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Abstract

For multi-scale materials, the interplay of material and design uncertainties and reliability-based
design optimization (RBDO) is complex and very dependent on the chosen modeling scale. Uncer-
tainty quantification and management are often introduced at lower scales of the material, while a
more macroscopic scale is the preferred design space at which optimization is performed. How the
coupling between the different scales is handled strongly affects the efficiency of the overall model
and optimization. This work proposes a new iterative methodology that combines a low-dimensional
macroscopic design space with gradient information to perform accurate optimization and a high-
dimensional lower-scale space where design variables uncertainties are modeled and upscaled. An
inverse problem is solved at each iteration of the optimization process to identify the lower-scale con-
figuration that meets the macroscopic properties in terms of some statistical description. This is only
achievable thanks to efficient metamodel upscaling. The proposed approach is tested on the optimiza-
tion of a composite plate subjected to buckling with uncertain ply angles. A particular orthonormal
basis is constructed with Fourier chaos expansion for the metamodel upscaling, which provides a very
efficient closed-form expression of the lamination parameters statistics. The results demonstrate a
drastic improvement in the reliability compared to the deterministic optimized design and a significant
computational gain compared to the approach of directly optimizing ply angles via a genetic algorithm.

Keywords: Reliability-based design optimization, multiscale modeling, uncertainty, Inverse problem,
Surrogate models, composite material

1 Introduction

The structural design process often results in an
optimization problem for which the structural
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performance is maximized within a set of con-
straints imposed by the materials and general
behavior of the structure. The result of the opti-
mization is strongly dependent on the type of
modeling that is considered (e.g., atomistic vs.
continuum modeling or deterministic vs. stochas-
tic), in part because the nature of materials is
broad. Design variables may exist at different
scales of the material and also because it needs
to be better understood how to account for the
many materials, structural or modeling uncer-
tainties of the system.
Complex nonlinear materials such as newly archi-
tected materials (e.g. polymeric nano-composite,
fiber-reinforced polymers) or porous materials
often cover a wide range of different length
scales, i.e. the scales of the heterogeneities from
nano-, micro-, to mesoscale, whose problematic
optimization due to large design spaces strongly
influences the macroscale physical and mechani-
cal properties. Once focus is tied to a particular
scale, the level of details and the objective
function’s regularity may impeach the optimal
design’s performance. In topology optimization,
multi-scale approaches are proposed to account
for scale-related effects of materials and struc-
tures (Zhang and Sun, 2006) and simultaneously
achieve the layout updating and the material
change by macro-micro concurrent design (Long
et al, 2017). Gao et al (2019) proposes a multi-
scale method for porous composites where the
overall distribution in the macrostructure and
the material microstructures are optimized. For
simple isotropic cases, methods of inverse homog-
enization were also introduced (Sigmund, 1994)
to find the internal topology of a base (truss) cell
with given homogenized coefficients. In the field
of metamaterials, another inverse problem must
be solved with the same idea of matching macro
physical properties with microstructure optimiza-
tion. More general than periodic truss-, plate-,
or shell-based architectures, Kumar (2020) takes
advantage of recent machine learning capabilities
to achieve the robust inverse design of the non-
periodic class of spinodoid topologies, used to
represent biomimetic artificial bone architectures.
Laminate composite optimization involves many
design variables at a mesoscale and requires evo-
lutionary algorithms (Venkataraman and Haftka,
1999), still struggling because of the multimodal

nature of the functions of interest. Homoge-
nization procedures can be used to introduce a
macroscopic space in which the functions of inter-
est are mostly regular. Bi-level approaches are
commonly used, relying on a first optimization
of the laminate in the macroscopic space (e.g.,
via gradient-based methods) while the stacking
sequence is then retrieved in a second step (mostly
via genetic algorithms) (Macquart et al, 2016;
Picchi Scardaoni et al, 2021). Ferreira et al (2014)
use a hierarchical optimization to simultaneously
design macro- and microstructural levels of plies
orientations and fiber volume fractions and also in
terms of fiber cross-sectional shapes, respectively.
A clear separation of scales is not always possible,
and it is sometimes unclear (both from a physical
and a computational point of view) at which
scale(s) the optimization should take place. More-
over, while the forward problem, i.e., mapping
the macroscale properties from finer (e.g., micro-
or mesostructure) properties, is well defined, the
inverse problem – identifying a small-scale struc-
tural topology or configuration that meets the
mechanical property requirements – is ill-posed
(multiple solutions can have the exact same
properties). Moreover, the idea of a homogenized
description of the system (Charalambakis, 2010;
Gineau et al, 2020), which seems computationally
useful, has to be handled with care in order to
benefit to the optimization process.

In addition to the various scales consider-
ations, for some materials, as manufacturing
processes are complex, some uncertainties (e.g.,
parameters, geometry, material and mechanical
properties, molecular interactions, operating con-
ditions, lack of repeatability) may creep at dif-
ferent scales into the system (material uncer-
tainties, structural uncertainties, modeling uncer-
tainties) and have a significant influence on the
overall structural performance. Design variables
and other system parameters may also contain
some inherent random quantities. Machine learn-
ing (ML) methods, defined here in a broad sense,
have gained particular interest in the computa-
tional mechanics community towards developing
surrogate models with uncertainty quantification
as ML is effective in solving complex inverse and
ill posed problems while also suitable for opti-
mization query applications, Cheng et al (2023).
For deterministic optimization, such uncertainties
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are often dealt with by introducing simplifying
hypotheses, for instance, using safety factors, con-
sidering only average or extreme values. However,
such approaches are inefficient and can lead to
conservative and inefficient designs or optimistic
designs with poor reliability (Beck and Gomes,
2012). The research topic of optimization under
uncertainty (OUU) is vast and presents important
computational challenges in terms of implement-
ing efficient numerical procedures. A crucial initial
step is carefully crafting the OUU problem formu-
lation, conditioned by the evolution of the system
from a deterministic design problem to a design
under uncertain conditions. Stochastic formula-
tions of the objective and constraint functions
must be carefully described.

Robustness is habitually associated with con-
sidering uncertainties in the objective function,
and reliability-based optimization with introduc-
ing uncertainties in the constraint functions. Reli-
ability turns out to be an increasingly critical
issue in structural design (Kuschel and Rackwitz,
1997; Reddy et al, 1994; Lopez and Beck, 2012;
Moustapha et al, 2016). In this work, the focus
is made on design variable uncertainties for a
Reliability-Based Design Optimization (RBDO).
The challenge is to find an optimal reliable solu-
tion such that the probability of the design not
satisfying constraints does not exceed a chosen
limit failure probability. It is an active multidis-
ciplinary research topic, and some reviews can be
found in (Aoues and Chateauneuf, 2010; Yao et al,
2011; Lelièvre et al, 2016; Acar et al, 2021). Tak-
ing account of the uncertainty rely on repeated
evaluations of the mechanical model, mainly in
the reliability analysis step. The range of appli-
cations may be limited due to this optimization’s
time-consuming computation. Surrogate models
have been used in order to alleviate the computa-
tion time. For the RBDO task, surrogate models
relying, for instance, on Polynomial Chaos Expan-
sion were considered in Suryawanshi and Ghosh
(2016); López et al (2017), or Kriging in Dubourg
et al (2011); Li et al (2016). Another interesting
approach is the one of Moustapha et al (2016),
where a new quantile-based formulation is pro-
posed motivated by the relatively high target
failure probabilities that can be accepted in the
car body design field.

In the multidisciplinary optimization field,
some works have been done in optimization under

uncertainty using gradient-based algorithms and
surrogate model strategies to reduce the time of
convergence (Lucor et al, 2007; Andrieu et al,
2011; Dubourg et al, 2011; Dı́az et al, 2016;
Fang et al, 2019). In multi-scale framework, recent
works (Duan et al, 2020; Jung et al, 2021; Liu et al,
2021) consider “concurrent” design variables and
uncertainties at different scales. No matter their
proposed formulation, all of these works point
to the severe computational expense due to the
dimensionality of the uncertainties to be prop-
agated/quantified and the function evaluations
required to assess the reliability. Many of them
rely on the use of surrogate models in order to alle-
viate this cost. Different sequential strategies and
algorithmic loops are proposed to decouple and
alleviate the optimization, uncertainty quantifica-
tion, and system response evaluations.Liu et al
(2022) use a deep neural network to learn macro-
scopic internal variables and history dependence
of a polycrystalline from microscopic models. It
gives access to multi-scale accuracy for a computa-
tional cost comparable to a conventional empirical
constitutive relation. Other surrogate techniques
can be used. For instance, Ghasemi et al (2014)
created a kriging metamodel for the multi-scale
uncertainty propagation model of CNT/polymer
structure. Based on a similar concept, Omairey
et al (2019) used a surrogate model to establish
the relationship between microscale uncertainties
and macro-scale material property uncertainties,
thereby reducing computational costs and improv-
ing computational efficiency. This is applied to
RBDO of unidirectional fiber-reinforced polymer
(FRP) composite laminates in Omairey et al
(2021) where uncertainties are taken into account
at different scales of the composite. In their case,
the smallest scale design space is optimized by
evolutionary algorithms (i.e., particle swarm opti-
mization). A similar strategy was used in Liu
et al (2018) with the optimization method, and a
different surrogate modeling strategy.

Our research proposes a multi-scale RBDO
methodology where the meaningful design vari-
ables are (discrete) material properties at a meso-
scopic scale. The multi-scale approach is exploited
to use an efficient gradient-based optimization
method in the homogenized space. The originality
of this work is that the multi-scale strategy is used
at each iteration of the optimization to propagate
the uncertainty inherited from the mesoscopic
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design variables. Indeed, the parametric uncer-
tainties affect both design variables at meso- and
macro-scale. Moreover, our approach is sequen-
tial: gradient-based optimization is pursued in a
“deterministic” fashion and provides a homoge-
nized macroscale optimum design that we treat
as a “mean” design. A critical step is the one of
solving an inverse problem of identifying a corre-
sponding uncertain mesoscale design that matches
our mean target design. A surrogate model makes
quick statistical homogenization possible and effi-
ciently delivers the needed macroscopic parameter
statistics. Finally, the proposed methodology can
handle complex geometries and several constraints
and converges in a decent computational time.

The core of the present manuscript is Section
2, where the multi-scale and surrogate-based strat-
egy to accelerate the solution of the inverse prob-
lem is presented. Hence, the proposed approach is
applied to the optimization of a laminated com-
posite material subject to uncertainties at the
mesoscale: the test-case is introduced in Section
3, and the main results are presented in Section
4. Section 5 discusses the sensitivity of the opti-
mization process to the initial design and the to
the computation of the gradient of the failure
probability. Section 6 will conclude the paper and
provide some perspectives.

2 Multi-scale reliability-based
design optimization
approach

In general RBDO problems, both design vari-
ables and other system parameters can contain
deterministic and/or random quantities, here rep-
resented as random variables. For simplicity, θ
is defined as the vector of design variables, and
p describes the environmental parameters. More-
over, subscripts r and d will refer to random and
deterministic quantities, respectively. These quan-
tities can be more compactly written as vectors as
follows1:

θ =

{
Θr

θd

}
, p =

{
P r

pd

}
,

1Capital symbols emphasize the random nature of some of
the components.

R =

{
Θr

P r

}
, d =

{
θd

pd

}
. (1)

Reliability analysis quantifies structural safety
considering the random nature of all phenom-
ena affecting the structural system. A (or more)
performance function g(R,d) characterizes the
system response. We emphasize that this func-
tion is also random due to its dependency on R.
The design region is divided into two classes of
domains:

Failure domain: F = {R,d | g(R,d) ⩾ 0} , (2)

and the

Safety domain: S = {R,d | g(R,d) < 0} . (3)

The boundary between failure and safety
domains is the limit state surface, which gener-
ally is a hypersurface in the n-dimensional space
of random variables R. Other (deterministic) con-
straints may exist as well. According to this, the
failure probability P is formulated as:

P (g(R,d) ⩾ 0) =

∫
· · ·

∫

F

πRdR, (4)

where πR is the joint probability density function
of the random variables. Nevertheless, except in
some particular cases, the integral expression
cannot be computed analytically. Indeed, this is
often out of reach because of the nonlinearity of
πR, the number of random variables which can be
large, and the lack of knowledge about the exact
position of the failure domain.

Many different formulations and computa-
tional algorithms exist for RBDO problems. For
instance, the double loop approaches consider
the reliability constraints within the optimization
loop (Nikolaidis and Burdisso, 1988). Mono-level
approaches exist where the probabilistic con-
straint is approximated with deterministic values,
converting the double loop into a single loop
(Kuschel and Rackwitz, 1997). Finally, uncoupled
approaches solve sequentially deterministic opti-
mization procedures with a reliability analysis at
the end of each optimization (Du and Chen, 2004).
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In this work, a double loop approach is con-
sidered to control the uncertainties on the failure
probability during the whole optimization process.
Moreover, because some design variables are con-
sidered random, we will optimize some of their
moments. This will be made easier by making
some simplifying assumptions about the joint dis-
tribution of the random variables designating this
part of the design. For instance, we can assume
that Θr follows a generic class of distributions
for which one (or more) parameters are not fixed
(for instance, the mean value for a Gaussian dis-
tribution). In this case, the formulation of the
problem is taken from Dı́az et al (2016) and can
be formalized as:

min
µΘr ,θd

f (µR,d) (5)

subject to:

{
hi (µR,d) ≤ 0 i = 1, ..., nd
P (gj (R,d) ⩾ 0) ≤ Pmax

j j = 1, ..., np

where f is the deterministic cost function to be
minimized, µR is the vector gathering the ran-
dom variables mean values, d the deterministic
parameters, µΘr the mean of random design vari-
ables, θd the deterministic design variables, hi are
the nd deterministic constraints, and P are the
np failure probabilities of the limit state functions
gj , which have to be below the maximum failure
probabilities Pmax

j .
In this work, the design variables only bear a

random component Θr due to complex manufac-
turing processes, and the environmental parame-
ters do not contain any random variable. For the
sake of simplicity, the functions f , g or h will now
be written as function of Θ or µΘ.

2.1 Multi-scale formulation

In this work, we propose a multi-scale RBDO
approach. Without lack of generality, we will con-
sider two adjacent scales only, i.e., meso and
macroscale, for which we know a nonlinear homog-
enization process mapping the mesoscale to the
macroscale description of the material. The design
variables that must be optimized for manufactur-
ing and to provide reliable performance are the
mesoscale variables, called Θ. We wish to account
for the intrinsic uncertainties of these variables.

We assume that we have a good model for these
uncertainties. Therefore, the uncertainty of the
mesoscopic variables is mostly known and mod-
eled with a probability density function πΘ given
some parameters. On the other hand, the uncer-
tainties associated with the continuous macroscale
variables, called v, are unknown and must be
quantified. Moreover, it can be complex to model
due to various correlations. As we will see, this
will directly impact the calculation of the fail-
ure probability for reliability optimization in this
space. Despite this complication, it remains more
efficient to take advantage of the homogenized
space where gradient-based algorithms can accel-
erate the convergence of the optimization problem.
Our idea is to take an iterative approach, repeat-
edly moving from one scale to the other during
the optimization, in order to take advantage of
facilitating properties at all scales and deal with
the uncertainty quantification upscaling. Never-
theless, computational burdens will remain at
each iteration of the optimization process, such
as evaluating the probability of failure and its
gradient.

The macro (homogenized) space is utilized for
the global optimization process to rely on a gra-
dient algorithm. This strategy, exploiting both
spaces for calculating the failure probability, is
illustrated in Fig. 1. The objective function and
the constraints are defined, and the optimizer
improves the design in this macroscopic space - cf.
the red line in Fig. 1. The original mesospace is
going to be used to help in evaluating the failure
probability because the distribution of the dis-
crete design variables is known. Nevertheless, the
inverse mapping from the continuous design vari-
ables to the discrete one is far from being trivial.
It is a highly multimodal optimization problem
where it is necessary to use metaheuristic opti-
mization methods. In this study, the solution of
the inverse problem - illustrated by the dotted
pink line in Fig. 1 - is solved thanks to a genetic
algorithm. Roughly speaking, once the genetic
algorithm identifies a potent set of discrete meso-
scopic variables, it is conceptually straightforward
to propagate the uncertainty to the homogenized
space, then to the model in order to calculate
the failure probability (.e.g, by the Monte Carlo
method). Then the gradient optimizer can propose
another design point and repeat the process until
convergence is reached.
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More specifically, the formulation of our multi-
scale reliability-based design optimization taking
into account design variables uncertainties can be
described by Eq.(6).

min
µΘ

f
(
µv(Θ|µΘ)

)
(6)

subject to:

{
hi

(
µv(Θ|µΘ)

)
≤ 0, i = 1, . . . , nd

Pj (gj(v = H(Θ)) ⩾ 0) ≤ Pmax
j , j = 1, . . . , np

where Θ are the random design variables with
a joint probability density function πΘ|σΘ

given
their variances, µΘ are the design parameters
mean values to optimize, hi are deterministic
nonlinear constraints (emerging from the homog-
enization process), gj are limit state functions, H
is the nonlinear mapping2 from the mesoscopic
space to the macroscopic space, used to obtain v
for a given µΘ, and Pj are the failure probabili-
ties evaluated in the macroscopic space.

Because of the design variables uncertain-
ties in both spaces, it is important to efficiently
propagate forward uncertainties from the origi-
nal mesospace to the target macrospace, but also
to be able to solve an inverse mapping that sat-
isfies certain statistical constraints: e.g., given a
mean macroscale design, be able to identify the
original uncertain mesoscale design that gener-
ates a population of macroscale designs with the
corresponding mean solution. A trial-and-error
approach to resolve this inverse problem would be
highly costly. Therefore, we propose to build a sur-
rogate mapping Ĥ that is constructed in place of
H in order to rapidly access needed statistics of v
for a given population of variables Θ. The type of
deployed surrogate modeling is obviously problem-
dependant but does not negatively impact the
formulation as long as it is sufficiently accurate.
Moreover, a strategy is proposed to approximate
the failure probability and its gradient efficiently.
Technical details are presented in the following
subsections.

2In this section, we will keep this operator simple for the
sake of clarity, but as we will see in coming sections, it can
take quite complex nonlinear forms.

2.2 Surrogate-based assistance
strategy for the inverse problem
resolution

In the following, we consider the uncertainty of
the input parameter Θ as being defined as:

Θ = µΘ + σΘX, (7)
where µΘ is the unknown mean vector of Θ, σΘ

is the known vector standard deviation, and X
is chosen as an independent and identically dis-
tributed (i.i.d.) random vector, described by an
independent joint Gaussian distribution πX with
zero mean and unit variance. For a given state
in the homogeneous space provided by µv, the
inverse problem optimization to be solved in the
stochastic context is written as:

µvtarget := µv

min
µΘ
∥µvtarget − µH(Θ|µΘ)∥, (8)

where µH(Θ|µΘ) is the mean of the random quan-
tity representing the image through the mapping
H from the mesoscopic to the macroscopic space.
For the inverse problem resolution, the distance is
here minimized with respect to the mean of the
mesoscopic and macroscopic parameters for sim-
plicity3. The distance is here minimized – instead
of being made null – to account for a very general
scenario in which there does not exist an exact
corresponding mesoscale design matching the tar-
get. This situation is common in cases where the
mean vector of the mesoscale design variables can
only take some discrete values from a set of finite
configurations.
It remains that the several computations of the
µH(Θ|µΘ) vector (needed for the inverse problem)
and higher-order correlation statistics (needed for
the failure probabilities and their gradients) call
for the use of a mapping approximation Ĥ. In
this work, we will rely on generalized polynomial
surrogate models, referred here under the generic
naming of polynomial chaos expansions (PCE)
(Xiu and Karniadakis, 2002) and used under var-
ious forms for mechanical systems, e.g. (Bijl et al,
2013; El Garroussi et al, 2022). It is an effective
tool that guarantees exponential convergence with

3We note that other formulations involving higher-order
moments or distributions could be developed in this frame-
work, depending on various physical hypotheses.
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g(v) > 0

v1

v2

Θ1

Θ2

Θ3

vk
vk+1Θk

Θk+1

macro spacemeso space

g(v) = 0

vk ≈ Ĥ (Θk)μΘk

μΘk+1

μvk

μvk+1

μΘ1μΘ2

μΘN

vk+1 ≈ Ĥ (Θk+1)

Inverse problem

metamodel

Failure domain

Fig. 1: Cartoon illustrating the proposed sequential multi-scale RBDO approach. Design variables bear
some uncertainties in the meso space. For a given design, surrogate homogenization allows very efficient
and rich uncertainty quantification (bottom large blue arrow) of the mapped image in the macro space
of the lower dimension. Gradient RBDO optimization is then carried out on the mean value (solid red
arrow). An inverse problem is solved to identify the best corresponding mesoscale design (dashed pink
arrow). This involves the combination of metaheuristic optimizations and forward metamodeling (top
large blue arrow).
The whole process is re-iterated until convergence.

increasing expansion order for sufficiently smooth
functionals. Moreover, once the approximation
is obtained, the access to the statistics is very
straightforward from the expansion coefficients.
Nevertheless, the plain version of this method is
inaccurate for models which are highly nonlinear
or are of very high dimensionality. Other options
are possible, including conditioned Gaussian pro-
cesses like Kriging (Rasmussen and Williams,
2006), which is employed for larger experimental
areas such as Bayesian optimization, approximat-
ing deterministic function, and machine learning.
It combines a regression model with a stationary
Gaussian process error model. The advantage is
that it provides a stochastic error bound.

Assuming the quantity of interest H is a
second-order random variable, then it can be
expanded into an infinite series of polynomials:

Ĥ(Θ(X)) =

∞∑

i

ξi ϕi(X), (9)

where ϕi must be orthonormal polynomials with
respect of the measure of X, ξi are the expansion
coefficients. In practice, the expansion must be
truncated, and a choice must be made on the num-
ber of retained terms for sufficient convergence.
Thanks to the orthonormality of the approxi-
mation space, the deterministic coefficients are
obtained as projections of the function of interest
onto each member of the approximation basis.

With the Gaussian distribution hypothesis on
X, Hermite polynomials can be used (Wiener,
1938). Later, another basis (made of polynomials
of trigonometric functions) is introduced, which
is much more efficient for the application. This
surrogate model is very convenient to approxi-
mate the statistics of H(Θ(X)|µΘ) needed for the
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inverse problem and the computation of the failure
probability and its gradient.

Here, we have focused on metamodeling
the upscaling process alone. Obviously, such an
approach could be deployed at several other lev-
els. For instance, the evaluation of the problem
constraints could be costly and rely on some
type of high-order finite elements model and may
also benefit from metamodeling. This will not be
pursued in this paper.

2.3 Computation of failure
probability and its gradient

Once the mesoscopic set variables are identified at
a given step of the RBDO process, one can pro-
ceed with the uncertainty quantification given the
distribution πΘ. The failure probability in Eq.(6)
can be approximated by the Monte Carlo method
(MC) as follows:

P
(
g(v = Ĥ(Θ)) ⩾ 0

)
=

1

nMC

nMC∑

i=1

IF
(
v = Ĥ(Θ(i))

)
,

(10)
where

{
Θ(i), i = 1, . . . , nMC

}
is a large sample of

nMC independent copies of the random vector Θ
and IF is the failure indicator:

IF
(
v = Ĥ(Θ(i))

)
=




1 if g

(
v = Ĥ(Θ(i))

)
⩾ 0

0 otherwise.

(11)
In order to assess the accuracy of the estimator

and deduces a reasonable sample size to use, it is
interesting to resort to the coefficient of variation
of the estimator defined as follows:

CoV =
σ

P
=

√
1− P
nMCP

. (12)

The sampling-based RBDO approach relying
on the Monte Carlo simulation is general but
requires intensive computation. This is partic-
ularly crucial for reliability-based optimization
where the threshold is low, and many samples are
needed for these rare events, making the point for
surrogate modeling. The computational effort is
even more strenuous to calculate the sensitivities
of the probabilistic response.

Since the macroscopic variables are used for
the smoothness of the functions of interest, a
gradient algorithm is used. The challenging part
resides in the computation of the failure prob-
ability gradient. Several approaches exist in the
literature, such as the finite differences, the score
function approach, or the Smooth Perturbation
Analysis methods (Fu and Hu, 1994; Rubin-
stein, 1986), well summarized for Monte-Carlo
approaches in machine learning in Mohamed et al
(2020). Finite difference methods are straightfor-
ward for computing failure probability gradients
but may produce inaccurate sensitivities for too
small sample size due to the statistical noise, or
because an appropriate step size (or perturba-
tion size) for each design variable needs to be
determined, which is often arbitrary.

When the uncertainty of macroscopic param-
eters can be modeled with a parametric probabil-
ity density function, the score function approach
(Rubinstein, 1986) can be used for the fail-
ure probability sensitivity computation. This
approach was brought to the structural relia-
bility community by Wu (1994). Assuming that
the joint PDF πv of the continuous parameters
is continuously differentiable with respect to µvi

and that the integration range V, i.e., the design
space domain, does not depend on µvi

, the par-
tial derivative of the failure probability recasts as
follows:

∂P
∂µvi

=

∫

V
IF (v)

∂πv(v,µv)

∂µvi

dv. (13)

Then, in order to compute this inte-
gral more efficiently as an expectation,
Rubinstein (1986) proposed to use an
importance sampling trick. Given a sample

V =
{
v(i) = Ĥ

(
Θ(i)

)
, i = 1, . . . , nMC

}
of nMC

copies of the random vector V coming from the
uncertainty of the mesoscopic parameters, the
following estimator

∂P
∂µvi

≡ 1

nMC

nMC∑

i=1

IF (v(i))

πv(v(i), µvi
)

∂πv(v
(i),µv)

∂µvi

,

(14)
is unbiased and asymptotically convergent accord-
ing to the central limit theorem. The advantage is
that the failure probability gradient is estimated
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using the same sample used for the failure proba-
bility estimation. However, the estimator variance
of the score function approach is sensitive to the
function probability function (Mohamed et al,
2020). Zhu et al (2015) proposed a reweighting
scheme to improve the accuracy and decrease the
variance of the score function.

Depending on the application, when πv is
not known a priori, statistical tests can be made
on a sample to know if it can be fitted with a
parametric law. In the case of a non-parametric
distribution, the gradient of the failure proba-
bility may be approximated by centered finite
differences. One of the drawbacks is the number
of simulations that is of the order of O(2nvnMC)
for a random vector of nv dimension. One simple
way to reduce the variance of the estimator is to
use Common Random Numbers (CRN) (Royset
and Polak, 2004b,a; Taflanidis, 2007).

The whole multi-scale RBDO approach pro-
posed in Section 2 is summarized in the flowchart
of Fig. 2. The optimization convergence is reached
when all the constraints are respected, and the
norm of the macroscopic design variables between
two iterations is below ϵ = 0.01.

3 Application to a composite
material: test-case of the
buckling of a laminated
plate with uncertain layers
orientations

Laminated composite materials are widely used
in aerospace, automotive, shipping, and civil engi-
neering thanks to their great material properties
for high specific strength and stiffness. In an
RBDO framework, Conceição António and Hoff-
bauer (2017) proposed a new methodology using
a genetic algorithm. Here, the loads imposed on
the structure are sources of uncertainties. Sub-
sequently, a sensitivity analysis was performed
on the optimal structure to study the influence
of parameters and design variables on the struc-
tural response. The most influential parameters
were found to be the modulus of longitudinal
elasticity and the ply orientations. However, the
uncertainty on ply orientations was not consid-
ered during the RBDO. Scarth and Cooper (2018)

investigated the minimization of the probability of
the flutter instability, modeled as Gaussian pro-
cesses, in a simple, composite-plate wing, with
random design variables, i.e., the ply orientations.
Even if the resulting design is, in some sense, an
optimized solution with respect to the onset of
the flutter instability, their proposed procedure is
far from being representative of the real aircraft
design process since it is a mono-objective opti-
mization where the aeroelastic stability is taken
into account as an objective instead of a con-
straint. Moreover, a genetic algorithm was used
to solve the optimization, which can be limited to
complex high-dimensional problems.
In the following, we will rely on gradient-based
algorithms for our laminate optimization in the
macroscopic space. The multi-scale approach is
applied to reliability-based design optimization of
a composite plate subjected to a compressive load,
where the ply orientations design variables are
uncertain due to some given dispersion around
design values, as represented in Eq.(7). The objec-
tive is to increase the stiffness of the wing while
remaining reliable with respect to the buckling
phenomenon. The buckling response has a modal
behavior even in the macroscopic space. Since
Scarth et al (2014) and Scarth and Cooper (2018)
show the interest in taking into account the uncer-
tainty of the orientations in an aeroelastic design
process in order to avoid the existing discontinu-
ity zones, the buckling is an interesting constraint
to apply a RBDO process to show this new
methodology.

3.1 Composite model

We consider a simplified composite wing, repre-
sented as a flat rectangular cantilever plate. The
plate dimensions and the applied load direction
are shown in Fig. 3. The composite laminate is
t = 2-mm thick, which accounts for a total of 16
plies, each stacked at a specific θi orientation with
respect to the global coordinate system. Available
orientations to be chosen from are, in general, uni-
formly distributed over [−75o : ∆inc

θ : 90o], with
∆inc

θ the angular increment (e.g., 15o). Table 1
shows the dimension and material properties.

In classical lamination theory (Tsai and Hahn,
1980), the macroscale constitutive equation relat-
ing applied bending moments to the curvature of a
symmetrically laminated plate may be written as
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µΘ
[0] Initial guess µ

[0]
v = µH(Θ)

Objective and its gradient f [0],∇f [0]
Constraints and its gradient h[0],∇h[0],P[0],∇P[0]

Mesoscopic scale (discrete) Macroscopic scale (continuous)

Gradient optimizer
f [j−1], ∇f [j−1], h[j−1], ∇h[j−1]

P[j−1], ∇P[j−1]

Next design point

µ
[j]
vtarget ← µ

[j]
v

Inverse problem Eq.(8)
Surrogate model assistance

Parameters retrieval
µΘ

[j]

Sample generation{
µΘ

[j] + σΘX(i),
i = 1, . . . , nMC}

Homogenization
transport Eq.(9)

Surrogate model assistance

Direct statistics µv∗ ,σv∗

and sample

V [j] =
{
v∗(i), i = 1, . . . , nMC

}

Evaluation of determin-
istic objective/constraint

and their gradients
f [j](µv∗), ∇f [j](µv∗)
h[j](µv∗), ∇h[j](µv∗)

Evaluation of failure
probability P[j] with
Monte Carlo Eq.(10)

and its gradient ∇P[j] with
Score Function Eq.(14)

Converge ?

Done

j = 1

yes

Θ(j) = µΘ
(j) + σΘX

X ∼ N (0, 1)

j = j + 1

Fig. 2: Flowchart of the proposed methodology for multi-scale RBDO.

M = Dκ, (15)

whereM is a vector of resultant bending moments,
and κ is the vector of plate curvatures. The out-of-
plane stiffness matrix D can be written as a linear
combination of the Tsai-Pagano parameters U,
the lamination parameters vD and the thickness
t (Tsai and Pagano, 1968; Miki and Sugiyama,
1991):




D11

D22

D12

D66

D16

D26




=
t3

12




1 vD1 vD3 0 0
1 −vD1 vD3 0 0
0 0 −vD3 1 0
0 0 −vD3 0 1
0 vD2 /2 vD4 0 0
0 vD2 /2 −vD4 0 0







U1

U2

U3

U4

U5




(16)
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Fig. 3: Geometry of the wing.

Parameters Value

a(m) 0.3048
b(m) 0.0762
E11(GPa) 140
E22(GPa) 10
G12(GPa) 5
ν12 0.3
ρ(kg/m3) 1600
Nx(N/mm) 100
σ2
Θ 2°

Table 1: Dimensions and material properties.

where the Tsai-Pagano parameters U only
depend on material properties and are defined as:




U1

U2

U3

U4

U5




=
1

8




3 3 2 4
4 −4 0 0
1 1 −2 −4
1 1 −6 −4
1 1 −2 4







Q11

Q22

Q12

Q66


 (17)

whereQij are the reduced stiffness components
for unidirectional lamina:

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E1

1− ν12ν21
,

Q22 =
E2

1− ν12ν21
, Q66 = G12.

(18)

In Eq.(18), E11, E22, G12 and ν12 are the lam-
ina longitudinal, transverse and shear moduli, and
Poisson’s ratio respectively and their values are
available in Table 1. The out-of-plane laminations
parameters are defined as:

vD = H(θ) =
12

t3

N∑

k

z3k − z3k−1

3
[cos(2θk), ]

[sin(2θk), cos(4θk), sin(4θk)] dz (19)

where θk, k∈[1,N ] denotes the kth ply orienta-

tions and zk is the coordinate of the kth ply. The
laminate has a discrete set of plies with orien-
tations [θ1, θ2, ..., θn]. The lamination parameters
are defined as functions of the ply orientations and
are very convenient for representing a laminate
with a small number of variables. They are defined
in a convex space and, therefore, can be used
as macrospace design variables, allowing efficient
gradient-based optimization.

3.2 Buckling RBDO

The objective is to maximize the bending stiffness
D11,

D11(µv) = U1 + µvD
1
U2 + µvD

3
U3, (20)

while remaining reliable with respect to the buck-
ling phenomenon g,

g(vD) = λcrit −min (λ) (21)

with:

λ = π2 D11
m4

a4 + (D12 + 2D66)
m2

a2
n2

b2 +D22
n4

b4

m2

a2 Nx

,

where λcrit is the buckling limit criterion, Nx is
the compressive load, a and b are the plate dimen-
sions, D is the bending stiffness matrix, m and n
are the number of half-wavelengths in the x and y
directions.

The orientations variance σ2
Θ is set to 2°. More-

over, the lamination parameters vD2 and vD4 are set
to zero during the optimization process to follow
the orthotropic nature of the laminate. The formu-
lation of the gradient RBDO problem is written
in the following form:

min
µΘ
−D11

(
µvD(Θ|µΘ)

)
(22)

subject to:
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{
hLP (µvD(Θ|µΘ)) ≤ 0

Pg = P
(
g(vD = H(Θ)) ⩾ 0

)
≤ Pmax

where µΘ are the mean ply orientation design
variables, vD are the macroscopic lamination
parameters with their mean µvD , hLP is the
compatibility constraint defined by Miki and
Sugiyama (1991) for an orthotropic laminate, H is
the mapping between ply orientations and lamina-
tion parameters found in Eq.(19) and Pmax = 1%
is the maximum failure probability. The failure
probability P is approximated via the Monte Carlo
method with a sample size nMC = 200000.

The normalized objective D11, the constraints
hLP and g are illustrated in Fig. 4, with the
obtained deterministic optimization solution in
the lamination parameters space, represented by
a small black star.

3.3 Fourier Chaos Expansion for
lamination parameters

As explained in section 2.2, an inverse problem
must be solved at each iteration, which is accel-
erated thanks to a surrogate model, to retrieve a
stacking sequence. With the trigonometric nature
of the lamination parameters, the orthonormal
basis used for the surrogate model is different from
the classical one using Hermite polynomials.

In this work, we construct a surrogate model
of lamination parameters based on trigonomet-
ric polynomials that we name the Fourier Chaos
Expansion (FCE). This type of decomposition was
sketched out in the literature where it was shown
that it is more efficient to quantify uncertainties
of such form than classical expansions, such as the
ones relying on Hermite or Legendre polynomi-
als (depending on the type of random variables)
(Ko et al, 2010). In this work, we deepen the FCE
formalism and computation, such that it then
becomes ideally suited to LPs since analytical for-
mulation of the expansion coefficients ei in Eq.(23)
is possible and detailed in a further appendix.
The lamination parameters H are expanded into
a series of polynomials:

Ĥ(X) =

∞∑

i

eiψi(σΘX) (23)
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(a) Response of the buckling constraint g.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
v1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v 3

Deterministic design
Unfeasible region

0.00

0.11

0.22

0.33

0.44

0.55

0.66

0.77

0.88

0.99

D
11

(b) Response of the normalized objective D11 with the
deterministic design solution. The unfeasible region has
been shaded to reveal the boundary between failure and
safety domains.

Fig. 4: Objective function and constraints in
the 2D lamination parameters macroscopic design
space.

where ψi are Fourier orthogonal polynomials
which depend on the standard deviation σΘ and
ei are the expansion coefficients.

The orthonormal properties of the FCE are
analogous to the standard PCE basis. Never-
theless, the bases to be orthogonalized are not
classical polynomials basis, e.g., ui = 1, x, x2, ...;
instead, the development begins with the Fourier
basis, that is, the set ui = {1, sin(nx), cos(nx)},
where n = 1, ...,∞. An FCE representation was
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rapidly sketched in Millman et al (2005) to obtain
the probability distribution of an airfoil pitch
angle where oscillatory motion was involved. In
our case, we have formalized the approach to
extend it to an arbitrary order of accuracy and
extended it to random variables with different
wavenumbers. The trigonometric polynomials are
functions of scaled random variables ψi(X̂ =
σΘX), and are numerically constructed thanks to
the Gram–Schmidt orthogonalization method (Y.
K. Wong, 1935). This method has, for instance,
been used in Navarro et al (2014) to construct
arbitrary polynomial chaos and applied in aeroe-
lasticity for the critical flutter velocity uncertainty
quantification Nitschke et al (2019).

In order to orthogonalize the polynomials with
respect to the distribution πΘ, the Gram-Schmidt
algorithm calculates the coefficients of the polyno-
mials using the inner product to ensure that each
polynomial is orthogonal to all of its predecessors:

ψ0(X̂) = 1

ψi(X̂) = ui(X̂)−
i−1∑

k=0

Cikψk(X̂), (24)

where ui are the set of Fourier polynomials in
(cos(nX̂), sin(nX̂)) and deterministic quantities
Cik must be computed as:

Cik =
E
[
ui(X̂)ψk(X̂)

]

E
[
ψk(X̂)ψk(X̂)

] (25)

The generic form of the obtained orthonormal
polynomials are shown in Table 2. The details
about the computational approach to efficiently
evaluate the Cik coefficients can be found in
Appendix A.

With this surrogate, the statistics of the lam-
ination parameters are readily available and very
accurate. In the following, we choose that their
probability density function πv are very well
modeled by correlated Gaussian laws, which is
useful for the failure probability gradient. This
is a reasonable assumption; indeed Kriegesmann
(2017) discusses that the distribution of lamina-
tion parameters tends asymptotically to Gaussian,
increasing the number of plies in the stacking
sequence.

Basis Fourier chaos polynomials

number ψn
i (X̂ = σΘX)

0 1

1 Z11 sin(X̂)

2 Z21 cos(X̂)− Z22

3 Z31 sin(2X̂)− Z32 sin(X̂)

4 Z41 cos(2X̂)− Z42 cos(X̂)− Z43

5 Z51 sin(3X̂)− Z52 sin(2X̂)− Z53 sin(X̂)

6 Z61 cos(3X̂)− Z62 cos(2X̂)− Z63 cos(X̂)− Z64

Table 2: Example of generic orthonormal Fourier
basis first terms.

Parameters Value

albefa 0.3
move 0.5
asyinit 0.25
asydecr 1.1
asyincr 0.5

Table 3: MMA parameters.

4 Results

In our approach, a gradient-based optimizer is
deployed in the macroscopic space in order to
take advantage of the convergence properties.
Indeed, it is more efficient to take advantage of
the homogenized space because analytic gradi-
ents are available for the objective D11 and the
deterministic constraint hLP . Concerning the
computation of the failure probability gradient,
it was explained in Section 2.3. For the inverse
problem step, a metaheuristic algorithm is used.

The gradient-based MMA method (Svanberg,
1987) is used, with the non-monotonic approxi-
mation of the GCMMA (Svanberg, 2002), in the
macroscopic space, without making an exhaus-
tive comparison with other potential optimiza-
tion algorithms candidates. Table 3 presents the
MMA parameters used in this work. Regarding
the inverse problem, the genetic algorithm opti-
mizer developed by Vicente (2019), which followed
the formulation devised by Irisarri et al (2014)
known as SST, is used to retrieve the stacking
sequence at each iteration. The parameters used
for the genetic algorithm are shown in Table 4.
The optimization is run through Algorithm 1,
which follows the strategy detailed in Fig.(2).
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(a) 2D lamination parameters macroscopic space.
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(b) Zoom around the final design. The joint PDF of the
uncertainties associated with the final design is plotted
with a blue color-map contour.
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Fig. 5: Optimization path with the probabil-
ity sensitivity computed with the score function
approach.

Parameters Value

Initial population size 160
Population size per generation 40
Probability of crossover 0.75
Probability of mutation 0.5

Table 4: Parameters of the genetic algorithm.

Algorithm 1 Multi-scale RBDO

1: maxit = 50, nMC = 200000, j := 0
2: Θ[0] := µΘ

[0] + σΘX, X ∼ N (0, 1)

3: µ
[0]
v = µH(Θ[0])

4: f [0] := D11(µ
[0]
v ), ∇f [0] := ∇D11(µ

[0]
v )

5: V [0] :=
{
v(i) = Ĥ

(
Θ[0],(i)

)
, i = 1, . . . , nMC

}
6: P[0] := P

(
g
(
V [0]

)
> 0

)
7: Optimize := true
8: while Optimize do
9: j := j+1

10: µ
[j]
v := GradientBasedOptimizer

(
f [j−1],

∇f [j−1],P[j−1]
g ,∇P[j−1]

g

)
11: µΘ

[j] := InverseProblem
(
µ
[j]
v

)
12: Θ[j] := µΘ

[j] + σΘX

13: V [j] :=
{
v(i) = Ĥ

(
Θ[j],(i)

)
,

i = 1, . . . , nMC

}
14: P[j] := P

(
g
(
V [j]

)
> 0

)
15: µv∗ , σv∗ := FCE

(
Θ[j]

)
16: f [j] := D11(µv∗), ∇f [j] := ∇D11(µv∗)
17: πV ∼ N (µv∗ , σv∗)

18: ∇P[j] := ScoreFunction
(
πV ,V [j]

)
19: Optimize := (j < maxit) and(

∥µ[j]
v − µ

[j−1]
v ∥ > ϵ or P[j]

g > Pmax
)

20: end while

The first results were obtained with the
hypothesis that the lamination parameters fol-
lowed Gaussian distributions modeled at each
iteration, thanks to the accurate statistics pro-
vided by the FCE. With this setup, the score
function approach is performed for the gradient
failure probability computation at each iteration.
In Fig. 5, the optimization path (5a) and the close-
up (5b) around the final design (cyan star) are
shown with the shaded area corresponding to the
failure domain. The green points show the designs
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Fig. 6: Buckling constraint PDFs for determinis-
tic and reliability-based optimized designs.

proposed by the MMA algorithm during the iter-
ative process, and the blue ones are the design
points retrieved from the inverse problem solu-
tions. The probability density function around the
final design point is shown in the close-up. The
final RBDO solution is more reliable and at a
different location than the deterministic optimal.

The optimization convergence is shown in Fig.
5c with the objectiveD11 and the probability plot-
ted through the 19 iterations. Fig. 5d shows the
design evolution in the lamination parameter and
orientation spaces. The convergence is relatively
slow toward the end, but that is a feature of the
MMA algorithm. We notice that while the maxi-
mum probability constraint is not violated by the
final design, the obtained value is lower than the
threshold. This is, in fact, due to the discrete
nature of the ply orientations. Indeed, although
the MMA optimizer is designed to propose a solu-
tion closer to the probability threshold, in prac-
tice, the inverse problem resolution nudges the
solution a bit, inducing slight deviations (cf. pink
segments in Fig. 5b). Therefore, the final result at
convergence could remain overly conservative due
to the nature of the application.

Additionally, the buckling PDFs correspond-
ing to each RBDO and deterministic optimized
designs are shown in Fig. 6 for comparison. The
PDF for the deterministic case is obtained by
uncertainty quantification around the stacking
sequence design. The deterministic design leads to
poor reliability.

5 Discussion

In the following, we first test the robustness of
the proposed numerical approach. In particular,
we are interested in the sensitivity of the method
to – the choice of the initial guess (to deter-
mine whether or not there is a correlation between
the initial design point and the convergence of
the optimization) and – the choice of different
methods to evaluate the failure probability gradi-
ents. We then compare its performance with more
classical optimization methods.

5.1 Study of the impact of the
initial design

Optimizations were made with different initial
points in the design space to check the conver-
gence. In Fig. 7a, the initial points are spread
over the macroscopic design space. Some of these
initializations do not converge to a reliable solu-
tion. These initializations are mainly close to the
limit-state function or in the failure domain. In
Fig.7b, the optimization paths are shown for the
not converged case, and the initial point is the one
surrounded by a square in Fig. 7a.

The Gaussian hypothesis for the lamination
parameters can lead to an error in the probability
gradients. Moreover, when the optimizer goes too
deep into the failure zone, he could have difficulties
returning to the safety domain since the sensitiv-
ity is close to zero. A first solution to prevent this
problem is to do a multi-start optimization, which
means running 3 or 4 optimizations with differ-
ent initialization, mainly in the safety domain. In
order to verify that the non-convergence of the
optimization for some initial conditions might be
due to the sensitivity of the probability in the fail-
ure domain, another approach is tested for which
a deterministic constraint relative to the buck-
ling is added. This is done without accounting for
the uncertainty associated with this new compo-
nent in the optimization formulation as defined in
Eq.(26) in order to control the optimization.

min
µΘ
−D11

(
µvD(Θ|µΘ)

)
(26)

subject to:
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(a) Sensitivity study to initial design guess: regular
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symbol case.
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(b) Optimization path of a initial design from Fig. 7a.

Fig. 7: Convergence study with different initial-
izations.
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hLP (µvD(Θ|µΘ)) ≤ 0

g(µvD) ≤ 0
Pg = P

(
g(vD = H(Θ)) ⩾ 0

)
≤ Pmax

The same convergence study has been done
with this formulation. In Fig. 8a, the RBDOs
converge to a reliable design except for one initial-
ization. Therefore, the potential to add the deter-
ministic constraint in a gradient-based method is
shown for this case.
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symbol case.
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(b) Optimization path of a initial design from Fig. 8a.

Fig. 8: Convergence study with different initial-
izations with the addition of the deterministic
constraint.

5.2 Gradient probability comparison

In the reference optimization in Section 3, the
Gaussian hypothesis for the lamination parame-
ters is made, which can lead to an error in the
failure probability gradient evaluation. For this
reason, a study is made to compare the computa-
tion of failure probability gradients with the score
function approach and the centered finite differ-
ences for different levels of Gaussianity. For each
Gaussianity level, the same lamination parameters



Springer Nature 2021 LATEX template

Multi-scale approach for Reliability-based Design Optimization with metamodel upscaling 17

and orientations are chosen for both sensitivity
approaches. For the score function approach, the
procedure explained in Section 2.3 is followed.
Concerning the centered finite differences, at each
perturbation made around the lamination param-
eters, a stacking sequence is retrieved around the
original stacking sequence set. All sensitivities
computations were repeated twenty times with a
sample size of 200000 to compute the mean and
standard deviation for each sensitivity approach.
In Fig. 10, the score function approach is validated
for a set of lamination parameters well modeled
by a Gaussian law. We emphasize that the min-
imal CFD step size is imposed in relation to the
Monte Carlo estimator error for a given sample. In
Fig. 11, the chosen lamination parameter sample
does not follow a Gaussian trend. In this case, the
Gaussian hypothesis of the score function is mis-
leading, and there is a huge discrepancy for the
vD3 direction. More generally, we also notice that
the score function approach is quite sensitive along
the vD1 direction, for both cases, with a higher
standard deviation than the centered finite differ-
ences method. This is most likely because, in this
example, the limit-state function of the constraint
is parallel to the vD1 direction, and the gradient
value is close to null.

Consequently, the optimization of Eq.(22) is
run with the same initialization. However, the fail-
ure probability gradients are now computed with
centered finite differences without assuming Gaus-
sianity. The optimization path is different (see Fig.
9a); however, the convergence is quite similar at
the end with almost the same number of iterations
and the same lamination parameters, as shown
in Table 5. Nevertheless, the stacking sequences
may be different because of the non-unicity of
the inverse problem. In any case, their mechanical
response is very similar since they have the same
lamination parameter values. This study can lead
to a better approach of the multi-scale RBDO.
Instead of choosing one of the two approaches
for the failure probability sensitivity, a hybrid
approach is proposed. At each iteration, a Henze-
Zirkler Multivariate Normality Test (Henze and
Zirkler, 1990) is computed to determine whether
the macroscopic sample can be approximated with
a Gaussian law or not to know if the score func-
tion approach or the finite differences are used for
the sensitivity. With this approach, the optimiza-
tion converges with fewer iterations and almost

the same design of lamination parameters. In this
case, the score function approach is used for half
of the iteration.

5.3 Comparison with standard
evolutionary optimization
algorithm

The proposed method is compared to a more stan-
dard one often used in this context. Indeed, vari-
ous multi-scale approaches rely on direct methods,
such as evolutionary algorithms, at the mesoscale
design space. In the following, a genetic algorithm
is used as the reference approach to solve the opti-
mization problem in the mesoscopic space (i.e.,
the orientation space in this case). Therefore, the
macroscopic space is not exploited.

Results for the new multi-scale RBDO
approach combined with different methods for the
failure probability sensitivity are now compared
with the result obtained by the genetic algorithm.
Details of the results are found in Table 5. First,
the final designs in the lamination parameters
space are similar for all the methods. However,
in terms of computational time, it is quite differ-
ent. The reference optimization with the genetic
algorithm took three times longer than the pro-
posed method with the hybrid approach for failure
probability sensitivity. Overall, the multi-scale
approach, exploiting the lamination parameters, is
much more efficient regarding the computational
time. Nevertheless, if the macroscopic parameters
(i.e., the lamination parameters in this case) can
not be modeled with a parametric distribution
(i.e., the Gaussian one), using only finite differ-
ences may take as much computational time as the
genetic algorithm if the design variable dimension
increases.

6 Conclusion

This paper proposes a new RBDO approach for
multi-scale optimization exploiting macroscopic
design space and a lower scale space with rele-
vant uncertain design variables. It is an iterative
approach, repeatedly focusing from one scale to
the other during the optimization process in order
to take advantage of each space attributes. The
smoother macroscopic design space with regular
gradient information allows fast gradient-based
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(a) 2D lamination parameters macroscopic space.
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Fig. 9: Optimization path with the probability
sensitivity computed with the centered finite dif-
ferences.

optimization, while at the lower scale, the uncer-
tain design variables are modeled and upscaled.
An inverse problem is solved at each iteration
to identify a corresponding uncertain mesoscale
design that matches the mean macroscopic design
and then gives the capability to perform efficient
reliability analysis. The whole approach shows
some efficiency in terms of computation time.

The strenght of this approach is demonstrated
for composite laminate optimization for which
the ply orientation design variables are considered
uncertain. Moreover, a Fourier chaos expansion
has been proposed to efficiently and accurately

propagate the effect of ply orientations uncer-
tainties from the mesoscopic (orientations) to
the macroscopic (lamination parameters) space,
which is used for the inverse problem and to model
the joint probability density function of lamina-
tion parameters. The multi-scale RBDO approach
has been applied to a buckling optimization of
a composite plate. Since the optimizer needs the
failure probability sensitivity, two existing meth-
ods have been tested: the score function approach
and the centered finite differences. The score func-
tion approach is computationally more efficient
but requires a parametric distribution of the ran-
dom variables. Therefore, a hybrid approach has
also been proposed where a statistical test of lam-
ination parameters is performed to know if the
score function or centered finite differences are
used for the failure probability gradient. The pro-
posed RBDO method combined with the different
approaches for the failure probability sensitivity
is compared with the reference composite RBDO
using a genetic algorithm. Regarding the compu-
tational time, the proposed RBDO method looks
better for this application. Nevertheless, a criti-
cal point concerns the initial guess. If the latter
is in the failure domain or the optimizer leads
the design to the failure domain during the opti-
mization, it could have some issues converging
well.

Future works will concern the application of
the developed methodology to aeroelastic opti-
mization with flutter instability. To do so, a
surrogate model strategy must be implemented to
compute the failure probability within a reason-
able time. Future developments will include the
parametrization of the composite stack thickness
(i.e., number of plies) and spatially non-uniform
distributions of stiffness in the structure.
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a gaussian distribution in this case. On the left figure: the yellow dashed contour represents the fitted
Gaussian law, and the blue contour is the non-parametric law obtained from a kernel-density estimate
using Gaussian kernels.
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Fig. 11: Same caption as the previous figure but this time, the lamination parameters sample clearly does
not follow a Gaussian distribution (cf. left figure). We notice that the shape places much more weight
under the unfeasible region. In this case, failure probability gradients differ depending on the approaches.

Appendix A Trigonometric
polynomials:
Fourier chaos
expansion
(FCE)
construction

A.1 Useful trigonometric formula

For the sake of simplicity, we will next consider
a single random variable X, that is normally dis-
tributed, X ∼ fX = N (µ, σ2), the expectation of
sin(aX) and cos(aX) can be explicitly computed:

E [cos(aX)] = cos(aµ)× w, (A1)

E [sin(aX)] = sin(aµ)× w, (A2)

with a ∈ R and w = exp(−0.5a2σ2).
The product of the trigonometric functions

cos(kx) and sin(lx) can be expressed as:

cos(kx) sin(lk) =
1

4

(
iei(k−l)x + ie−i(k+l)x

)

(
−iei(k+l)x − iei(l−k)x

)

(A3)

Since only on the real part is of interest, the
Eq.(A3) can be written, and its expected value as
the Eq.(A5) using Eqs.(A2,A1).

cos(kx) sin(lx) = −0.5 sin((k − l)x)
+ 0.5 sin((k + l)x), (A4)

E[cos(kX) sin(lX)] = −0.5 E[sin((k − l)X)]

+ 0.5 E[sin((k + l)X)]. (A5)

Similarly:

E[cos(kX) cos(lX)] = 0.5 E[cos((l − k)X)]

+ 0.5 E[cos((k + l)X)], (A6)
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E[sin(kX) sin(lX)] = 0.5 E[cos((l − k)X)]

− 0.5 E[cos((k + l)X)]. (A7)

Given sin2(x) = 1−cos(2x)
2 , cos2(x) = 1+cos(2x)

2 , we
can write:

E
[
sin2(aX)

]
= 0.5− 0.5 E [cos(2aX)] , (A8)

E
[
cos2(aX)

]
= 0.5 + 0.5 E [cos(2aX)] . (A9)

A.2 Gram-Schmidt algorithm

For the construction of the orthonormal basis, we
rely on the Gram-Schmidt algorithm . It calculates
the coefficients of the polynomials using the inner
product to ensure each polynomial is orthonormal
to all of its predecessors:

ψ0(X̂) = 1

ψi(X̂) = ui(X̂)−
i−1∑

k=0

Cikψk(X̂), (A10)

where X̂ = σΘX, ui are the set of Fourier poly-
nomials (u0 = 1, u1 = sin(X̂), u2 = cos(X̂),
u3 = sin(2X̂), u4 = cos(2X̂), u5 = sin(3X̂),
u6 = cos(3X̂),· · · ) to be orthogonalized and the
coefficients Cik are computed as:

Cik =
E
[
ui(X̂)ψk(X̂)

]

E
[
ψk(X̂)ψk(X̂)

] (A11)

Here an example of the first polynomials con-
struction:

• ψ0 = u0 = 1,
• ψ1:

ψ1(X̂) = u1 −
E [u1ψ0]

E [ψ2
0 ]

ψ0

= sin(X̂)− E
[
sin(X̂)

]

The expected value can be computed with
Eq.(A2) and is equal to 0. Then:

ψ1 = sin(X̂)

and can be normalized as:

ψn
1 = Z11 sin(X̂)

with Z11 =
1√

E
[
sin(X̂)2

]

which can be computed with the Eq.(A8).
• ψ2:

ψ2 = cos(X̂)− E [u2ψ0]

E [ψ2
0 ]

ψ0 −
E [u2ψ1]

E [ψ2
1 ]

ψ1

= cos(X̂)− E
[
cos(X̂)

]
−

E
[
cos(X̂) sin(X̂)

]

E
[
sin(X̂)2

] ψ1

= cos(X̂)− C20 − C21ψ1

The expected values can be computed with
Eq.(A1), Eq.(A5) and Eq.(A2). Here C21 is
equal to 0, then:

ψ2 = cos(X̂)− C20

and can be normalized:

ψn
2 = Z21(cos(X̂)− C20)

with Z21 =
1√

E
[
(cos(X̂)− C20)2

]

which can be computed thanks to Eqs.(A9,A1).
First orthonormal polynomials are represented
in the Fig. A1 between −π and π.

A.3 Uncertainty quantification of
lamination parameters

In this work, accurate statistics of the lamina-
tion parameters are important, especially for the
inverse problem resolution in Eq.(8). The expected
values of the lamination parameters of the bending
matrix stiffness are expressed as:

µH(Θ) = E[vD]

=
12

t3

N∑

k

y[E (cos(2Θk)) ,E (sin(2Θk)) ,
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Fig. A1: Orthonormal Fourier basis

E (cos(4Θk)) ,E (sin(4Θk))] (A12)

with y =
(z3

k−z3
k−1)

3 , t the thickness of the lami-
nate, N the total number of plies and zk is the
coordinate of the kth ply. The trigonometric func-
tions can be written as a combination of Fourier
polynomial functions:

cos (a (Θk(X))) ≈
p∑

i=0

ecos,ai ψi(σΘk
X),

sin (a (Θk(X))) ≈
p∑

i=0

esin,ai ψi(σΘk
X), (A13)

with (p − 1) the total number of terms in the
expansion and where a can take the value of 2 or 4.
Using the Fourier chaos expansion, the expected
values of lamination parameters can be simply
expressed as:

E[vD] =
12

h3

N∑

k

y[ek0c2(µΘk
), ek0s2(µΘk

),

ek0c4(µΘk
), ek0s4(µΘk

)] (A14)

with e0ca and e0sa the first coefficient of
Eq.(A13) who have to be computed. In the same
manner, with independent random variables, the
variances are expressed as:

Var[vD] =

(
12

h3

)2 N∑

k

y2[Var (cos(2Θk)) ,

Var (sin(2Θk)) ,Var (cos(4Θk)) ,Var (sin(4Θk))]

Var[vD] =

(
12

h3

)2 N∑

k

y2

[
p∑

i=1

ekic2(µΘk
)2,

]

[
p∑

i=1

ekis2(µΘk
)2,

p∑

i=1

ekic4(µΘk
)2,

p∑

i=1

ekis4(µΘk
)2

]

(A15)

In the similar manner, the covariance between
the lamination parameters can be computed with
coefficients products.

A.3.1 FCE coefficients computation

The coefficients in Eqs.(A13) can be computed
analytically with the Fourier basis. An exam-
ple can be shown using cos (a (Θk(X))) =∑p

i eicaψi(σΘk
X) with a taking the value of 2 or

4. We can write the function:

e = cos (a(µΘ + σΘX))

= c1 cos(aX̂)− s1 sin(aX̂)

with ca = cos(aµΘ) and sa = sin(aµΘ).

The coefficients eica are obtained as projec-
tions of the functional of interest (e.g. e) onto each
member of the Fourier basis. For example, the first
two coefficients can be written as:

e0ca = E[e× ϕ0] = E[e× 1]

= caE
[
cos(aX̂)

]
− saE

[
sin(aX̂)

]
(A16)

e1ca = E[e× ϕ1] = E[e× Z11 sin(X̂)]

= Z11

(
caE

[
cos(aX̂) sin(X̂)

])

(
−saE

[
sin(aX̂) sin(X̂)

])
, (A17)

where the expected values are computed with the
Eqs.(A5,A7,A2,A1) and Eq.(A2). The coefficients
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are obtained until the order p, in the same manner,
using the equations in the Section A.1.

The procedure is the same with the function
sin (a (Θ(X))) =

∑p
i eisaψi(X). Then a database

is created for every orientations µΘ possible (in
this case [-75°,-60°,-45°,-30°,-15°,0°, 15°, 30°, 45°,
60°, 75°, 90°]). Once this database is available
the means and covariances of lamination parame-
ters of any stacking sequence are directly obtained
from Eq.(A14) and Eq.(A15).

A.3.2 Validation of the representation

The Fourier Chaos Expansion approach is numer-
ically validated by computing the statistics asso-
ciated to a simple case of lamination parameters.
Increasing the size of the approximation basis,
the variances of the bending lamination parame-
ters vD are compared to the variances computed
with a numerical quadrature applied to the first
equation of Eq.(A15). For each ply, the variance of
the cos(2Θk) function, for example, is written as

Var (cos(2Θk)) = E[cos(2(µΘ + σΘX))2]

− E[cos(2(µΘ + σΘX))] (A18)

and the reference expected values can be
computed with a numerical integration tool of
SciPy. The metamodel is validated for a stack-
ing sequence of 16 plies ([45°,30°,0°,-45°,90°,-30,-
15°,15°]s) and the relative error is plotted in Fig.
A2. We notice, as expected in this case, the spec-
tral convergence of the error to very small values
for 4-term Fourier-Chaos expansion.
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Replication of Results

The paper provides a enough description of the
proposed method so that the results can be repli-
cated.
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