On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs

Anes Lazri, Elena Panteley, Antonio Loria

- To cite this version:

Anes Lazri, Elena Panteley, Antonio Loria. On the robustness of networks of heterogeneous semipassive systems interconnected over directed graphs. CNRS - Laboratoire des signaux et systèmes. 2023, e-print no. arXiv:2307.14868. hal-04298380

HAL Id: hal-04298380

https://hal.science/hal-04298380

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs

Anes Lazri Elena Panteley Antonio Loría *

July 27, 2023

Abstract

In this short note we provide a proof of boundedness of solutions for a network system composed of heterogeneous nonlinear autonomous systems interconnected over a directed graph. The sole assumptions imposed are that the systems are semi-passive [1] and the graph contains a spanning tree.

Lemma 1 Consider a network containing N interconnected dynamical systems ${ }^{1}$

$$
\begin{equation*}
\dot{x}_{i}=f_{i}\left(x_{i}\right)+u_{i}, \quad i \leq N, \quad x_{i} \in \mathbb{R}, \tag{1}
\end{equation*}
$$

each of which defines a semi-passive map $u_{i} \mapsto x_{i}$. Let

$$
\begin{equation*}
u_{i}=-\sum_{j \in \mathcal{N}_{i}} a_{i j}\left(x_{i}-x_{j}\right), \quad a_{i, j} \geq 0, \tag{2}
\end{equation*}
$$

where for each $i \leq N, \mathcal{N}_{i}$ denotes the set of nodes ν_{j} sending information to the node ν_{i}. Let this network's topology be defined by a directed graph G containing a spanning tree. Then, the trajectories $t \mapsto x(t)$, where $x:=\left[x_{1} \cdots x_{N}\right]$, solutions to (1)-(2) for all $i \leq N$, are globally bounded.

Proof: The system (1)-(2) in compact form, i.e., defining $x:=\left[x_{1} \cdots x_{N}\right]^{\top}$, becomes

$$
\begin{equation*}
\dot{x}=F(x)-L x, \tag{3}
\end{equation*}
$$

where $F(x):=\left[f_{1}\left(x_{1}\right) \cdots f_{N}\left(x_{N}\right)\right]^{\top}$ and

$$
[L]_{i, j}=\left\{\begin{array}{l}
-a_{i j}, \quad i \neq j \\
\sum_{\substack{\ell=1 \\
\ell \neq i}}^{N} a_{i \ell}, i=j, \quad i, j \leq N .
\end{array}\right.
$$

By assumption, the graph G contains a spanning tree. If, in addition, it is strongly connected, the results follows along the lines of the proof of [2, Proposition 2]. If the graph is not strongly connected, the result follows by observing that by reordering the network's states, the Laplacian L may be transformed into that of a connected network that consists in a spanning-tree of strongly-connected sub-graphs. Hence, the transformed Laplacian matrix possesses a convenient lower-block-triangular form (see Lemma 2 below). Then, the statement follows after a cascades argument, from the fact that the trajectories of each strongly-connected sub-graph are bounded and remain bounded under the effect of the interconnections (see Lemma 3).

[^0]Lemma 2 Let $L \in \mathbb{R}^{N \times N}$ be the Laplacian matrix associated to a directed connected graph G that contains a directed spanning tree, but is not strongly connected. Then, there exists a permutation matrix T and a number $m \in\{2,3, \ldots, N\}$, such that

$$
T^{\top} L T=\left[\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \tag{4}\\
-A_{21} & A_{22} & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
-A_{m 1} & \cdots & -A_{m, m-1} & A_{m, m}
\end{array}\right]
$$

where for each $i \in\{2,3, \ldots, m\}, A_{i i} \in \mathbb{R}^{n_{i} \times n_{i}}, A_{i i}=L_{i i}+D_{i}$, where $L_{i i} \in \mathbb{R}^{n_{i} \times n_{i}}$ corresponds to the Laplacian of a strongly-connected directed graph, D_{i} is a diagonal matrix of non-negative entries, and $A_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$ is such that $D_{i} \mathbf{1}_{n_{i}}=\sum_{j=1}^{i-1} A_{i j} \mathbf{1}_{n_{j}}$, with $\mathbf{1}_{n_{i}}:=[1 \cdots 1]^{\top} \in \mathbb{R}^{n_{i}}$, and $D_{1}:=0$.

Let Lemma 2 generate a permutation matrix T and define $z:=T^{\top} x$. Since T is a permutation matrix it is invertible with $T^{-1}:=T^{\top}$. In turn, $t \mapsto x(t)$ of (3) is globally bounded if and only if so is $t \mapsto z(t)$, solution to

$$
\begin{equation*}
\dot{z}=F_{z}(z)-T^{\top} L T z, \tag{5}
\end{equation*}
$$

where $F_{z}(z):=T^{\top} F(T z)$.
Remark 1 Since T is a permutation matrix the ith element in the vector $F_{z}(z)$ depends only on z_{i}, i.e., $F_{z}(z):=\left[f_{1}\left(z_{1}\right) \cdots f_{N}\left(z_{N}\right)\right]^{\top}$.

It is only left to show that $t \mapsto z(t)$ is globally bounded. To that end, we use the lower block-triangular structure of $T^{\top} L T$. Consider the first n_{1} equations in (5), that is, let $\bar{z}_{1}:=$ $\left[z_{1} \cdots z_{n_{1}}\right]^{\top}, \bar{F}_{z_{1}}\left(\bar{z}_{1}\right):=\left[f_{1}\left(z_{1}\right) \cdots f_{n_{1}}\left(z_{n_{1}}\right)\right]^{\top}$. Then,

$$
\begin{equation*}
\dot{\bar{z}}_{1}=\bar{F}_{z_{1}}\left(\bar{z}_{1}\right)-A_{11} z_{1} \tag{6}
\end{equation*}
$$

where, after Lemma $2, A_{11}$ is the Laplacian of a strongly connected graph (since $D_{1}:=0$). It follows that the equation (6) corresponds to the dynamics of a strongly connected network, whose solutions are globally bounded. The latter follows from the proof of [2, Proposition 2$]^{2}$.

Now, the second set of equations in (5) corresponds to

$$
\begin{equation*}
\dot{\bar{z}}_{2}=\bar{F}_{z_{2}}\left(\bar{z}_{2}\right)-L_{22} z_{2}-D_{2} \bar{z}_{2}+A_{21} \bar{z}_{1}, \quad \bar{z}_{2} \in \mathbb{R}^{n_{2}} \tag{7}
\end{equation*}
$$

where L_{22} is the Laplacian of a strongly connected graph and $D_{2} \mathbf{1}_{n_{2}}=A_{21} \mathbf{1}_{n_{1}}$. Note that (7) corresponds to the dynamics model of a strongly-connected network of semi-passive systems of the form (1)-(2), of dimension $N=n_{2}$, with an additional stabilizing term $-D_{2} \bar{z}_{2}$, and perturbed by an input $v_{1}:=\bar{z}_{1}$. For such systems, we have the following (see the proof below).

Lemma 3 Consider a group of N semi-passive systems (1) with input (2), interconnected over a strongly connected directed graph with associated Laplacian L. Let $B_{j} \in \mathbb{R}^{N \times M_{j}}$, with $j \leq p$, and $D \in \mathbb{R}^{N \times N}, D:=$ diag $\left[d_{k}\right]$ be matrices whose entries are non-negative, and such that for any $k \leq N, d_{k}:=\sum_{j=1}^{p} \sum_{\ell=1}^{M_{j}}\left[B_{j}\right]_{k \ell}$. Let $\bar{x}:=\left[x_{1} \cdots x_{N}\right]^{\top}, F(\bar{x}):=\left[f_{1}\left(x_{1}\right) \cdots f_{N}\left(x_{N}\right)\right]^{\top}$ and $v_{j} \in \mathbb{R}^{M_{j}}$ be external bounded inputs. Then, the trajectories of the perturbed networked system

$$
\begin{equation*}
\dot{\bar{x}}=F(\bar{x})-L \bar{x}-D \bar{x}+\sum_{j \leq p} B_{j} v_{j} \tag{8}
\end{equation*}
$$

$t \mapsto \bar{x}(t)$, are globally bounded.

[^1]Now, Lemma 3 applies to Eq. (7) with $p=1, M_{1}=n_{1}, B_{1}:=A_{21}$, and the input $v_{1}:=\bar{z}_{1}$, which we established to be bounded. In addition, the k th element of D_{2}, denoted $d_{2 k}$ satisfies $d_{2 k}=\sum_{\ell=1}^{n_{1}}\left[A_{21}\right]_{k \ell}$, where $\left[A_{21}\right]_{k \ell}$ denotes the ℓ th element of the k th row of A_{21}. It follows, from Lemma 3 that the solutions $t \mapsto \bar{z}_{2}(t)$ are globally bounded. In turn, for any $i \leq m$, the i th set of equations in (5) reads

$$
\begin{equation*}
\dot{\bar{z}}_{i}=\bar{F}_{z_{i}}\left(\bar{z}_{i}\right)-L_{i i} \bar{z}_{i}-D_{i} \bar{z}_{i}+\sum_{j=1}^{i-1} A_{i j} \bar{z}_{j} . \tag{9}
\end{equation*}
$$

Equation (9) is of the form (8), with $p=i-1, v_{j}:=\bar{z}_{j}, B_{j}:=A_{i j}$, and $L_{i i}$ corresponds to the Laplacian of a strongly connected network. For each $k \leq n_{i}$, the k th element in the diagonal of D_{i} satisfies, by definition, $d_{i_{k}}=\sum_{j=1}^{i-1} \sum_{\ell=1}^{n_{j}}\left[A_{i j}\right]_{k \ell}$, where $\left[A_{i j}\right]_{k \ell}$ corresponds to the ℓ th element in the k th row of $A_{i j}$. Therefore, Invoking Lemma 3, with $\bar{x}:=\bar{z}_{i}$, it follows that $t \mapsto \bar{z}_{i}(t)$ is globally bounded. The statement of Lemma 1 follows by applying the previous arguments, sequentially, for each $i \in\{3,4, \cdots, m\}$.

Proof of Lemma 2: Consider the following.
Fact 1 If a graph G, with Laplacian L_{G}, contains a directed spanning tree and is not strongly connected, then there exists a permutation matrix P_{G} such that $P_{G}^{\top} P_{G}=I$ and

$$
P_{G}^{\top} L_{G} P_{G}=\left[\begin{array}{cc}
Q_{G^{\prime}} & 0 \tag{10}\\
-R_{\overline{G^{\prime}}} & S_{\bar{G}^{\prime}}
\end{array}\right],
$$

where $Q_{G^{\prime}} \in \mathbb{R}^{n^{\prime} \times n^{\prime}}$, with $n^{\prime}<N$, is the Laplacian matrix of the largest strongly-connected subgraph $G^{\prime} \subset G$, containing n^{\prime} nodes, including all the root nodes in G. The matrix $S_{\bar{G}^{\prime}}$ satisfies $S_{\bar{G}^{\prime}}=L_{\bar{G}^{\prime}}+D_{\bar{G}^{\prime}}$ where $L_{\bar{G}^{\prime}}$ is a Laplacian matrix associated to the graph $\bar{G}^{\prime}:=G \backslash G^{\prime}$ and $D_{\bar{G}^{\prime}}$ is the degree matrix, which is diagonal and contains the weights of the links from G^{\prime} to \bar{G}^{\prime}.

The previous fact is true because if G contains only one spanning tree, say \mathcal{T}_{G} with root node ν_{0}, then ν_{0} has no incoming link. Therefore, we can set $G^{\prime}:=\left(\left\{\nu_{0}\right\}, \emptyset\right)$. If ν_{0} has incoming links, it necessarily forms part of a strongly-connected graph containing at least two nodes including ν_{0} and a bidirectional link, thereby forming a strongly connected set. The same reasoning holds if G has several spanning trees, in which case the respective roots also make part of G^{\prime}.

Thus, since by assumption, the graph G contains a directed spanning tree \mathcal{T}_{G}, let Fact 1 generate the largest strongly connected sub-graph of G, which containing all the roots of G and n_{1} nodes in total and we call $G_{1} \subset G$. Then, let $Q_{G_{1}} \in \mathbb{R}^{n_{1} \times n_{1}}$ denote the Laplacian associated to G_{1}. Then, for the block A_{11} in (4) we set $A_{11}:=Q_{G_{1}}$. That is, $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}$ is the Laplacian of a strongly connected graph, as desired. Let $\bar{G}_{1}:=G \backslash G_{1}$ denote the complement of G_{1}. Fact 1 also generates the matrices $R_{\bar{G}_{1}}$ and $S_{\bar{G}_{1}}$. That is,

$$
P_{G}^{\top} L_{G} P_{G}=\left[\begin{array}{cc}
A_{11} & 0 \tag{11}\\
-R_{\bar{G}_{1}} & S_{\bar{G}_{1}}
\end{array}\right],
$$

The off-diagonal entries of the matrix $S_{\bar{G}_{1}} \in \mathbb{R}^{\left(N-n_{1}\right) \times\left(N-n_{1}\right)}$ are non-positive. They represent edges belonging to the graph \bar{G}_{1}. Indeed, The matrix $S_{\bar{G}_{1}}=L_{\bar{G}_{1}}+D_{\bar{G}_{1}}$, where $L_{\bar{G}_{1}}$ corresponds to the Laplacian associated to the graph \bar{G}_{1} and $D_{\bar{G}_{1}}$ is the degree matrix, which is diagonal positive semidefinite and contains the weights of the links from G_{1} to \bar{G}_{1}. The entries in the matrix $R_{\bar{G}_{1}} \in \mathbb{R}^{\left(N-n_{1}\right) \times n_{1}}$ represent the outgoing links emanating from nodes belonging to G_{1} towards nodes in the rest of the graph, i.e., \bar{G}_{1}. If \bar{G}_{1} is strongly connected, the matrix in (11) has the desired structure in (4) and the proof ends.

If \bar{G}_{1} is not strongly connected, we look for a permutation matrix $P_{\bar{G}_{1}} \in \mathbb{R}^{\left(N-n_{1}\right) \times\left(N-n_{1}\right)}$ such that $P_{\bar{G}_{1}}^{\top} L_{\bar{G}_{1}} P_{\bar{G}_{1}}$ has a block-triangular form as in (10). To that end, we consider two possibilities depending on whether \bar{G}_{1} contains or not a spanning tree.

Case 1: Assume that \bar{G}_{1} contains a spanning tree, or several. Necessarily, the root of at least one of the trees has an incoming link from G_{1}. Then, let Fact 1 generate the largest stronglyconnected graph $G_{2} \subset \bar{G}_{1}$, containing n_{2} nodes, including all the roots in \bar{G}_{1}. Also after Fact 1 there exists a permutation matrix $P_{\bar{G}_{1}}$ such that

$$
P_{\bar{G}_{1}}^{\top} L_{\bar{G}_{1}} P_{\bar{G}_{1}}=\left[\begin{array}{cc}
Q_{G_{2}} & 0 \tag{12}\\
-R_{\bar{G}_{2}} & S_{\bar{G}_{2}}
\end{array}\right],
$$

where $Q_{G_{2}} \in \mathbb{R}^{n_{2} \times n_{2}}$ is the Laplacian matrix associated to $G_{2}, S_{\bar{G}_{2}}:=L_{\bar{G}_{2}}+D_{\bar{G}_{2}}$. Also, we define $\bar{G}_{2}:=\bar{G}_{1} \backslash G_{2}=G \backslash\left\{G_{1} \cup G_{2}\right\}$, i.e., \bar{G}_{2} contains all the nodes in G, but which are not contained in G_{1} nor in G_{2}.
 (11). We obtain the matrix

$$
\left[\begin{array}{cc}
A_{11} & 0 \tag{13}\\
-P_{\bar{G}_{1}}^{\top} R_{\bar{G}_{1}} & P_{\bar{G}_{1}}^{\top} S_{\bar{G}_{1}} P_{\bar{G}_{1}}
\end{array}\right],
$$

which has a lower-block-triangular structure and A_{11} corresponds to the Laplacian associated to a strongly connected graph, as desired. Furthermore, the block $P_{\bar{G}_{1}}^{\top} R_{\bar{G}_{1}} \in \mathbb{R}^{\left(N-n_{1}\right) \times n_{1}}$ may be split into two stacked sub-blocks. The upper one is of dimension $n_{2} \times n_{1}$ and contains the links that connect the nodes in G_{1} to nodes in G_{2}; for the purpose of constructing (4), we name this sub-block A_{21}. On the other hand, by the definition of $S_{\bar{G}_{1}}$ and (12),

$$
P_{\bar{G}_{1}}^{\top} S_{\bar{G}_{1}} P_{\bar{G}_{1}}=\left[\begin{array}{cc}
Q_{G_{2}} & 0 \tag{14}\\
-R_{\bar{G}_{2}} & S_{\bar{G}_{2}}
\end{array}\right]+P_{\bar{G}_{1}}^{\top} D_{\bar{G}_{1}} P_{\bar{G}_{1}} .
$$

The last term on the right-hand side of (14) is diagonal and may be split into two diagonal subblocks, i.e., $P_{\bar{G}_{1}}^{\top} D_{\bar{G}_{1}} P_{\bar{G}_{1}}=:$ blockdiag $\left[D_{\bar{G}_{1}}^{\prime} D_{\bar{G}_{1}}^{\prime \prime}\right]$. Then, we set A_{22} in (4) to $A_{22}:=Q_{G_{2}}+D_{\bar{G}_{1}}^{\prime}$ and we redefine $S_{\bar{G}_{2}}:=L_{\bar{G}_{2}}+D_{\bar{G}_{2}}+D_{\bar{G}_{1}}^{\prime \prime}$. Thus, after (13) and (14), and the previous definitions, we have

$$
\left[\begin{array}{cc}
I_{n 1} & 0 \tag{15}\\
0 & P_{\bar{G}_{1}}^{\top}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
-R_{\bar{G}_{1}} & S_{\bar{G}_{1}}
\end{array}\right]\left[\begin{array}{cc}
I_{n 1} & 0 \\
0 & P_{\bar{G}_{1}}
\end{array}\right]=\left[\begin{array}{ccc}
A_{11} & 0 & 0 \\
-A_{21} & A_{22} & 0 \\
{[*]} & -R_{\bar{G}_{2}} & S_{\bar{G}_{2}}
\end{array}\right]
$$

In the matrix on the right-hand side of (15), the entries of $R_{\bar{G}_{2}}$ represent the edges connecting the nodes from $G_{2} \subset \bar{G}_{1}$ to the rest of the sub-graph \bar{G}_{1}, i.e., \bar{G}_{2}. Now, as previously remarked for \bar{G}_{1}, \bar{G}_{2} may or may not contain a spanning tree. If it does, and \bar{G}_{2} is strongly connected, the matrix on the right-hand side of (15) qualifies as the sought matrix in (4). If \bar{G}_{2} contains a spanning tree, but is not strongly connected, Fact 1 applies to \bar{G}_{2} and generates a strongly connected graph $G_{3} \subset \bar{G}_{2}$ and its complement $\bar{G}_{3}:=\bar{G}_{2} \backslash G_{3}=G \backslash\left\{G_{1} \cup G_{2} \cup G_{3}\right\}$. Then, we repeat the procedure above with the pertinent changes in the notation, etc. The process repeats as long as Fact 1 applies, thereby generating a finite sequence of subgraphs $\left\{G_{k}\right\}$, with $k \in\{1,2, \ldots, m\}$ and $m \leq N$, such that G_{k} is the largest strongly connected sub-graph having incoming links only from subgraphs G_{ℓ} with $\ell \leq k-1$. For any such k, we obtain

$$
\left[\begin{array}{ccccc}
A_{11} & 0 & \cdots & \cdots & 0 \tag{16}\\
-A_{21} & A_{22} & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \\
-A_{k-1,1} & \cdots & & A_{k k} & 0 \\
{[*]} & \cdots & {[*]-R_{\bar{G}_{k}}} & S_{\bar{G}_{k}}
\end{array}\right]
$$

By construction, the lowest-rightest sub-block in the matrix on the right-hand side of (16) may be decomposed as $S_{\bar{G}_{k}}=L_{\bar{G}_{k}}+D_{\bar{G}_{k}}$, where $D_{\bar{G}_{k}}$ contains the weights of the links from the
graphs G_{ℓ} with $\ell \leq k$ to \bar{G}_{k} and the previous arguments apply if \bar{G}_{k} contains a spanning tree. On the contrary, if \bar{G}_{k}, for any $k \geq 1$, does not contain a spanning tree, the following applies. Case 2: Assume that \bar{G}_{k}, with $k \geq 1$, does not contain a spanning tree. It follows that the associated Laplacian $L_{\bar{G}_{k}}$ has $\mu_{k}>1$ null eigenvalues. After [3, Theorem 3.2]-cf. [4, Proposition 3], it follows that there exists a permutation matrix T such that

$$
T^{\top} L_{\bar{G}_{k}} T=\left[\begin{array}{cccc}
L_{\bar{G}_{k}}^{1} & 0 & \cdots & 0 \tag{17}\\
0 & L_{\bar{G}_{k}}^{2} & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
-M_{\mu_{k}+1,1} & \cdots & -M_{\mu_{k}+1, \mu_{k}} & M_{\mu_{k}+1, \mu_{k}+1}
\end{array}\right]
$$

where each block $L_{\bar{G}_{k}}^{i}$, with $i \leq \mu_{k}$ corresponds to a Laplacian matrix associated to a sub-graph of \bar{G}_{k}, that contains a spanning tree and that we denote G_{k+i}, for all $i \in\left\{1,2, \ldots, \mu_{k}\right\}$. Therefore, each $L_{\bar{G}_{k}}^{i}$ corresponding to a strongly connected graph G_{k+i} may be placed in the appropriate order in the block diagonal of a block-triangular matrix of the form (4), hence renamed $A_{j j}$. On the other hand, for each G_{k+i} that is not strongly connected, Fact 1 above applies, so we proceed as in Case 1. The sub-block $M_{\mu_{k}+1, \mu_{k}+1}$ may be decomposed into $M_{\mu_{k}+1, \mu_{k}+1}:=$ $L_{\mu_{k}+1, \mu_{k}+1}+D_{\mu_{k}+1, \mu_{k}+1}$, where $L_{\mu_{k}+1, \mu_{k}+1}$ is a Laplacian and $D_{\mu_{k}+1, \mu_{k}+1}$ is a degree (diagonal semi-positive definite) matrix. $L_{\mu_{k}+1, \mu_{k}+1}$ corresponds to a graph that may or may not have a spanning tree, so either Case above applies.

Since the graph G has a finite number of nodes N, the processes described in Cases 1 and 2 above finish when either \bar{G}_{k} in Case 1 or the graph with Laplacian $L_{\mu_{k}+1, \mu_{k}+1}$ in Case 2 is strongly connected, so we set either $A_{m, m}:=S_{\bar{G}_{k}}$ or $A_{m, m}:=M_{\mu_{k}+1, \mu_{k}+1}$. This event will surely occur because after sufficiently many iterations, either of those graphs may contain only one leaf node, which constitutes a strongly connected (trivial) graph with incoming edges.

Proof of Lemma 3: We follow the proof-lines of [2, Proposition 2]. Under the assumption that $u_{i} \mapsto x_{i}$ defines a semi-passive map, for any $i \leq N$ there exists a radially unbounded storage function $V_{i}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, a continuous function H_{i}, a positive continuous function ψ_{i}, and a positive constant ρ_{i}, such that the total derivative along the trajectories of (1) yields

$$
\begin{equation*}
\dot{V}_{i}\left(x_{i}\right) \leq u_{i}^{\top} x_{i}-H_{i}\left(x_{i}\right), \tag{18}
\end{equation*}
$$

where $H_{i}\left(x_{i}\right) \geq \psi_{i}\left(\left|x_{i}\right|\right)$ for all $\left|x_{i}\right| \geq \rho_{i}$. Next, let $V_{\Sigma}(\bar{x}):=\sum_{i=1}^{N} \mu_{i} V_{i}\left(x_{i}\right)$, where μ_{i} corresponds to the i th element of the left eigen-vector associated to the zero eigen-value of L. Since by assumption the network is strongly connected, $\mu_{i}>0$ for all $i \leq N$. Then, using (18) we see that

$$
\begin{equation*}
\dot{V}_{\Sigma}(\bar{x}) \leq \sum_{i=1}^{N} \mu_{i} u_{i}^{\top} x_{i}-\sum_{i=1}^{N} \mu_{i} H_{i}\left(x_{i}\right) \tag{19}
\end{equation*}
$$

The first term on the right-hand side of (19) gives

$$
\begin{equation*}
\sum_{i=1}^{N} \mu_{i} u_{i}^{\top} x_{i}=u^{\top} \mathcal{M} \bar{x} \tag{20}
\end{equation*}
$$

where $\mathcal{M}:=\operatorname{diag}\left[\mu_{i}\right]$. Then, setting

$$
u=-L \bar{x}-D \bar{x}+\sum_{j \leq p} B_{j} v_{j}
$$

it follows that the derivative of $V_{\Sigma}(\bar{x})$ along the trajectories of (8) satisfies

$$
\dot{V}_{\Sigma}(\bar{x}) \leq-\sum_{i=1}^{N} \mu_{i} H_{i}\left(x_{i}\right)-\bar{x}^{\top} L^{\top} \mathcal{M} \bar{x}
$$

$$
\begin{equation*}
-\bar{x}^{\top} D \mathcal{M} \bar{x}+\left[\sum_{j \leq p} B_{j} v_{j}\right]^{\top} \mathcal{M} \bar{x} \tag{21}
\end{equation*}
$$

Now, since the units are semi-passive, for each $i \leq N$, there exists $\rho_{i}>0$ such that $H_{i}\left(x_{i}\right) \geq$ $\psi_{i}\left(\left|x_{i}\right|\right)$ for all $\left|x_{i}\right| \geq \rho_{i}$. Then, let $\bar{\rho}:=\max _{i}\left\{\rho_{i}\right\} ;$ it follows that

$$
\begin{equation*}
-\sum_{i=1}^{N} \mu_{i} H_{i}\left(x_{i}\right) \leq-\sum_{i=1}^{N} \mu_{i} \psi_{i}\left(x_{i}\right) \tag{22}
\end{equation*}
$$

for all all $\left|x_{i}\right| \geq \bar{\rho}$.
Furthermore, since the graph is strongly connected, $L^{\top} \mathcal{M}+\mathcal{M} L$ is positive semi-definite- $c f$. [2, Proof of Proposition 2]. Hence, the second term on the right-hand side of (21) is non-positive.

For the last two terms on the right-hand side of (21) we observe that by the definition of d_{k} and the fact that all the elements of any B_{j} are non-negative, we have $d_{k}=0$ if and only if $\left[B_{j}\right]_{k \ell}=0$ for all $\ell \leq M_{j}$ and for all $j \leq p$. Therefore, the third and fourth terms on the right-hand side of (21) satisfy

$$
\begin{equation*}
-\bar{x}^{\top} D \mathcal{M} \bar{x}+\left[\sum_{j \leq p} B_{j} v_{j}\right]^{\top} \mathcal{M} \bar{x} \leq-\sum_{i=1}^{N}\left[c_{1 i} x_{i}^{2}-c_{2 i}\left|x_{i}\right|\right], \tag{23}
\end{equation*}
$$

where $c_{1 i}, c_{2 i} \geq 0$ and $c_{1 i}=0$ if and only if $c_{2 i}=0$. Therefore, for any $i \leq N$ there exists $\eta_{i} \geq 0$ such that for all $\left|x_{i}\right| \geq \eta_{i}, c_{1 i} x_{i}^{2} \geq c_{2 i}\left|x_{i}\right|$. Thus,

$$
\begin{equation*}
\dot{V}_{\Sigma}(x) \leq-\sum_{i=1}^{N} \mu_{i} \psi_{i}\left(\left|x_{i}\right|\right) \leq 0 \tag{24}
\end{equation*}
$$

for all $\left|x_{i}\right| \geq \max \left\{\rho_{i}, \eta_{i}\right\}$. We conclude that if for any $i \leq N,\left|x_{i}(t)\right| \rightarrow \infty$ then there exists $T>0$ such that for all $t \geq T$, we have $\dot{V}_{\Sigma}(x(t)) \leq 0$ for all $t \geq T$. The statement follows.

References

[1] A. Pogromsky, "Synchronization and adaptive synchronization in semi-passive systems," in Proc. 1st Int. Conf. Control of Oscillations and Chaos, vol. 1, 1997, pp. 64-68 vol.1.
[2] E. Panteley and A. Loría, "Synchronization and dynamic consensus of heterogeneous networked systems," IEEE Trans. on Automatic Control, vol. 62, no. 8, pp. 3758-3773, 2017.
[3] J. S. Caughman and J. Veerman, "Kernels of directed graph Laplacians," The Electronic Journal of Combinatorics, vol. 13, no. 1, p. R39, 2006.
[4] S. Monaco and L. R. Celsi, "On multi-consensus and almost equitable graph partitions," Automatica, vol. 103, pp. 53-61, 2019.

[^0]: *A. Lazri is with L2S, CNRS, Univ Paris-Saclay, France (e-mail: anes.lazri@centralesupelec.fr) E. Panteley and A. Loría are with L2S, CNRS, (e-mail: \{elena.panteley,antonio.loria\}@cnrs.fr).
 ${ }^{1}$ For clarity of exposition, and without loss of generality, we assume that $x_{i} \in \mathbb{R}$. However, all the statements remain true if $x_{i} \in \mathbb{R}^{n}$ for any $n>1$.

[^1]: ${ }^{2}$ We invoke the proof of [2, Proposition 2] and not the statement since it is therein inappropriately assumed that the graph is undirected, but the proof of the statement applies to connected-and-balanced graphs, as well as to strongly-connected ones.

