In particular, δδξ does not exist on the
asymptotic phase space. Instead, we can use the general formula (2.44) and take the limit to infinity.
Since δξ = O(Ω2), the last two terms vanish and we find

lim
r→∞

Iδξθ
←

= −δ∆ξb = −dδsξ. (C.5)

This result together with qδξ = −δsξ proves the consistency of (C.4) with Noether’s theorem.

D Anomalies and first-order extensions of symmetry vector fields

In Appendix A we showed that the case of future null infinity differs from a finite distance null
hypersurface because there are two sources of anomalies. We point out that this difference is encoded
also at the level of the asymptotic Killing vectors, if one looks at the first-order extension away from
the boundary. For a null-hypersurface at finite distance, located say at r = 0, we have [2]

ξ = τ∂u + Y A∂A − rτ̇∂r +O(r2). (D.1)

At future null infinity we have (B.1), which we report here for convenience of comparison:

ξ = τ∂u + Y A∂A + Ω(τ̇ ∂Ω − ∂Aτ∂A) +O(Ω2) (D.2)

In both cases the first-order is fixed uniquely in terms of the symmetry parameters, and the freedom
to extend the symmetry vector field starts at second order. We see that the first-order extensions
contain respectively one and two terms, and these are the seeds of the anomalous transformations: τ̇
at a finite distance, whereas on I we have both the density-weights τ̇ as well as the inhomogeneous
transformations that go like ∂Aτ .

Another difference concerns the fact that field-dependent extensions of the diffeomorphisms don’t
matter in computing the charges at finite distance, but matter at I. This is because the Komar
formula depends on first derivatives of ξ, which are field-independent at finite distance, but involve
higher orders at I, which see the field-dependence.

26It vanishes on I, and the Tambourino-Winicour extension of the trivial vector on I vanishes everywhere, unlike δξ.
The latter is more akin to the difference between two different bulk representatives of the same asymptotic Killing vector.
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E Tetrad variables

There are three useful remarks to make if one uses tetrad variables. First, the bare symplectic potential
differs from the Einstein-Hilbert one by an exact 3-form [56, 57]. Second, if one fixes the same physical
θ and boundary Lagrangian, the improved Noether charge is the same [63]. Furthermore, the DPS
exact 3-form is anomaly-free, therefore one can use the same covariant boundary Lagrangian as in the
metric case to evaluate the Wald-Zoupas prescription for the BMS charges.

The bare symplectic potential given by the Einstein-Hilbert Lagrangian differs from the tetrad one
by an exact 3-form [56, 57],

θ = θe + dαDPS, αDPS = ?(eI ∧ δeI). (E.1)

As a consequence, the bare Noether charges computed without adding any boundary Lagrangian are
also different, and we have

qξ = qeξ + Iξα
DPS, (E.2)

where qξ is Komar, and qeξ = 1
2εIJKLe

I ∧ eJ iξωKL. The improved Noether charges can be made to
coincide if one chooses the boundary Lagrangian ` and θ′ to match the metric choices, as pointed out
in [63]:

qe′ξ = qeξ + iξ`− Iξϑe = qξ + iξ`− Iξϑ = q′ξ. (E.3)

This is a perfect example of the value of working with the improved Noether charge, ambiguities such
as picking a representative of the equivalence class become irrelevant once attention is switched to the
physically preferred symplectic potential.27

Both θe and αDPS are anomaly-free. Furthermore, αDPS becomes field-space-exact at I,

dα
←

DPS = δ(DU +
1

8
CN). (E.4)

Therefore condition 0 of the WZ prescription is satisfied, with

θe
←

= −
(
δ(2M + 2DŪ) +

1

2
NABδC

AB
)
εI . (E.5)

Taking the same θ̄ as before, we have

be =
(

2M + 2DŪ +
1

2
ρC
)
εI . (E.6)

The anomaly of this boundary Lagrangian can be computed as shown before and gives twice the metric
one, ∆ξb

e = dseξ = 2dsξ with sξ given by (B.20). On the one hand, this is the right result to get the
correct WZ charge, since using the results of [9],

qeξ + iξb
e =

(
τ(4M +DŪ) + 2Y P̄

)
εS , qeξ + iξb

e + 2sξ =
(
4τM + 2Y P̄

)
εS . (E.7)

27When the authors of [5] write the table of different corner symmetry algebras associated with the ADM, EH, EC and
ECH Lagrangians, they are looking at the bare Noether charges qξ associated with the bare symplectic potential and no
boundary Lagrangian, as selected by the homotopy prescription. Should they switch to the improved Noether charges
q′ξ selected in each case by the same θ′ and the same `, they would of course obtain the same algebra in each case.
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On the other hand, this means that the corner shift needed to get this result from an improved Noether
charge is also twice the metric one,

ce = 2c = −4β̄εS =
1

8
C2εS , (E.8)

`e = be + dce =
(

2M + 2DŪ +
1

4
CN +

1

2
ρC
)
εI , ∆ξ`

e = 0. (E.9)

Notice that this anomaly-free boundary Lagrangian differs from the metric one (3.14) by the anomaly-
free corner term (B.23). It thus belong to the same anomaly-free class, and can indeed be recognized
as (3.16) with x = 1. That it belongs to the same family of anomaly-free boundary Lagrangians was
to be expected, since ∆ξα

DPS = 0.
In the same anomaly-free class of tetrad boundary Lagrangians we find, taking x = −1,

`BMSW =
(

2M − 1

4
CN +

1

2
ρC
)
εI , (E.10)

which is the one used in [9]. Those results are thus perfectly compatible with the ones here presented,
and the novelty is that we now know how to identify this boundary Lagrangian a priori, without
having to deduce it from already knowing the WZ charges.

As a final remark, notice that there is no incompatibility between the fact that (B.23) and (E.4)
are both anomaly-free in spite of having different relative factors, because [∆ξ, δ] = −∆δξ 6= 0. This
calculation cannot however be done explicitly without providing a definition for δδξ, which in turns
requires an extension of be.
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