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Entanglement and spontaneous emission are fundamental quantum phenomena that drive many
applications of quantum physics. During the spontaneous emission of light from an excited two-level
atom, the atom briefly becomes entangled with the photonic field. Here, we show that this natural
process can be used to produce photon-number entangled states of light distributed in time. By
exciting a quantum dot –an artificial two-level atom– with two sequential π pulses, we generate a
photon-number Bell state. We characterise this state using time-resolved intensity and phase corre-
lation measurements. Furthermore, we theoretically show that applying longer sequences of pulses
to a two-level atom can produce a series of multi-temporal mode entangled states with properties
intrinsically related to the Fibonacci sequence. Our results on photon-number entanglement can be
further exploited to generate new states of quantum light with applications in quantum technologies.

Spontaneous emission is a phenomenon where an excited
atom will spontaneously decay while emitting light into
the vacuum of the electromagnetic field. Owing to its
quantum coherent nature, spontaneous emission can pre-
serve quantum properties such as entanglement and su-
perposition. It has been used to prepare and measure
atomic superposition states [1], generate atom-atom [2, 3]
and atom-photon entanglement [4–6], create single pho-
tons [7, 8], and produce entangled photonic states by se-
quentially manipulating atomic systems [9–11], as theoret-
ically proposed in Refs. [12–14]. It is key to developing
quantum memories [15, 16] and quantum networks [17–20].

As described in the seminal work of Weisskopf and
Wigner [21], entanglement between light and matter nat-
urally occurs during the spontaneous emission process of
a two-level atom—an atom consisting of a ground |g〉 and
an excited |e〉 state. Such entanglement lasts only until
the spontaneous emission process brings the atom to the
ground state, and as such, has not yet been considered
as a direct resource for entangled light generation from
a two-level system. Here, we show that the light-matter
entanglement occurring during spontaneous emission can
be controlled to produce photon-number entangled states
distributed in the time domain.

Consider a two-level atom with a spontaneous emission
lifetime T1. A short π-pulse excitation prepares the atom
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in the excited state |e〉 at time t = 0. In the absence of de-
phasing, at time t > 0, the light-matter system evolves
into the entangled state α(t) |e〉 |0〉 + β(t) |g〉 |1〉, where

α(t) = e−t/2T1 , β(t) =
√

1− α(t)2, and |n〉 is the state
of emitted light containing n photons. Thus, spontaneous
emission from a two-level atom can be interpreted as a
two-qubit gate that generates light-matter entanglement.
For t� T1, the atom is left in the state |g〉, separable from
the temporally-coherent single-photon state |1〉.

Along the temporal profile of the emitted single pho-
ton wavepacket, we can define adjacent early (e) and late
(l) time bin modes separated by a chosen threshold time
T , corresponding to the second-quantised temporal cre-

ation operators t̂†e and t̂†l in the pulse-mode formalism [22–
24]. In this new time-bin basis, the pure single-photon

state is now written as |1〉 = (α(T )t̂†l + β(T )t̂†e) |0〉 =
α(T ) |0〉e |1〉l + β(T ) |1〉e |0〉l. Note that, by choosing the
time-bin threshold T to be the half-life of the source
T1/2 = ln(2)T1, the single-photon state is the photon-

number Bell state |ψ+〉 = (|01〉+ |10〉)/
√

2 [25, 26], where
we have concatenated the time bins and dropped the sub-
scripts for simplicity, see Fig. 1a. By extension, a single
photon state could also be expressed as an N -mode W
state [27] by conveniently defining N time bin modes.

Now consider the application of a second π pulse at time
∆t after the initial pulse, while the atom is still entangled
with the field. This second pulse performs a single-qubit
gate by coherently flipping the state of the atom so that,
if a single photon was already emitted before ∆t, it will
emit a second photon after ∆t, see Fig. 1b. Conversely,
if no photon was emitted before the second pulse, then
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FIG. 1. Generation of photon-number Bell states. a, A
single photon is produced by spontaneous emission (s.e.) after
a single π-pulse excitation of a two-level atom with a lifetime
of T1. Partitioning this photon into two orthogonal time bins
(early and late) that are defined by setting the time bin thresh-
old T to the half-life T1/2 = ln(2)T1, reveals the photon-number

|ψ+〉 Bell state. b, Applying a subsequent π-pulse after time
∆t = T1/2 flips the state of the two-level atom while it is en-
tangled with the photon field. By choosing T to coincide with
the second pulse, we find the Bell state |φ+〉.

the atom is brought back to the ground state, preventing
any emission from occurring. At time ∆t just after the
second pulse, the total light-matter system is left in the
entangled state α(∆t) |g〉 |0〉 + β(∆t) |e〉 |1〉. Hence, after
emission has finished, the emitted photonic state becomes

(α + βt̂†et̂
†
l ) |0〉 = α |0〉e |0〉l + β |1〉e |1〉l, as written in the

photon number basis for time bins defined by a threshold
time T corresponding to the arrival of the second pulse
T = ∆t. Consequently, for T = ∆t = T1/2, the emitted

photonic state is the photon-number Bell state |φ+〉 =

(|00〉 + |11〉)/
√

2. This simple approach can be scaled up
to generate multi-mode entangled photonic states using
multiple π pulses, as discussed later on.

Results

We experimentally explore this scheme using a single semi-
conductor quantum dot acting as an artificial atom. The
quantum dot is coupled to a micropillar cavity mode op-
erating far into the bad-cavity regime [28], where emis-
sion into the cavity mode is irreversible. The device
studied here consists of a negatively charged exciton ad-
dressed resonantly in a cross-polarised collection setup [29]
so that the optical transition is modelled as a resonantly
driven two-level atom, which has a measured lifetime of
T1 = 136± 1 ps. The laser excitation pulses are typically
ten times shorter than the spontaneous emission lifetime
of the transition and Rabi oscillations are observed as a
function of the pulse power, attesting the coherent control
of the device [30].

The single-photon nature of emission from the device
is characterised by measuring a second-order correlation
of g(2)(0) = 0.063 ± 0.002 (g(2) for simplicity) after in-
tegrating over the pulsed emission following a single π-
pulse excitation and normalising by the uncorrelated co-

incident counts at long delay times g
(2)
τ > g(2). The co-

herent light-matter interaction during spontaneous emis-
sion is exemplified by the observation of Hong-Ou-Mandel
(HOM) bunching [31, 32] between successively emitted
single-photons interfering at a beam splitter. We measure

a correlation of g
(2)
HOM = 0.145±0.004 at the output, attest-

ing to the low probability for two photons to exit the beam
splitter separately. These measurements together provide

a mean wavepacket overlap of M = 1 − 2g
(2)
HOM + g(2) =

0.77±0.01 and an estimated single-photon indistinguisha-
bility Ms = M/(1− g(2)) = 0.82± 0.02 at the source [33].

The indistinguishability of a single photon wavepacket
characterises how coherent it is in time. The |ψ+〉 Bell
state is also strongly linked to this same temporal coher-
ence, being a superposition of states |01〉 and |10〉 of a pho-
ton arriving in two different time bins. In the supplemen-
tary, we theoretically show and experimentally verify that
the Bell-state fidelity of a single photon with respect to
|ψ+〉 is well-approximated by Fψ+ ' p1

√
Ms = 0.88±0.02

when choosing T = T1/2 = 94 ps, where p1 is the prob-
ability of emitting a single photon. Here, we proceed to
experimentally explore the proposed scheme to generate
the |φ+〉 Bell state by applying a second π pulse separated
from the first by the half-life ∆t ' T1/2.

The ideal |φ+〉 state is composed of two photons with
a probability of p2 = 1/2 and the vacuum otherwise
(p0 = 1/2). This renders an expected intensity correla-
tion of g(2) = 1 and an average photon number of µ = 1
at the source. We confirm this prediction by measur-
ing g(2) = 0.99 ± 0.02 and µ/µπ = 1.02 ± 0.01 with re-
spect to the average photon number µπ produced by a
single pulse, which is expected to be near unity at the
source. We also verify that producing three or more pho-
tons is rare by measuring a small third-order correlation
g(3) = 0.165±0.007, corresponding to a three-photon emis-
sion probability of about 3%. A detailed discussion of pho-
ton number probabilities and losses is given in the supple-
mentary. Thus, the photon statistics already suggest a
state of the form |0〉+ |2〉. It remains now to demonstrate
a separation of the two photons into an early and a late
time bin |11〉 and the presence of a coherence with the
vacuum part of the state |00〉.

To access temporal properties after the application of
two pulses, we first measure the temporal profile and find
that it matches well to the profile produced after excita-
tion by a single π pulse (see Fig. 2a), as foreshadowed
by Fig. 1. By sweeping the time-bin threshold T across
the wavepacket, we find that the proportion of counts
µa = µa/µ detected in each time bin a ∈ {e, l} cross at the
half-life condition (see Fig. 2b). This matches the trend
given by the ideal |φ+〉 Bell state.

We study the two photons composing the total temporal
profile by performing time-resolved intensity correlation
measurements (see Methods). This produces a two-time
coincidence map G(2)(t1, t2) that can be divided into four
time bin quadrants defined by a chosen T , designated ee,
el, le, and ll as shown in Fig. 2c. The direct inspection of
this map reveals that coincident counts between different
time bins (el, le) predominantly occur when T = ∆t '
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FIG. 2. Characterisation of intensity. a, The temporal
profile measured after applying two π pulses separated in time
by the half-life ∆t'T1/2. It is divide into early (e, red) and
late (l, blue) bins defined by the threshold time T . The black
dashed line shows the single-photon profile obtained for the
same measurement duration after applying a single π pulse. b,
The normalised proportion of counts detected in the early µe
and late µl time bins as T is swept over the temporal profile. c,

The time-resolved intensity correlation map G(2)(t1, t2) divided
by T into four quadrants corresponding to each pair of time
bins where a coincidence detection occurs. d, The intensity

correlation for each quadrant g
(2)
ab normalised by the square

average photon number µaµb detected in bins a, b ∈ {e, l},
computed from panel c as T is swept across the wavepacket. We

obtain g
(2)
el = g

(2)
le by averaging the counts in the off-diagonal

quadrants. The dashed curves in panels b and d show the
values expected for an ideal |φ+〉 Bell state. The solid curves
show the measured values where the standard uncertainty is
smaller than the thickness of the line.

T1/2, indicating that the two photons are indeed temporally
separated.

To quantify this observation, we analyse each quadrant
of the G(2) map individually. The counts in each quadrant
are summed and normalised by the product of average
photon numbers µaµb obtained within each pair of bins

a, b ∈ {e, l}. This gives the normalised correlation g
(2)
ab

for the pair of time bins where a coincidence count was
detected. The total g(2) is then seen as an average of each

g
(2)
ab weighted by the proportion µaµb.

The time bin analysis of g(2), presented in Fig. 2d, re-
veals that anti-bunching occurs for detection within the

same bins (g
(2)
ee , g

(2)
ll < 1), whereas bunching occurs be-

tween different bins (g
(2)
el = g

(2)
le > 1). The bunching is

maximum when the time-bin threshold is chosen at the
half-life. However, the amount of bunching is less than
would be expected from an ideal state produced by in-
finitesimally short pulses and measured with perfect time
resolution (dashed curves). This is primarily due to the
detection time jitter (see Methods), which occasionally de-
tects photons in quadrants ee and ll that would otherwise

reside in el or le and hence decreases g
(2)
el while increasing

g
(2)
ee and g

(2)
ll . From this intensity correlation analysis, we

find that 81.5 ± 0.4% of two-photon measurements occur
in different time bins, evidencing a primary |11〉 compo-
nent. We now probe the expected coherent properties of
the photonic state using phase correlation measurements.

The intensity correlation g
(2)
HOM at the output of a path-

unbalanced Mach-Zehnder interferometer, commonly used
to measure HOM bunching, can oscillate as the interferom-
eter phase φ evolves. This occurs when the input contains
coherence between any states differing by two photons
(second-order coherence). We recently used this technique
to measure the amount of coherence generated between the
vacuum and two photons when exciting a two-level atom
with a single 2π pulse [34]. We use this same concept to
characterise the number coherence generated after apply-
ing sequential π pulses by interfering two of the generated
photonic states (see Fig. 3a).

The correlation g
(2)
HOM depends on both g(2) and the

mean wavepacket overlap M [33]. By considering photon-
number coherence, a phase-dependent term arises [35]:

2g
(2)
HOM(φ) = 1−M + g(2) − c(2) cos(2φ), (1)

where c(2) is an intensity-normalised value quantify-
ing the second-order coherence, as described in the
supplementary. In our setup, φ freely evolves on a
slow timescale (see Methods). To accurately extract
c(2), we simultaneously monitor the self-homodyne signal
ISH = (µ+ − µ−)/µ ∝ cos(φ), which is the normalised dif-
ference in average photon number µ± detected at each out-

put. Since g
(2)
HOM depends on the phase through − cos(2φ)

and ISH through cos(φ), we expect a quadratic phase-

correlated parametric relationship g
(2)
HOM ∼ −I2

SH with an

amplitude of c(2).
Although an ideal |φ+〉 state should give ISH = 0, as it

does not have first-order coherence [34], the finite tempo-
ral width of pulses applied to the atom inevitably cause a
small signal |ISH| � 1. We believe this signal is produced
by the atom directly when a photon is occasionally emitted
during the excitation pulse, which allows for the remainder
of the pulse to prepare the atom in a superposition state.
However, it could also arise from over/under-estimating
the π pulse conditions or from imperfect polarisation filter-
ing of the excitation pulses. By monitoring this remnant
self-homodyne signal, we observe the expected quadratic
signature and use it to measure c(2) for three different
pulse separations ∆t (see Fig. 3b). The amplitude of os-
cillation increases with decreasing ∆t due to normalising
by intensity, hence illustrates a convergence toward the
vacuum. A full analysis and discussion of measurements
when varying ∆t is available in the supplementary. The to-
tal time-integrated value c(2) indicates significant second-
order coherence, but it does not distinguish states of the
form |0〉 + |2〉 from |00〉 + |11〉. For this, we resolve the
measurement in time.

Consider the interference of two ideal Bell states (recall
Fig. 3a). This gives rise to four cases. First, the vac-
uum inputs |00〉 will give a trivial output. Second, two
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FIG. 3. Characterisation of coherence. a, Two ideal Bell states interfering at a beamsplitter, after which the normalised

intensity correlation g
(2)
HOM and self-homodyne signal ISH are measured. b, The fitted quadratic relationship (black curve) between

the coincidence counts (g
(2)
HOM(φ)) and the detection rate difference (ISH(φ)) for three different pulse separations ∆t (see labels,

data for 1.5T1/2 are shifted down by 0.2 for clarity). Each data point in this panel is computed by integrating over the entire

time-resolved correlation map G
(2)
HOM(t1, t2, φ) for a given measured ISH(φ). c, Sketch of the HOM bunching case when interfering

two |11〉 states. d, Sketch of the path-entangled Bell state interference. e, The mean wavepacket overlaps Mab and, f, normalised

second-order coherence magnitudes c
(2)
ab for time bins a, b ∈ {e, l}. These quantities are extracted as in panel b but using instead

g
(2)
HOM,ab(φ) obtained by integrating and normalising G

(2)
HOM(t1, t2, φ) for each quadrant, as was done for G(2)(t1, t2) to obtain g

(2)
ab in

Fig. 2. The shaded regions show the standard uncertainty obtained from fitting the scattered data. For clarity, we show separate
panels for the values expected of an ideal |φ+〉 Bell state (dashed curves).

|11〉 states will cause HOM bunching (see Fig. 3c). As
opposed to the ideal single-photon case where M = 1, an
ideal |φ+〉 state should give M = 1/2. This is because
both early and late photons bunch with their pair in the
same time bin (Mee = Mll = 1), but each pair can still
exit the beam splitter independently (Mel = Mle = 0).
Third, the cases combining |00〉 and |11〉 can occur in two
ways (see Fig. 3d). If these latter two cases produce indis-
tinguishable outputs, then a quantum interference occurs
due to the erasure of the information about which path
the two photons took through the interferometer. This
two-photon interference evidences the presence of a path-
entangled Bell state between the upper U and lower L
paths of the interferometer: (|U〉e |U〉l+e2iφ |L〉e |L〉l)/

√
2,

and it causes an oscillation of coincident counts depending

on φ that contributes to the c(2) term of g
(2)
HOM. Thus, mon-

itoring the oscillation of coincidence counts constitutes a
Bell-state measurement of this path-entangled state pro-
duced by the |φ+〉 input. However, to distinguish |φ+〉
from arbitrary states of the form |0〉+|2〉, we must measure

the component of c
(2)
el(le) arising from coincidences between

photons arriving in different time bins and show that it

exceeds any contribution from c
(2)
ee(ll).

To measure Mab and c
(2)
ab , we use the same approach

used to obtain g
(2)
ab , by analysing each quadrant of the

time-resolved correlation map G
(2)
HOM(t1, t2, φ) for a given

threshold T . We subdivide each map G
(2)
HOM(t1, t2, φ) cor-

responding to each ISH(φ). This produces four quadratic
signatures similar to those presented in Fig. 3b, one cor-
responding to each quadrant. We then fit these four sets

of data to extract the quantities c
(2)
ab and Mab.

From the time bin analysis of phase correlations, we
see that the mean wavepacket overlaps of photons in the
same bins Mee and Mll both remain relatively high and
intersect at the half-life, while the overlap between bins
Mel dips nearly to zero (see Fig. 3e). This indicates that
the photons composing |11〉 are mostly individually indis-
tinguishable, yet almost fully distinguishable from each
other. Interestingly, Mee exceeds the mean wavepacket
overlap measured after a single π pulse (M ' 0.77) when
T < T1/2. We attribute this to the sharp temporal trun-
cation of photons in the early bin, which causes a spec-
tral broadening that partially overcomes dephasing. This
truncation does not modify the temporal shape of photons
in the late bin—they remain exponentially-decaying pro-
files. Hence, Mll converges to the single-photon case when
T > T1/2. The observed crossing and dip follows that pre-
dicted by the ideal state and verifies the scenario described
by Fig. 3c when T = T1/2.
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We find that the trend for c
(2)
ab mimics that of g

(2)
ab , as

predicted by the ideal state, with c
(2)
el peaking when c

(2)
ee

and c
(2)
ll intersect at the half-life (see Fig. 3f). However,

the magnitudes are further suppressed relative to the ideal
case because the coherence is susceptible to dephasing in
addition to errors caused by imperfect pulses and detection

jitter. That said, we find that c
(2)
el is much greater than

c
(2)
ee and c

(2)
ll at the half-life, indicating that the majority

of the oscillation observed in g
(2)
HOM arises from a coher-

ence between the vacuum |00〉 and two photons arriving
in orthogonal time bins |11〉.

The three intensity-normalised quantities c
(2)
el , Mee, and

Mll can be used to estimate the magnitude of some density
matrix elements of the photonic state at the source, be-
fore losses from collection. From this, we estimate that
the emitted state has an entanglement concurrence of
C = 0.70 ± 0.05. Note that a positive value C > 0 unam-
biguously indicates the presence of quantum entanglement
[36]. We also estimate a fidelity of Fφ+ = 0.79± 0.03 with
respect to the |φ+〉 Bell state.

Discussion

Our fidelity and concurrence estimates are limited by the
detector jitter time. The measurements of total second-
order coherence c(2) and mean wavepacket overlap M sug-
gest that a fidelity up to 0.86 is possible with this de-
vice using detectors with a time jitter well below [37] the
pulse timescale (tp = 20 ps) used in our experiments,
which would reduce the proportion of two-photon events
occurring within the same time bins (ee or ll) down to
3tp/8T1 ' 5% (see supplementary). Using shorter pulses
(tp � T1), when combined with low time-jitter detec-
tors, would bring the fidelity up to at most

√
Ms ' 0.91,

which is limited by the dephasing of this device. Note that
Ms ≥ 0.975 has been achieved with quantum dot devices
[38, 39], which could provide a fidelity up to 0.987.

In our experiments, we do not perform a full quantum
state tomography on the photonic state to retrieve its den-
sity matrix because it is difficult to spatially separate and
independently analyse the time bin modes. We instead
characterise the photon-number entanglement of the state
via intensity and phase correlation measurements, which
under some reasonable assumptions allows for a partial
reconstruction of the density matrix and for estimates of
fidelity and concurrence (see supplementary). One ap-
proach to separate time bins would be to use an ultra-
fast optical switch, which would then allow for single-qubit
gates, quantum teleportation, and Bell tests. For our sys-
tem, the short lifetime dictates an optical switching time
on the picosecond timescale, which is achievable using
lithium niobate integrated photonic circuits [40]. How-
ever, our approach for generating photonic entanglement
can be applied to any coherently controlled source of in-
distinguishable photons modelled by a two-level system.

Our entangling protocol also has a simple extension to
multimode entanglement by applying a longer sequence of
π pulses. As detailed in the supplementary, the photonic

state |ψN 〉 produced by N pulses has a recursive nature
that becomes transparent when labelling the time bins in
reverse chronological order. In this case, by applying the
matrix product state formalism [13, 14], we find that the
final state can be determined from the Fibonacci-like re-
lation

|ψN 〉 = αN |ψN−2〉+ βN t̂
†
N |ψN−1〉 , (2)

where αm = e−∆tm/2T1 , βm =
√

1− α2
m, t̂†m |0〉m = |1〉m,

and where m labels the mth time bin from the end of
the sequence. If ∆t1 � T1 so that the atom relaxes
to the ground state at the end of the sequence, then
N = 1 pulse produces a single photon |ψ1〉 = |1〉1 and
N = 2 pulses produces the entangled state: |ψ2〉 =
α2 |0〉2 |0〉1 + β2 |1〉2 |1〉1. By choosing the pulse separa-
tions ∆t2 = T1 ln(2) and ∆t3 = T1 ln(3), we obtain the
maximally entangled W -class state produced by N = 3
pulses: |ψ3〉 = (|001〉+ |100〉+ |111〉)/

√
3. In general, the

entangled states produced by this sequence belong to the
class of matrix product states with 2-dimensional bonds
[13, 14], and they are not equivalent to N -qubit W states
for N ≥ 4. Further studies are needed to identify the
type and amount of entanglement provided by multi-pulse
sequences applied to two-level atoms.

Conclusions

We have shown that the light-matter entanglement occur-
ring during spontaneous emission from a two-level atom is
a fundamental resource for generating entangled light. By
probing the temporal domain of pulsed light emitted by an
artificial atom after a double π-pulse excitation, our mea-
surements demonstrate the generation of a photon-number
Bell state. By adding more consecutive π-pulses, we her-
ald that this protocol can produce multipartite temporal
entanglement, and it is a step closer to the generation of
high-order Fock states and cat states, which require dy-
namic control of the light-matter coupling strength [41–
43]. Such a new class of photonic states could serve as
building blocks for distributing entanglement, quantum
state teleportation, and may allow new ways to implement
quantum random walks, quantum sensing, and photonic
networks [44]. We also believe that the sequential coher-
ent driving of multi-level atomic systems during sponta-
neous emission offers promising perspectives for generat-
ing high-dimensional entanglement [45]; for example, us-
ing the biexciton-exciton cascade in semiconductor quan-
tum dots or in combination with spin-photon entangle-
ment protocols.
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Methods

More details about the QD-micropillar source used in our
experiments can be found in Ref. [46], source number
3. This source was chosen over others for its very high
emission efficiency, which allows for fast collection of time-
resolved maps and third-order intensity correlations. The
experiments were performed in a standard resonant cross-
polarisation setup [29, 34, 46]. We prepare the two π-pulse
sequence in a compact Michelson interferometer. This
provides passive phase-stabilisation for the delayed out-
put pulses and independent intensity tuning. One of the
mirrors is mounted on a nanometric translation stage al-
lowing for delay tuning up to 175 ps. The laser pulses
have a temporal FWHM of ∼20 ps. The coincidence maps
are retrieved via time-tagging of the photon events with
respect to the laser clock [47]. The phase correlation mea-
surements are implemented in a path unbalanced Mach-
Zehnder interferometer, with a delay of 12.3 ns in one
of the arms, matching the laser repetition rate[34]. The
phase φ of the interferometer evolves slowly, performing
a π shift on the ∼5 s timescale. The relatively fast 100
ms time to acquire a single time-resolved correlation map

G
(2)
HOM(t1, t2, φ) allows us to consider the phase φ constant

for each map.

The device and setup losses are detailed in Refs. [28, 46].
The probability of having a single photon per pulsed
excitation in the collection single-mode fiber is ∼10%.
All measurements are performed using superconducting
nanowire single-photon detectors with ∼70% quantum ef-
ficiency and ∼50 ps FWHM Gaussian jitter time. The g(3)

and g
(2)
HOM measurements are intensity-normalised quan-

tities that are insensitive to photon losses, thus allow-
ing to characterise the photonic state at the source level,
before any photon collection, transmission, and detec-
tion losses. Under a single π-pulse excitation, the count
rate per detector in the intensity correlation measure-
ments (g(3) Hanbury-Brown-Twiss setup, with three de-
tectors) is 1.256±0.007 MHz/detector, and the count rate

per detector for the g
(2)
HOM coherence measurements (out-

put of the Mach-Zehnder interferometer) is 0.899 ± 0.005
MHz/detector. The photon time-tags are processed in a
HydraHarp 400 autocorrelator, with a temporal discreti-
sation of 8 ps.
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In this document, we describe the details of the theoretical and experimental analysis of photon-number entangled
states generated from a two-level atom. In section I, we derive the model of photon-number entanglement from the
light-matter interaction of a two-level atom with the photonic field. We then describe, in section II, the theoretical
details for the measurements we perform, assuming generally imperfect photonic states. In section III, we present the
extended experimental analysis of the generated photonic states: the single photon Bell state |ψ+〉, as well as 9 different
pulse separations for the double π pulse sequence, which we used to produce the |φ+〉 state at the half-life condition
presented in the main text.
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I. THEORETICAL MODEL OF THE JOINT EMITTER-FIELD DYNAMICS

We consider a two-level atom system coupled to a multimode electric field in a one-dimensional waveguide. The free
Hamiltonian of the atom is Hs = ~ω0(σ̂z + 1̂)/2, with σ̂z = |e〉 〈e| − |g〉 〈g|, where |e〉 (|g〉) is the excited (ground) state.

The free Hamiltonian of the field is HF =
∑
k ~ωkâ

†
kâk, where â†k (âk) creates (annihilates) a photon of frequency ωk; we

consider that the light propagates only in one direction and with constant velocity v, so that ωk = vk. We also assume
that the coupling strength between the emitter and field is uniform in frequency. Then, the interaction potential reads

V = i~g
∑
k(σ̂−â

†
k − σ̂+âk), with σ̂− = |g〉 〈e| and σ̂+ = |e〉 〈g|. We study the dynamics in the interaction picture: the

operators evolve with H0 = Hs +HF, and the states with V (t) = i~g
∑
k(e−i(ω0−ωk)tσ̂−â

†
k − ei(ω0−ωk)tσ̂+âk).

We fix a time interval δt, such that tn = nδt, then we define a new operator acting on the field’s temporal modes:

b̂n =
√
δt/ρω

∑
k e
−iωktn âk, where ρω is the uniform density of waveguide modes and we have that [b̂n, b̂

†
n′ ] = δn,n′ . For

δt small enough,
∫ tn+1

tn
dt′V (t′) ≈ δtV (tn), with V (tn) = i~

√
γ/δt(e−iω0tn σ̂−b̂

†
n − eiω0tn σ̂+b̂n), where γ = g2ρω. Then,

we can imagine that, between time tn and tn+1, the emitter interacts only with the n-th discretised temporal mode of

the field, and the global system’s state evolves under the unitary transformation Un = e
−i
~ δtV (tn). Noticing that, for

every n and n′ with n 6= n′, [Un, Un′ ] = 0, we can factor the unitary evolution between time 0 and tN . Furthermore,
taking δt� γ−1, we can approximate Un up to its first order in γδt, Un. For example, if the initial state is |e,0〉, where
|0〉 ≡

⊗
n |0〉n is the field vacuum, at time tN the state is |Ψ(tN )〉 = UN−1UN−2...U0 |e,0〉. Expanding this expression

and taking the continuous limit,
∑
n δt→

∫
dt, b̂†n →

√
δtâ†(t) we get

|Ψ(t)〉 = e−γt/2 |e,0〉+
√
γ

∫ t

0

dt′e−γt
′/2e−iω0t

′
â†(t′) |g,0〉 ≡

√
e−γt |e,0〉+

√
1− e−γt |g,1〉 , (S1)

where |1〉 is the normalised state of the field containing one photon.
We can now find the total wavefunction when the atom is driven by a resonant coherent pulse. We consider the

case of a square pulse of amplitude α0 and duration tp. For each tn ∈ [0, tp], the single step unitary operator is now

Ũn = e
−i
~ δtṼ (tn). Where Ṽ (tn) = V (tn) + ~(Ω/2)σ̂y, with Rabi frequency Ω = 2α0

√
γ/ρω. We take again first order

in γδt, Ũn. If the initial state of the atom is |j〉, with j ∈ {g, e}, at time tN ≤ tp, the global system’s state is given by

|Ψ̃(tN )〉 = ŨN−1ŨN−2...Ũ0 |j,0〉. Expanding this expression and taking the continuous time limit, we get

|Ψ̃(t)〉 =
∑

k∈{g,e}

(
f

(0)
j,k (t) +

∫ t

0

dt′f
(1)
j,k (t, t′)e−iω0t

′
â†(t′) +

∫ t

0

dt′
∫ t

t′
dt′′f

(2)
j,k (t, t′, t′′)e−iω0(t′+t′′)â†(t′)â†(t′′)

)
|k,0〉 (S2)

and the coefficients f
(i)
j,k are real-valued functions of time parametrised by Ω and γ, depending on the initial emitter

state |j〉. Here, we truncate the state at the component with two photons emitted, since the amplitude of the i-photon
component goes as γi/2 and the three-photon component is already negligible in our experimental situation.

Consider the case where the emitter is driven by N coherent square pulses each with a duration tp and with a
separation between each pulse of ∆tm. As in the main text, we notate the pulses and time bins in reverse chronological
order so that ∆t1 →∞ is the period after the final pulse, allowing for the atom to return to its ground state. Then the
total light-matter state can be obtained by combining the actions of the two evolution operators U and Ũ :

|Ψ〉 ≡ |g〉 |ψN 〉 = U(∆t1)Ũ(tp) · · ·U(∆tN−1)Ũ(tp)U(∆tN )Ũ(tp) |g,0〉 , (S3)

where |ψN 〉 is the photonic state produced after N pulses. This expression takes into account the multi-photon emission
for finite pulses and gives the time-dynamic expression for the photon wavepackets emitted by the atom within each
time bin.

A. A photonic Fibonacci sequence

In the main text, we described how two sequential π-pulses separated by T1/2 = ln(2)T1 generates the maximally
entangled Bell state. Here, we explore how a longer sequence of π-pulses can be used to generate multi-mode entangled
states. An intuition for this process is given by first imagining that a sequence of N ideal pulses far-separated in time
will produce a time-bin product state |11 · · · 1〉 of N photons, because the atom has time to decay between each pulse.
If the time separations between the pulses are decreased, at some point, the atom may still be in the excited state when
a subsequent pulse arrives. If so, this pulse will coherently bring the atom to the ground state, preventing the atom
from emitting in the time bins preceding and following that pulse. This creates a correlated “vacuum pair” within the
stream of single photons |11 · · · 1001 · · · 1〉. The average number of vacuum states that are created increases as the time
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separations decrease but, because they always come in pairs, there are only certain ways that they can be organised
within the stream of photons. For example, we can already see that only 5 possible photonic states can be produced
by N = 4 ideal π pulses. These are the permutations: |0000〉, |0011〉, |1001〉, |1100〉, and |1111〉. If the light-matter
interaction remains coherent over the timescale of the pulse sequence, the final photonic state must be a superposition
of all possible permutations of vacuum pairs arranged among the stream of single photons.

Counting permutations of paired elements (00) among individual elements (1) arises in many different contexts, such
as prosody in Greek and Indian poetry [1, 2], where syllables of long length (vacuum pairs) are arranged between
short ones (single photons). This pattern produces Pascal’s triangle, the Fibonacci sequence, and the golden ratio, all
of which arise in countless otherwise unrelated applications from phyllotaxis [3] to pulsating stars [4]. Notably, the
recursive Fibonacci relation arises in quantum cryptography [5] and quantum computing [6].

To reveal the relationship between the Fibonacci sequence and the photonic state produced by sequential π-pulses, we
begin from Eq. (S3). If we assume that the pulses are much shorter than the lifetime of the atom, namely they are so

short that we can neglect any emission during the pulse (tp � 1/γ), then Ũ(tp) becomes a unitary transformation on the

atomic state only, and for a π-pulse we have Ũ(tp)→ σ̂x. In this case, at most one photon can be spontaneously emitted
per time bin, and this emission is captured by the operator U(∆tm). This operator effectively performs a two-qubit gate
between the atomic states {|g〉 , |e〉} and the state of the mth time bin {|0〉m , |1〉m}, where |1〉m = t̂†m |0〉m. Drawing from
Eq. (S1), in the ideal π-pulse scenario the mth time bin mode beginning at time T[m] can be defined using the pulse-

mode formalism [7–9] as t̂†m =
∫∞

0
dtf

(1)
m (t)â†(t), where the normalised complex one-photon wavefunction amplitude is

f
(1)
m (t) =

√
γe−γ(t−T[m])/2−iωo(t−T[m])/βm for T[m] ≤ t ≤ T[m] + ∆tm and f

(1)
m (t) = 0 otherwise. The normalization factor

is given by β2
m = 1− α2

m where αm = e−γ∆tm/2. This temporal second-quantised description of the propagating field is
valid in the regime where the bandwidth of light is much narrower than its central frequency [8], which is the case for
our experiments. See the next section for more details about partitioning time.

Since the photonic state |ψN 〉 = 〈g|Ψ〉 is generated by sequential interaction with the two-dimensional ancillary atom,
it can be represented as a matrix product state (MPS) described by the set of 2× 2 isometries V[m] for m ∈ {1, · · · , N}
acting on the initial atomic state |g〉 [10, 11]. Using the second-quantised time bin modes, we can determine V[m] by
re-writing the spontaneous emission operator U(∆tm) as an amplitude damping map

U(∆tm) :

{|g〉 → |0〉m |g〉
|e〉 → αm |0〉m |e〉+ βm |1〉m |g〉

. (S4)

Hence, the isometry V[m] = U(∆tm)σ̂x is given by

V[m] = αm |0〉m |e〉 〈g|+ βm |1〉m |g〉 〈g|+ |0〉m |g〉 〈e| (S5)

Thus, the photonic state |ψN 〉 is of the class MPS2 and can be written as

|ψN 〉 = 〈g|V[1]V[2] · · ·V[N ]|g〉 , (S6)

where we again adopted the reverse-chronological labeling for convenience.
To reveal the Fibonacci-like recursive nature of the state, we can expand the MPS expression:

|ψN 〉 = αN |0〉N 〈g|V[1]V[2] · · ·V[N−1]|e〉+ βN |1〉N 〈g|V[1]V[2] · · ·V[N−1]|g〉
= αN |0〉N |0〉N−1 |ψN−2〉+ βN |1〉N |ψN−1〉 .

(S7)

This expression can be equivalently written in terms of the time bin mode operator t̂†m, as in the main text. We can now
evaluate this expression to reveal the W-class entangled state produced by three pulses, knowing the first two terms are
a single photon and a Bell-like entangled state:

|ψ1〉 = |1〉1
|ψ2〉 = α2 |0〉2 |0〉1 + β2 |1〉2 |1〉1
|ψ3〉 = α3 |0〉3 |0〉2 |1〉1 + β3α2 |1〉3 |0〉2 |0〉1 + β3β2 |1〉3 |1〉2 |1〉1 .

(S8)

By expanding the recursive wavefunction relation for a given number of pulses N , we can see that the product states
composing |ψN 〉 are given by all of the possible permutations of vacuum pairs (00) among single photons (1) arranged into
the N time bins, which matches the intuitive explanation. The number of unique product states Ki containing i vacuum
pairs can be found as the sequence of numbers along the ‘shallow’ diagonal of Pascal’s triangle. The sum of this sequence
is the Fibonacci number FN corresponding to the sequence generated by the recursive relation FN = FN−2 + FN−1

beginning with F0 = F1 = 1. Hence, FN =
∑bN/2c
i=0 Ki is the total number of product states composing |ψN 〉. This

relationship can be directly identified from Eq. (S7) by noting that all product states with coefficient αN must be
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distinct from those with coefficient βN due to having different states in their Nth time bin. Since the number of product
states composing |ψN 〉 follows the Fibonacci sequence, it scales exponentially by ϕN where ϕ = (1 +

√
5)/2 is the golden

ratio.
Interestingly, there is a unique choice for the pulse separations ∆tm so that all product state amplitudes are identical.

This special condition is ∆tm≥2 = T1 ln(Fm/Fm−2), which provides the maximally entangled Bell (N = 2) and W-class
(N = 3) states. It remains to study the amount and type of entanglement for states with N ≥ 4. However, for large
N at this condition, we can identify that pulses near the beginning of a long sequence should have a constant ‘golden’
pulse separation ∆tm → ∆tϕ = 2T1 ln(ϕ). As the sequence nears its end (m . 7), the pulse separations should briefly
fluctuate around ∆tϕ before ending with ∆t3 = T1 ln(3) and ∆t2 = T1 ln(2). Hence, the deviation of ∆tm from ∆tϕ
corrects for the truncation of the sequence.

B. Time bin partitioning

As described in the main text and in Refs. [12, 13], any pure single-photon wavepacket
∫
dtf (1)(t)â†(t) |0〉 = t̂† |0〉 can

be re-expressed as a single-photon entangled state α(T ) |01〉el + β(T ) |10〉el by partitioning it at the threshold time T .

This is possible because we can always express the temporal mode as a sum of orthogonal modes t̂† = α(T )t̂†e + β(T )t̂†l ,

where α(T )t̂†e =
∫ T
−∞ dtf (1)(t)â†(t), β(T )t̂†l =

∫∞
T
dtf (1)(t)â†(t), α2(T ) =

∫ T
−∞ dt|f (1)(t)|2, and β2(T ) =

∫∞
T
dt|f (1)(t)|2.

Thus, we can define the amplitudes of the early and late time bin modes f
(1)
e and f

(1)
l , respectively. This partitioning

can be extended by defining N − 1 threshold times T[m] so that the wavepacket is partitioned into N orthogonal time
bin modes. In this way, a single photon can also be re-expressed as an N -qubit entangled W state. For a single photon
emitted by an exponentially-decaying atom with a lifetime T1 the measured state will be a maximally entangled W state

when choosing the threshold times to be T[m]=T1 ln
(

N
N−m

)
.

When two or more photons are present, it is not always possible to express the photonic state in terms of the orthogonal
early and late modes. This is because a general two-photon amplitude f (2)(t1, t2) is not always separable into two single-
photon amplitudes. In other words, the arrival time of the two photons could be entangled. However, in the case of
the photonic sequence described in the previous section, only a single photon may be emitted between each of the short
pulses and, if a single photon is emitted, its time of emission does not depend on the emission time of other photons, only
on the atomic lifetime. Hence, by choosing T[m] to coincide with the pulse arrival times, the state can be re-expressed

in terms of the second-quantised modes t̂†m, as was demonstrated in the previous sections.
Although we must choose to partition the wavepacket into time bin modes defined by the pulses, additional partitions

could be made between pulses. For example, using the fact that any single-photon wavepacket can be partitioned into
a |ψ+〉 Bell state, we can re-express a |φ+〉 = (|00〉el + |11〉el)/

√
2 Bell state as (|000〉eil + (|101〉eil + |011〉eil)/

√
2)/
√

2
W-class state by partitioning the early bin into two parts to create an intermediate (i) bin. Although this is one way to
create multi-mode entangled states, the limitation is that partitioning a wavepacket into smaller and smaller bins makes
it more difficult to separate, manipulate, and measure the modes with high fidelity.

C. Beyond ideal pulses

We now go beyond the assumption that tp � 1/γ to consider that emission during the pulse can take place. However,
we assume that at most two photons are emitted in total. In this case, we can apply Eq. (S3) to find that

|ψ〉 =
√
p0 |0〉+

√
p1

∫ ∞
0

dtf (1)(t)â†(t) |0〉+
√
p2

∫ ∞
0

∫ ∞
0

dt1dt2f
(2)(t1, t2)â†(t2)â†(t1) |0〉 . (S9)

1. Single Pulse

Emission from a two-level system after a single π pulse has already been extensively studied [13, 14]. In this case, the
f (2) component is primarily composed of one photon emitted during the excitation pulse of width tp and one photon
emitted afterwards at the rate γ. This source of error is referred to as re-excitation noise and it is one of two factors
causing a non-zero g(2)—the second being imperfect suppression of the excitation pulse. In general, the two photons
composing f (2) are temporally entangled due to the sequential nature of their emission from a two-level atom. However,

for a pulse much shorter than 1/γ, the two photons are approximately separable f (2)(t1, t2) ' f
(1)
n (t1)f (1)(t2), where

t1 ≤ t2 and f
(1)
n is the temporal wavefunction of the noise photon that has a very small overlap with the single-photon
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component [13, 15]. In this fast-pulse regime, f (1) and f
(1)
n are given by [13]

f (1)(t) '
√
γe−iωot

√
p1

{
sin (Ωt/2) cos (Ω(tp − t)/2) e−γtp/4 t < tp

sin (Ωtp/2) e−γ(2t−tp)/4 t ≥ tp

f (1)
n (t) '

√
p1γe

−iωot

√
p2

{
sin (Ωt/2) csc (Ωtp/2) sin (Ω(tp − t)/2) t < tp

0 t ≥ tp

(S10)

The values of p0, p1, and p2 can then be obtained from the normalisation conditions of |ψ〉, f (1), and f (2).

2. Two Pulses

For sequential π pulses, the temporal wavefunctions f (1) and f (2) can be decomposed into the four orthogonal intervals
∆T1 = (0, tp), ∆T2 = (tp,∆t), ∆T3 = (∆t,∆t + tp), ∆T4 = (∆t + tp,∞). This decomposition provides wavefunction

expressions similar in nature to Eq. (S10) but where f (1) is a piecewise sum of 4 wavefunctions and f (2) a piecewise sum
of 10 wavefunctions, corresponding to the 10 ways of placing 2 photons among the 4 intervals.

To simplify the discussion, we introduce the probabilities Pn1,n2,n3,n4 , where ni are the number of photons emitted
during time interval ∆Ti. The one-photon probability is then p1 = P1000 + P0100 + P0010 + P0001. In the same way,
the two-photon probability is p2 ' P1100 + P1010 + P0110 + P1001 + P0101 + P0011, where the cases P0200 = P0002 = 0
vanish because two-photon emission can never occur while the pulse is off and we neglect the very small contribution
from P2000 and P0020, which can only occur during the short pulse intervals.

To define our final two time bins, we group the intervals ∆T1 through ∆T3 into an early bin ∆Te = (0, T ) where T
here is fixed to be T ≡ ∆t + tp, followed by the late bin ∆Tl = ∆T4 = (T,∞). This allows us to consider f (1) as the
sum of two orthogonal parts: f10(t), where the photon is emitted during the early bin, and F01(t), where it is emitted
during the late bin. Their associated probabilities are p10 = P1000 + P0100 + P0010 and p01 = P0001, respectively. In the
same way, f (2) becomes the sum of two orthogonal parts: f20(t1, t2), where the two photons are both emitted during
∆Te, and f11(t1, t2), where one photon is emitted during ∆Te and the other in ∆Tl. Their associated probabilities are
p20 = P1100+P1010+P0110 and p11 = P1001+P0101+P0011. With this choice of time bin basis, the wavefunction f11(t1, t2)
can be always factored as f11(t1, t2) = fe(t1)fl(t2) for a truncated early photon fe(t1) followed by an exponentially-
decaying late photon fl(t2) =

√
γe−γt2/2−iωot2 . Using all these temporal wavefunction components, we can generate

theory predictions for all measured quantities, including fidelity and concurrence.
The photonic state re-expressed in this time bin basis reads

|ψ2〉 =
√
p0 |00〉+

√
p01 |01〉+

√
p10 |10〉+

√
p20 |20〉+

√
p11 |11〉 (S11)

where |02〉 states cannot occur by definition of the chosen partition and we have, for example, |10〉 =
∫ T

0
dtf10(t)â†(t) |0〉.

From this model in the case of short π-pulses, we have

p0 ' e−γ∆t

p01 ' 0

p10 '
1

4
γtpe

−γ∆t

p20 '
3

8
γtp

(
e−γtp − e−γ∆t

)
p11 '

(
3

8
γtp + 1

)
e−γtp +

(
3

8
γtp − 1

)
e−γ∆t.

(S12)

The above probabilities do not sum to 1 due to the truncation of the basis. Because of this, we can estimate the three
photon emission probability by taking p3 ' 1− (p0 + p1 + p2) where p1 = p01 + p10 and p2 = p20 + p11. In addition, the
intrinsic overlap between the first and second emitted photons of the two-photon component is estimated given by the
ratio p20/p2 ' p20/p11. For short pulses, this reduces to a linear dependence on pulse width: ∼ 3γtp/8.

II. THEORETICAL MODEL OF THE MEASUREMENT

To model the measurements of coherence, we use the approach detailed in section 3.2.3 of Ref. [13], which is an
extension of that presented in Ref. [16]. Under the assumption that the imperfect photonic states arriving at the final
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balanced beam splitter of the Mach-Zehnder interferometer are uncorrelated and identical, but for the interferometer
phase φ, the coincidences of the detectors monitoring the outputs are given in terms of the input field correlations by

2G
(2)
HOM(t1, t2) = N(t1)N(t2)−

∣∣∣G(1)(t1, t2)
∣∣∣2 +G(2)(t1, t2)−

∣∣∣C(2)(t1, t2)
∣∣∣2 cos(2φ) + 2C−(t1, t2) cos(φ), (S13)

where N(t) = 〈â†(t)â(t)〉 is the input intensity, G(2)(t1, t2) = 〈â†(t1)â†(t2)â(t2)â(t1)〉 is the intensity correlation,
G(1)(t1, t2) = 〈â†(t2)â(t1)〉 characterises the temporal purity of the state, and C(2)(t1, t2) = 〈â(t2)â(t1)〉 captures the
second-order coherence. The antisymmetric term C−(t1, t2)=Re

[
〈â(t2)〉〈â†(t2)â†(t1)â(t1)〉−〈â(t1)〉〈â†(t1)â†(t2)â(t2)〉

]
is a modification of the Hong-Ou-Mandel interference dynamics in the presence of first-order coherence. For two-level

atoms, this term can only be nonzero during coherent driving. Hence, its contribution to G
(2)
HOM is negligible for the

cases studied in this work where we only apply short π pulses.

To explore the properties of the photonic states when subdivided into two time bins, we integrate G
(2)
HOM over the four

quadrants defined by the threshold T separating early e and late l time bins. Then, to obtain quantities that are loss
independent, we normalise by the squared average photon number for each pair of bins. This gives

2g
(2)
HOM,ab = 1−Mab + g

(2)
ab − c

(2)
ab cos(2φ) + 2c−ab cos(φ), (S14)

where the subdivided quantities for a, b ∈ {e, l} are defined by

g
(2)
ab =

1

µaµb

∫
a

∫
b

G(2)(t1, t2)dt1dt2 Mab =
1

µaµb

∫
a

∫
b

∣∣∣G(1)(t1, t2)
∣∣∣2 dt1dt2

c
(2)
ab =

1

µaµb

∫
a

∫
b

∣∣∣C(2)(t1, t2)
∣∣∣2 dt1dt2 c−ab =

1

µaµb

∫
a

∫
b

C−(t1, t2)dt1dt2

(S15)

and µa =
∫
a
N(t)dt. Note that, due to the time symmetry of G(2)(t1, t2),

∣∣G(1)(t1, t2)
∣∣2, and

∣∣C(2)(t1, t2)
∣∣2, we have that

g
(2)
ab = g

(2)
ba , Mab = Mba, and c

(2)
ab = c

(2)
ba , respectively. However, C−(t1, t2) is antisymmetric and so c−ee = c−ll = 0 and

c−el = −c−le. Eq. (1) of the main text can then be recovered by taking the weighted average

g
(2)
HOM = µ2

eg
(2)
HOM,ee + µeµl

(
g

(2)
HOM,el + g

(2)
HOM,le

)
+ µ2

l g
(2)
HOM,ll, (S16)

where µa = µa/µ is the proportion of intensity in bin a ∈ {e, l} and µ = µe + µl =
∫
N(t)dt.

If the input has first-order coherence (〈â(t)〉 6= 0), the detector rates fluctuate in opposition by µ± = µ[1± c(1) cos(φ)]

where c(1) = µ−1
∫
|〈â(t)〉|2 dt is the integrated squared magnitude of the first-order coherence [17]. This oscillation gives

the self-homodyne signal ISH discussed in the main text. Like g(2), we normalise g
(2)
HOM with respect to the uncorrelated

coincident counts obtained for detection delays |t1 − t2| greater than the laser repetition period. However, these counts
are also affected by the interferometer phase if ISH 6= 0 [13, 18]. The average coincident counts between uncorrelated
detection events is the product of the average photon number received at each detector µ+µ− = µ2(1− I2

SH), which can

underestimate µ2. This underestimate remains even after phase averaging: I2
SH → (c(1))2/2. For the cases studied in

this work, c(1) is measured to be less than 0.1 for pulse separations above 39 ps implying a 0.5% normalisation error.
For the half-life case of ∆t = 98 ps, c(1) ' 0.03 giving an expected error of 0.05%. Hence, the uncorrelated coincidence
counts give a good approximation of µ2 and the normalisation for each quadrant µaµb.

A. Density matrix elements and fidelity estimates

In general, the measured state is not a pure state as in section I, but a mixed state described by a photonic density
matrix ρ̂. This reduction in purity can be caused by decoherence processes such as electron-phonon interactions of
the quantum dot emitter. We can decompose this density matrix by photon number: ρ̂ =

∑
m,n

√
pmpnρ̂m,n, where

Tr[ρ̂n,n] = 1 and ρ̂n,m = ρ̂†m,n. The form of ρ̂ can be obtained from the form of |ψ〉 〈ψ| given in Eq. (S9), with the exception

that the normalised temporal density functions ξ(m,n) cannot, in general, be factored into amplitudes f (m)f (n)∗. For
example, the imperfect single-photon state in the time basis is given by ρ̂1,1 =

∫∫
ξ(1)(t, t′)â†(t) |0〉 〈0| â(t′)dtdt′, where

we have used the simplified notation ξ(n) = ξ(n,n). To make an explicit connection to the model presented in section I,
the single photon emitted by a purely dephased atom can be approximated by ξ(1)(t, t′) ' f (1)(t)f (1)∗(t′)e−γ

?|t−t′|,
where γ? � Ω is the pure dephasing rate such that γ + 2γ? is the FWHM of the homogeneously-broadened photon
intensity spectrum [13].

To describe fidelity, we first define the second-quantised time bin modes as t̂†a =
∫
a
fa(t)â†(t)dt where

∫
a
|fa(t)|2dt = 1

for a ∈ {e, l}. Then, the density matrix elements of the photonic state in this basis are %klmn = 〈kl|ρ̂|mn〉 where
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|mn〉 = (t̂†e)
m(t̂†l )

n |0〉 /
√
m!n!. These elements involve overlap integrals between the ideal temporal wavefunctions and

the temporal density functions ξ(m,n). However, all the quantities measured with the self-homodyne setup correspond
to purity measurements where the overlap integrals are between ξ(m,n) exclusively.

Purity measurements can give a good estimate of the magnitude of some density matrix elements |%klmn|. Using the
single-photon case as an illustrative example, by the Cauchy-Schwarz inequality we have∣∣∣〈0|t̂aρ̂t̂†b|0〉∣∣∣2 = p2

1

∣∣∣∣∫
a

dta

∫
b

dtb

∫∫
dtdt′f∗a (ta)ξ(1)(t, t′)fb(tb)Tr[â(ta)â†(t) |0〉 〈0| â(t′)â†(tb)]

∣∣∣∣2
= p2

1

∣∣∣∣∫
a

dt

∫
b

dt′(f∗a (t)fb(t
′))ξ(1)(t, t′)

∣∣∣∣2 . p2
1

∫
a

dt

∫
b

dt′
∣∣∣ξ(1)(t, t′)

∣∣∣2 , (S17)

where we have used the fact that fa and fb are normalised. This inequality is saturated when the photon can be written
in the time-bin basis: ξ(1)(t, t′) ∝ fa(t)f∗b (t′) for t in a and t′ in b, which can only be satisfied for a pure photon.

However, by defining our modes to have the most optimal shape |fa(t)|2 = ξ(1)(t, t) (for t in a) and phase that best
matches ξ(1)(t, t′), this upper-bound approximation is very accurate when dephasing is small; for instance, when the
single-photon indistinguishability (trace purity) Ms = Tr[ρ̂2

1,1] =
∫∫
|ξ(1)(t, t′)|2dtdt′ from the source is greater than 0.5

(see sections 3.3.3 and 3.3.4 of Ref. [13]), which is the case for the device studied here.
We would like to now estimate the right-hand-side of Eq. (S17) using measurements of the mean wavepacket overlaps

Mab. However, any measurement of ξ(1) after losses will include contribution from the multi-photon ‘noise’ components
ξ(n≥2) if g(2) 6= 0. In other words, Mab quantifies G(1) = p1ξ

(1) +O(p2) (recall Eq. S15). We can identify two extreme
cases: (i) G(1) ' p1ξ

(1), implying that the noise contributes nothing to the purity measurement (e.g. µ2
πM ∼ p2

1Ms),
and (ii) G(1) ' µπξ(1) implying that the noise contributes proportionally to the single-photon subspace (e.g. M ∼Ms).
Taking the former will overestimate the fidelity in most cases whereas the latter will generally underestimate the fidelity.
In principle, one could have G(2) > µπξ

(1), which implies that the presence of noise purifies the total state (e.g. M > Ms),
but this is extremely unlikely given that the same dephasing processes are expected to degrade all subspaces. To take

the possible range from case (i) to (ii) into account, we estimate
∣∣∣〈0|t̂aρ̂t̂†b|0〉∣∣∣2 ' µ̃2

πµaµbMab where p1 ≤ µ̃π ≤ µπ. This

gives a fidelity estimate of

Fψ+ =
1

2
(%0101 + %1010 + %0110 + %1001) ' µ̃π

2

(
µe
√
Mee + µl

√
Mll + 2

√
µeµlMel

)
, (S18)

where µa = µa/µπ and where we have defined the difference in phase of t†e and t†l such that %1001 = %0110 ≥ 0. The
photonic density matrix structure after one π pulse is summarized in Fig. S1 (a).

The fidelity Fψ+ is bounded from above by µ̃π
√
M using the generalised mean inequality. In fact, from Eq. (S17) we

can find that it is more precisely bounded by p1

√
Ms. For the device used in this work, Ms can be accurately estimated

by Ms = M/(1− g(2)) [15], which corresponds to a scenario half-way between cases (i) and (ii) discussed above.
We apply this same approach to estimate the fidelity for the two-pulse case, where we wish to compute the fidelity to

the Bell state |φ+〉 = (|00〉+ |11〉)/
√

2. The diagonal density matrix element corresponding to |00〉 is simply given by the

vacuum probability %0000 = p0. The important coherence element can be estimated from the second-order coherence c
(2)
el

between early and late time bins similar to Mel for the single-photon entangled state: |%0011|2 = |%1100|2 = µ̃2µeµlc
(2)
el .

However, to compute the diagonal element associated with |11〉 from our measurements, we must assume that the two-

photon density function is approximately separable in arrival time ξ(2)(t1, t2, t
′
1, t
′
2) ' ξ(1)

1 (t1, t
′
1)ξ

(1)
2 (t2, t

′
2). That is, we

assume that the arrival times of the two photons are not entangled, although they may still overlap in time and be
impure. This is a very reasonable assumption for our experiment given that the only moment two-photon temporal
entanglement can be created is during the pulses, which are brief compared to the total wavepacket timescale. If this
assumption is not satisfied, and subsequent measurements on the same photonic state are made, it could lead to a state
description better suited for pseudo-density matrices that can have negative eigenvalues [19]. However, all the density
matrices in our analysis are assumed a priori—and verified a posteriori—to be positive semi-definite Hermitian matrices.

Knowing the important four density matrix elements, we estimate the Bell-state fidelity with respect to |φ+〉 by

Fφ+ =
1

2
(%0000 + %1111 + %0011 + %1100) ' 1

2

(
p0 +

µ̃2

p2
µeµl

√
MeeMll + 2µ̃

√
µeµlc

(2)
el

)
, (S19)

where 2p2 ≤ µ̃ ≤ µ and where we have defined the sum of the phases of t̂†e and t̂†l so that ρ0011 = ρ1100 ≥ 0. The photonic

density matrix structure after two π pulses is summarized in Fig. S1 (b). The presence of p−1
2 in Eq. (S19) arises due to

the fact that 〈11|ρ̂|11〉 ∝ p2 whereas MeeMll ∝ p4
2. One can see that in the case where µ̃ = 2p2, µe = µl = 1/2, we find

the more intuitive term p2

√
MeeMll. Note that Mee, Mll, and c

(2)
el are already directly degraded by the detector jitter.

Hence, the intensity overlap does not explicitly arise in the fidelity estimate.
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FIG. S1. Summary diagram of estimations of the photonic density matrix elements after (a) one π pulse and (b)
two π pulses, corresponding to the |ψ+〉 type entangled state and the |φ+〉 type entangled state, respectively. The blue coloured

squares indicate the elements estimated using intensity measurements (µπ or µ) and coherence measurements (Mab or c
(2)
el ) that

are required to estimate the Bell-state fidelity. The orange squares indicate the unknown diagonal elements bounded by the
photon number probabilities pn determined from intensity correlation measurements g(2) and g(3). The gray squares indicate the
unknown off-diagonal elements and the symbol ∼ indicates that the element is determined from the Hermitian property. The
numbers (1) and (2) indicate the number of free parameters. Note that the important elements illustrated by the blue squares
are estimated under different assumptions, namely that p1 � p2 after one pulse and p0p2 � p1p3 after two pulses.

B. Concurrence estimates

A high state fidelity gives an indication of how close the photonic state is to being a photon-number Bell state.
However, the fidelity does not indicate if the state is indeed an entangled state. A nonzero entanglement concurrence
[19] 0 < C ≤ 1 unequivocally indicates that a state is entangled. Computing the concurrence requires full knowledge of
the two-qubit density matrix, which cannot be obtained without performing a full quantum state tomography. However,
as described in the previous section, we can still estimate the four most important density matrix elements for the single-
and two- π-pulse cases based on both intensity and phase correlation measurements. Then, a range for all unknown
elements can be estimated by assuming the matrix must be positive semi-definite and Hermitian.

To estimate the entanglement concurrence, we build the two-qubit density matrix with two free parameters for each
unknown off-diagonal matrix element and one free parameter for each unknown diagonal element, such as %1101 =
c1101e

iφ1101 , where 0 ≤ c1101 ≤ 1 and 0 ≤ φ1101 ≤ 2π. In addition, we constrain the diagonal elements to not exceed the
corresponding measured photon number probabilities pn. These constructed density matrices are summarized in Fig. S1.
We then sample the free parameters from a uniform distribution within their allowed range and sample the measured
values from a normal distribution with a standard deviation given by the measurement uncertainty. We repeat sampling
while rejecting unphysical density matrices until we obtain 105 matrices that are positive semi-definite. We then take
the mean concurrence of the random sample to be the estimated concurrence corresponding to our measurements. This
analysis approach is applied to the |ψ+〉 case generated after a single π pulse in section III C and to the |φ+〉 case
generated after the double π pulse sequence in section III D.

III. EXPERIMENTAL ANALYSIS

A. Time-resolved measurements

In this section, we present the full set of time-resolved measurements after applying a single π pulse as well as for
several selected delays ∆t between sequential π pulses. Fig. S2 (a) shows the intensity profiles corresponding to N(t) as
well as the deduced atomic lifetime of T1 = 136±1 ps from the π-pulse case. We also show the two-time map N(t1)N(t2)
(Fig. S2 (b)) obtained from the uncorrelated counts of the Hanbury Brown-Twiss setup, which are used to normalise
G(2)(t1, t2) (Fig. S2 (c)). Finally, Fig. S2 (d) shows the two-time intensity correlation at the output of the Mach-Zehnder

interferometer G
(2)
HOM(t1, t2, φ) after summing over all measured cases of φ. For the two-time maps corresponding to a

single pulse, we show quadrants divided by T chosen at the half-life time. For maps corresponding to sequential pulses,
the quadrants are defined by choosing T to coincide with the arrival of the second pulse.

The temporal overlap of the two photons of the α |00〉 + β |11〉 state relies on the temporal characteristics of the
excitation pulses and the detection jitter time. These two imperfections cause a bleeding of the counts from the off-
diagonal quadrants into the diagonal quadrants of the maps shown in Fig. S2 (c) and (d) for the double π pulse cases. As
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FIG. S2. Time-resolved photon intensity and correlation measurements. The rows display, from top to bottom, (a)
the intensity N(t1) from direct measurement (grey/black full trace corresponds to single/double π-pulse excitation), (b) the two-
time intensity N(t1)N(t2) obtained from the uncorrelated counts of the Hanbury Brown-Twiss (HBT) setup, (c) the intensity

correlation G(2)(t1, t2) from the correlated counts of the HBT setup, and (d) the intensity correlation G
(2)
HOM after Hong-Ou-Mandel

(HOM) like interference at the end of the path-unbalanced Mach-Zehnder interferometer. The columns display, from left to right,
the π-pulse case and four selected two-pulse cases with pulse separations ∆t = 19 ps, 58 ps, 98 ps, and 158 ps. All panels have a
time resolution of 8 ps, which for the two-time maps is 8× 8 ps2. The time axes units for all panels are nanoseconds. The dashed
trace in panel (a) is a mono-exponential fit to the temporal profile decay.

discussed in the Methods section, our detectors present a Gaussian jitter time of s ' 50 ps FWHM. The excitation laser
pulses are tp ' 20 ps long FWHM. From these values, we measure that there is an ∼ 18% temporal overlap between
the two photons, which degrades the Bell state fidelity. Using the estimate 3γtp/8 from theory, we expect only a 5%
overlap due to the pulse width of 20 ps. Since both the pulse width and the detector jitter have the similar effect of

blurring the wavepacket via a convolution, we can estimate that the total measured overlap goes like (3γ/8)
√
t2p + s2

for tp, s < 1/γ. This simple estimate predicts an overlap of 15% based on our experimental parameters, which is not far
from the measured overlap of 18%.

We measure the integrated intensity correlations g(2)(τ) and g(3)(τ1, τ2) by passing the emission through a set of two
cascaded fiber beam splitters (with 1:3 and 1:1 splitting ratios, respectively). The three output fibers are connected
to three detectors i = 1, 2, 3 clicking at time ti, where triple-detection events are recorded as a function of the delays
τ1 = t1 − t2 and τ2 = t2 − t3. We then extract the two-photon correlation g(2)(τ) from either detector pair 1-2, 1-3 or
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FIG. S3. Normalised second and three-photon correlation maps measured after (a) single π-pulse excitation and (b-e)
double π-pulse excitation for the same ∆t delays indicated in Fig. S2. The first/second row compiles the normalised two-/ three-

photon coincidence histogram g(2)(τ)/g(3)(τ1, τ2). The counts in the first row are normalized by the average of the uncorrelated

counts which are, from panel (a1) to (e1): 76100, 25500, 201200, 366400, and 1207700, respectively. (f) Corresponding g(n)(0)
values, n=2, 3, for all studied delays. The solid curves show the theory predictions. The (τ) units in the axis of panels (a-e) are
equal to 12.3 ns. The error bars in the first row (a1 through e1) and panel (f) indicate the standard deviation obtained assuming
Poissonian statistics in the detected events within each peak.

2-3. In Fig. S3, we show the normalised time-integrated two and three photon correlations as a function of the detector
photon arrival delay times. The measurements after a single π-pulse are given in panels (a) and for each pulse separation
for double π-pulse excitation in panels (b) through (e).

For a given delay 1 and 2, each point in the g(3)(τ1, τ2) map corresponds to the integrated (and normalised) triple-
coincidences in a temporal delay square of 5×5 ns2 area. The simultaneous triple coincidences, g(3)(0) ' 6p3/µ

3, are
located in the centre of the map. Additionally, the simultaneous double coincidences, g(2)(0) ' (2p2+6p3)/µ2, are
located all along the vertical, horizontal and positive diagonal directions. The non-normalised three-photon coincidence
histograms, used to extract the normalised g(3)(τ1, τ2) histograms shown in the third row of Fig. S3, are not included
in this supplementary, but they are available in the permanent link 10.6084/m9.figshare.16838248.

Different phenomenology can be observed in this set of measurements. The π-pulse excitation (panels (a)) presents a
strong antibunching for both two and three simultaneous coincidences, highlighting the predominance of single photon
emission, where g(2)(0)=0.063 ± 0.002 and g(3)(0)=0.0016±0.0009. In the series of different delays compiled in panels
(b-e) and summarized in panel (h), we observe a gradual decrease of g(3)(0) and g(2)(0) with increasing separation
between the two pulses. The most remarkable feature is the change of the photon statistics for g(2)(0) from bunching
when ∆t < T1 to antibunching when g(2)(0) > T1 and g(2)(0) ' 1 when ∆t ' T1.

B. Photon probabilities and loss

All measurements described in section II are normalised, hence independent of photon losses, aside from the average
photon number µ. However, fidelity is loss-dependent in general. Thus, to estimate the fidelity and photonic state
probabilities at source, we must estimate µ at the source. For the double π pulse cases, we measure µ after losses and
normalise it with respect to the value µπ detected for a single π pulse after the same amount of losses (see Fig. S4 (a),
a similar measurement is performed in the work of Liu and coworkers [20], where the double π-pulse excitation is used
to extract T1). Thus, all measurements can be projected back to the source provided an estimate of µπ at the source.

To estimate µπ at the source, we make only one assumption: the probability p0 that no photons are emitted is very
small when applying one π pulse excitation. This is a very reasonable assumption, provided that the quantum dot is in
the correct electronic configuration. That is, the photon probabilities and fidelity estimated in this work are corrected
for losses as well as any potential source blinking.

Using the measured values of µ/µπ, g(2), and g(3), we can calculate the photon probabilities for all cases studied as a
function of µπ (see Fig. S4 (c)). In this figure, we see that the value of µπ = 1.03 ± 0.03 is the most reasonable choice
to estimate probabilities at the source. Fig. S4 (b) shows the photon number probabilities at the source predicted from
the measurements using µπ = 1.03± 0.03, where we find good agreement with theory. The estimated pn values after a
single π pulse are found to be p0 = 0.01± 0.03, p1 = 0.96± 0.03, p2 = 0.035± 0.003, and p3 = 0.0003± 0.0002. For the
highlighted two π pulse case where ∆t = 98 ps' T1/2, we find that p0 = 0.47± 0.01, p1 = 0.05± 0.04, p2 = 0.45± 0.03,
and p3 = 0.032± 0.003. These probabilities are crucial to estimate the Bell state fidelity.

In our experiments, we chose the source displaying the highest brightness of those characterized in Ref. [21], with a
single-photon brightness of 18% at the first lens, and a single photon rate in the single-mode collection fiber of 8.9 MHz
(with a laser repetition rate 81.08 MHz). This allowed for fast and efficient acquisition of photon correlation events. The
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FIG. S4. Photon number probabilities. (a) The measured total average photon number µ/µπ for two π pulses separated
by delay ∆t relative to µπ detected after a single π pulse. (b) The probabilities pn for the source to emit n photons given
µπ = 1.03 ± 0.03. The solid lines in panels (a) and (b) show the theory predictions. (c) The range of experimentally estimated
photon probabilities for losses parameterised by µπ. The red shaded region shows the unphysical regime where at least one pn
becomes negative. The vertical dashed line shows the value of µπ such that p0 is nearly zero for the π-pulse case. It is also the
largest value of µπ such at all probabilities extracted from the measurements are physical. Error bars in panels (a) and (b), as
well as the error bands in panel (c) indicate the standard deviation obtained from propagating the Poissonian statistics of the
single-photon counting measurements. Note that the error bars in panel (a) are smaller than the points.

first lens brightness is dependent on four main factors: (1) A Purcell factor of about 7 implies 90% of the QD emission
goes into the cavity mode. (2) The asymmetrical microcavity design yields a cavity mode emission efficiency towards the
first collection of ∼ 80% [21, 22]. (3) The cross-polarised filtering technique used to remove the excitation laser pulses
halves the collected single-photon emission from the charged QD emission. (4) The efficiency of the charge load in the
trion QD state [22], which impacts the excitation efficiency of the charged QD.

Further steps can be taken towards the deterministic operation of the entanglement source by placing the first lens
inside the cryostat chamber and using optimal coatings in the optical elements in the collection setup. Optimising the
tunneling barrier of the device can improve the charge load efficiency and its stabilisation.

C. Time bin analysis of a single π pulse

The single-particle entanglement carried by a pure photon can be revealed by splitting it in half in a given degree of
freedom. For example, splitting a photon in half using a balanced beam splitter gives rise to a photon-number |ψ+〉 type
Bell state encoded in path [23]. Here, we split the photon in half by resolving the wavepacket in time.

The two factors that reduce the quality of the single-photon Bell state are temporal dephasing and a multi-photon
component arising from the imperfect excitation pulse. These are quantified by the mean wavepacket overlap M and
intensity correlation g(2), respectively. By subdividing the GHOM(t1, t2) and G(t1, t2) maps measured after a π pulse
into four quadrants (recall the first column of Fig. S2), as done in the main text, we acquire the subdivided quantities

Mab and g
(2)
ab for a chosen threshold time T . This gives a detailed picture of the single-photon quality.

The subdivided intensity correlations g
(2)
ab , presented in Fig. S5 (a), are generally larger than than predicted by our

theory (see Fig. S5 (a)), although the trends match. We expect that this is additional noise perhaps arising from

imperfect suppression of the excitation laser, which is not accounted for in our model. However, the fact that g
(2)
ll

remains high for T much larger than the pulse width suggests that a constant background noise may instead be the
culprit that explains the extra ∼0.02 to the total g(2).

When sweeping T across the wavepacket, we also find that Mee, Mll, and Mel remain quite high (see Fig. S5 (b)), as
opposed to the dip observed for Mel in the main text. This is desired for the single-photon |ψ+〉 Bell state as it attests to
the indistinguishability of photons in each bin (high Mee and Mll) in addition to the large amount of coherence between
the states |10〉 and |01〉 (high Mel). Note that, a large Mel in this case does not imply that the photons in the early
and late bins overlap in time. Such a conclusion could only be drawn if the early and late time bin modes were not
entangled. We can also again note that Mee is larger than the total value M due to temporal truncation, which is also



12

FIG. S5. Time bin analysis of a single photon. The measured values of the (a) subdivided normalised intensity correlation

g
(2)
ab along with the total integrated value g(2) and (b) subdivided mean wavepacket overlaps Mab for a, b ∈ {e, l} along with the

total integrated value M as a function of time bin threshold T in units of the half-life T1/2. Here, we compute g
(2)
el = g

(2)
le and

Mel = Mle by averaging the off-diagonal quadrants of two-time correlation maps. The error bands indicate the standard deviation
given by the Poissonian statistics of the single-photon counts within each time bin. As opposed to showing the theory for the ideal

state like in the main text, which would here give Mab = M = 1 and g
(2)
ab = g(2) = 0, we show the theory prediction that includes

dephasing and multi-photon emission. For these panels only, we also apply a convolution to account for a 50 ps detector jitter.
(c) The Bell-state fidelity (orange) using Eq. (S18) along with the upper bound (gray, solid) from intensity measurements alone.
The shaded orange region indicates the range of fidelity estimated by taking µ̃π to be 0.96 = p1 ≤ µ̃π ≤ µπ = 1.03. (d) Estimated
entanglement concurrence as a function of the time bin threshold. The connected blue line indicates the mean value of the
concurrence and the shaded region indicates the standard deviation from the mean estimated by randomly sampling 105 possible
physical density matrices that correspond to our measurements for each value of T . (e) Partial density matrix reconstruction
using experimental data at T = T1/2 corresponding to the vertical line in panels (c) and (d). Blue elements are estimated from
time-resolved intensity and coherence measurements directly. The gray elements represent the upper bound on the magnitude
of the unknown off-diagonal elements, knowing the corresponding diagonal elements. The orange elements are estimated from
the photon-number probabilities. The translucent region at the top of the blue bars indicate the standard deviation. (f) The
density matrix computed using the theoretical model. All theory predictions (dashed curves and the density matrix) are computed

for the state after applying pure dephasing to the wavefunctions given by Eq. (S10) to obtain ξ(1) as described in section II A.
We use the parameters 1/γ = 136 ps, Ω = π/tp for tp = 20 ps, and a pure-dephasing rate of γ? = 0.11γ corresponding to
Ms = γ/(γ + 2γ?) = 0.82.

predicted by our model. The sharp drop in Mee and Mel predicted as T approaches the pulse is due to the sharp rise

in g
(2)
ee and g

(2)
el from re-excitation events. Because the intensity is low in this region, our measurements have a large

uncertainty but may still hint at a similar dropping trend. We also find, in both experiment and theory, that Mll is
slightly larger than M due to the fact that it is less affected by multi-photon events, which should primarily occur in
the early bin.

Using Eq. (S18), we find that the Bell-state fidelity is maximum at the half-life T = T1/2, as expected (see Fig. S5 (c)).
This maximum occurs when µe = µl ' 1/2 so that the photon is split perfectly in half. However, not only does
p1 ' 0.96 < 1 reduced the fidelity, but the reduced purity in time also affects the measured fidelity. We find that the
measured Mab along with Eq. (S18) agree well with the maximum fidelity predicted by p1

√
Ms where Ms ' 0.82.

Lastly, we give an estimate of the concurrence[19] C, where a value C > 0 indicates entanglement (see Fig. S5 (d)). Using
the approach described in section II B, we uniformly sample 105 physical density matrices from the partially reconstructed
density matrix for each value of T while also accounting for the normally distributed measurement uncertainty. An
example of the partially reconstructed density matrix for T = T1/2 is shown in Fig. S5 (e). From this analysis, we
estimate a maximum concurrence of C = 0.81± 0.03 at the Bell-state condition T = T1/2, which corresponds very well to
the theoretical prediction of C = 0.84 as shown in Fig. S5 (f). We find that the uncertainty from the normally-distributed
measured quantities (blue bars in Fig. S5 (e)) dominate the uncertainty in the estimated concurrence rather than the
uniformly distributed free parameters (dark gray bars in Fig. S5 (e)). Thus, the concurrences of the 105 sampled matrices
are normally distributed about their mean. Therefore, we take the standard deviation of the sample to represent the
uncertainty of the estimated concurrence.

For theory calculations in panels (c), (d), and (f), we compute the density matrix elements of the imperfect photonic
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FIG. S6. Dependence of phase correlation measurements on the pulse separation time. (a) The observed phase-
correlated data showing the fitted quadratic curves (black, solid). The data set for ∆t = 19 ps is neglected because its range of
oscillation is very large. (b) The observed signatures after excluding all coincident counts occurring in the diagonal quadrants

of G
(2)
HOM(t1, t2, φ), when the time-bin threshold is chosen to coincide with the arrival of the second pulse. For clarity, in panels

(a) and (b), we have shifted the data sets for ∆t = 118 ps, 138 ps, 158 ps, and 172 ps downwards by 0.1, 0.2, 0.3, and 0.4,

respectively. (c) The range of g
(2)
HOM as a function of the pulse separation time where the colored markers indicate the minimum

and maximums from the fits in panel (a). The gray region bounded by 1/2 ≤ g
(2)
HOM ≤ µ−1 shows the theoretically expected

range of oscillation for an ideal two-pulse experiment. The dashed gray lines indicate the maximum g
(2)
HOM = 1 expected for the

half-life case ∆t = T1 ln(2). (d) Extracted measurements of mean wavepacket overlap and second-order coherence for each pulse
separation. The horizontal line indicates the measured single-photon mean wavepacket overlap M ' 0.77. Error bars in panels
(c) and (d) indicate the standard error of the regression from fitting the scattered data.

state ξ(1)(t, t′) = f (1)(t)F (1)∗(t′)e−γ
?|t−t′| relative to the temporal modes fe and fl defined by normalising the pure

temporal wavefunction fa(t) ∝ f (1)(t) for t in bin a. However, since our model underestimates p2 by about a factor
of 2, we have used the measured values of p1 and p2 along with the normalised wavefunctions from the model. Note
that, unlike the fidelity, our theory slightly overestimates the concurrence. This is because the theory wavefunctions

underestimate %1111 compared to our measurements that indicate g
(2)
ll 6= 0 even for large T . This increased %1111 element

degrades the concurrence but not fidelity.

D. Time bin analysis for two π pulses with variable separation in time

To supplement the two-pulse experiment at the half-life condition provided in the main text, we show self-homodyne
measurements for 8 other pulse separations. However, instead of varying T for each case, here we fix T = ∆t.

For each ∆t, we observe a clear quadratic signature in the phase-correlated data (see Fig. S6(a)). In general, we

find that the range of oscillation for both the self-homodyne signal ISH and intensity correlation g
(2)
HOM increase with

decreasing ∆t. This trend is expected because both values quantify an intensity-normalised magnitude of coherence
with the vacuum state. When rejecting coincident counts in the diagonal quadrants ee and ll, we find that the overall

value of g
(2)
HOM decreases but the amplitude of its oscillation remains relatively unchanged, especially for larger ∆t (see

Fig. S6(b)). In this panel, for better visual demonstration, we have not re-normalised the counts. Hence, it corresponds

to g
(2)
HOM,el multiplied by the proportion 2µeµl.

When we plot the scattered data in Fig. S6(a) as a function of ∆t, we find that the observed range of oscillation is very
close to the ideal case (see Fig. S6(c)). This theoretical range is obtained by first noting that, for an ideal |φ+〉 state,
we have µ = 2p2, g(2) = 2p2/µ

2, and M = 1/2. Meanwhile, we can compute the squared magnitude of the second-order
coherence c(2) = 2p0p2/µ

2, where the factor of 2 comes from the two-photon degeneracy. Hence, since p0 = 1 − p2, we

have that 2g
(2)
HOM = 1 −M + g(2) − c(2) cos(2φ) gives M = 1/2 ≤ g

(2)
HOM ≤ 1/µ = g(2). Note that this observation is

perfectly consistent with all states of the form |0〉 + |2〉. Thus, to probe the Bell state specifically, it is necessary to
subdivide the measurement into orthogonal time bins.

The necessary coherence measurements Mee, Mll, and c
(2)
el needed to estimate the Bell-state fidelity are summarised

in Fig. S6(d) for each pulse separation. On the one hand, we notice that Mee and Mll approach the single-photon value
of M ' 0.77 when ∆t > T1/2, which confirms the convergence to the case of two sequential single photons |11〉. On
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FIG. S7. Fidelity and concurrence. (a) Bell-state fidelity and (b) concurrence (blue dots) estimated from measurements of
second-order coherence and the photon-number probabilities. The error bars indicate the standard deviation. The red shaded
area in both panels indicates the inaccessible region for an ideal two-pulse experiment. The black dashed curve shows the theory
predictions obtained by applying pure dephasing to the wavefunctions given by the model in section I, using parameters Ω = π/tp,
tp = 20 ps, 1/γ = 136 ps, and γ? = 0.11γ. Note that these curves do not include degradation due to detector jitter and hence
over-estimate the experimental values. (c) Partial reconstructed density matrix using experimental data for pulses separated by
∆t ' T1/2. Blue elements are estimated from time-resolved intensity and phase correlation measurements directly. The gray
elements represent the upper bound on the magnitude of the unknown off-diagonal elements, knowing the corresponding diagonal
elements. The orange elements are estimated from the photon-number probabilities. The translucent region at the top of the
blue bars indicate the standard deviation. (d) The density matrix computed using the theoretical model that includes emitter
dephasing and pulses with a finite temporal width. For comparison to the experiment, the time bin threshold is chosen to
correspond to the middle of the second pulse. Hence, in this case we have p10 ' p01, unlike Eq. S12 where T is chosen to be
just after the second pulse so that the probabilities take a simple analytic form. In panels (c) and (d), we only show half of
the elements for visual clarity. The empty elements (white squares) are given by their symmetric counterpart. (e) Histogram of
concurrence from sampling 105 possible physical density matrices satisfying the partially reconstructed density matrix in panel
(c) while including normally distributed measurement uncertainty (blue, broad peak) and without including any measurement
uncertainty (red, narrow asymmetric peak). (f) Scatter plot of data composing panel (e). For visual clarity in panels (e) and (f),
we only show 1/8 of the points sampled when neglecting measurement uncertainty.

the other hand, we can see a rise in c
(2)
el as ∆t approaches zero, signifying the convergence to a state with significant

vacuum component |00〉. The decrease in Mee and Mll here is due to the increased proportion of re-excitation noise to
total emitted intensity and also due to the inability for the detector to resolve the short early photon. In between these

extreme cases, we find the Bell state, which ideally would have Mee = Mll = c
(2)
el = 1.

With the measurements shown in Fig. S6 (d) along with the photon-number probabilities in Fig. S4, we use Eq. (S19) to
estimate the Bell-state fidelity (see Fig. S7 (a)). Following the approach detailed in section II B, we also use the partially
reconstructed density matrix to estimate the entanglement concurrence for each pulse separation (see Fig. S7 (b)). An
example of the partially reconstructed density matrix for ∆t = 98 ps is shown in Fig. S7 (c) along with the corresponding
theory prediction in Fig. S7 (d). Panels (e) and (f) of Fig. S7 show the statistical distribution of concurrence from a
sample of 105 physical density matrices corresponding to the estimate of concurrence given in the main text. In
these panels, we also show how the distribution would appear when neglecting the normally distributed measurement
uncertainty (red, narrow asymmetric peak). By comparison to the broad normally distributed peak, we conclude that
the variation in concurrence from the unmeasured density matrix elements is negligible compared to the variation due
to the measurement uncertainty of the measured density matrix elements.

We find that our estimates of fidelity and concurrence peak for pulse separations around the half-life ∆t ' T1/2, as
expected. The measured values also agree well with the general trend predicted by our theory and, in particular, agree
that the maximum values are shifted slightly to shorter pulse separations due to dephasing [13]. In both cases, however,
the model over-estimates the measured values because it does not take into account detector jitter, only finite pulse
width and pure dephasing. Regardless, we see that the concurrence estimates are positive within the uncertainty of
multiple standard deviations for all measured pulse separations, evidencing photon-number entanglement.
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