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Abstract

Non-singular black holes models can be described by modified classical equations motivated by loop

quantum gravity. We investigate what happens when the sine function typically used in the modi-

fication is replaced by an arbitrary bounded function, a generalization meant to study the effect of

ambiguities such as the choice of representation of the holonomy. A number of features can be de-

termined without committing to a specific choice of functions. We find generic singularity resolution.

The presence and number of horizons is determined by global features of the function regularizing the

angular components of the connection, and the presence and number of bounces by global features of

the function regularizing the time component. The trapping or anti-trapping nature of regions inside

horizons depends on the relative location with respect to eventual bounces. We use these results to

comment on some of the ambiguities of polymer black hole models.
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1 Introduction

An emblematic problem in quantum gravity is to understand the fate of the black hole singularity

predicted by general relativity. Aside from extremely simplified 2d models, see e.g. [1, 2], explicit

calculations are not within current reach, and this motivates the investigation of minisuperspace

models in order to shed useful light on qualitative aspects of the process. In loop quantum gravity

(LQG), quantum minisuperspace models are constructed using the key input from the full the-

ory that the fundamental quantum operators are holonomies of the Ashtekar-Barbero connection.

These are defined in a representation which lacks weak-continuity, thus making the models unitary

inequivalent to those based on metric variables. A compelling result of this approach is the generic

singularity-avoidance [3], with the minisuperspace dynamics predicting a bounce occurring at a

critical energy or curvature density. This is valid in both cosmological [3, 4] and black hole [5–9]

models. In the latter case, this type of investigations first started in [10,11].

One key aspect of the construction is that the resulting quantum corrections can be equally

predicted using an effective classical dynamics, where the original Hamiltonian is modified in a

precise way [12]. This step is referred to as polymerization, and allows one a simple description

of the system, and an independent exploration of this type of models. In spite of the compelling

singularity resolutions, these models are only a first step towards a clear understanding of the

non-perturbative quantum gravitational effects. To move forward, it is important to address their

limitations and shortcomings. For instance, the models rely on a specific foliation, and restoring

foliation-independence is far from accomplished [13–16]. The choice of polymerization scheme is not

identified a priori from fundamental principles or deductions from the full theory; but rather recon-

structed a posteriori requiring a good semiclassical limit at large scales, and there is no uniqueness

about the procedure used [17]. We will not have much to say about the first issue, but we would

like to focus on the following aspect about the second. The function used in the scheme is typically
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picked to be a sine. This is supposed to represent working with the holonomy in the fundamental

representation in full loop quantum gravity. However it has been known for a while that there

may be quantization ambiguities associated with this choice already in the full theory [18].1 These

ambiguities affect models like [19] in which the polymerization scheme is derived from the full the-

ory taking expectation values with respect to symmetry-reduced coherent states. The effect of such

ambiguities where recently analysed in the context of quantum cosmology in [17], showing that they

strongly affect the physics; here, we investigate how changes in the choice of polymer function affect

static and spherically symmetric black hole models.

To that end, we focus on a specific polymer black hole model, the one proposed in [8] that we

refer to as the BMM (Bodendorfer, Mele, Münch) model from here on. The model is a spherically

symmetric black hole, with a four-dimensional phase space. The two configuration variables corre-

spond to a time and an angular component of the metric. The model has the limitations mentioned

above: It is based on a fixed foliation, and uses a specific choice of variables to be parametrized,

identified because they realise a so-called µ̄-scheme on the Ashtekar-Barbero variables. We will

not touch these choices. We will instead investigate what happens if the sine functions used in the

polymerization [8] are replaced by arbitrary functions. We expect that our techniques and the impli-

cations of our results can be applied to models of polymer quantum black holes such as [7,8,22–41]

other than BMM.

At first sight, it may seem better to just consider explicit alternatives, e.g. changing and/or

superimposing frequencies and phase shifts, in order to mimic the use of different irreducible rep-

resentations of the holonomies and of different regularizing paths. But it turns out that many

properties of the polymer black holes are accessible without making an explicit choice for these

functions. This remarkable fact is due to the simplicity of the model, in particular the fact that one

of the two Dirac observables remains simple even after polymerization. The second does not, and

it makes some of ours formulas implicit, without however hindering our considerations.

The two polymer functions that we keep arbitrary correspond to respectively the time and

angular component of the connection. We show first of all that the configuration variables of [8]

produce a µ̄-scheme for any choice of polymer functions. Requiring the correct semiclassical limit

at spatial infinity imposes a condition on the first derivatives of both polymer functions, but also

a condition on the second derivative of the angular polymer function. Regularity of both functions

avoids singularities, and replaces them with bounces. The number of bounces turns out to be

determined by the angular function alone; whereas the number of horizons is determined by the

time function alone. Their relative location depends on both the chosen functions and the solution

considered. We provide a general graphical analysis to deduce these properties without committing

to specific choices, but our analysis and formulas can be of help also in studying a specific model

that one may be interested in.

Our results shows that there is a valuable richness in the class of polymer black holes, and that

considerable mathematical control can be kept also relaxing the standard choice of sine polymer

functions. We hope that some of this control can be used to address some of the limitations and

1It has been recently pointed out in [20] that some of the ambiguities can be reduced by a new quantization of the

Hamiltonian constraint of the full theory; nonetheless, ambiguities of the type analysed here remain in the part of the

Hamiltonian constraint responsible for non-trivial propagation [21].
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help constructing more robust models.

We use units G = c = 1.

2 From the classical black hole to a polymerized black hole

We will review the classical Schwarzschild solution, based on the Hamiltonian formulation, in order

to introduce the notations commonly used in the literature. More precisely, after giving the general

expression of the line element compatible with the symmetry considered (i.e. spherical symmetry

and staticity) in term of the geometrodynamic variables. Then we will recall how the problem can

be reformulated in terms of Ashtekar-Barbero variables and how this reformulation can lead to a

new convenient set of variables, the (v, P ) variables. From there, we will quickly recall the general

ideas of the BMM polymerisation model which will be useful in the next part. We will highlight

the main result of this model like the resolution of the singularity but we will also insist on the

limitation of this model caused by the particular choices on which it is built.

2.1 Minisuperspace black hole model

We consider the following spherically symmetric and static ansatz

ds2 = −ā(r)dt2 + n̄(r)

ā(r)
dr2 + b̄2(r)dΩ2. (2.1)

The spatial diffeo constraint vanishes identically, and we eliminated the shift vector via our choice

for the coordinates t, θ and ϕ. On the other hand, we have not fixed the r coordinate to be the

area radius, and there is still a non-trivial Hamiltonian constraint to be solved associated with this

reparametrization. Plugging this ansatz into the Einstein’s equations, one finds

n̄(r) = c21
˙̄b(r)2, ā(r) = c21

(
1− c2

b(r)

)
. (2.2)

The solution space is thus parametrized by two constants of integration, and n̄(r) is arbitrary.

However only one of the constants has a geometrical interpretation, since c1 can always be reabsorbed

by rescaling the coordinate t. The metric in this form can be recognized to be the Schwarzschild

solution, with

M =
c2
2
, (2.3)

asymptotic unit proper time τ := c1t and area radius b. We can freely choose a constant n̄(r) ≡ c21,

and this will make r the area radius. In other words, one constant of integration is the black hole’s

mass, another is a rescaling of the asymptotic time, and n̄ is the freedom of r-reparametrizations.

The symmetry reduction makes the Einstein-Hilbert action, as well as the ensuing Poisson

structure, divergent on a open topology. In the following, we will study the canonical structure of

the foliation by hypersurfaces of constant r. This is because r is a time-like coordinate inside the

horizon, and we are ultimately interested in the dynamics near the singularity. To regularize the

action, one introduces a fiducial cell for the coordinates x := (t, θ, ϕ) given by C := [0, ℓ0]×S2. The
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physical size L0 of the fiducial cell is r-dependent. Taking for instance spatial infinity as reference,

we have

L0 :=

∫ ℓ0

0

√
|gtt(r = ∞)|dt = ℓ0|c1| (2.4)

on-shell. Then,

S[C] =
1

16π

∫
dr

∫
C
d3x

√
−gR+ boundary term =

∫
dr L, (2.5)

where

L :=
ℓ0
√
n̄

2

(
˙̄a ˙̄bb̄

n̄
+
ā ˙̄b2

n̄
+ 1

)
. (2.6)

The boundary term to be added to the action is the Gibbons-Hawking-York term, which takes

care of eliminating derivatives on lapse and shift. For the interested reader, details are reported in

Appendix A. It is convenient to reabsorb the coordinate length ℓ0 changing variables to:

√
a := ℓ0

√
ā, b := b̄,

√
n := ℓ0

√
n̄, (2.7)

Notice that
√
a is the physical length of the fiducial cell in the t direction as a function of r. We

end up with the following Lagrangian,

L(a, b, n) =

√
n

2

(
ȧḃb

n
+
aḃ2

n
+ 1

)
(2.8)

which will give a well-defined phase space.

At this point the spherical black hole minisuperspace model is effectively being described by a

point-particle mechanical system.2

The solution space is the same as before, in particular

a = ℓ20c
2
1

(
1− c2

b

)
. (2.9)

However, there is an important difference about the physical interpretation of the solutions: in the

point-particle description we have no longer access to the coordinate t, hence it is not possible to

reabsorb c1 with a time diffeomorphism. In other words, fiducial cells of different physical size (2.4)

correspond to physically distinct points in the solution space.

Turning c1 from an irrelevant constant to a physical one is clearly an artefact of the regulariza-

tion, but it is also natural in the following sense. In the full space space, the Schwarzschild solution

is a one-parameter trajectory. The smallest phase space in which this family can be embedded is 2-

dimensional, hence we expect a second variable to be present and to be conjugated to the mass, and

c1 plays this role. The role of the regularization in defining this two-dimensional phase space can

2And it is part of a class of minisuperspace models described by the motion of point particles in a given supermetric,

which in this case reads

G =
2
√
n

b

(
−a/b 1

1 0

)
.

See e.g. [42] for a description in these terms of generic spherical black holes and Bianchi models.
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also be nicely understood looking at the symplectic potential obtained from the on-shell variation

of (2.5), which in the area-radius gauge gives

θ = −1

2
ℓ0 (c1dc2 + 2c2dc1 − 2rdc1) , (2.10)

with symplectic structure

ω =
ℓ0
2
dc1 ∧ dc2. (2.11)

Removing the regulator taking ℓ0 → ∞ gives a divergent symplectic structure. One can also see

that the commutation relation {c1, c2} = 2/ℓ0 has a vanishing limit, and interpret this as a sign

that one of the coordinates loses its dynamical role, c1 in this case, and can be reabsorbed into the

redefinition of asymptotic time .3

We now review the Hamiltonian of the system associated with the foliation by r =constant

hypersurfaces. The signature of this foliation is not fixed, being time-like outside the horizon,

null at the horizon, and space-like inside. No issues arise from this fact, thanks to the symmetry

reduction the dynamics is well-defined for all values of r. The lapse function in the interior is

N(r) =

√
n(r)√
−a(r)

. (2.12)

Inspection of the Lagrangian shows that one can freely trade between N and n as Lagrange multi-

pliers. With this choice of time, the conjugate momenta with respect to this global time parameter

are

pa =
∂L

∂ȧ
=

bḃ

2
√
n
, pb =

∂L

∂ḃ
=

2aḃ+ ȧb

2
√
n

, pn =
∂L

∂ṅ
= 0. (2.13)

The last equation gives a primary constraint, that should be added to the Legendre transform of

the Lagrangian. Upon doing so, one finds the primary Hamiltonian

H(n) =
√
n

(
2papb
b

− 2ap2a
b2

− 1

2

)
+ λpn, (2.14)

where λ is a Lagrange multiplier. Stabilizing the primary constraint, i.e. imposing ṗn ≈ 0, leads to

the secondary constraint

ψ :=
2papb
b

− 2ap2a
b2

− 1

2
≈ 0. (2.15)

This is the Hamiltonian constraint generating r-diffeomorphisms. It is automatically stable, and no

further constraints arise in the analysis. We thus obtain a 2-dimensional physical phase space, in

agreement with the two-parameter family of solutions (2.2). Moreover ṅ = λ, hence we can treat√
n as a Lagrange multiplier, remove the pair (n, pn) from the phase space and set λ = 0 without

any loss of generality. Then we have a 4d kinematical phase space with Hamiltonian constraint

H(n) =
√
nψ. We will use this formulation from now on.

3This is the same observation already made at the quantum level in [43].
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Consider now the following canonical transformation [8],

v1 :=
2

3
b3, P1 :=

pb
2b2

− apa
b3

=
ȧ

4
√
nb
, (2.16a)

v2 := 2ab2, P2 :=
pa
2b2

=
ḃ

4
√
nb
, (2.16b)

{vi, Pj} = δij . (2.16c)

It is the generalization to the black hole model of a similar transformation used in loop quantum

cosmology, and it will be relevant to construct the effective quantum model below. In terms of the

new variables the Hamiltonian constraints becomes

H(n) =
√
n

(
12v1P1P2 + 4v2P

2
2 − 1

2

)
, (2.17)

and generates the dynamical equations

v̇1 = 12
√
nv1P2, (2.18a)

v̇2 = 12
√
nv1P1 + 8

√
nv2P2, (2.18b)

Ṗ1 = −12
√
nP1P2, (2.18c)

Ṗ2 = −4
√
nP 2

2 . (2.18d)

Notice that the equations for Pi are decoupled. It is also possible to easily identify two constants

of motion. The first can be deduced by inspection of the Hamiltonian, and it is given by

K1 = v1P1. (2.19)

The second can be found taking the ratio of (2.18c) and (2.18d) and integrating, giving

K2 = ln |P1| − 3 ln |P2|. (2.20)

In performing the integration we fix the integration constants so that the two contributions to K2

vanish when P1 = 1 and P2 = 1. The two constants of motion turn out to be canonically conjugated

functions, {K1,K2} = 1, and commute with the Hamiltonian constraint by construction. Therefore

they provide two Dirac observables for the system.

It is instructive to derive the Schwarzschild solution from this formulation of the dynamics,

because it will help comparison with the polymerized model below. To solve the equations, let us

fix its gauge freedom imposing n = no constant, Then, (2.18d) is solved by

P2(r) =
1

4
√
nor

, (2.21)

up to a constant of integration that can always be absorbed by a shift of the r coordinate. This

solution is valid provided r ̸= 0. We restrict the domain to r > 0, hence b > 0. Then, using (2.20)

directly leads to

P1(r) = sign(P1)
eK2

(4
√
n0r)3

. (2.22)
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From this, (2.19), and the fact that v1 =
2
3b

3 > 0, we derive that

P1(r) =
sign(K1)e

K2

(4
√
n0r)3

and v1(r) = (4
√
no)

3|K1|e−K2r3, (2.23)

Finally, from the vanishing of the Hamiltonian constraint (2.17) we derive that

v2(r) = 4
√
no

(
1

2

√
no −

3K1

r

)
r2. (2.24)

This general solution is of course equivalent to (2.2) found earlier. To see this explicitly, we can

reconstruct the metric. Let us do so in terms of the unbarred quantities (2.7), in terms of which it

reads

ds2 = −a(r)
ℓ20

dt2 +
n(r)

a(r)
dr2 + b(r)2 dΩ2. (2.25)

Inverting (2.16), we obtain

a =
e2K2/3

16

(
2

3|K1|

)2/3
(
1−

24
(
3
2

)1/3
K1|K1|1/3e−K2/3

b

)
, (2.26)

b = 4
√
no

(
3|K1|
2

)1/3

e−K2/3r. (2.27)

where

M = 25/334/3K1|K1|1/3e−K2/3. (2.28)

We see that the metric describes the Schwarzschild solution with mass M , area radius b, and

asymptotic time

tS :=
eK2/3

4ℓ0

(
2

3|K1|

)1/3

t. (2.29)

The solution space is spanned by all values Ki ∈ R2. Each point in this space describes a

Schwarzschild black hole (with given mass—positive or negative—asymptotic time and area radius),

except the line K1 = 0 which describes a degenerate spacetime. The zero-mass limit corresponds

to the limit Ki → (0±,−∞).

The last equation (2.27) shows that if one wants to fix the gauge b = r, then the constant n0
has to be chosen in a phase-space dependent manner (note that we had already stumbled upon this

fact below equation (2.3))4. For convenience, we also report the relation between the Ki’s and the

ci’s,

K1 =
ℓ0c1c2

6
K2 = log

∣∣16ℓ40c41c2∣∣ = log
∣∣16ℓ40c1c2∣∣+ 3 log |c1|. (2.30)

4There is a subtlety about n0, not relevant for the following, but useful to make contact with a discussion made

in [8]. Under a change of fiducial cell ℓ0 7→ αℓ0, the function n rescales as n 7→ α2n. Under a time diffeomorphism

t 7→ t′(t), it is invariant—this follows from its definition

√
n := ℓ0

√
n̄ =

∫ ℓ0

0

√
−gttgrrdt

which makes it akin to a volume quantity. Therefore, also the constant n0 has to be chosen in an ℓ0-dependent way

in order to preserve this properties.
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From these relations we recover the results of the previous section, in particular the expression (2.3)

for the mass, and c1 being the only parameter that enters the rescaling of the asymptotic time.

Let us add a few remarks useful in the following.

• On the interpretation of the Pi variables. Using the on-shell values (2.21) and (2.23) and the

relation between b and r (2.27), one finds [8]

P1(b) =
M

b3

(
2

3|K1|

)1/3 eK2/3

8
, P2(b) =

1

b

(
3|K1|
2

)1/3

e−K2/3. (2.31)

Thus P1 is proportional to the (square root of the) Kretschmann scalar, and P2 to the inverse

area radius of the Schwarzschild black hole.

• Any phase space function that is monotonic in r will be a good clock for our Hamiltonian evo-

lution. From the general solution, we see that all variables except v2 are monotonic functions

of r. Therefore, all of them provide good internal clocks. If we choose P2 in particular, we

can rewrite the metric in a lapse-independent way,

ds2 =− 1

16

(
2eK2

3K1

)2/3

(1− 24K1P2) dτ
2

+

(
3K1λ1
2λ1P1

)2/3

(1− 24K1P2)
−1 λ2

2 dP2
2 +

(
3K1λ1
2λ1P1

)2/3

dΩ2, (2.32)

τ :=
t

ℓ0
(2.33)

This is the form of the metric that we will write below for the polymerized model.

2.2 Ashtekar-Barbero variables

The first step towards polymerisation is a canonical transformation to Ashtekar-Barbero variables,

Ai
a := Γi

a + γKi
a, Ea

i =
1

2
ϵijkϵ

abcejbe
k
c , (2.34)

where γ is the Immirzi parameter. For the interior of a spherically symmetric and static spacetime

we can take them to be [7, 27,32]5

Ai
aτidx

a =
c(r)

ℓ0
τ3dt+ d(r)τ2dθ − d(r)τ1 sin θdϕ+ τ3 cos θdϕ, (2.35)

Ea
i τ

i∂a = pc(r)τ3 sin θ∂t +
pd(r)

ℓ0
τ2 sin θ∂θ −

pd(r)

ℓ0
τ1∂ϕ, (2.36)

5With the renaming b(r) 7→ d(r) to avoid confusion with our b(r) defined in (2.1) and (2.7).
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where τi = (−i/2)σi and σi are the Pauli matrices. The map to the previous variables is given by

sign(pc) c = −2γ
(pb
2b

− apa
b2

)
= −2γP1

(
3v1
2

)1/3

, (2.37a)

sign(pd) d = 2γ

√
−apa
b

= 4γP2

√
−v2

2
, (2.37b)

sign(pc) pc = b2 =

(
3v1
2

)2/3

, (2.37c)

sign(pd) pd =
√
−ab =

√
−v2

2
. (2.37d)

The overall sign ambiguity is the usual global parity freedom in the triad, whereas the relative sign

ambiguity is a consequence of the symmetry reduction, and cannot be eliminated [?]. This map is

a canonical transformation, with non vanishing Poisson brackets given by

{c, pc} = 2γ, {d, pd} = γ, (2.38a)

and Hamiltonian constraint

H(N) = − Nd

2γ2 sign(pc)
√
|pc|

(
2cpc +

(
d+

γ2

d

)
pd

)
. (2.39)

As before lapse is related to our choice of Lagrange multiplier n by (2.12), a redefinition which does

not affect the equations of motion.6

2.3 BMM polymerisation

The BMM model [8] is based on the (vi, Pi) phase space variables we reviewed above. There are two

key observations made in [8] that motivate the use of these variables. The first is that as we observed

above, P1 is related to the Kretschmann scalar and P2 to the inverse area radius. Hence we could

intuitively expect that replacing these variables by bounded functions should remove the classical

divergences of the dynamics. The second is that polymerizing these variables with a non-dynamical

regulator induces a µ̄-scheme on the Ashtekar-Barbero variables, compatible with the Hamiltonian.

Hence these variables are the analogue of the (v, b) variables in loop quantum cosmology. To see

this, consider the replacement

Pi →
sin(λiPi)

λi
, i = 1, 2, (2.40)

where λ1 and λ2 are a priori independent polymerisation scales (i.e. the scale at which the

modification of the dynamic will be important). We take them to be constants, and of Planckian

order. From (2.37) we have that

λ1P1 = δcc, δc := −sign(pc)
λ1

2γ
√
|pc|

, (2.41)

λ2P2 = δdd, δd := sign(pd)
λ2

4γ|pd|
. (2.42)

6Hamilton’s equations are modified by the addition of a term proportional to the constraint and thus zero on-shell.
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Hence the replacement (2.40) is equivalent to

c→ sin(δcc)

δc
, d→ sin(δdd)

δdd
, (2.43)

where the quantum parameters δc and δd have a phase-space dependance given by (2.41). This phase-

space dependence can be used to introduce the area-gap of the full theory, thus defining a µ̄-scheme

for the Ashtekar-Barbero variables. The replacement (2.40) leads to the modified Hamiltonian

constraint

Heff(n) =
√
nHeff , Heff = 12v1

sin(λ1P1)

λ1

sin(λ2P2)

λ2
+ 4v2

sin(λ2P2)
2

λ22
− 1

2
≈ 0. (2.44)

On the other hand, the polymerization of the Ashtekar-Barbero Hamiltonian (2.39) under (2.43)

gives

Heff(N) = − N sin (δdd)

δd2γ2 sign(pc)
√
|pc|

(
2
sin (δcc)

δc
pc +

(
sin (δdd)

δd
+

γ2δd
sin (δdd)

)
pd

)
.

Inserting (2.41), (2.37) and (2.12) in the latter recovers the former, therefore the polymerization

(2.40) is consistent with the µ̄-scheme also at the dynamical level.

The dynamics generated by the polymerized Hamiltonian is expected to capture the mean field

quantum corrections [12] and it is thus referred to as effective dynamics. This effective dynamics is

obtained from (2.44) and the original Poisson brackets (2.16c), giving

v̇1 = 12
√
nv1 cos(λ1P1)

sin(λ2P2)

λ2
, (2.45a)

v̇2 = 12
√
nv1

sin(λ1P1)

λ1
cos(λ2P2) + 8

√
nv2

sin(λ2P2)

λ2
cos(λ2P2) , (2.45b)

Ṗ1 = −12
√
n
sin(λ1P1)

λ1

sin(λ2P2)

λ2
, (2.45c)

Ṗ2 = −4
√
n
sin(λ2P2)

2

λ22
, (2.45d)

Heff = 3v1
sin(λ1P1)

λ1

sin(λ2P2)

λ2
+ v2

sin(λ2P2)
2

λ22
− 1

8
= 0 . (2.45e)

It was shown in [8] that the equations can be solved analytically, and the following properties ensue:

1. The singularity at b = 0 is removed.

2. There are two asymptotic spacetime regions, both approaching a Schwarzschild geometry.

3. There is a space-like surface at some bmin ̸= 0 inside the horizon, which is the a global

minimum of the area radius b and corresponds to a black-to-white hole transition.

4. There are two independent Dirac observables, which can be physically interpreted as the

masses of the separate asymptotic Schwarzschild regions, namely of the black and of the

white hole masses respectively.

5. The horizon is slightly smaller than the classical result (for black hole masses large w.r.t. the

polymerisation scales).
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6. For black hole masses comparable or smaller of the polymerisation scales, there are large

quantum effects at the horizon scale.

7. There is an upper bound to the curvature, as measured for instance by the Kretschmann

scalar, and this value is obtained at the transition surface and depends on the black holes

mass (as well as the white hole mass), unlike in the prior polymerization scheme of [7] or in

other models of non-singular black hole [44]

This model has the nice feature that shows how an LQG–inspired quantization can lead to a resolu-

tion of the singularity and its explicit replacement by a (non-necessarily symmetric) black-hole-to-

white-hole transition, a scenario suggested in [45]. A possible shortcoming of the model is that the

scale at which quantum effects become large depends on the parameters, and a certain restriction

on the masses is necessary if one wants to confine this scale to inside the horizon.7 On the other

hand, the model is based on several arbitrary choices:

(i) A specific foliation of the spacetime has been fixed, given by the level sets of the r coordinate

in Schwarzschild coordinates, and it has been shown that different foliations can give different

physical results [46].

(ii) A specific µ̄-scheme, based on the polymerisation of the two Pi variables, neither more nor

less.

(iii) The polymerisation function for both variables is a sine function, in analogy with LQC models.

These choices are common, and indeed motivated by, the literature (see e.g. [7,23–25,27]). However,

more general recent proposals exist, see e.g. [32]. Testing the robustness of the results with different

choices, and conversely identifying choices that reduce the shortcomings, is crucial to move forward

in the study of such models. In the rest of this paper we focus on (iii), and study the effect of

changing the polymerisation function.

3 Generalised polymerisation

3.1 Presentation of the setup

To preserve the LQG-inspired idea of a polymer quantisation, it is sufficient to restrict the poly-

merisation function to a generic function (for a general discussion of this ambiguity see [18], for its

study in quantum cosmology see [17]). Consequently, we consider a generic replacement

Pi →
fi(λiPi)

λi
, (3.1)

where f1 and f2 are real, bounded, C1 and periodic functions of periodicity 2π, and such that

fi(x) = x+ o(x), that is

fi(0) = 0, (3.2a)

f ′i(0) = 1, (3.2b)

7This situation arises in other proposals as well [29]. An attempt to improve this situation has been made in [29,30].
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with the notation f ′i = dfi(λiPi)
d(λiPi)

. Below in Section 5.1 we will prove that these conditions are

necessary in order to recover the Schwarzschild solution in the large distance limit, but not sufficient:

one further needs f ′′2 (0) = 0. This additional condition however does not affect qualitatively the

short distance structure, hence we will only introduce it when needed explicitly. Following this

replacement, the new polymerized Hamiltonian is given by

Heff =
√
nHeff , Heff := 12v1

f1(λ1P1)

λ1

f2(λ2P2)

λ2
+ 4v2

f22 (λ2P2)

λ22
− 1

2
≈ 0, (3.3)

In the limit λiPi → 0 we recover the classical Hamiltonian, thanks to the required linear behaviour

around the origin.

The polymerized dynamical equations are

v̇1 = 12
√
nv1f

′
1

f2
λ2
, (3.4a)

v̇2 = 12
√
nv1

f1
λ1
f ′2 + 8

√
nv2

f2
λ2
f ′2, (3.4b)

Ṗ1 = −12
√
n
f1
λ1

f2
λ2
, (3.4c)

Ṗ2 = −4
√
n
f22
λ22
, (3.4d)

Heff = 3v1
f1
λ1

f2
λ2

+ v2
f22
λ22

− 1

8
≈ 0. (3.4e)

They generalize (2.45) in a straightforward way. Remarkably, it is possible to solve these equations

in full generality without specifying the functions fi, even though in a partially implicit way. The

knowledge of the implicit general solution will be sufficient to describe a large number of features

of the modified spacetime generated by f1 and f2. The first step to construct this solution is to

identify the Dirac observables.

3.2 Dirac observables

Dirac observables are gauge independent quantities, namely they Poisson-commute with all the

constraints. The only constraint of our model is Heff (cfr. Eq. (3.3)), which also generates the

dynamics. Dirac observables will coincide with constants of motion, thus their identification leads

immediately to the general solution of the equations of motions. More precisely, the expressions

for the Dirac observables plus the constraints provide sufficient implicit relations to determine all

phase space variables in terms of a chosen internal clock.

As the kinematical phase space is four-dimensional and we have one first class constraint, there

are at most two independent Dirac observables. These were referred to as Ki in the non-polymerized

case, and we keep the same notation. They can be identified proceeding as in the non-polymerized

case. The first can be found by inspection of the Hamiltonian constraint (3.3) to be

K1 := v1
f1
λ1
. (3.5)

Recall further, that v1 is closely related to the area radius b (cfr. Eq. (2.16)). Therefore, this Dirac

observable will be useful to analyse the area radius as a function of P1 and to make statements
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about possible bounces and black-to-white hole transitions (see Sec. 4.2 below). For the second

Dirac observable again we divide (3.4c) by (3.4d) and integrate, obtaining as before

K2 (P1, P2) = λ1

∫ P1

1

dP1

f1(λ1P1)
− 3λ2

∫ P2

1

dP2

f2(λ2P2)
. (3.6)

This constant of motion is well-defined for any choice of polymer function. However its explicit form

can only be accessed once the functions are specified. The choice of lower bound in the integrals

is made once and for all and it is needed to fix the freedom of constant shifts of Dirac observables.

Here we picked 1 in agreement with the choice made in (2.20).

3.3 General expression of the metric

To solve the dynamics in terms of the Dirac observables, we will start by noticing that the Hamil-

tonian constraint (3.3) imposes that f2 can never vanish on solutions. Consequently, the equation

(3.4d) implies that P2 is a strictly decreasing function of r. It is thus a good internal clock, and

we use it to deparametrise the equations of motion,8 and rewrite the metric coefficients as a(P2)

and b(P2). Notice that with this choice the metric will be independent of the lapse, see (2.32). The

coordinate r and P2 are related via (3.4d)

dr = − λ22
4
√
nf22

dP2. (3.7)

Next, we want to determine the metric coefficients in (2.25) as functions of P2. To that end, b can

be expressed in terms of P1 using the first Dirac observable (3.5) and (2.16a), leading to

b(P1) =

(
3λ1K1

2f1

)1/3

. (3.8)

This can be turned into a function of P2 using the implicit relation P1 = P1(λ2P2,K2) determined

by picking a specific value K2 for the second Dirac observable (3.6). To make this step clear, we

will use the following notation,

f1
(
λ1P1(λ2P2,K2)

)
= g1(λ2P2,K2) . (3.9)

To determine a, we use the Hamiltonian constraint (3.3) to write

v2 =
λ22
8f22

− 3K1λ2
f2

. (3.10)

Plugging this expression in (2.16) we find

a =

(
2f1

3λ1K1

)2/3( λ22
16f22

− 3K1λ2
2f2

)
. (3.11)

8Note that this is possible at the effective level as here we have access to P2 directly. At the polymer quantum

level P2 is not available and this de-parametrisation would have to be reconsidered.
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This way all metric components are expressed in terms of the Dirac observables Ki and the internal

clock P2, and the metric (2.25) reads9

ds2 =−
(

2g1
3K1λ1

)2/3( λ2
4f2

)2(
1− 24K1f2

λ2

)
dτ2

+

(
3K1λ1
2g1

)2/3(
1− 24K1f2

λ2

)−1

λ2
2 dP2

2 +

(
3K1λ1
2g1

)2/3

dΩ2 , (3.12)

with τ = t/ℓ0 as before.

Note that the Dirac observable K1 appears explicitly in this line element, while K2 enters only

implicitly via the definition of g1, see Eq. (3.9). Once the polymer functions fi have been specified,

one can compute the integrals (3.6) and obtain P1(P2). This will make g1 explicit and thus the

metric. It is quite remarkable that one can write the metric line element for completely arbitrary

polymer functions, albeit with the limitation of an implicit function explained above. It means

that one can deduce a great deal of the properties of the models without committing to specific

choices too soon, and this is what we investigate next. As a sanity check, replacing the polymer

functions by their arguments recovers the metric (2.32), namely the Schwarzschild solution. The

polymerized metrics on the other hand are obviously not solutions of the Einstein’s equations,

and as we show in the next Section, describe spacetimes with a varying number of horizons and

bounces, depending on the polymer functions as well as the Dirac observables. A feature that

remains from the unpolymerized model is that K1 = 0 describes metrics everywhere degenerate. In

the following Section 5.1, we will show that even if the metrics do not describe a classical black hole,

the Schwarzschild metric is recovered in the large radius limit, provided the condition f ′′2 (0) = 0 is

satisfied.

In order to do so, it is convenient to express the metric using the area radius as coordinate, as

opposed to P2. However, the polymerization makes b(P2) a non-monotonic function. This is known

already for the sine functions [8], and will become clear during the analysis of (3.4) in the next

Section. The area radius coordinate will have to be independently defined in different branches. On

each of these branches, we have

ds2 = − 1

b2

(
λ2
4f2

)2(
1− 24K1f2

λ2

)
dτ2 +

1

f ′21

(
1− 24K1f2

λ2

)−1

db2 + b2 dΩ2 (3.13)

In other words, (3.12) is the maximal extension, and (3.13) the expression valid in each area radius

patch.

4 Generic features of the dynamics

In this Section we study the geometry of the polymer spacetime (3.12). We show that it is possible

to work out several features such horizons, bounces, and singularity resolution without specifying

the polymerisation functions. We start by analysing the equations of motion as a dynamical system,

in order to identify the asymptotic regions and relative locations of the spacetime features.

9Note that all factors of n dropped out, which was expected as this is a pure gauge freedom specifying the coordinate

r, which was replaced by the intrinsic clock P2.
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4.1 Evolution and fixed points

We proceed as follows. First, we eliminate the vi variables using respectivelyK1 and the Hamiltonian

constraint. We then focus on the restricted space spanned by Pi, with equations of motion (3.4c)

and (3.4d). Notice that P2 ̸= 0, otherwise the Hamiltonian constraint is violated as a consequence

of (3.2). We also exclude P1 = 0, because again from (3.2) it implies K1 = 0 and as shown earlier

these points describe degenerate metrics.

To study the restricted space of the dynamics of the Pi’s, it is convenient to fix the lapse to

√
n =

λ2
4f2

, (4.1)

because it decouples the equations of motion. This gauge choice is always accessible, as the Hamil-

tonian constraint (3.3) implies f2(λ2P2) ̸= 0 throughout the evolution. The dynamical flow is then

described by the simple vector field

V (P1, P2) =

(
Ṗ1

Ṗ2

)
=

(
−3f1/λ1
−f2/λ2

)
. (4.2)

We have already argued that f2 can never vanish on solutions, because otherwise the Hamiltonian

constraint is violated. On the other hand f1 can vanish, but if it does, K1 ≡ 0, and the motion is

then confined on points which describe only degenerate metrics. Excluding degenerate metrics, the

polymer functions can never vanish along the solutions. This key property implies that there are

no fixed points to the dynamical system, and that the Pi’s plane is partitioned into a check-board

given by the zeros of the fi’s, with the dynamics being trapped inside each square. See Fig. 1, left

panel, for an illustration. Notice that what matters is the zeros, not the period, of the fi’s. If there

are zeros before the period, one obtains an irregular check-board with some squares smaller than

others, see the right panel of the figure. Furthermore, the evolution of the Pi’s is monotonic between

the extrema allowed. This allows us to get a pretty clear qualitative picture of the dynamics. We

focus on the four squares of the check-board connected to the origin, since they are the only ones

that contain the classical regime λiPi ≪ 1. Even though the origin in itself is not an allowed

configuration, it plays the role of an asymptotic fixed point, as we now show.

Near the origin the fi’s have a linear behaviour, hence (4.2) gives sgn(Pi) = sgn(Ṗi). Not only

the evolution is monotonic, but it is also tied to the sign of Pi. Therefore if we trace it backwards

it will tend towards the origin, whichever of the 4 squares we are on. The origin must thus be a

repulsive fixed point. It is actually an asymptotic fixed point, since the point itself is excluded from

the phase space. The monotonic evolution without fixed points then forces the system to reach the

farthest corner (across the diagonal of the square) for each square, see again Fig. 1. These corners

are thus attractive asymptotic fixed points.

The above description can be completed with an explicit perturbative expansion around the

(asymptotic) fixed points. To that end, we posit

Pi(r) =
◦
P i + δPi(r), (4.3)

where
◦
P i are zeros of fi, and we Taylor-expand the polymer functions for λiδPi ≪ 1 around

◦
P i. At
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Figure 1: (a) Qualitative picture of generic dynamics. The horizontal and vertical straight lines are the zeros of f1 and

f2 respectively. The trajectories are monotonic in both variables within each square. The vertices of the check-board

are alternatively repulsive and attractive asymptotic fixed points, like the origin and the point A, or unstable points

like B. For reference, the blue dashed line is the relation in the case of the classical Schwarzschild solution. (b) Flow

generated by the vector field V with f1(x) = f2(x) = (sin(x) + sin(2x)) /3. In this example, an additional zero is

present inside one period of each polymer function, hence the check-board of confined evolution has squares smaller

than the period, and of different sizes. The (asymptotic) fixed points are marked with red dots.

leading order, (4.2) simplifies to

˙δP 1 = −3
◦
f ′1δP1, ˙δP 2 = −

◦
f ′2δP2, (4.4)

whose solutions are

δP1 =
◦
δP 1e

−3
◦
f ′
1 r, δP2 =

◦
δP 2e

−
◦
f ′
2 r. (4.5)

From conditions (3.2b) we conclude that the exponents are negative, meaning that the classical

regime is reached for r → ∞. Conversely, the farthest corner must have negative derivatives

(because it is the next zero of the function), hence it is reached for r → −∞. The remaining two

corners of each square are unstable fixed points with one positive and one negative derivative.

This analysis can also be used to show that the area radius is not a monotonic function of

P2, and therefore not of r. In fact, we see from (3.8), and the periodicity of f1, that b is not a

monotonic function of P1, and the monotonicity of the Pi as a function of r implies that also P1(P2)

is monotonic. Therefore, the inversion P2(b) can only be done for each of the branches, as illustrated

in Fig. 2.

4.2 Bounces and singularity resolution

The notion of bounce can be visualized if we keep in mind the parallel between a black hole and

a Kantowski-Sachs cosmological spacetime: a bounce is associated to a local minimum of the area
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Figure 2: Plot of the area radius as a function of λ2P2. Different colours are used to separate the branches where the

function b(λ2P2) is invertible.

radius b(r). We will see in this Section that the location and number of bounces depends only on

f1. In the next Section we will see that the location and number of Killing horizon is determined

by f2 instead.

The evolution equation for the area radius given by (3.4a) is monotonic until we hit an extremum

of f1, namely a point such that

f ′1 = 0, f ′′1 ̸= 0. (4.6)

At this point the evolution turns around, and we have a bounce if it was initially decreasing,

and a anti-bounce or turning point if it was increasing. Existence of at least one such point is

guaranteed by the requirement of periodicity of f1. So the bounce is guaranteed, but we can have

as many bounces and counter-bounces (or turning points) as we want, choosing the appropriate

f1. Furthermore, boundness of f1 implies that that b = 0 is only accessible for the solutions

with vanishing K1 and those are everywhere degenerate. Therefore the bounce must occur before

reaching zero area radius. This suggests that the Schwarzschild singularity is resolved. To look into

the question of singularities more precisely, one can evaluate the Kretschmann scalar associated

with (3.12). This can be done explicitly with the aid of an algebraic manipulator like Mathematica

or Maple. The result has the following form,

R2
µνρσ =

F (g1, f2)

f42 g
8/3
1

, (4.7)

where F is a six-order polynomial in g1, f2 and their first and second derivatives. If we take

polymerisation functions that are periodic and C2, the numerator in the previous expression is

finite. The only divergences can arise from zeros of g1 or f2. These do occur, but at points that we

have identified as the asymptotes for r → ±∞. Let us examine them separately. The first of these
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is the origin in Pi space (see Fig. 1) where we know that the solution describes the Schwarzschild

metric at r → ∞ with finite (indeed vanishing) Kretschmann invariant. For the opposite corners,

we don’t have a general argument for finiteness. However these points correspond to r → −∞,

therefore in so far as this limit describes the post-bounce behaviour of another asymptotically flat

spacetime, it will be non-singular. We conclude that the only singularities allowed by these polymer

models with smooth fi’s are big-rip-type singularities, and require polymer functions such that the

curvature diverges at r 7→ −∞.

Of course in the case where the spacetime is also a Schwarzschild spacetime around this fixed

point, the Kretschmann scalar will be finite also near this fixed point. This case is particularly

interesting since it corresponds to a black to white hole transition. We will see in the following how

to choose the polymerization functions f1 and f2 to obtain this situation. This type of argument

can in principle be extended to other curvature scalars and it is an indication of the absence of

singularities away from asymptotic points in these models.

4.3 Horizons

The number of horizons depends on f1 alone, and their location on both fi. From the general

form (2.25) of the metric, we know that ∂t is a Killing vector, therefore there is a Killing horizon

whenever a = 0. From (2.16b) and the fact that b ̸= 0 everywhere, this condition is equivalent to

v2 = 0. Using then the Hamiltonian constraint (3.3), this translates to

f2 =
λ1λ2
24v1f1

=
λ2

24K1
. (4.8)

It is clear that it is possible to get any number of horizons, depending on the choice of f2 and the

value of K1. Fig. 3 shows an example of polymer function admitting four horizons. Since f2 is

Figure 3: Sketch of an arbitrary example polymerisation function for f2. Only the non-shaded region between

λ2P2 = 0 and λ2P
o
2 is relevant for the dynamics. The horizons correspond to the intersection of the function f2 and

the horizontal line λ2
24K1

, explicitly depends on the chosen solution and the value K1.
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bounded, there always exist values of K1 for which there are no horizons. The bound in order to

have at least one horizon is

K1 ≥
λ2

24maxf2
. (4.9)

It follows that while the unpolymerized solution space describes always Schwarzschild black holes, of

different mass and asymptotic time, the polymerized solution space always contains (non-singular)

black holes as well as spacetimes without horizons (or exotic quantum stars).

A non-singular black hole scenario well considered in the literature is the black-to-white tran-

sition [8, 27, 45, 47, 48], in which two event horizons sit on either side of a bounce. Sine polymer

functions realize this scenario already [8]. One can then ask the question if the realization of this

scenario imposes interesting restrictions on the polymer functions, and how much the scenario can

be generalized allowing arbitrary polymer functions. From the analysis just done, we see that the

black-to-white transition corresponds to having a maximum of f1(P1(P2)) between two intersec-

tions of f2(P2) with K2. No further requirement is needed. Therefore the freedom/ambiguity in the

polymer functions cannot significantly be constrained by requiring that such scenario be realized.

Conversely, all sorts of modifications of the scenario are possible by playing with global features

of the regularization functions. The simplest qualitative novelty that can be introduced changing

fi from the sine function is an asymmetry between the contracting phases. More in general, it is

possible to combine multiple bounces and multiple horizons.

In all cases, the relative location of bounces and horizons is not fixed, and will depend on both

the choice of polymer functions and initial conditions. If the system is explicitly solved, the relative

location can straightforwardly be determined from the functions Pi(r). Interestingly, it is possible

to find the relative location of bounces and horizons even without knowing the explicit solutions

Pi(r). This follows from the fact that the trajectories must satisfy the identity

3

∫ λ2P2(r)

λ2P2(r0)

dx

f2(x)
=

∫ λ1P1(r)

λ1P1(r0)

dx

f1(x)
, (4.10)

as it follows from the constancy of the Dirac observable K2 defined in (3.6). Given two reference

values Pi(r0), this equation can be used to find the value of say P2(r) as a function of P1(r). To show

how this is done in practise, consider the example of one bounce and two horizons, with polymer

functions depicted in Fig. 4. We want to establish if the bounce occurs in between the horizons,

or outside. To bring out the dependence on the initial conditions, we can choose a value for r0 in

the classical domain, so that an approximate explicit solution is known, given by (2.21) and (2.23).

Equation (4.10) fixes in this way P2(rb) as a function of P1(rb) and classical inputs and can be

used to determine the position of the bounce with respect to the horizons present in the effective

geometry (as illustrated in Fig. 5). All this depends explicitly on the choice of the polymer functions

and Dirac observables K1 and K2. The analysis holds for multiple bounces and multiple horizons.

4.4 Trapped and anti-trapped regions

In a black-to-white hole transition, the bounce separates a trapped and anti-trapped region between

the two corresponding horizons. We now show that the nature of the trapping or anti-trapping region

turns out to be very simply determined by the sign of f ′1. More general cases, for instance if both

horizons are on the same side of the bounce, would require a systematic analysis.
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(a)

f2

1

(b)

Figure 4: (a) Plot of a specific polymerisation function for f1 with only one local maximum between its two first zeros,

i.e. only one bounce can appear (b) Plot of a specific polymerisation function for f2 with only one local maximum

between its two first zeros. Depending on the choice made for the Dirac observable K1, at most two horizons will

appear.

(a)

f2
1

(b)

Figure 5: Plot of the inverse of the polymerisation functions where the dashed area correspond to the integrals in

(4.10).

To see this, we recall that the outgoing and incoming expansions of null geodesic congruences
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sign(ḃ) = − sign(ḃ) = +

sign(a) = − Anti-trapped Trapped

sign(a) = + Free Free

Table 1: Summary of the causal structure of a region in term of the sign of a and b. These results come from (4.11)

and (4.12)

for the spherical metric (2.1) are given by (see e.g. [8, 27])

θ+ =

√
− 2

N

ḃ

b
sign(a), (4.11)

θ− = −
√

− 2

N

ḃ

b
. (4.12)

The sign of a and ḃ determine if the region is trapped, anti-trapped or free. We can summarize

the possibilities in Table 1. At this point, we now that regions outside the horizon (a > 0) are

generically free regions. Similarly, regions inside the horizon (a < 0) are trapped or anti-trapped

(as illustrated in Fig. 6). The sign of a is determined uniquely by the sign of v2, see (2.16b), and

the latter is positive for all P2 such that

f2 <
λ2

24K1
. (4.13)

However, which of both is the case, i.e. if the interior region is trapped or anti-trapped or if a

transition happens as this depends on the position of the bounce relative to the horizons and thus

the polymer functions and the Dirac observables K1 and K2. To determine if the region between

the horizon is trapped or anti-trapped, we have to look at f1. We recall that since v̇1 = 2ḃb2 =

12
√
nv1f

′
1
f2
λ2
, and since f2 > 0 we have sign(ḃ) = sign(f ′1).

So in this specific case, since f ′1 < 0 between the horizons (cf Fig. 7), which means that ḃ < 0.

So referring to Table 1, we deduce that the region between the horizons is anti-trapped. On the

other hand, if we had chosen C such that the bounce lies within the horizons, the bounce surface

would have been a transition surface between a trapped and an anti-trapped region. In this case, a

proper black-to-white hole transition appears.

5 Large distance behaviour

We have seen that the polymerized black holes present many non-classical features, such as multi-

ple horizons and bounces. However, we would still like these solutions to reproduce the standard

Schwarzschild black hole at large distances. This was the motivation to restrict the polymer func-

tions to satisfy (3.2). These restriction were based on experience with loop quantum cosmology

and with the standard polymer black hole. In this section we derive these conditions showing that

they are indeed necessary in order to recover the Schwarzschild solutions at large scales. However,

it turns out that they are not sufficient. One needs a further condition, given by f ′′2 = 0 which is

satisfied by the sine polymerization, for instance.
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Figure 6: Plot of the polymerisation function f2 chosen in Fig. 4. The horizontal line marks the threshold below

which the region is free, and above which it is trapped/anti-trapped (T/A) depending on the sign of ḃ as shown in

Table 1. The intersections correspond to two horizons. If f1 is chosen so to have a single bounce, three situations

can occur. Starting from the asymptotic region at r → +∞, namely, λ2P2 = 0, the region between the horizon will

be trapped (respectively anti-trapped) if the bounce occurs after the horizon (respectively before the horizon). If it

occurs between the horizons, this region will be trapped and then anti-trapped.

Figure 7: Plot of the polymerisation function f1 chosen at the beginning of this section.The property free (F ), trapped

(T ) or anti-trapped (A) of the spacetime is summarized on this plot.

Even thought this condition was not explicitly required in the analysis of the previous Section,

a quick inspection shows that it was not used anywhere, hence all the results there presented apply

to the class of polymer functions correctly reproducing Schwarzschild metric’s at large distances.

The analysis presented in this Section is also somewhat heavier and requires additional notation,

which is our reason to leave it for the end. It will also allows us to identify the mass of the black

hole described by the generic solution (3.13).
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An independent reason to study the large scale behaviour of the solutions concerns the interpre-

tation of the spacetime after the bounce. If asymptotic flatness is recovered in that limit as well, it

then becomes meaningful to talk about the mass of the white hole, and discuss the physics of the

bouncing process in terms of asymptotic charges.

Let us now come to the technical aspects. The area radius is given by the variable b, hence the

large scale limit is b→ ∞. However, while we can freely switch between r and P2 as time variables,

b(λ2P2) is not a monotonic function, recall analysis of Section 3.3 and Fig. 2.10 Therefore, we have

to restrict our analysis to each branch of invertibility. Since we are interested in the asymptotic

behaviour, we can focus on the two branches connected to the r → ±∞ limits which corresponds

to b→ ±∞. To study this, we will proceed with a perturbative expansion of the polymer functions

with respect to 1/b. Since the polymer functions depend implicitly on b via the solution Pi(b), this

will be a nested perturbative expansion that requires the use of the equations of motion.

5.1 Asymptotic behaviour

Let us consider the regions in Pi-space connected to the origin Pi = 0 (see Fig. 1). We denote

P±
i the two asymptotic fixed points reached in the limit r → ±∞ respectively (we assume that in

the r → ∞ limit we flow to the semiclassical regime, hence P+
i = 0). We introduce the following

notation,

x :=
1

b
, (5.1a)

z±(x) := λ1P1 − λ1P
±
1 , (5.1b)

y±(x) := λ2P2 − λ2P
±
2 , (5.1c)

so to have y± and z± vanish at the two fixed points of each trajectory. We denote the fixed points

x = 0±. To treat them at once with a single perturbative expansion we redefine the functions

fi(λiPi) 7→ fi(λiPi − λiP
±
i ), such that fi(0

±) = 0. In the following, we will drop the superscript ±
from y and z to further lighten the notation.

In terms of these variables, the relevant components of (3.13) read

gττ (x) =− x2
(

λ22
16f2 (y(x))

2 − 3K1λ2
2f2 (y(x))

)
, (5.2a)

gxx(x) = gbb(x)/x
4 . (5.2b)

gbb(x) =− λ22x
2

16f ′1(z(x))
2f2 (y(x))

2 gττ (x)
, (5.2c)

After some computations that can be found in Appendix B, one can show that these metric com-

10The origin of this is that b(r) is no longer monotonic. This is why one can have b inverting behaviour going

through a bounce while r runs smoothly over the whole real axis. Notice also that the value rbounce can occur for

either positive or negative values, depending on the polymer function and the parameters of the solution.

24



ponents at first order in x are

gττ = − λ22
16f ′2(0

±)2y′(0±)2

(
1−

2y′(0±)
(
12K1f

′
2(0

±)2 + λ2f
′′
2 (0

±)
)

λ2f ′2(0
±)

x

)
+O(x2) , (5.3a)

1/gbb = f ′1(0
±)2

(
1− 24K1f

′
2(0

±)y′(0±)

λ2
x

)
+O(x2) . (5.3b)

Since we have already fixed the area radius as coordinate, asymptotic flatness imposes

f ′1(0
±) = ±1. (5.4)

Next, we still have the freedom fo rescaling τ , which we use to reabsorb the prefactor in gττ , so

to have asymptotic flatness in the new time variable without restrictions on the polymer functions.

On the other hand, area radius also requires that the time and radial components are the inverse

of one another. Inspection of the above equations shows that this occurs if and only if

y′(0±)f ′′2 (0
±)

f ′2(0
±)

= 0 ⇒ f ′′2 (0
±) = 0 (5.5)

by the previous conditions. In that case, the mass of the black hole is given by

M =
12K1f

′
2(0

±)y′(0±)

λ2
. (5.6)

Notice that it depends on K2 via y′(0±), since K2 appears in the relation between P2 and b.11

Consider now separately the two solutions for r → ±∞. The corresponding values of M will

generically be different, because f ′2(0
±) and y′(0±) can take different values. Since f ′2(0

±) and y′(0±)

are both positive (respectively negative) in the black hole side (respectively in the white hole side),

then the sign of the mass is only determined by the sign of K1, as in the unpolymerized case.

In summary, in order to obtain the Schwarzschild solution asymptotically at the fixed point, we

need to impose the conditions (B.5), (5.4) and (5.5), i.e.

f ′1(0
±) = f ′2(0

±) and f ′1(0
±)2 = 1 and f ′′2 (0

±) = 0 . (5.7)

This fixes of the three of the four derivatives of f1 and f2 up to the second order expansion. Note

that in the case of the sine polymerisation, these conditions are automatically satisfied.

If we impose (5.7) at both fixed points, we obtain an evolution from an asymptotic Schwarzschild

region to another asymptotic Schwarzschild region. Let us call the masses in the two regions MBH

and MWH .12 They are given by

MBH =
12K1f

′
2(λ2P

−
2 )y′(0±)

λ2
, MWH =

12K1f
′
2(λ2P

+
2 )y′(0±)

λ2
. (5.8)

11One may ask how this mass enters the Kretschmann scalar, given schematically by (4.7). The complexity of that

expression makes it however hard to answer this question, even for the simplest choices of polymer functions.
12These names have absolutely no meaning in terms of a black or white hole. Both asymptotic regions are

Schwarzschild so both of these regions contain both, a black and a white hole. However, for the initial region,

the black hole lies in the future and for the final region the white hole lies in the past. Depending on where the bounce

is located w.r.t. the horizons (see the discussion in Sec. 4.4), an observer falling radially and freely starting in the

initial region, will experience a black hole first, then see a transition from a trapped to an anti-trapped region, which

the observer would call a white hole region until, she finds herself in an asymptotic exterior region of a Schwarzschild

spacetime. This motivates the given notation, but there is no deeper physical meaning.
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Figure 8: Sketch of the parametric solution y(x). y′
−(0

±) uniquely fixes the trajectory y(x) and thus the final derivative

y′
+(0

±).

From (5.7) we see that
∣∣f ′2(λ2P−

2 )
∣∣ = ∣∣f ′2(λ2P+

2 )
∣∣ = 1. The evolution studied in Sec. 4.1 is such that

no zeros of f2 are crossed. Therefore, f ′2(λ2P
−
2 ) = −f ′2(λ2P

+
2 ) and

MWH

MBH
= −y

′(0±)

y′(0±)
. (5.9)

Moreover, as it is illustrated in Figure 8, y′(0±) is positive in the black hole side and negative in

the white hole side. This implies that the black hole mass and the white hole mass have the same

sign. It is also possible to locally13 change coordinates in phase space from Ki to (MBH ,MWH).

Because the two asymptotic regions are disconnected, different asymptotic masses does not

mean a violation of energy conservation: it only means that the time-like Killing vector cannot be

normalized to one at both asymptotes. If one were interested in solutions with matching masses,

one would be looking at a 1-dimensional subspace of the 2-dimensional phase space, determined by

(5.9) once the polymer functions are chosen.

5.2 Taming quantum gravity effects outside the horizon

An obvious issue with non-singular black holes is to contain the deviations from general relativity

not to spoil the macroscopic behaviour. To that end, we look at the next order term in the expansion

(B.8a), and impose bounds on it. This requires y(3)(0±), which can be computed as before from

the equation of motion (B.3b) and taking the limit x→ 0. This leads to an recursive relation with

13The change of coordinates is given by (5.8) (recall that y′(0±) depends on K2), and this may not be globally

bijective. Consequently, we are limited to saying that this change of coordinates exists locally.
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y(3)(0±) on both sides, which can be solved to obtain

y(3)(0±) =
y′(0±)3f

(3)
2 (0±)

2f ′2(0
±)

, (5.10)

where we use explicitly the condition f ′′2 (0
±) = 0. We then find

gττ = − λ22
16f ′2(0

±)2y′(0±)2

(
1− 2Mx− sign

(
f ′2(0

±)
) y′(0±)2f (3)2 (0±)

2λ2
x2

)
+O

(
x3
)
. (5.11a)

The O(x2) term of 1/gbb vanishes, as a consequence of z′′(0±) = 0 (cfr. (B.1)) and using the

condition f ′′2 (0
±) = 0.

To keep the quantum corrections small outside of the horizon, we need the third term to be

much smaller than the second for b = x−1 ≥ 2M , namely

y′(0±)2f
(3)
2 (0±)

8λ2M2
≪ 1. (5.12)

This means that for given polymer functions, the condition is always satisfied for large enough black

holes. Moreover, the expansion (5.11) allows us to obtain a criterion on the value of the area radius

for which the deviations from the Schwarzschild metric become order one, given by

b ≤

√√√√∣∣∣∣∣y′(0)2f (3)2 (0)

2λ2

∣∣∣∣∣. (5.13)

A more precise characterization of the quantum corrections can be obtained studying the violations

of the energy conditions, like for example in [49].

6 Conclusions

We have shown that it is possible to investigate generic features of effective models describing

spherically symmetric black hole models inspired by loop quantum gravity taking into account

the large freedom in choosing the polymerization functions. Most of the relevant global features

of the solutions, as the location of horizons and the existence of bounces, are directly related

to global features of the polymerization functions and the values of some Dirac observables or

constants of motion. More precisely, the features of the polymerization function f1 encode the

physics of bounces, while f2 and its relation to certain constants of motion determines the location

of the Killing horizons. Consistency with the classical regime does not strongly restrict the infinite

dimensional ambiguity in the polymerization procedure. However, it is worth pointing out that in

addition to the usual requirements on fi(0
±) and f ′i(0

±) that are derived from the naive continuum

limit, our asymptotic analysis shows that in addition one needs to have f ′′2 (0
±) = 0. The number

of bounces and the number of horizons can be freely specified by tuning the polymer functions and

suitably choosing constants of motion. With respect to the list of properties of the BMM model

(listed in Section 2.3) we conclude that all of them hold for an arbitrary polymerization except

the shrinking of horizon. The deformation of the horizon can be freely controlled playing with the
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choice of polymer function. We notice in passing that the model also allows for solutions with

no horizons at all, where quantum effects produce violations of the classical Einstein’s equations

that can be seen as quantum stars made of ‘matter’ of an entirely quantum nature. The existence

of such a large ambiguity in the construction of these models should not be surprising on general

grounds [17, 18]. On the upper side this freedom could prove useful in the investigation of off-shell

hypersurface deformation algebra [50–52]. Our analysis can also be applied to specific choices of

non-sine polymer functions. It would be interesting to see whether it could be extended to different

µ̄-schemes like the one proposed in [19], and then be able to study analytically the behaviour of the

geometry post-bounce [9].
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A Boundary term

In this Appendix we recall the derivation of the minisuperspace Lagrangian (2.6). We consider a

single boundary given by a r=constant hypersurfaces outside the horizon. The total action including

the Gibbons-Hawking-York boundary term is

S[C] =
1

16π

∫
dr

∫
C
d3x

√
−gR− 1

8π

∫
C
d3x
√

|h|K. (A.1)

With the ansatz (2.1), we have

√
−gR = sin(θ)

(
2
√
n̄− 4b̄ ˙̄a ˙̄b√

n̄
− 2ā ˙̄b2√

n̄
+
b̄2 ˙̄a ˙̄n

2n̄3/2
+

2āb̄ ˙̄b ˙̄n

n̄3/2
− b̄2¨̄a√

n̄
− 4āb̄¨̄b√

n̄

)
, (A.2)

hence the Einstein-Hilbert term gives

1

16π

∫
C
d3x

√
−gR =

ℓ0
√
n̄

2

(
˙̄a ˙̄bb̄

n̄
+
ā ˙̄b2

n̄
+ 1

)
− ℓ0

d

dr

(
˙̄ab̄2

4
√
n̄
+
āb̄ ˙̄b√
n̄

)
. (A.3)

Coming to the boundary term, the unit-normal to the r foliation is, outside the horizon,

n =

√
n̄(r)

ā(r)
dr, n2 = 1. (A.4)

To this we associate the induced metric and extrinsic curvature

qµν = gµν − nanb, Kµν = qρµ∇ρnν =
1

2
£nqµν . (A.5)

With the ansatz (2.1), we find

q = −āb̄4 sin(θ)2, K =
˙̄a

2
√
n̄ā

+
2
√
ā ˙̄b√
n̄b̄

. (A.6)
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Hence the boundary term gives

1

8π

∫
d3x

√
hK = ℓ0

(
˙̄ab̄2

4
√
n̄
+
āb̄ ˙̄b√
n̄

)
. (A.7)

Adding up, we recover (2.6).

B Asymptotic expansion of the metric components

In this Appendix, we provide details on the asymptotic expansion of the metric components (5.2)

leading to (5.3). First, one can note that the only functions whose expansions are needed are

f2(y(x)) and f
′
1(z(x)) =

df1
dz (z(x)), while all dependencies of f1(z(x)) have been replaced by the use

of the Dirac observable K1 and Eq. (3.8). This also fixed the function

z(x) = f−1
1

(
3λ1K1x

3/2
)
. (B.1)

With these notations, the formal Taylor expansions are given by

f2(y(x)) = f ′2(0
±)y′(0±)x+

1

2

(
f ′′2 (0

±)y′(0±)2 + f ′2(0
±)y′′(0±)

)
x2 +O

(
x3
)
, (B.2a)

f ′1(z(x)) = f ′1(0
±) + f ′′1 (0

±)z′(0±)x+
1

2

(
f
(3)
1 (0±)z′(0±)2 + f ′′1 (0

±)z′′(0±)
)
x2 +O

(
x3
)

(B.2b)

(B.1)
= f ′1(0

±) +O
(
x3
)
, (B.2c)

with f
(n)
i denoting the n-th derivative w.r.t. y or z, respectively, while y′ = dy/dx and respectively,

y′′, z′ and z′′. It was assumed and will be in the following that f ′i(0
±) ̸= 0, which would also violate

the classical limit. These expressions are formal however, as the derivatives y′(0±), y′′(0±) are not

specified. The derivatives z′ and z′′ follow from (B.1) and we see that linear and quadratic order

vanish exactly. From the equations of motion (3.4) follow the expressions

y′(x) =
f2(y(x))

xf ′1(z(x))
, (B.3a)

y′′(x) =
f ′2(y(x))f2(y(x))

x2f ′1(z(x))
2

− f2(y(x))

x2f ′1(z(x))
− 9K1λ1f

′′
1 (z(x))f2(y(x))x

2f ′1(z(x))
3

, (B.3b)

Extracting y′(0±) requires then

y′(0±) = lim
x→0

y′(x) =
f ′2(0

±)

f ′1(0
±)
y′(0±). (B.4)

This implies

f ′1(0
±) = f ′2(0

±), (B.5)

with y′(0±) unconstrained.14 Similarly, for the second derivative, we get

y′′(0±) = lim
x→0

y′′(x) =
y′(0±)2f ′′2 (0

±) + f ′2(0
±)y′′(0±)

2f ′1(0
±)

, (B.6)

14Recall that the fixed points are not part of the phase space but only reached asymptotically. This eliminates the

possibility of solving (B.4) taking y′(0±) ≡ 0.
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which can be solved to obtain

y′′(0±) =
y′(0±)2f ′′2 (0

±)

f ′2(0
±)

. (B.7)

Here we again used the constraint f ′1(0
±) = f ′2(0

±). This makes the expansions (B.2) explicit and

allows to compute the metric functions, leading to

gττ = − λ22
16f ′2(0

±)2y′(0±)2

(
1−

2y′(0±)
(
12K1f

′
2(0

±)2 + λ2f
′′
2 (0

±)
)

λ2f ′2(0
±)

x

)
+O(x2) , (B.8a)

1/gbb = f ′1(0
±)2

(
1− 24K1f

′
2(0

±)y′(0±)

λ2
x

)
+O(x2) . (B.8b)
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