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Abstract

In this short note we provide a proof of boundedness of solutions for a network system
composed of heterogeneous nonlinear autonomous systems interconnected over a directed
graph. The sole assumptions imposed are that the systems are semi-passive [1] and the
graph contains a spanning tree.

Lemma 1 Consider a network containing N interconnected dynamical systems'
i = filxy)) +w;, 1< N, xz €R, (1)
each of which defines a semi-passive map u; — x;. Let
u; = — Z a;j(z; —x;), a;; >0, (2)
JEN;

where for each i < N, N; denotes the set of nodes vj sending information to the node v;. Let
this network’s topology be defined by a directed graph G containing a spanning tree. Then, the

trajectories t — x(t), where x := [x1 --- zy], solutions to (1)-(2) for all i < N, are globally
bounded. O
Proof: The system (1)-(2) in compact form, i.e., defining z := [z; --- xx]", becomes

&= F(z)— Lz, (3)

where F(z) := [fi(x1) --- fn(zn)] " and

—i5, 1F]
N
[Hij = D aiw. i=j, i.j<N.
=1
0#i

By assumption, the graph G contains a spanning tree. If, in addition, it is strongly connected,
the results follows along the lines of the proof of [2, Proposition 2]. If the graph is not strongly
connected, the result follows by observing that by reordering the network’s states, the Laplacian
L may be transformed into that of a connected network that consists in a spanning-tree of
strongly-connected sub-graphs. Hence, the transformed Laplacian matrix possesses a convenient
lower-block-triangular form (see Lemma 2 below). Then, the statement follows after a cascades
argument, from the fact that the trajectories of each strongly-connected sub-graph are bounded
and remain bounded under the effect of the interconnections (see Lemma 3).

*A. Lazri is with L2S, CNRS, Univ Paris-Saclay, France (e-mail: anes.lazri@centralesupelec.fr) E. Panteley
and A. Lorfa are with L2S, CNRS, (e-mail: {elena.panteley,antonio.loria}@cnrs.fr).

IFor clarity of exposition, and without loss of generality, we assume that x; € R. However, all the statements
remain true if z; € R™ for any n > 1.



Lemma 2 Let L € RY*YN be the Laplacian matriz associated to a directed connected graph G that
contains a directed spanning tree, but is not strongly connected. Then, there exists a permutation
matriz T and a number m € {2,3,..., N}, such that

All 0 e 0
T _A21 A22
TTLT = , (4)
: 0
*Aml e *Am,m—l Am,m

where for each i € {2,3,...,m}, A; € R"*" A, = L;; + D;, where L;; € R™*™ corresponds
to the Laplacian of a strongly-connected directed graph, D; is a diagonal matriz of non-negative
entries, and A;; € R™>*" s such that D;1,, = Z;;ll Aijly,, with 1,, :==[1 --- 1]T € R™, and
D1 =0. O

Let Lemma 2 generate a permutation matrix 7 and define z := T'T . Since T is a permutation
matrix it is invertible with 7-1 := T'T. In turn, ¢t = z(¢) of (3) is globally bounded if and only
if so is t +— z(¢), solution to

3=F,(2)—T"LTz, (5)

where F,(z) := T F(T%).

Remark 1 Since T is a permutation matriz the ith element in the vector F.(z) depends only on
2, de, Fo(2) = [fi(z1) --- fn(en)] T

It is only left to show that ¢ — z(t) is globally bounded. To that end, we use the lower
block-triangular structure of 7T LT. Consider the first ny equations in (5), that is, let 2z, :=
(21 -+ Zny] T, oy (21) i= [f1(21) -+ foy (20,)] 7. Then,

z =F, (1) — Az, (6)

where, after Lemma 2, A is the Laplacian of a strongly connected graph (since D; := 0). It
follows that the equation (6) corresponds to the dynamics of a strongly connected network, whose
solutions are globally bounded. The latter follows from the proof of [2, Proposition 2]2.

Now, the second set of equations in (5) corresponds to

Zo = F,,(%2) — Laozo — Dozo + Ao1z1, Z2 € R™ (7)

where Loy is the Laplacian of a strongly connected graph and Ds1,, = A2;1,,. Note that (7)
corresponds to the dynamics model of a strongly-connected network of semi-passive systems of
the form (1)-(2), of dimension N = ng, with an additional stabilizing term — D5 Z5, and perturbed
by an input v1 := z;. For such systems, we have the following (see the proof below).

Lemma 3 Consider a group of N semi-passive systems (1) with input (2), interconnected over
a strongly connected directed graph with associated Laplacian L. Let B; € RNXM; - with § < p,
and D € RN*N D := diag[dy] be matrices whose entries are non-negative, and such that for

any k < N, dy, := >0, Sl [Bjlke. Let @ = [uy - an]T, F(@) = [filz1) - fn(an)]T and
v; € RMi be external bounded inputs. Then, the trajectories of the perturbed networked system

@ =F(z) - Lz - DT+ Y _ Bjuv;, (8)

J<p

t— Z(t), are globally bounded. O

2We invoke the proof of [2, Proposition 2] and not the statement since it is therein inappropriately assumed
that the graph is undirected, but the proof of the statement applies to connected-and-balanced graphs, as well as
to strongly-connected ones.



Now, Lemma 3 applies to Eq. (7) with p =1, My = ny, By := A, and the input vy := zy,
which we established to be bounded. In addition, the kth element of Dy, denoted doj satisfies
dop = Zg;l [A21]ke, where [A2;]ke denotes the £th element of the kth row of Agq. It follows, from
Lemma 3 that the solutions ¢ — Z5(t) are globally bounded. In turn, for any ¢ < m, the ith set
of equations in (5) reads

i—1
éi = in (21') — L;izi — Dz + Z Aij,?j. (9)

J=1

Equation (9) is of the form (8), with p =i — 1, v; := Z;, B; := A;;, and L;; corresponds to the
Laplacian of a strongly connected network. For each k£ < n;, the kth element in the diagonal of
D; satisfies, by definition, d;, = Z;;ll 21 [Aij]ke, where [A;]xe corresponds to the (th element
in the kth row of A;;. Therefore, Invoking Lemma 3, with Z := Z;, it follows that ¢ — Z(t)
is globally bounded. The statement of Lemma 1 follows by applying the previous arguments,

sequentially, for each i € {3,4,---, m}. [ ]
Proof of Lemma 2: Consider the following.

Fact 1 If a graph G, with Laplacian Lg, contains a directed spanning tree and is not strongly
connected, then there exists a permutation matriz Pg such that Pc-l;— Ps =1 and

0
Pitara=| %% |, (10)
G ~G’

where Qg € R™*"' | with n/ < N, is the Laplacian matriz of the largest strongly-connected sub-
graph G' C G, containing n' nodes, including all the root nodes in G. The matriz Sz, satisfies
Sz = Lz + Dg, where Lg, is a Laplacian matriz associated to the graph G' := G\G’ and Dg,
1s the degree matriz, which is diagonal and contains the weights of the links from G’ to G'. O

The previous fact is true because if G contains only one spanning tree, say 7 with root node
g, then 1y has no incoming link. Therefore, we can set G’ := ({vo},0). If vy has incoming links,
it necessarily forms part of a strongly-connected graph containing at least two nodes including
1o and a bidirectional link, thereby forming a strongly connected set. The same reasoning holds
if G has several spanning trees, in which case the respective roots also make part of G'.

Thus, since by assumption, the graph G contains a directed spanning tree T, let Fact 1
generate the largest strongly connected sub-graph of GG, which containing all the roots of G and
ny nodes in total and we call Gy C G. Then, let Qg, € R™*™ denote the Laplacian associated
to G1. Then, for the block Aj; in (4) we set Aj; := Qg,. That is, A1; € R™*™ is the Laplacian
of a strongly connected graph, as desired. Let G := G\G; denote the complement of G;. Fact
1 also generates the matrices Rz and Sg . That is,

Pl LePg = [ Au 0 ], (11)

_Rél Sél

The off-diagonal entries of the matrix 5z, € RWV=11)x(N=11) are non-positive. They represent
edges belonging to the graph G;. Indeed, The matrix Sz, = Lz, + Dg,, where Lz corresponds
to the Laplacian associated to the graph G and Dg, is the degree matrix, which is diagonal

positive semidefinite and contains the weights of the links from G to G;. The entries in the
matrix Rz € RWV=n1)xn1 represent the outgoing links emanating from nodes belonging to G4

towards nodes in the rest of the graph, i.e., Gi. If G is strongly connected, the matrix in (11)
has the desired structure in (4) and the proof ends.

If G} is not strongly connected, we look for a permutation matrix Pg, € RWV—n1)x(N—n1)
such that PglLélPél has a block-triangular form as in (10). To that end, we consider two

possibilities depending on whether G contains or not a spanning tree.



Case 1: Assume that G contains a spanning tree, or several. Necessarily, the root of at least
one of the trees has an incoming link from G;. Then, let Fact 1 generate the largest strongly-
connected graph Gy C G, containing ny nodes, including all the roots in G. Also after Fact 1
there exists a permutation matrix Pg such that

T Qc, 0
Pele Fe = [R2 S ] ’ (12)
(eX Ga

where Q¢, € R"2*"2 is the Laplacian matrix associated to Ga, Sz, = Lg, + Dg,. Also, we
define G := G1\G2 = G\{G1 U G2}, i.e., G5 contains all the nodes in G, but which are not
contained in G7 nor in Gs.

Then, we apply the permutation blockdiag [Inl ng on the matrix on the right-hand side of
(11). We obtain the matrix

Au 0 (13)
T T )
—Pé1 Rz Pé1 Sz, Pg,
which has a lower-block-triangular structure and A1, corresponds to the Laplacian associated to
a strongly connected graph, as desired. Furthermore, the block Pgl Rz € ROW=n1)xm1 may he
split into two stacked sub-blocks. The upper one is of dimension ny x ny and contains the links
that connect the nodes in G; to nodes in Gs; for the purpose of constructing (4), we name this
sub-block Az1. On the other hand, by the definition of Sz, and (12),

T Qa, 0 T

Pl 55 Pg, = {_ e Sg} + P Dg, Pg,. (14)
2 2

The last term on the right-hand side of (14) is diagonal and may be split into two diagonal sub-

blocks, i.e., Pgl Dz, Pg, =: blockdiag [D’é1 D%l]. Then, we set Agg in (4) to Aag := Qg, + D’é1

and we redefine Sz, := Lz, +Dg, +D%1. Thus, after (13) and (14), and the previous definitions,

we have

Ln 07 An 0] [La 0] _ | 4% 2 0
0 PI _Ré Sé 0 Pé - 21 22
G 1 1 1 [*] 7R§2 Séz
(15)

In the matrix on the right-hand side of (15), the entries of R@ represent the edges connecting
the nodes from G C G, to the rest of the sub-graph G1, i.e., Go. Now, as previously remarked
for G1, G5 may or may not contain a spanning tree. If it does, and G is strongly connected,
the matrix on the right-hand side of (15) qualifies as the sought matrix in (4). If Gy contains
a spanning tree, but is not strongly connected, Fact 1 applies to G5 and generates a strongly
connected graph G3 C G and its complement Gz := G5\G3 = G\{G1 U Gy U G3}. Then,
we repeat the procedure above with the pertinent changes in the notation, etc. The process
repeats as long as Fact 1 applies, thereby generating a finite sequence of subgraphs {Gy}, with
ke {1,2,...,m} and m < N, such that Gy, is the largest strongly connected sub-graph having
incoming links only from subgraphs G, with ¢ < k — 1. For any such k, we obtain

A 0 0
—As A
(16)
—Ap_11 A 0
[*] [+] —Rg, Sz, ]

By construction, the lowest-rightest sub-block in the matrix on the right-hand side of (16)
may be decomposed as Sz, = Lz, + Dg, , where Dg, contains the weights of the links from the



graphs Gy with £ < k to G and the previous arguments apply if G contains a spanning tree.
On the contrary, if Gy, for any k > 1, does not contain a spanning tree, the following applies.
Case 2: Assume that Gy, with & > 1, does not contain a spanning tree. It follows that the
associated Laplacian Lz, has py > 1 null eigenvalues. After [3, Theorem 3.2]—cf. [4, Proposition
3], it follows that there exists a permutation matrix T such that

Lék 0 s 0
. 0 L%k :
T'Lg T = . . ' , (17)
_M#k+171 _M#k+17#k Ml‘k+1aﬂk+1

where each block L’ék, with ¢ < py, corresponds to a Laplacian matrix associated to a sub-graph of

G, that contains a spanning tree and that we denote Gy, for all i € {1,2, ..., ux}. Therefore,
each Liék corresponding to a strongly connected graph Gj4; may be placed in the appropriate
order in the block diagonal of a block-triangular matrix of the form (4), hence renamed A;;.
On the other hand, for each Gj; that is not strongly connected, Fact 1 above applies, so
we proceed as in Case 1. The sub-block M, +1 ,,+1 may be decomposed into M, +1,,,+1 :=
L+1,+1+Dypt1,u,+1, where Ly, 11 4,41 is a Laplacian and Dy, 41,4, +1 is a degree (diagonal
semi-positive definite) matrix. L, 1 ,,+1 corresponds to a graph that may or may not have a
spanning tree, so either Case above applies.

Since the graph G has a finite number of nodes N, the processes described in Cases 1 and
2 above finish when either G, in Case 1 or the graph with Laplacian L, 41 ,,+1 in Case 2 is
strongly connected, so we set either A,, ,,, := G, or Amm = My, +1,,+1. This event will surely
occur because after sufficiently many iterations, either of those graphs may contain only one leaf
node, which constitutes a strongly connected (trivial) graph with incoming edges.

]

Proof of Lemma 3: We follow the proof-lines of [2, Proposition 2]. Under the assumption
that u; — x; defines a semi-passive map, for any ¢ < N there exists a radially unbounded storage
function V; : R — R, a continuous function H;, a positive continuous function 1;, and a positive
constant p;, such that the total derivative along the trajectories of (1) yields

Vi(wi) < ujl @i — Hi(w), (18)
where H;(x;) > ;(|z;|) for all |x;| > p;. Next, let Vx(z) := Zi\il i Vi(x;), where p; corresponds

to the 7th element of the left eigen-vector associated to the zero eigen-value of L. Since by
assumption the network is strongly connected, u; > 0 for all ¢ < N. Then, using (18) we see that

N N
V() <> paul v — > piHi(xs). (19)
i=1 i=1
The first term on the right-hand side of (19) gives
N
ZMzUzTJUz =u' Mz, (20)
i=1

where M := diag[p;]. Then, setting

u=-Lz - Di+» Bjvj,

Jj<p

it follows that the derivative of Vx(Z) along the trajectories of (8) satisfies

N
VE(i') <- ZMiHi(xi) -z LT Mz
=1



— 5 DMz + |3 Byuj] Mz (21)

J<p

Now, since the units are semi-passive, for each i < N, there exists p; > 0 such that H;(x;) >
¥;(Jz;]) for all |z;] > p;. Then, let p:= max;{p;}; it follows that

N N
—~ Z piHi(z;) < — Z piti (), (22)

for all all |z;| > p.
Furthermore, since the graph is strongly connected, LT M + ML is positive semi-definite—cf.
[2, Proof of Proposition 2]. Hence, the second term on the right-hand side of (21) is non-positive.
For the last two terms on the right-hand side of (21) we observe that by the definition of
di, and the fact that all the elements of any B; are non-negative, we have d, = 0 if and only
if [Bjlge = 0 for all ¢ < M, and for all j < p. Therefore, the third and fourth terms on the
right-hand side of (21) satisfy

N
—Z"DM7Z + {Z ijj}—r./\/li < - Z [clix? - sz'|Ii|], (23)
i=1

J<p

where ¢y, co; > 0 and ¢q; = 0 if and only if ¢p; = 0. Therefore, for any ¢ < N there exists n; > 0
such that for all |z;| > n;, c1iz? > co;|z;|. Thus,

N
Va(z) < —ZIM%'G%D <0 (24)

for all |z;| > max{p;, n;}. We conclude that if for any i < N, |z;(t)| — oo then there exists
T > 0 such that for all ¢ > T, we have Vg (z(t)) <0 for all t > T. The statement follows.
]
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