
HAL Id: hal-04298308
https://hal.science/hal-04298308

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Global Uniform Ultimate Boundedness of Semi-Passive
Systems Interconnected over Directed Graphs

Anes Lazri, Mohamed Maghenem, Elena Panteley, Antonio Loria

To cite this version:
Anes Lazri, Mohamed Maghenem, Elena Panteley, Antonio Loria. Global Uniform Ultimate Bounded-
ness of Semi-Passive Systems Interconnected over Directed Graphs. CNRS - Laboratoire des signaux
et systèmes; CNRS - GIPSA-Lab. 2023, 9 p. �hal-04298308�

https://hal.science/hal-04298308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Global Uniform Ultimate Boundedness of

Semi-Passive Systems Interconnected over

Directed Graphs

Anes Lazri Mohamed Maghenem Elena Panteley Antonio Loŕıa ∗

September 21, 2023

Abstract

We analyse the solutions of networked heterogeneous nonlinear systems1

ẋi = fi(xi) + ui xi ∈ R, i ∈ {1, 2, · · · , n}, (1)

where fi : R→ R is continuous for all i ∈ {1, 2, · · · , n} and the control inputs are set to

ui := −γ
n∑

i=1

aij(xi − xj) ∀i ∈ {1, 2, · · · , n}, (2)

where γ > 0 is a coupling gain and aij ≥ 0 are interconnection weights. We assume that the
closed-loop interconnected systems form a network with an underlying connected directed
graph that contains a directed spanning tree. For these systems, we establish global uniform
ultimate boundedness of the solutions, under the assumption that each system (1) defines
a semi-passive [5] map ui 7→ xi. As a corollary, we also establish global uniform global
boundedness of the solutions.

1 Preliminaries

Notations. For x ∈ Rn, x> denotes its transpose, |x| denotes its Euclidean norm, blkdiag{x} ∈
Rn×n denotes the diagonal matrix whose ith diagonal element is the ith element of x. For a
set K ⊂ Rn, |x|K := min{|x − y| : y ∈ K} denotes the distance of x to the set K. For a
symmetric matrix Q ∈ Rn×n, λi(Q) denotes the ith smallest eigenvalue of Q. For an invertible
matrix M ∈ Rn×n, M− or M−1 denotes its inverse. Given N ∈ Rn×n, Ker(N) := {v : Nv = 0}
denotes the kernel of N . A class K∞ function α : R≥0 → R≥0 is continuous, strictly increasing,
unbounded, and α(0) = 0. Furthermore α− denotes the inverse function of α.

1.1 On Some Classes of Matrices

A matrix M := [mij ], (i, j) ∈ {1, 2, ..., n}2, is a Z-matrix if mij ≤ 0 whenever i 6= j. It
is an M -matrix if it is a Z-matrix and its eigenvalues have non-negative real parts. Equiv-
alently, M := λIn − B, where B is a non-negative matrix and λ ≥ ρ(B), where ρ(B) :=
max {|λi(B)| : i ∈ {1, 2, ..., n}} is the spectral radius of B. M is a non-singular M -matrix if
it is a Z-matrix and its eigenvalues have positive real parts. Equivalently, M := λIn −B, where
B is a non-negative matrix and λ > ρ(B) > 0; see [2, 3] for more details.

∗M. Maghenem is with University of Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, France. E-mail:
mohamed.maghenem@cnrs.fr; E. Panteley and A. Loŕıa are with L2S, CNRS, 91192 Gif-sur-Yvette, France. E-
mail: elena.panteley@cnrs.fr and antonio.loria@cnrs.fr A. Lazri is with L2S, CNRS, Univ Paris-Saclay, France
(e-mail: anes.lazri@centralesupelec.fr)

1For simplicity, but without loss of generality, we assume that x ∈ R; all statements hold after pertinent
changes in the notation, if x ∈ Rp, with p > 1.
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1.2 Graph Notions

A directed graph or a digraph G(V, E) is characterized by the set of nodes V = {1, 2, ..., n}, and
the set of directed edges E . The edge set E consists of ordered pairs, of the form (k, i), that
indicate a directed link from node k to node i. Given a directed edge (k, i) ∈ E , then node k
is called an in-neighbor of node i. We assign a positive weight aik to each edge (k, i). That is,
aik = 0 if (k, i) is not an edge. The Laplacian matrix of a digraph is given by

L :=


d1 −a12 · · · −a1n
−a21 d2 · · · −a2n

...
...

...
...

−an−11 · · · dn−1 −an−1n
−an1 · · · −ann−1 dn

 =: D −A, (3)

where di :=
∑n
j=1 aij for all i ∈ {1, 2, ..., n}, D is the diagonal part of L and A is called the

adjacency matrix.

A digraph is strongly connected if, for any two distinct nodes i and j, there is a path from
i to j. The Laplacian matrix of a strongly connected graph admits λ1(L) = 0 as an eigenvalue

with the corresponding right and left eigenvectors 1n =
[
1 1 · · · 1

]>
and vo :=

[
v1 v2 · · · vn

]>
,

respectively, where vi > 0 for all i ≤ n.

1.3 Graph and Matrix Decomposition

Suppose that the digraph G is connected and contains a spanning tree. Then, it admits a
decomposition into a leading strongly connected subgraph G` 6= Ø and a subgraph Gf := G\Gl
of followers; namely, the agents that do not belong to the leading component, and which we call
the follower agents. In this case, up to a permutation, the Laplacian L admits the lower-block
decomposition

L =

[
L` 0
−A`f Mf

]
, (4)

where L` := D` −A` ∈ Rn`×n` is the Laplacian matrix of the strongly connected component G`,
the lower-left block A`f ∈ Rnf×n−nf , nf := n−n`, is a non-negative matrix, and the lower-right
block Mf ∈ Rnf×nf is a non-singular M-matrix. The block Mf can be seen as the sum of the
Laplacian matrix Lf corresponding to Gf and a diagonal matrix D`f gathering the weights of
the interconnections between nodes in G` and the nodes in Gf . That is, Mf = Lf +D`f , where
Lf = Df −Af .

1.4 Lyapunov Analysis of a Directed Graph

Consider a network of n single integrators of the form ẋi = ui interconnected according to the
classical consensus protocol

ui := −
n∑
i=1

aij(xi − xj) ∀i ∈ {1, 2, · · · , n}.

In closed loop, the network is governed by the linear system ẋ = −Lx, where L ∈ Rn is the
Laplacian matrix of a connected di-graph G that contains a directed spanning tree. According to

Section 1, we can decompose the state x into x> :=
[
x>l x>f

]
, where xl ∈ Rnl gathers the states

of the leading component and is governed by

Σ` : ẋ` = −L`x`,
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and the non-leading component whose state is xf ∈ Rnf , are governed by

Σf : ẋf = −Mfxf ,

on the manifold {xf = 0}. In the rest of this section, we overview some Lyapunov-function
constructions allowing to prove uniform exponential stability of A for Σ`, where

A := {xl ∈ Rnl : xl1 = xl2 = · · · = xln`
}, (5)

and exponential stability of the origin for Σf .

1.4.1 Proof of uniform exponential stability of A for Σ`

let vo :=
[
v1 v2 · · · vn`

]>
be a left eigenvector associated to λ1(L`) = 0 and Vo := blkdiag{vo}.

Based on Lemma 1 in the Appendix, Qo := L>` Vo+VoL` is symmetric and positive semi-definite,
and its kernel is spanned by 1n`

. Then, the derivative of the Lyapunov function candidate
W (x`) := x>` Vox`, along the solutions to Σ`, satisfies

Ẇ (x`) = −x>` (L>` Vo + VoL`)x` ≤ −λ2(Qo)|x`|2A`
.

Now, we let

Z(x`) :=
(
x` − 1n`

v>o x`
)>
Vo
(
x` − 1n`

v>o x`
)
,

which is positive definite. Its derivative along the solutions of ẋ` = −L`x` satisfies

Ż(x`) = −x>` Qox` ≤ −λ2(Qo)|x`|2A`
. (6)

To obtain the previous expression we used v>o L = 0, v>1 1n`
= 1 and that 1n`

is in the kernel of
In`
− 1n`

v>o . Moreover, In`
− 1n`

v>o is the Laplacian matrix of an all-to-all graph; hence, 1ns

spans the kernel of In`
− 1n`

v>o . Therefore, there exist z̄, z > 0 such that

z|x`|2A`
≤ Z(x`) ≤ z̄|x`|2A`

∀x` ∈ Rn` . (7)

Uniform exponential stability of A` from (6) and (7) and standard Lyapunov-stability theory.

1.4.2 Proof of exponential Stability of the Origin for Σf

based on Lemma 2, since Mf is a non-singular M -matrix, we can use the Lyapunov function

candidate Y (xf ) := x>f Rfxf , where Rf := blkdiag
{
Mf
−>1nf

}(
blkdiag

{
M−1f 1nf

})−1
, which

is positive definite. Furthermore, along the solutions to Σf , we have

Ẏ (xf ) = −x>f [M>f Rf +RfMf ]xf .

Now, since (M>f Rf +RfMf ) is positive definite, exponential stability of the origin for Σf follows.

2 Problem formulation

Consider the systems (1)-(2), with γ > 0 and aij ≥ 0. Then, defining x := [x1 · · · xn]>, and

F (x) :=
[
f1(x1), f2(x2), · · · , fn(xn)

]>
, we may write the closed-loop system in compact form as

ẋ = F (x)− γLx, (8)

where L is defined as in (3). This is a networked system with an underlying topology that may
be represented by a graph G.
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Assumption 1 The graph G is connected and contains a directed spanning tree. •

We are interested in verifying the following two boundedness properties for (8).

(P1) Global Uniform Boundedness (GUB). The solutions t → x(t) to (8) are globally bounded,
uniformly in γ, if, for every ro > 0 and γo > 0, there exists R = R(ro, γo) ≥ ro such that,
for all γ ≥ γo,

|x(to)| ≤ ro ⇒ |x(t)| ≤ R ∀t ≥ 0.

(P2) Global Uniform Ultimate Boundedness (GUUB). The solutions t → x(t) to (8) are ulti-
mately bounded, uniformly in γ, if given γo > 0, there exists r = r(γo) > 0 such that, for
all ro > 0, there exists T = T (ro, γo) ≥ 0 such that, for all γ ≥ γo,

|x(to)| ≤ ro ⇒ |x(t)| ≤ r ∀t ≥ T.

To verify the latter two properties, we make the following assumption on the individual nodes’
dynamics in (1).

Assumption 2 (State strict semi-passivity) For each i ∈ {1, 2, ..., n}, the input-output map
ui 7→ xi defined by the dynamics (1) is state strict semipassive [1]. Furthermore, there exists a
continuously differentiable storage function Vi : Rn → R+, a class K∞ function αi, a constant
ρi > 0, a continuous function Hi : R→ R, and a continuous function ψi : R≥0 → R>0, such that

αi(|xi|) ≤ Vi(xi), V̇i(xi) ≤ 2uixi −Hi(xi), (9)

and Hi(xi) ≥ ψi(|xi|) for all |xi| ≥ ρi. •

Remark 1 The property described in Assumption 2 is called strict quasipassivity in [4]. In [5]
the authors define a similar concept named strict semi-passivity, but radial unboundedness of
the storage function is not imposed. See also [1]. •

3 Main result

Theorem 1 (Uniform ultimate boundedness) The solutions of the networked system (1)-
(2) are globally uniformly ultimately bounded, i.e., Property (P2) holds, if Assumptions 1 and 2
are satisfied. �

Proof: Under Assumption 1, the Laplacian matrix L admits a permutation, such that (4) holds.
Therefore, the state x may be decomposed into x := [x>` x>f ]> and the system (8) takes the
cascaded form

ẋ` = f`(x`)− γL`x`, f`(x`) :=
[
f1(x`1) · · · fn`

(x`n`
)
]>

(10a)

ẋf = ff (xf ) + γA`fx` − γMfxf , ff (xf ) :=
[
fn`+1(xf1) · · · fn`+nf

(xfnf
)
]>

. (10b)

Equation (10a) corresponds to the dynamics of a leading component, a networked system with
an underlying strongly connected graph G`, and a follower component, with dynamics (10b).
The proof of the statement is constructed using a cascades argument and proving, firstly, global
uniform ultimate boundedness for the solutions of (10a) and, consequently, the same property
for (10b).

To that end, let ro > 0 be arbitrarily fixed and let |x(0)| ≤ ro. Then, |x`(0)| ≤ ro and
|xf (0)| ≤ ro.
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1) Uniform ultimate boundedness for the leading component: after Assumption 2, for each i ∈
{1, 2, ..., n`}, there exists a storage function Vi such that its total derivative along the trajectories
of (1) satisfies

V̇i(x`i) ≤ 2u>i x`i −Hi(x`i), Hi(x`i) ≥ ψi(|x`i|) ∀|x`i| ≥ ρi. (11)

Next, let W (x`) :=
∑n`

i=1 viVi(x`i), where vi corresponds to the ith element of vo, which is the
left eigenvector associated to the zero eigenvalue of L`. Since the graph G` is strongly connected,
then vi > 0 for all i ≤ n`, so W is positive definite and radially unbounded. Now, from (11), we
obtain

Ẇ (x`) ≤ 2

n∑̀
i=1

viu
>
i x`i −

N∑
i=1

viHi(x`i), ∀x` ∈ Rn` . (12)

The first term on the right-hand side of (12) satisfies

n∑̀
i=1

viu
>
i x`i = u>Vox`, (13)

where Vo := blkdiag{vo} and, since u = −γL`x`, it follows that

Ẇ (x`) ≤ −
n∑̀
i=1

viHi(x`i)− γx>` [L>` Vo + VoL`]x`

≤ −
n∑̀
i=1

viHi(x`i)− γx>` Qox`, (14)

with Qo := VoL` + L>` Vo, which is positive semi-definite—see Lemma 1 in the Appendix. Fur-
thermore, we note that

−x>` Qox` = −
[
x` − 1n`

1>n`
x`/n`

]>
Qo
[
x` − 1n`

1>n`
x`/n`

]
≤ −λ2(Qo)|x`|2A,

where |x`|A denotes the distance of x` to the set A and λ2(Qo) is the second smallest eigenvalue
of Qo.

Now, on one hand, we have that vi > 0 for all i ∈ {1, 2, . . . , n} and, on the other, −Hi(x`i) > 0
only if |x`i| ≤ ρi. Therefore, the constant H` := −

∑n`

i=1 max|xi|≤ρi
{
viHi

(
x`i
)}

> 0. Therefore,
after (14), we get

Ẇ (x`) ≤ H` − γλ2(Qo)|x`|2A ∀x` ∈ Rn` . (15)

In turn, given γo > 0 and ε > 0, for all γ ≥ γo, we have

Ẇ (x`) ≤ H` − γoλ2(Qo)|x`|2A ≤ −ε ∀x` /∈ C, (16)

where

C :=

{
x` ∈ Rn` : |x`|A ≤

√
n`Re :=

√
ε+H`

γoλ2(Qo)

}
.

Next, let ρ̄ := arg max
i∈{1,2,...,n`}

ρi and

Bβ := {x` ∈ Rn` : |x`| ≤ β :=
√
n`
(
ρ̄+ 2Re)}.

Note that for all x` /∈ Bβ , we have |x`| >
√
n`(ρ̄+ 2Re) and, for all x` ∈ C\Bβ ,

|x`| >
√
n`(ρ̄+ 2Re) and |x`|A ≤

√
n`Re. (17)
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Furthermore, we use the fact that x` = 1n`
(1>n`

x`)/n` +
[
x` − 1n`

(1>n`
x`)/n`

]
, and the fact that

|x`|A = |x` − 1n`
(1>n`

x`)/n`|, to conclude that

|x`| ≤ |x`|A + |1>n`
x`|/
√
n`. (18)

Now, combining (17) and (18), we conclude that for all x` ∈ C\Bβ ,

√
n`(ρ̄+ 2Re) < |x`| ≤ |x`|A + |1>n`

x`|/
√
n` ≤

√
n`Re + |1>n`

x`|/
√
n`. (19)

So, for all x` ∈ C\Bβ , |1>n`
x`|/n` > ρ̄+Re. Next, we use the fact that

x`i = 1>n`
x`/n` +

(
x`i − 1>n`

x`/n`
)
∀i ∈ {1, 2, ..., n`}

to conclude that |x`i| > |1>n`
x`|/n` − |

(
x`i − 1>n`

x`/n`
)
|. Hence,

|x`i| > ρ̄+Re −
√
n`Re > ρ̄ ∀i ∈ {1, 2, ..., n`}

for all x` ∈ C\Bβ . The latter, under Assumption 2, implies that

−
n∑̀
i=1

viHi(x`i) ≤ −
n∑̀
i=1

viψi(|x`i|) ≤ 0 ∀x` ∈ C\Bβ .

As a result, setting Ψ(x`) :=
∑n`

i=1 viψi(|x`i|)—note that Ψ is continuous and positive—we
conclude that

Ẇ (x`) ≤ −Ψ(x`) ∀x` ∈ C\Bβ .

Combining the latter inequality to (16), we conclude that

Ẇ (x`) ≤ −min{Ψ(x`), ε} ∀x` ∈ Rn`\Bβ .

The latter is enough to conclude global attractivity and forward invariance of the set

Sσ := {x` ∈ Rn` : W (x`) ≤ σ}, σ := max{W (y) : y ∈ Bβ}.

Furthermore, since W : Rn → R≥0 is continuous and Bβ is bounded, we conclude that σ is well
defined. Consequently, the ultimate bound is

r` :=
[
min
i
{αi}

]−
(σ),

where, with an abuse of notation, mini{αi} corresponds to the function s 7→ ψ(s) defined as
ψ(s) := mini{αi(s)} for each s ≥ 0 and αi is defined in Assumption 2, so ψ : R≥0 → R≥0 is
strictly increasing and radially unbounded, hence, globally invertible. Thus, W (x`) ≤ σ implies
that |x`| ≤ r`.

Next, we compute an upperbound T`(ro, γo) on the time that the solutions to (10a), with
γ ≥ γo and starting from Bro := {x` ∈ Rn` : |x`| ≤ ro}, take to reach the compact set Bβ ⊂ Sσ.
For this, we assume without loss of generality that ro ≥ β, and we define

εro := min{min{Ψ(x`), ε} : |x`| ≥ β, x` ∈ Sσo
},

where

Sσo
:= {x` ∈ Rn` : W (x`) ≤ σo}, σo := max{W (y) : y ∈ Bro}. (20)

Clearly, Sσo
is compact; hence, εro is positive.

Therefore, along every solution t 7→ x`(t) to (10a) starting from x`(0) ∈ Bro\Bβ , we have

Ẇ (x`(t)) ≤ −εro , up to the earliest time when x` reaches Bβ . For any earlier time, we have

W (x`(t)) ≤ −εrot+W (x`(0)), (21)
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so we can take T`(ro, γo) = σo/εro . Clearly, T` depends only on (ro, γo) and r` depends only on
γo. Thus, the ultimate bounded guaranteed for the solutions of (10a) is uniform in γ.

2) Uniform ultimate boundedness for the follower dynamics: following up the previous com-
putations and arguments, establish global uniform ultimate boundedness for the non-leading
component, determined by (10b).

Using Lemma 2, we conclude that the matrices

S := PMf +M>f P and P := blkdiag
{
M>f

−
1n

}(
blkdiag

{
M−f 1n

})−
are symmetric and positive definite. We also note that P is diagonal. Then, let pi, for i ∈
{1, 2, ..., nf}, be the ith diagonal element of P . In addition, let Z(xf ) :=

∑nf

i=1 piVi(xfi). Its
total derivative along the trajectories of (10b) satisfies

Ż(xf ) ≤ −
nf∑
i=1

piHi(xfi)− γx>f [PMf +M>f P ]xf + 2γx>f [PA`f ]x`. (22)

On one hand, we already established the existence of r`(γo) > 0 and T`(γo, ro) such that

|x`(t)| < r` ∀t ≥ T`.

On the other, for all |x`| ≤ rl,

Ż(xf ) ≤ Hf − γλ1(S)|xf |2 + 2γp̄r`|xf |, (23)

where p̄ := |PA`f | and Hf :=
∑nf

i=1 max|xi|≤ρi{viHi

(
xfi
)
}. Now, from this and (22), we obtain

Ż(xf ) ≤ Hf − γx>f Sxf + 2γx>f [PA`f ]x`

≤ Hf − γ
[
x>f Sxf/2− 2x>` A

>
`fP

>S−PA`fx`
]
.

At the same time, integrating (15), we obtain that, for each t ∈ [0, T`],

W (x`(t)) ≤ H`T` +W (x`(0)) ≤ H`T` + σo,

where σo comes from (20). Defining

R` :=
[
min
i
{αi}

]−
(H`T` + σo) ,

we have

Ż(xf ) ≤ Hf − γ
[
λ1(S)|xf |2/2− 2|A>`fP>S−PA`f |R2

`

]
,

for all |x`| ≤ R`.
Note that, for all xf such that

|xf |2 > d2f :=
4|A>`fP>S−PA`f |R2

`

λ1(S)
+

42Hf

λ1(S)γo
,

Ż(xf ) ≤ 0. This implies that, for all t ∈ [0, T`],

Z(xf (t)) ≤ max {σfo, σf} , σf := max{Z(xf ) : |xf | ≤ df} σfo := max{Z(xf ) : |xf | ≤ ro}.
(24)

In turn, for each t ∈ [0, T`],

|xf (t)| ≤ r̄o :=

[( nf∑
i=1

pi

)
min
i
{αi}

]−
(max {σfo, σf}) . (25)
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Clearly, the previous upper bound is uniform in γ ≥ γo.
Next, we focus on the solutions’ behaviour after T` (i.e., once |x`| ≤ r`). Given ε > 0, we see

that, for all γ ≥ γo and for all xf and x` such that

|xf | > β1 := 1 +
2p̄r`
λ1(S)

+

√
ε+Hf

γoλ1(S)
and |x`| ≤ r`,

after (23), we conclude that Ż(xf ) ≤ −ε. Furthermore, |x`(t)| ≤ r` for all t ≥ T`, then the set

Sσ1 := {xf ∈ Rnf : Z(xf ) ≤ σ1}, σ1 := max{Z(y) : y ∈ Bβ1}, Bβ1 := {xf ∈ Rnf : |xf | ≤ β1},

is attractive and becomes forward invariant after time T`.

Since Z : Rn → R≥0 is continuous and Bβ1 is bounded, we conclude that σ1 is well defined.
As a result, the ultimate bound for xf (t) is

rf =

[( nf∑
i=1

pi

)
min
i
{αi}

]−
(σ1).

Indeed, Z(xf ) ≤ σ1 implies |xf | ≤ rf .

Finally, as for t 7→ x`(t) we give next an upperbound, denoted by Tf (ro, γo), on the time that
the solutions to (10b), with γ ≥ γo and starting from Bro := {xf ∈ Rn` : |xf | ≤ ro}, take to
reach Bβ1 ⊂ Sσ1 .

Let a solution t 7→ xf (t) to (10b) starting from xf (0) ∈ Bro . Now, we use the fact |xf (T`)| ≤ r̄o
with r̄o coming from (25) and r̄o is uniform in γ. As a result, along the solution t 7→ xf (t), we

have Ż(xf (t)) ≤ −ε from T` and up to when it reaches Bβ1 for the first time after T`. Hence,
before reaching Bβ1 , we have

Z(xf (t)) ≤ −εt+ Z(xf (T`)) (26)

and, thus, using (24), we can take Tf = T` + max{σfo, σf}/ε. Clearly, Tf and rf depend only on
(ro, γo). Thus, the ultimate bounded guaranteed for the solutions of (10b) is also uniform in γ.
�

Corollary 1 (Uniform boundedness) Under Assumptions 1 and 2 the solutions of the closed-
loop system in (8) are globally uniformly bounded, i.e., Property (P1) holds. �

Proof: The statement of Theorem 1 holds, therefore, given ro > 0 and γo > 0, for all γ ≥ γo,
we have

|x`(0)| ≤ ro =⇒ |x`(t)| ≤ r`(γo) ∀t ≥ T`(ro, γo).

Furthermore, we were able to show that on the interval [0, T`(ro, γo)], we have

W (x`(t)) ≤ H`T` +W (x`(0)).

Hence, if we let σ` := max{W (y) : |y| ≤ ro}, it follows that

|x`(t)| ≤ R` :=
[
min
i
{αi}

]− (
σ` +H`T` + r`

)
∀t ≥ 0.

Next, for the solutions to (10b), for any γ > γo and |xf (0)| ≤ ro, we know that

|xf (t)| ≤ rf ∀t ≥ Tf (γo, ro).

At the same time, from the previous proof, we know that

Ż(xf ) ≤ Hf − γ
[
λ1(S)|xf |2/2− 2|A>`fP>S−PA`f |R2

`

]
.
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As a result, when

|xf |2 > d2f :=
4|A>`fP>S−PA`f |R2

`

λ1(S)
+

42Hf

λ1(S)γo
,

then Ż(xf ) ≤ 0. Hence, for each t ≥ 0,

Z(xf (t)) ≤ max {σfo, σf} , σf := max{Z(xf ) : |xf | ≤ df}, σfo := max{Z(xf ) : |xf | ≤ ro}.
(27)

In turn, for each t ≥ 0, we have

|xf (t)| ≤ Rf :=

[( nf∑
i=1

pi

)
min
i
{αi}

]−
(max {σfo, σf}) . (28)

�

Appendix

The following lemma is proposed in [3], see also [6].

Lemma 1 Let L ∈ Rn×n be the Laplacian matrix of a directed and strongly connected graph.
Let vo := [v1, v2, ..., vn]> ∈ Rn be the left eigenvector of L associated to the null eigenvalue of L.

Then, the vector v has strictly positive entries and, for Vo := blkdiag(vo), we have Ker(VoL+
L>Vo) = Span (1n) and VoL+ L>Vo ≥ 0. �

The next result can be deduced from [6, Section 4.3.5].

Lemma 2 Let M ∈ Rn×n be a non-singular M-matrix. Then, the matrices

S := RM +M>R and R := blkdiag
{
M>

−
1n

}(
blkdiag

{
M−1n

})−
are positive definite.

�
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