Global Uniform Ultimate Boundedness of Semi-Passive Systems Interconnected over Directed Graphs

Anes Lazri, Mohamed Maghenem, Elena Panteley, Antonio Loria

To cite this version:

Anes Lazri, Mohamed Maghenem, Elena Panteley, Antonio Loria. Global Uniform Ultimate Boundedness of Semi-Passive Systems Interconnected over Directed Graphs. CNRS - Laboratoire des signaux et systèmes; CNRS - GIPSA-Lab. 2023, 9 p. hal-04298308

HAL Id: hal-04298308

https://hal.science/hal-04298308

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Global Uniform Ultimate Boundedness of Semi-Passive Systems Interconnected over Directed Graphs

Anes Lazri Mohamed Maghenem Elena Panteley Antonio Loría *

September 21, 2023

Abstract

We analyse the solutions of networked heterogeneous nonlinear systems ${ }^{1}$ $$
\begin{equation*} \dot{x}_{i}=f_{i}\left(x_{i}\right)+u_{i} \quad x_{i} \in \mathbb{R}, \quad i \in\{1,2, \cdots, n\}, \tag{1} \end{equation*}
$$

where $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous for all $i \in\{1,2, \cdots, n\}$ and the control inputs are set to

$$
\begin{equation*}
u_{i}:=-\gamma \sum_{i=1}^{n} a_{i j}\left(x_{i}-x_{j}\right) \quad \forall i \in\{1,2, \cdots, n\} \tag{2}
\end{equation*}
$$

where $\gamma>0$ is a coupling gain and $a_{i j} \geq 0$ are interconnection weights. We assume that the closed-loop interconnected systems form a network with an underlying connected directed graph that contains a directed spanning tree. For these systems, we establish global uniform ultimate boundedness of the solutions, under the assumption that each system (1) defines a semi-passive [5] map $u_{i} \mapsto x_{i}$. As a corollary, we also establish global uniform global boundedness of the solutions.

1 Preliminaries

Notations. For $x \in \mathbb{R}^{n}, x^{\top}$ denotes its transpose, $|x|$ denotes its Euclidean norm, blkdiag $\{x\} \in$ $\mathbb{R}^{n \times n}$ denotes the diagonal matrix whose i th diagonal element is the i th element of x. For a set $K \subset \mathbb{R}^{n},|x|_{K}:=\min \{|x-y|: y \in K\}$ denotes the distance of x to the set K. For a symmetric matrix $Q \in \mathbb{R}^{n \times n}, \lambda_{i}(Q)$ denotes the i th smallest eigenvalue of Q. For an invertible matrix $M \in \mathbb{R}^{n \times n}, M^{-}$or M^{-1} denotes its inverse. Given $N \in \mathbb{R}^{n \times n}, \operatorname{Ker}(N):=\{v: N v=0\}$ denotes the kernel of N. A class \mathcal{K}^{∞} function $\alpha: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is continuous, strictly increasing, unbounded, and $\alpha(0)=0$. Furthermore α^{-}denotes the inverse function of α.

1.1 On Some Classes of Matrices

A matrix $M:=\left[m_{i j}\right],(i, j) \in\{1,2, \ldots, n\}^{2}$, is a \mathcal{Z}-matrix if $m_{i j} \leq 0$ whenever $i \neq j$. It is an M-matrix if it is a \mathcal{Z}-matrix and its eigenvalues have non-negative real parts. Equivalently, $M:=\lambda I_{n}-B$, where B is a non-negative matrix and $\lambda \geq \rho(B)$, where $\rho(B):=$ $\max \left\{\left|\lambda_{i}(B)\right|: i \in\{1,2, \ldots, n\}\right\}$ is the spectral radius of $B . M$ is a non-singular M-matrix if it is a \mathcal{Z}-matrix and its eigenvalues have positive real parts. Equivalently, $M:=\lambda I_{n}-B$, where B is a non-negative matrix and $\lambda>\rho(B)>0$; see $[2,3]$ for more details.

[^0]
1.2 Graph Notions

A directed graph or a digraph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is characterized by the set of nodes $\mathcal{V}=\{1,2, \ldots, n\}$, and the set of directed edges \mathcal{E}. The edge set \mathcal{E} consists of ordered pairs, of the form (k, i), that indicate a directed link from node k to node i. Given a directed edge $(k, i) \in \mathcal{E}$, then node k is called an in-neighbor of node i. We assign a positive weight $a_{i k}$ to each edge (k, i). That is, $a_{i k}=0$ if (k, i) is not an edge. The Laplacian matrix of a digraph is given by

$$
L:=\left[\begin{array}{cccc}
d_{1} & -a_{12} & \cdots & -a_{1 n} \tag{3}\\
-a_{21} & d_{2} & \cdots & -a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
-a_{n-11} & \cdots & d_{n-1} & -a_{n-1 n} \\
-a_{n 1} & \cdots & -a_{n n-1} & d_{n}
\end{array}\right]=: D-A,
$$

where $d_{i}:=\sum_{j=1}^{n} a_{i j}$ for all $i \in\{1,2, \ldots, n\}, D$ is the diagonal part of L and A is called the adjacency matrix.

A digraph is strongly connected if, for any two distinct nodes i and j, there is a path from i to j. The Laplacian matrix of a strongly connected graph admits $\lambda_{1}(L)=0$ as an eigenvalue with the corresponding right and left eigenvectors $\left.1_{n}=\left[\begin{array}{lll}1 & 1 & \cdots\end{array}\right] \begin{array}{l}\end{array}\right]^{\top}$ and $v_{o}:=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]^{\top}$, respectively, where $v_{i}>0$ for all $i \leq n$.

1.3 Graph and Matrix Decomposition

Suppose that the digraph \mathcal{G} is connected and contains a spanning tree. Then, it admits a decomposition into a leading strongly connected subgraph $\mathcal{G}_{\ell} \neq \varnothing$ and a subgraph $\mathcal{G}_{f}:=\mathcal{G} \backslash \mathcal{G}_{l}$ of followers; namely, the agents that do not belong to the leading component, and which we call the follower agents. In this case, up to a permutation, the Laplacian L admits the lower-block decomposition

$$
L=\left[\begin{array}{cc}
L_{\ell} & 0 \tag{4}\\
-A_{\ell f} & M_{f}
\end{array}\right],
$$

where $L_{\ell}:=D_{\ell}-A_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell}}$ is the Laplacian matrix of the strongly connected component \mathcal{G}_{ℓ}, the lower-left block $A_{\ell f} \in \mathbb{R}^{n_{f} \times n-n_{f}}, n_{f}:=n-n_{\ell}$, is a non-negative matrix, and the lower-right block $M_{f} \in \mathbb{R}^{n_{f} \times n_{f}}$ is a non-singular M-matrix. The block M_{f} can be seen as the sum of the Laplacian matrix L_{f} corresponding to \mathcal{G}_{f} and a diagonal matrix $D_{\ell f}$ gathering the weights of the interconnections between nodes in \mathcal{G}_{ℓ} and the nodes in \mathcal{G}_{f}. That is, $M_{f}=L_{f}+D_{\ell f}$, where $L_{f}=D_{f}-A_{f}$.

1.4 Lyapunov Analysis of a Directed Graph

Consider a network of n single integrators of the form $\dot{x}_{i}=u_{i}$ interconnected according to the classical consensus protocol

$$
u_{i}:=-\sum_{i=1}^{n} a_{i j}\left(x_{i}-x_{j}\right) \quad \forall i \in\{1,2, \cdots, n\} .
$$

In closed loop, the network is governed by the linear system $\dot{x}=-L x$, where $L \in \mathbb{R}^{n}$ is the Laplacian matrix of a connected di-graph \mathcal{G} that contains a directed spanning tree. According to Section 1, we can decompose the state x into $x^{\top}:=\left[x_{l}^{\top} x_{f}^{\top}\right]$, where $x_{l} \in \mathbb{R}^{n_{l}}$ gathers the states of the leading component and is governed by

$$
\Sigma_{\ell}: \dot{x}_{\ell}=-L_{\ell} x_{\ell},
$$

and the non-leading component whose state is $x_{f} \in \mathbb{R}^{n_{f}}$, are governed by

$$
\Sigma_{f}: \dot{x}_{f}=-M_{f} x_{f}
$$

on the manifold $\left\{x_{f}=0\right\}$. In the rest of this section, we overview some Lyapunov-function constructions allowing to prove uniform exponential stability of \mathcal{A} for Σ_{ℓ}, where

$$
\begin{equation*}
\mathcal{A}:=\left\{x_{l} \in \mathbb{R}^{n_{l}}: x_{l 1}=x_{l 2}=\cdots=x_{l_{n_{\ell}}}\right\} \tag{5}
\end{equation*}
$$

and exponential stability of the origin for Σ_{f}.

1.4.1 Proof of uniform exponential stability of \mathcal{A} for Σ_{ℓ}

let $v_{o}:=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n_{\ell}}\end{array}\right]^{\top}$ be a left eigenvector associated to $\lambda_{1}\left(L_{\ell}\right)=0$ and $V_{o}:=\operatorname{blkdiag}\left\{v_{o}\right\}$. Based on Lemma 1 in the Appendix, $Q_{o}:=L_{\ell}^{\top} V_{o}+V_{o} L_{\ell}$ is symmetric and positive semi-definite, and its kernel is spanned by $\mathbf{1}_{n_{\ell}}$. Then, the derivative of the Lyapunov function candidate $W\left(x_{\ell}\right):=x_{\ell}^{\top} V_{o} x_{\ell}$, along the solutions to Σ_{ℓ}, satisfies

$$
\dot{W}\left(x_{\ell}\right)=-x_{\ell}^{\top}\left(L_{\ell}^{\top} V_{o}+V_{o} L_{\ell}\right) x_{\ell} \leq-\lambda_{2}\left(Q_{o}\right)\left|x_{\ell}\right|_{\mathcal{A}_{\ell}}^{2}
$$

Now, we let

$$
Z\left(x_{\ell}\right):=\left(x_{\ell}-\mathbf{1}_{n_{\ell}} v_{o}^{\top} x_{\ell}\right)^{\top} V_{o}\left(x_{\ell}-\mathbf{1}_{n_{\ell}} v_{o}^{\top} x_{\ell}\right)
$$

which is positive definite. Its derivative along the solutions of $\dot{x}_{\ell}=-L_{\ell} x_{\ell}$ satisfies

$$
\begin{equation*}
\dot{Z}\left(x_{\ell}\right)=-x_{\ell}^{\top} Q_{o} x_{\ell} \leq-\lambda_{2}\left(Q_{o}\right)\left|x_{\ell}\right|_{\mathcal{A}_{\ell}}^{2} \tag{6}
\end{equation*}
$$

To obtain the previous expression we used $v_{o}^{\top} L=0, v_{1}^{\top} \mathbf{1}_{n_{\ell}}=1$ and that $\mathbf{1}_{n_{\ell}}$ is in the kernel of $I_{n_{\ell}}-\mathbf{1}_{n_{\ell}} v_{o}^{\top}$. Moreover, $I_{n_{\ell}}-\mathbf{1}_{n_{\ell}} v_{o}^{\top}$ is the Laplacian matrix of an all-to-all graph; hence, $\mathbf{1}_{n_{s}}$ spans the kernel of $I_{n_{\ell}}-\mathbf{1}_{n_{\ell}} v_{o}^{\top}$. Therefore, there exist $\bar{z}, \underline{z}>0$ such that

$$
\begin{equation*}
\underline{z}\left|x_{\ell}\right|_{\mathcal{A}_{\ell}}^{2} \leq Z\left(x_{\ell}\right) \leq \bar{z}\left|x_{\ell}\right|_{\mathcal{A}_{\ell}}^{2} \quad \forall x_{\ell} \in \mathbb{R}^{n_{\ell}} \tag{7}
\end{equation*}
$$

Uniform exponential stability of \mathcal{A}_{ℓ} from (6) and (7) and standard Lyapunov-stability theory.

1.4.2 Proof of exponential Stability of the Origin for Σ_{f}

based on Lemma 2, since M_{f} is a non-singular M-matrix, we can use the Lyapunov function candidate $Y\left(x_{f}\right):=x_{f}^{\top} R_{f} x_{f}$, where $R_{f}:=\operatorname{blkdiag}\left\{M_{f}^{-{ }^{\top}} 1_{n_{f}}\right\}\left(\operatorname{blkdiag}\left\{M_{f}^{-1} 1_{n_{f}}\right\}\right)^{-1}$, which is positive definite. Furthermore, along the solutions to Σ_{f}, we have

$$
\dot{Y}\left(x_{f}\right)=-x_{f}^{\top}\left[M_{f}^{\top} R_{f}+R_{f} M_{f}\right] x_{f}
$$

Now, since $\left(M_{f}^{\top} R_{f}+R_{f} M_{f}\right)$ is positive definite, exponential stability of the origin for Σ_{f} follows.

2 Problem formulation

Consider the systems (1)-(2), with $\gamma>0$ and $a_{i j} \geq 0$. Then, defining $x:=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\top}$, and $F(x):=\left[f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \cdots, f_{n}\left(x_{n}\right)\right]^{\top}$, we may write the closed-loop system in compact form as

$$
\begin{equation*}
\dot{x}=F(x)-\gamma L x \tag{8}
\end{equation*}
$$

where L is defined as in (3). This is a networked system with an underlying topology that may be represented by a graph \mathcal{G}.

Assumption 1 The graph \mathcal{G} is connected and contains a directed spanning tree.
We are interested in verifying the following two boundedness properties for (8).
(P1) Global Uniform Boundedness (GUB). The solutions $t \rightarrow x(t)$ to (8) are globally bounded, uniformly in γ, if, for every $r_{o}>0$ and $\gamma_{o}>0$, there exists $R=R\left(r_{o}, \gamma_{o}\right) \geq r_{o}$ such that, for all $\gamma \geq \gamma_{o}$,

$$
\left|x\left(t_{o}\right)\right| \leq r_{o} \Rightarrow|x(t)| \leq R \quad \forall t \geq 0
$$

(P2) Global Uniform Ultimate Boundedness (GUUB). The solutions $t \rightarrow x(t)$ to (8) are ultimately bounded, uniformly in γ, if given $\gamma_{o}>0$, there exists $r=r\left(\gamma_{o}\right)>0$ such that, for all $r_{o}>0$, there exists $T=T\left(r_{o}, \gamma_{o}\right) \geq 0$ such that, for all $\gamma \geq \gamma_{o}$,

$$
\left|x\left(t_{o}\right)\right| \leq r_{o} \Rightarrow|x(t)| \leq r \quad \forall t \geq T
$$

To verify the latter two properties, we make the following assumption on the individual nodes' dynamics in (1).

Assumption 2 (State strict semi-passivity) For each $i \in\{1,2, \ldots, n\}$, the input-output map $u_{i} \mapsto x_{i}$ defined by the dynamics (1) is state strict semipassive [1]. Furthermore, there exists a continuously differentiable storage function $V_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$, a class \mathcal{K}_{∞} function $\underline{\alpha}_{i}$, a constant $\rho_{i}>0$, a continuous function $H_{i}: \mathbb{R} \rightarrow \mathbb{R}$, and a continuous function $\psi_{i}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{>0}$, such that

$$
\begin{equation*}
\underline{\alpha}_{i}\left(\left|x_{i}\right|\right) \leq V_{i}\left(x_{i}\right), \quad \dot{V}_{i}\left(x_{i}\right) \leq 2 u_{i} x_{i}-H_{i}\left(x_{i}\right), \tag{9}
\end{equation*}
$$

and $H_{i}\left(x_{i}\right) \geq \psi_{i}\left(\left|x_{i}\right|\right)$ for all $\left|x_{i}\right| \geq \rho_{i}$.

Remark 1 The property described in Assumption 2 is called strict quasipassivity in [4]. In [5] the authors define a similar concept named strict semi-passivity, but radial unboundedness of the storage function is not imposed. See also [1].

3 Main result

Theorem 1 (Uniform ultimate boundedness) The solutions of the networked system (1)(2) are globally uniformly ultimately bounded, i.e., Property (P2) holds, if Assumptions 1 and 2 are satisfied.

Proof: Under Assumption 1, the Laplacian matrix L admits a permutation, such that (4) holds. Therefore, the state x may be decomposed into $x:=\left[\begin{array}{ll}x_{\ell}^{\top} & x_{f}^{\top}\end{array}\right]^{\top}$ and the system (8) takes the cascaded form

$$
\begin{array}{lrl}
\dot{x}_{\ell}=f_{\ell}\left(x_{\ell}\right)-\gamma L_{\ell} x_{\ell}, & f_{\ell}\left(x_{\ell}\right):=\left[\begin{array}{lll}
f_{1}\left(x_{\ell_{1}}\right) & \cdots & f_{n_{\ell}}\left(x_{\ell_{n_{\ell}}}\right)
\end{array}\right]^{\top} \\
\dot{x}_{f}=f_{f}\left(x_{f}\right)+\gamma A_{\ell f} x_{\ell}-\gamma M_{f} x_{f}, & f_{f}\left(x_{f}\right):=\left[\begin{array}{lll}
f_{n_{\ell}+1}\left(x_{f_{1}}\right) & \cdots & f_{n_{\ell}+n_{f}}\left(x_{f_{n_{f}}}\right)
\end{array}\right]^{\top}
\end{array}
$$

Equation (10a) corresponds to the dynamics of a leading component, a networked system with an underlying strongly connected graph \mathcal{G}_{ℓ}, and a follower component, with dynamics (10b). The proof of the statement is constructed using a cascades argument and proving, firstly, global uniform ultimate boundedness for the solutions of (10a) and, consequently, the same property for (10b).

To that end, let $r_{o}>0$ be arbitrarily fixed and let $|x(0)| \leq r_{o}$. Then, $\left|x_{\ell}(0)\right| \leq r_{o}$ and $\left|x_{f}(0)\right| \leq r_{o}$.

1) Uniform ultimate boundedness for the leading component: after Assumption 2, for each $i \in$ $\left\{1,2, \ldots, n_{\ell}\right\}$, there exists a storage function V_{i} such that its total derivative along the trajectories of (1) satisfies

$$
\begin{equation*}
\dot{V}_{i}\left(x_{\ell i}\right) \leq 2 u_{i}^{\top} x_{\ell i}-H_{i}\left(x_{\ell i}\right), \quad H_{i}\left(x_{\ell i}\right) \geq \psi_{i}\left(\left|x_{\ell i}\right|\right) \quad \forall\left|x_{\ell i}\right| \geq \rho_{i} . \tag{11}
\end{equation*}
$$

Next, let $W\left(x_{\ell}\right):=\sum_{i=1}^{n_{\ell}} v_{i} V_{i}\left(x_{\ell i}\right)$, where v_{i} corresponds to the i th element of v_{o}, which is the left eigenvector associated to the zero eigenvalue of L_{ℓ}. Since the graph \mathcal{G}_{ℓ} is strongly connected, then $v_{i}>0$ for all $i \leq n_{\ell}$, so W is positive definite and radially unbounded. Now, from (11), we obtain

$$
\begin{equation*}
\dot{W}\left(x_{\ell}\right) \leq 2 \sum_{i=1}^{n_{\ell}} v_{i} u_{i}^{\top} x_{\ell i}-\sum_{i=1}^{N} v_{i} H_{i}\left(x_{\ell i}\right), \quad \forall x_{\ell} \in \mathbb{R}^{n_{\ell}} \tag{12}
\end{equation*}
$$

The first term on the right-hand side of (12) satisfies

$$
\begin{equation*}
\sum_{i=1}^{n_{\ell}} v_{i} u_{i}^{\top} x_{\ell i}=u^{\top} V_{o} x_{\ell} \tag{13}
\end{equation*}
$$

where $V_{o}:=\operatorname{blkdiag}\left\{v_{o}\right\}$ and, since $u=-\gamma L_{\ell} x_{\ell}$, it follows that

$$
\begin{align*}
\dot{W}\left(x_{\ell}\right) & \leq-\sum_{i=1}^{n_{\ell}} v_{i} H_{i}\left(x_{\ell i}\right)-\gamma x_{\ell}^{\top}\left[L_{\ell}^{\top} V_{o}+V_{o} L_{\ell}\right] x_{\ell} \\
& \leq-\sum_{i=1}^{n_{\ell}} v_{i} H_{i}\left(x_{\ell i}\right)-\gamma x_{\ell}^{\top} Q_{o} x_{\ell} \tag{14}
\end{align*}
$$

with $Q_{o}:=V_{o} L_{\ell}+L_{\ell}^{\top} V_{o}$, which is positive semi-definite - see Lemma 1 in the Appendix. Furthermore, we note that

$$
-x_{\ell}^{\top} Q_{o} x_{\ell}=-\left[x_{\ell}-\mathbf{1}_{n_{\ell}} \mathbf{1}_{n_{\ell}}^{\top} x_{\ell} / n_{\ell}\right]^{\top} Q_{o}\left[x_{\ell}-\mathbf{1}_{n_{\ell}} \mathbf{1}_{n_{\ell}}^{\top} x_{\ell} / n_{\ell}\right] \leq-\lambda_{2}\left(Q_{o}\right)\left|x_{\ell}\right|_{\mathcal{A}}^{2}
$$

where $\left|x_{\ell}\right|_{\mathcal{A}}$ denotes the distance of x_{ℓ} to the set \mathcal{A} and $\lambda_{2}\left(Q_{o}\right)$ is the second smallest eigenvalue of Q_{o}.

Now, on one hand, we have that $v_{i}>0$ for all $i \in\{1,2, \ldots, n\}$ and, on the other, $-H_{i}\left(x_{\ell i}\right)>0$ only if $\left|x_{\ell i}\right| \leq \rho_{i}$. Therefore, the constant $H_{\ell}:=-\sum_{i=1}^{n_{\ell}} \max _{\left|x_{i}\right| \leq \rho_{i}}\left\{v_{i} H_{i}\left(x_{\ell i}\right)\right\}>0$. Therefore, after (14), we get

$$
\begin{equation*}
\dot{W}\left(x_{\ell}\right) \leq H_{\ell}-\gamma \lambda_{2}\left(Q_{o}\right)\left|x_{\ell}\right|_{\mathcal{A}}^{2} \quad \forall x_{\ell} \in \mathbb{R}^{n_{\ell}} \tag{15}
\end{equation*}
$$

In turn, given $\gamma_{o}>0$ and $\epsilon>0$, for all $\gamma \geq \gamma_{o}$, we have

$$
\begin{equation*}
\dot{W}\left(x_{\ell}\right) \leq H_{\ell}-\gamma_{o} \lambda_{2}\left(Q_{o}\right)\left|x_{\ell}\right|_{\mathcal{A}}^{2} \leq-\epsilon \quad \forall x_{\ell} \notin \mathcal{C} \tag{16}
\end{equation*}
$$

where

$$
\mathcal{C}:=\left\{x_{\ell} \in \mathbb{R}^{n_{\ell}}:\left|x_{\ell}\right|_{\mathcal{A}} \leq \sqrt{n_{\ell}} R_{e}:=\sqrt{\frac{\epsilon+H_{\ell}}{\gamma_{o} \lambda_{2}\left(Q_{o}\right)}}\right\}
$$

Next, let $\bar{\rho}:=\underset{i \in\left\{1,2, \ldots, n_{\ell}\right\}}{\arg \max } \rho_{i}$ and

$$
\mathcal{B}_{\beta}:=\left\{x_{\ell} \in \mathbb{R}^{n_{\ell}}:\left|x_{\ell}\right| \leq \beta:=\sqrt{n_{\ell}}\left(\bar{\rho}+2 R_{e}\right)\right\}
$$

Note that for all $x_{\ell} \notin \mathcal{B}_{\beta}$, we have $\left|x_{\ell}\right|>\sqrt{n_{\ell}}\left(\bar{\rho}+2 R_{e}\right)$ and, for all $x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta}$,

$$
\begin{equation*}
\left|x_{\ell}\right|>\sqrt{n_{\ell}}\left(\bar{\rho}+2 R_{e}\right) \quad \text { and } \quad\left|x_{\ell}\right|_{\mathcal{A}} \leq \sqrt{n_{\ell}} R_{e} \tag{17}
\end{equation*}
$$

Furthermore, we use the fact that $x_{\ell}=\mathbf{1}_{n_{\ell}}\left(\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right) / n_{\ell}+\left[x_{\ell}-\mathbf{1}_{n_{\ell}}\left(\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right) / n_{\ell}\right]$, and the fact that $\left|x_{\ell}\right|_{\mathcal{A}}=\left|x_{\ell}-\mathbf{1}_{n_{\ell}}\left(\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right) / n_{\ell}\right|$, to conclude that

$$
\begin{equation*}
\left|x_{\ell}\right| \leq\left|x_{\ell}\right|_{\mathcal{A}}+\left|\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right| / \sqrt{n_{\ell}} \tag{18}
\end{equation*}
$$

Now, combining (17) and (18), we conclude that for all $x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta}$,

$$
\begin{equation*}
\sqrt{n_{\ell}}\left(\bar{\rho}+2 R_{e}\right)<\left|x_{\ell}\right| \leq\left|x_{\ell}\right|_{\mathcal{A}}+\left|\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right| / \sqrt{n_{\ell}} \leq \sqrt{n_{\ell}} R_{e}+\left|\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right| / \sqrt{n_{\ell}} \tag{19}
\end{equation*}
$$

So, for all $x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta},\left|\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right| / n_{\ell}>\bar{\rho}+R_{e}$. Next, we use the fact that

$$
x_{\ell i}=\mathbf{1}_{n_{\ell}}^{\top} x_{\ell} / n_{\ell}+\left(x_{\ell i}-\mathbf{1}_{n_{\ell}}^{\top} x_{\ell} / n_{\ell}\right) \quad \forall i \in\left\{1,2, \ldots, n_{\ell}\right\}
$$

to conclude that $\left|x_{\ell i}\right|>\left|\mathbf{1}_{n_{\ell}}^{\top} x_{\ell}\right| / n_{\ell}-\left|\left(x_{\ell i}-\mathbf{1}_{n_{\ell}}^{\top} x_{\ell} / n_{\ell}\right)\right|$. Hence,

$$
\left|x_{\ell i}\right|>\bar{\rho}+R_{e}-\sqrt{n_{\ell}} R_{e}>\bar{\rho} \quad \forall i \in\left\{1,2, \ldots, n_{\ell}\right\}
$$

for all $x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta}$. The latter, under Assumption 2, implies that

$$
-\sum_{i=1}^{n_{\ell}} v_{i} H_{i}\left(x_{\ell i}\right) \leq-\sum_{i=1}^{n_{\ell}} v_{i} \psi_{i}\left(\left|x_{\ell i}\right|\right) \leq 0 \quad \forall x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta}
$$

As a result, setting $\Psi\left(x_{\ell}\right):=\sum_{i=1}^{n_{\ell}} v_{i} \psi_{i}\left(\left|x_{\ell i}\right|\right) —$ note that Ψ is continuous and positive-we conclude that

$$
\dot{W}\left(x_{\ell}\right) \leq-\Psi\left(x_{\ell}\right) \quad \forall x_{\ell} \in \mathcal{C} \backslash \mathcal{B}_{\beta}
$$

Combining the latter inequality to (16), we conclude that

$$
\dot{W}\left(x_{\ell}\right) \leq-\min \left\{\Psi\left(x_{\ell}\right), \epsilon\right\} \quad \forall x_{\ell} \in \mathbb{R}^{n_{\ell}} \backslash \mathcal{B}_{\beta}
$$

The latter is enough to conclude global attractivity and forward invariance of the set

$$
\mathcal{S}_{\sigma}:=\left\{x_{\ell} \in \mathbb{R}^{n_{\ell}}: W\left(x_{\ell}\right) \leq \sigma\right\}, \quad \sigma:=\max \left\{W(y): y \in \mathcal{B}_{\beta}\right\}
$$

Furthermore, since $W: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ is continuous and \mathcal{B}_{β} is bounded, we conclude that σ is well defined. Consequently, the ultimate bound is

$$
r_{\ell}:=\left[\min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}(\sigma)
$$

where, with an abuse of notation, $\min _{i}\left\{\underline{\alpha}_{i}\right\}$ corresponds to the function $s \mapsto \psi(s)$ defined as $\psi(s):=\min _{i}\left\{\underline{\alpha}_{i}(s)\right\}$ for each $s \geq 0$ and $\underline{\alpha}_{i}$ is defined in Assumption 2 , so $\psi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is strictly increasing and radially unbounded, hence, globally invertible. Thus, $W\left(x_{\ell}\right) \leq \sigma$ implies that $\left|x_{\ell}\right| \leq r_{\ell}$.

Next, we compute an upperbound $T_{\ell}\left(r_{o}, \gamma_{o}\right)$ on the time that the solutions to (10a), with $\gamma \geq \gamma_{o}$ and starting from $\mathcal{B}_{r_{o}}:=\left\{x_{\ell} \in \mathbb{R}^{n_{\ell}}:\left|x_{\ell}\right| \leq r_{o}\right\}$, take to reach the compact set $\mathcal{B}_{\beta} \subset \mathcal{S}_{\sigma}$. For this, we assume without loss of generality that $r_{o} \geq \beta$, and we define

$$
\epsilon_{r_{o}}:=\min \left\{\min \left\{\Psi\left(x_{\ell}\right), \epsilon\right\}:\left|x_{\ell}\right| \geq \beta, x_{\ell} \in \mathcal{S}_{\sigma_{o}}\right\}
$$

where

$$
\begin{equation*}
\mathcal{S}_{\sigma_{o}}:=\left\{x_{\ell} \in \mathbb{R}^{n_{\ell}}: W\left(x_{\ell}\right) \leq \sigma_{o}\right\}, \sigma_{o}:=\max \left\{W(y): y \in \mathcal{B}_{r_{o}}\right\} \tag{20}
\end{equation*}
$$

Clearly, $\mathcal{S}_{\sigma_{o}}$ is compact; hence, $\epsilon_{r_{o}}$ is positive.
Therefore, along every solution $t \mapsto x_{\ell}(t)$ to (10a) starting from $x_{\ell}(0) \in \mathcal{B}_{r_{o}} \backslash \mathcal{B}_{\beta}$, we have $\dot{W}\left(x_{\ell}(t)\right) \leq-\epsilon_{r_{o}}$, up to the earliest time when x_{ℓ} reaches \mathcal{B}_{β}. For any earlier time, we have

$$
\begin{equation*}
W\left(x_{\ell}(t)\right) \leq-\epsilon_{r_{o}} t+W\left(x_{\ell}(0)\right) \tag{21}
\end{equation*}
$$

so we can take $T_{\ell}\left(r_{o}, \gamma_{o}\right)=\sigma_{o} / \epsilon_{r_{o}}$. Clearly, T_{ℓ} depends only on $\left(r_{o}, \gamma_{o}\right)$ and r_{ℓ} depends only on γ_{o}. Thus, the ultimate bounded guaranteed for the solutions of (10a) is uniform in γ.
2) Uniform ultimate boundedness for the follower dynamics: following up the previous computations and arguments, establish global uniform ultimate boundedness for the non-leading component, determined by (10b).

Using Lemma 2, we conclude that the matrices

$$
S:=P M_{f}+M_{f}^{\top} P \quad \text { and } \quad P:=\operatorname{blkdiag}\left\{M_{f}^{\top-} 1_{n}\right\}\left(\operatorname{blkdiag}\left\{M_{f}^{-} 1_{n}\right\}\right)^{-}
$$

are symmetric and positive definite. We also note that P is diagonal. Then, let p_{i}, for $i \in$ $\left\{1,2, \ldots, n_{f}\right\}$, be the i th diagonal element of P. In addition, let $Z\left(x_{f}\right):=\sum_{i=1}^{n_{f}} p_{i} V_{i}\left(x_{f i}\right)$. Its total derivative along the trajectories of (10b) satisfies

$$
\begin{equation*}
\dot{Z}\left(x_{f}\right) \leq-\sum_{i=1}^{n_{f}} p_{i} H_{i}\left(x_{f i}\right)-\gamma x_{f}^{\top}\left[P M_{f}+M_{f}^{\top} P\right] x_{f}+2 \gamma x_{f}^{\top}\left[P A_{\ell f}\right] x_{\ell} \tag{22}
\end{equation*}
$$

On one hand, we already established the existence of $r_{\ell}\left(\gamma_{o}\right)>0$ and $T_{\ell}\left(\gamma_{o}, r_{o}\right)$ such that

$$
\left|x_{\ell}(t)\right|<r_{\ell} \quad \forall t \geq T_{\ell}
$$

On the other, for all $\left|x_{\ell}\right| \leq r_{l}$,

$$
\begin{equation*}
\dot{Z}\left(x_{f}\right) \leq H_{f}-\gamma \lambda_{1}(S)\left|x_{f}\right|^{2}+2 \gamma \bar{p} r_{\ell}\left|x_{f}\right| \tag{23}
\end{equation*}
$$

where $\bar{p}:=\left|P A_{\ell f}\right|$ and $H_{f}:=\sum_{i=1}^{n_{f}} \max _{\left|x_{i}\right| \leq \rho_{i}}\left\{v_{i} H_{i}\left(x_{f i}\right)\right\}$. Now, from this and (22), we obtain

$$
\begin{aligned}
\dot{Z}\left(x_{f}\right) & \leq H_{f}-\gamma x_{f}^{\top} S x_{f}+2 \gamma x_{f}^{\top}\left[P A_{\ell f}\right] x_{\ell} \\
& \leq H_{f}-\gamma\left[x_{f}^{\top} S x_{f} / 2-2 x_{\ell}^{\top} A_{\ell f}^{\top} P^{\top} S^{-} P A_{\ell f} x_{\ell}\right]
\end{aligned}
$$

At the same time, integrating (15), we obtain that, for each $t \in\left[0, T_{\ell}\right]$,

$$
W\left(x_{\ell}(t)\right) \leq H_{\ell} T_{\ell}+W\left(x_{\ell}(0)\right) \leq H_{\ell} T_{\ell}+\sigma_{o}
$$

where σ_{o} comes from (20). Defining

$$
R_{\ell}:=\left[\min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}\left(H_{\ell} T_{\ell}+\sigma_{o}\right)
$$

we have

$$
\dot{Z}\left(x_{f}\right) \leq H_{f}-\gamma\left[\lambda_{1}(S)\left|x_{f}\right|^{2} / 2-2\left|A_{\ell f}^{\top} P^{\top} S^{-} P A_{\ell f}\right| R_{\ell}^{2}\right]
$$

for all $\left|x_{\ell}\right| \leq R_{\ell}$.
Note that, for all x_{f} such that

$$
\left|x_{f}\right|^{2}>d_{f}^{2}:=\frac{4\left|A_{\ell f}^{\top} P^{\top} S^{-} P A_{\ell f}\right| R_{\ell}^{2}}{\lambda_{1}(S)}+\frac{42 H_{f}}{\lambda_{1}(S) \gamma_{o}}
$$

$\dot{Z}\left(x_{f}\right) \leq 0$. This implies that, for all $t \in\left[0, T_{\ell}\right]$,

$$
\begin{equation*}
Z\left(x_{f}(t)\right) \leq \max \left\{\sigma_{f o}, \sigma_{f}\right\}, \quad \sigma_{f}:=\max \left\{Z\left(x_{f}\right):\left|x_{f}\right| \leq d_{f}\right\} \quad \sigma_{f o}:=\max \left\{Z\left(x_{f}\right):\left|x_{f}\right| \leq r_{o}\right\} \tag{24}
\end{equation*}
$$

In turn, for each $t \in\left[0, T_{\ell}\right]$,

$$
\begin{equation*}
\left|x_{f}(t)\right| \leq \bar{r}_{o}:=\left[\left(\sum_{i=1}^{n_{f}} p_{i}\right) \min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}\left(\max \left\{\sigma_{f o}, \sigma_{f}\right\}\right) \tag{25}
\end{equation*}
$$

Clearly, the previous upper bound is uniform in $\gamma \geq \gamma_{o}$.
Next, we focus on the solutions' behaviour after T_{ℓ} (i.e., once $\left|x_{\ell}\right| \leq r_{\ell}$). Given $\epsilon>0$, we see that, for all $\gamma \geq \gamma_{o}$ and for all x_{f} and x_{ℓ} such that

$$
\left|x_{f}\right|>\beta_{1}:=1+\frac{2 \bar{p} r_{\ell}}{\lambda_{1}(S)}+\sqrt{\frac{\epsilon+H_{f}}{\gamma_{o} \lambda_{1}(S)}} \quad \text { and } \quad\left|x_{\ell}\right| \leq r_{\ell}
$$

after (23), we conclude that $\dot{Z}\left(x_{f}\right) \leq-\epsilon$. Furthermore, $\left|x_{\ell}(t)\right| \leq r_{\ell}$ for all $t \geq T_{\ell}$, then the set $\mathcal{S}_{\sigma_{1}}:=\left\{x_{f} \in \mathbb{R}^{n_{f}}: Z\left(x_{f}\right) \leq \sigma_{1}\right\}, \quad \sigma_{1}:=\max \left\{Z(y): y \in \mathcal{B}_{\beta_{1}}\right\}, \quad \mathcal{B}_{\beta_{1}}:=\left\{x_{f} \in \mathbb{R}^{n_{f}}:\left|x_{f}\right| \leq \beta_{1}\right\}$, is attractive and becomes forward invariant after time T_{ℓ}.

Since $Z: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ is continuous and $\mathcal{B}_{\beta_{1}}$ is bounded, we conclude that σ_{1} is well defined. As a result, the ultimate bound for $x_{f}(t)$ is

$$
r_{f}=\left[\left(\sum_{i=1}^{n_{f}} p_{i}\right) \min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}\left(\sigma_{1}\right)
$$

Indeed, $Z\left(x_{f}\right) \leq \sigma_{1}$ implies $\left|x_{f}\right| \leq r_{f}$.
Finally, as for $t \mapsto x_{\ell}(t)$ we give next an upperbound, denoted by $T_{f}\left(r_{o}, \gamma_{o}\right)$, on the time that the solutions to (10b), with $\gamma \geq \gamma_{o}$ and starting from $\mathcal{B}_{r_{o}}:=\left\{x_{f} \in \mathbb{R}^{n_{\ell}}:\left|x_{f}\right| \leq r_{o}\right\}$, take to reach $\mathcal{B}_{\beta_{1}} \subset \mathcal{S}_{\sigma_{1}}$.

Let a solution $t \mapsto x_{f}(t)$ to (10b) starting from $x_{f}(0) \in \mathcal{B}_{r_{o}}$. Now, we use the fact $\left|x_{f}\left(T_{\ell}\right)\right| \leq \bar{r}_{o}$ with \bar{r}_{o} coming from (25) and \bar{r}_{o} is uniform in γ. As a result, along the solution $t \mapsto x_{f}(t)$, we have $\dot{Z}\left(x_{f}(t)\right) \leq-\epsilon$ from T_{ℓ} and up to when it reaches $\mathcal{B}_{\beta_{1}}$ for the first time after T_{ℓ}. Hence, before reaching $\mathcal{B}_{\beta_{1}}$, we have

$$
\begin{equation*}
Z\left(x_{f}(t)\right) \leq-\epsilon t+Z\left(x_{f}\left(T_{\ell}\right)\right) \tag{26}
\end{equation*}
$$

and, thus, using (24), we can take $T_{f}=T_{\ell}+\max \left\{\sigma_{f o}, \sigma_{f}\right\} / \epsilon$. Clearly, T_{f} and r_{f} depend only on $\left(r_{o}, \gamma_{o}\right)$. Thus, the ultimate bounded guaranteed for the solutions of $(10 \mathrm{~b})$ is also uniform in γ.

Corollary 1 (Uniform boundedness) Under Assumptions 1 and 2 the solutions of the closedloop system in (8) are globally uniformly bounded, i.e., Property (P1) holds.

Proof: The statement of Theorem 1 holds, therefore, given $r_{o}>0$ and $\gamma_{o}>0$, for all $\gamma \geq \gamma_{o}$, we have

$$
\left|x_{\ell}(0)\right| \leq r_{o} \Longrightarrow\left|x_{\ell}(t)\right| \leq r_{\ell}\left(\gamma_{o}\right) \quad \forall t \geq T_{\ell}\left(r_{o}, \gamma_{o}\right)
$$

Furthermore, we were able to show that on the interval $\left[0, T_{\ell}\left(r_{o}, \gamma_{o}\right)\right]$, we have

$$
W\left(x_{\ell}(t)\right) \leq H_{\ell} T_{\ell}+W\left(x_{\ell}(0)\right)
$$

Hence, if we let $\sigma_{\ell}:=\max \left\{W(y):|y| \leq r_{o}\right\}$, it follows that

$$
\left|x_{\ell}(t)\right| \leq R_{\ell}:=\left[\min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}\left(\sigma_{\ell}+H_{\ell} T_{\ell}+r_{\ell}\right) \quad \forall t \geq 0
$$

Next, for the solutions to (10b), for any $\gamma>\gamma_{o}$ and $\left|x_{f}(0)\right| \leq r_{o}$, we know that

$$
\left|x_{f}(t)\right| \leq r_{f} \quad \forall t \geq T_{f}\left(\gamma_{o}, r_{o}\right)
$$

At the same time, from the previous proof, we know that

$$
\dot{Z}\left(x_{f}\right) \leq H_{f}-\gamma\left[\lambda_{1}(S)\left|x_{f}\right|^{2} / 2-2\left|A_{\ell f}^{\top} P^{\top} S^{-} P A_{\ell f}\right| R_{\ell}^{2}\right]
$$

As a result, when

$$
\left|x_{f}\right|^{2}>d_{f}^{2}:=\frac{4\left|A_{\ell f}^{\top} P^{\top} S^{-} P A_{\ell f}\right| R_{\ell}^{2}}{\lambda_{1}(S)}+\frac{42 H_{f}}{\lambda_{1}(S) \gamma_{o}},
$$

then $\dot{Z}\left(x_{f}\right) \leq 0$. Hence, for each $t \geq 0$,

$$
\begin{equation*}
Z\left(x_{f}(t)\right) \leq \max \left\{\sigma_{f o}, \sigma_{f}\right\}, \quad \sigma_{f}:=\max \left\{Z\left(x_{f}\right):\left|x_{f}\right| \leq d_{f}\right\}, \quad \sigma_{f o}:=\max \left\{Z\left(x_{f}\right):\left|x_{f}\right| \leq r_{o}\right\} \tag{27}
\end{equation*}
$$

In turn, for each $t \geq 0$, we have

$$
\begin{equation*}
\left|x_{f}(t)\right| \leq R_{f}:=\left[\left(\sum_{i=1}^{n_{f}} p_{i}\right) \min _{i}\left\{\underline{\alpha}_{i}\right\}\right]^{-}\left(\max \left\{\sigma_{f o}, \sigma_{f}\right\}\right) . \tag{28}
\end{equation*}
$$

Appendix

The following lemma is proposed in [3], see also [6].
Lemma 1 Let $L \in \mathbb{R}^{n \times n}$ be the Laplacian matrix of a directed and strongly connected graph. Let $v_{o}:=\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{\top} \in \mathbb{R}^{n}$ be the left eigenvector of L associated to the null eigenvalue of L.

Then, the vector v has strictly positive entries and, for $V_{o}:=\operatorname{blkdiag}\left(v_{o}\right)$, we have $\operatorname{Ker}\left(V_{o} L+\right.$ $\left.L^{\top} V_{o}\right)=\operatorname{Span}\left(1_{n}\right)$ and $V_{o} L+L^{\top} V_{o} \geq 0$.

The next result can be deduced from [6, Section 4.3.5].
Lemma 2 Let $M \in \mathbb{R}^{n \times n}$ be a non-singular M-matrix. Then, the matrices

$$
S:=R M+M^{\top} R \quad \text { and } \quad R:=\operatorname{blkdiag}\left\{M^{\top^{-}} 1_{n}\right\}\left(\operatorname{blkdiag}\left\{M^{-} 1_{n}\right\}\right)^{-}
$$

are positive definite.

References

[1] A. Pogromsky. Passivity-based design of synchronizing systems. International Journal of Bifurcation and Chaos, 8, 021998.
[2] X. Chen, B. Xudong, M-A. Belabbas, and T. Basar. Controllability of formations over directed time-varying graphs. IEEE Transactions on Control of Network Systems, 4(3):407-416, 2017.
[3] M. U. Javed, J. I. Poveda, and X. Chen. Excitation conditions for uniform exponential stability of the cooperative gradient algorithm over weakly connected digraphs. IEEE Control Systems Letters, 6:67-72, 2021.
[4] I. G. Polushin, D. Hill, and A. L. Fradkov. Strict quasipassivity and ultimate boundedness for nonlinear control systems. IFAC Proceedings Volumes, 31(17):505-510, 1998. 4th IFAC Symposium on Nonlinear Control Systems Design 1998 (NOLCOS'98), Enschede, The Netherlands, 1-3 July.
[5] A. Y. Pogromsky, T. Glad, and H. Nijmeijer. On difffusion driven oscillations in coupled dynamical systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 9(4):629-644, 1999.
[6] Z. Qu. Cooperative control of dynamical systems: applications to autonomous vehicles. Springer Verlag, London, UK, 2009.

[^0]: ${ }^{*}$ M. Maghenem is with University of Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, France. E-mail: mohamed.maghenem@cnrs.fr; E. Panteley and A. Loría are with L2S, CNRS, 91192 Gif-sur-Yvette, France. Email: elena.panteley@cnrs.fr and antonio.loria@cnrs.fr A. Lazri is with L2S, CNRS, Univ Paris-Saclay, France (e-mail: anes.lazri@centralesupelec.fr)
 ${ }^{1}$ For simplicity, but without loss of generality, we assume that $x \in \mathbb{R}$; all statements hold after pertinent changes in the notation, if $x \in \mathbb{R}^{p}$, with $p>1$.

