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ẋi = fi(xi) + ui xi ∈ R, i ∈ {1, 2, • • • , n}, (1) 
where fi : R → R is continuous for all i ∈ {1, 2, • • • , n} and the control inputs are set to

ui := -γ n i=1 aij(xi -xj) ∀i ∈ {1, 2, • • • , n}, (2) 
where γ > 0 is a coupling gain and aij ≥ 0 are interconnection weights. We assume that the closed-loop interconnected systems form a network with an underlying connected directed graph that contains a directed spanning tree. For these systems, we establish global uniform ultimate boundedness of the solutions, under the assumption that each system (1) defines a semi-passive [START_REF] Pogromsky | On difffusion driven oscillations in coupled dynamical systems[END_REF] map ui → xi. As a corollary, we also establish global uniform global boundedness of the solutions.

Preliminaries

Notations. For x ∈ R n , x denotes its transpose, |x| denotes its Euclidean norm, blkdiag{x} ∈ R n×n denotes the diagonal matrix whose ith diagonal element is the ith element of x. For a set K ⊂ R n , |x| K := min{|x -y| : y ∈ K} denotes the distance of x to the set K. For a symmetric matrix Q ∈ R n×n , λ i (Q) denotes the ith smallest eigenvalue of Q. For an invertible matrix M ∈ R n×n , M -or M -1 denotes its inverse. Given N ∈ R n×n , Ker(N ) := {v : N v = 0} denotes the kernel of N . A class K ∞ function α : R ≥0 → R ≥0 is continuous, strictly increasing, unbounded, and α(0) = 0. Furthermore α -denotes the inverse function of α.

On Some Classes of Matrices

A matrix M := [m ij ], (i, j) ∈ {1, 2, ..., n} 2 , is a Z-matrix if m ij ≤ 0 whenever i = j.
It is an M -matrix if it is a Z-matrix and its eigenvalues have non-negative real parts. Equivalently, M := λI n -B, where B is a non-negative matrix and λ ≥ ρ(B), where ρ(B) := max {|λ i (B)| : i ∈ {1, 2, ..., n}} is the spectral radius of B. M is a non-singular M -matrix if it is a Z-matrix and its eigenvalues have positive real parts. Equivalently, M := λI n -B, where B is a non-negative matrix and λ > ρ(B) > 0; see [START_REF] Chen | Controllability of formations over directed time-varying graphs[END_REF][START_REF] Javed | Excitation conditions for uniform exponential stability of the cooperative gradient algorithm over weakly connected digraphs[END_REF] for more details. 1

Graph Notions

A directed graph or a digraph G(V, E) is characterized by the set of nodes V = {1, 2, ..., n}, and the set of directed edges E. The edge set E consists of ordered pairs, of the form (k, i), that indicate a directed link from node k to node i. Given a directed edge (k, i) ∈ E, then node k is called an in-neighbor of node i. We assign a positive weight a ik to each edge (k, i). That is, a ik = 0 if (k, i) is not an edge. The Laplacian matrix of a digraph is given by

L :=        d 1 -a 12 • • • -a 1n -a 21 d 2 • • • -a 2n . . . . . . . . . . . . -a n-11 • • • d n-1 -a n-1n -a n1 • • • -a nn-1 d n        =: D -A, (3) 
where

d i := n j=1
a ij for all i ∈ {1, 2, ..., n}, D is the diagonal part of L and A is called the adjacency matrix.

A digraph is strongly connected if, for any two distinct nodes i and j, there is a path from i to j. The Laplacian matrix of a strongly connected graph admits λ 1 (L) = 0 as an eigenvalue with the corresponding right and left eigenvectors

1 n = 1 1 • • • 1 and v o := v 1 v 2 • • • v n ,
respectively, where v i > 0 for all i ≤ n.

Graph and Matrix Decomposition

Suppose that the digraph G is connected and contains a spanning tree. Then, it admits a decomposition into a leading strongly connected subgraph G = Ø and a subgraph G f := G\G l of followers; namely, the agents that do not belong to the leading component, and which we call the follower agents. In this case, up to a permutation, the Laplacian L admits the lower-block decomposition

L = L 0 -A f M f , (4) 
where L := D -A ∈ R n ×n is the Laplacian matrix of the strongly connected component G , the lower-left block A f ∈ R n f ×n-n f , n f := n -n , is a non-negative matrix, and the lower-right block M f ∈ R n f ×n f is a non-singular M-matrix. The block M f can be seen as the sum of the Laplacian matrix L f corresponding to G f and a diagonal matrix D f gathering the weights of the interconnections between nodes in G and the nodes in G f . That is,

M f = L f + D f , where L f = D f -A f .

Lyapunov Analysis of a Directed Graph

Consider a network of n single integrators of the form ẋi = u i interconnected according to the classical consensus protocol

u i := - n i=1 a ij (x i -x j ) ∀i ∈ {1, 2, • • • , n}.
In closed loop, the network is governed by the linear system ẋ = -Lx, where L ∈ R n is the Laplacian matrix of a connected di-graph G that contains a directed spanning tree. According to Section 1, we can decompose the state x into x := x l x f , where x l ∈ R n l gathers the states of the leading component and is governed by

Σ : ẋ = -L x ,
and the non-leading component whose state is

x f ∈ R n f , are governed by Σ f : ẋf = -M f x f ,
on the manifold {x f = 0}. In the rest of this section, we overview some Lyapunov-function constructions allowing to prove uniform exponential stability of A for Σ , where

A := {x l ∈ R n l : x l1 = x l2 = • • • = x ln }, (5) 
and exponential stability of the origin for Σ f .

1.4.1 Proof of uniform exponential stability of A for Σ let v o := v 1 v 2 • • • v n be a left eigenvector associated to λ 1 (L ) = 0 and V o := blkdiag{v o }. Based on Lemma 1 in the Appendix, Q o := L V o + V o L
is symmetric and positive semi-definite, and its kernel is spanned by 1 n . Then, the derivative of the Lyapunov function candidate W (x ) := x V o x , along the solutions to Σ , satisfies

Ẇ (x ) = -x (L V o + V o L )x ≤ -λ 2 (Q o )|x | 2 A . Now, we let Z(x ) := x -1 n v o x V o x -1 n v o x ,
which is positive definite. Its derivative along the solutions of ẋ = -L x satisfies

Ż(x ) = -x Q o x ≤ -λ 2 (Q o )|x | 2 A . (6) 
To obtain the previous expression we used

v o L = 0, v 1 1 n = 1 and that 1 n is in the kernel of I n -1 n v o . Moreover, I n -1 n v o
is the Laplacian matrix of an all-to-all graph; hence, 1 ns spans the kernel of I n -1 n v o . Therefore, there exist z, z > 0 such that

z|x | 2 A ≤ Z(x ) ≤ z|x | 2 A ∀x ∈ R n . (7) 
Uniform exponential stability of A from ( 6) and ( 7) and standard Lyapunov-stability theory. 

Y (x f ) := x f R f x f , where R f := blkdiag M f -1 n f blkdiag M -1 f 1 n f -1
, which is positive definite. Furthermore, along the solutions to Σ f , we have

Ẏ (x f ) = -x f [M f R f + R f M f ]x f . Now, since (M f R f +R f M f ) is positive definite, exponential stability of the origin for Σ f follows.

Problem formulation

Consider the systems (1)-( 2), with γ > 0 and a ij ≥ 0. Then, defining

x := [x 1 • • • x n ] , and F (x) := f 1 (x 1 ), f 2 (x 2 ), • • • , f n (x n ) ,
we may write the closed-loop system in compact form as

ẋ = F (x) -γLx, ( 8 
)
where L is defined as in (3). This is a networked system with an underlying topology that may be represented by a graph G.

Assumption 1

The graph G is connected and contains a directed spanning tree.

•

We are interested in verifying the following two boundedness properties for (8).

(P1) Global Uniform Boundedness (GUB). The solutions t → x(t) to (8) are globally bounded, uniformly in γ, if, for every r o > 0 and γ o > 0, there exists

R = R(r o , γ o ) ≥ r o such that, for all γ ≥ γ o , |x(t o )| ≤ r o ⇒ |x(t)| ≤ R ∀t ≥ 0.
(P2) Global Uniform Ultimate Boundedness (GUUB). The solutions t → x(t) to (8) are ultimately bounded, uniformly in γ, if given γ o > 0, there exists r = r(γ o ) > 0 such that, for all r o > 0, there exists

T = T (r o , γ o ) ≥ 0 such that, for all γ ≥ γ o , |x(t o )| ≤ r o ⇒ |x(t)| ≤ r ∀t ≥ T.
To verify the latter two properties, we make the following assumption on the individual nodes' dynamics in [START_REF] Pogromsky | Passivity-based design of synchronizing systems[END_REF].

Assumption 2 (State strict semi-passivity) For each i ∈ {1, 2, ..., n}, the input-output map u i → x i defined by the dynamics (1) is state strict semipassive [START_REF] Pogromsky | Passivity-based design of synchronizing systems[END_REF]. Furthermore, there exists a continuously differentiable storage function V i : R n → R + , a class K ∞ function α i , a constant ρ i > 0, a continuous function H i : R → R, and a continuous function

ψ i : R ≥0 → R >0 , such that α i (|x i |) ≤ V i (x i ), Vi (x i ) ≤ 2u i x i -H i (x i ), (9) 
and

H i (x i ) ≥ ψ i (|x i |) for all |x i | ≥ ρ i . • Remark 1
The property described in Assumption 2 is called strict quasipassivity in [START_REF] Polushin | Strict quasipassivity and ultimate boundedness for nonlinear control systems[END_REF]. In [START_REF] Pogromsky | On difffusion driven oscillations in coupled dynamical systems[END_REF] the authors define a similar concept named strict semi-passivity, but radial unboundedness of the storage function is not imposed. See also [START_REF] Pogromsky | Passivity-based design of synchronizing systems[END_REF]. •

Main result

Theorem 1 (Uniform ultimate boundedness) The solutions of the networked system (1)-( 2) are globally uniformly ultimately bounded, i.e., Property (P2) holds, if Assumptions 1 and 2 are satisfied.

Proof: Under Assumption 1, the Laplacian matrix L admits a permutation, such that (4) holds. Therefore, the state x may be decomposed into x := [x x f ] and the system (8) takes the cascaded form

ẋ = f (x ) -γL x , f (x ) := f 1 (x 1 ) • • • f n (x n ) (10a) ẋf = f f (x f ) + γA f x -γM f x f , f f (x f ) := f n +1 (x f1 ) • • • f n +n f (x fn f ) . (10b)
Equation (10a) corresponds to the dynamics of a leading component, a networked system with an underlying strongly connected graph G , and a follower component, with dynamics (10b). The proof of the statement is constructed using a cascades argument and proving, firstly, global uniform ultimate boundedness for the solutions of (10a) and, consequently, the same property for (10b).

To that end, let r o > 0 be arbitrarily fixed and let |x(0

)| ≤ r o . Then, |x (0)| ≤ r o and |x f (0)| ≤ r o .
1) Uniform ultimate boundedness for the leading component: after Assumption 2, for each i ∈ {1, 2, ..., n }, there exists a storage function V i such that its total derivative along the trajectories of (1) satisfies

Vi (x i ) ≤ 2u i x i -H i (x i ), H i (x i ) ≥ ψ i (|x i |) ∀|x i | ≥ ρ i . (11) Next, let W (x ) := n i=1 v i V i (x i )
, where v i corresponds to the ith element of v o , which is the left eigenvector associated to the zero eigenvalue of L . Since the graph G is strongly connected, then v i > 0 for all i ≤ n , so W is positive definite and radially unbounded. Now, from (11), we obtain

Ẇ (x ) ≤ 2 n i=1 v i u i x i - N i=1 v i H i (x i ), ∀x ∈ R n . ( 12 
)
The first term on the right-hand side of (12) satisfies

n i=1 v i u i x i = u V o x , (13) 
where V o := blkdiag{v o } and, since u = -γL x , it follows that

Ẇ (x ) ≤ - n i=1 v i H i (x i ) -γx [L V o + V o L ]x ≤ - n i=1 v i H i (x i ) -γx Q o x , (14) 
with

Q o := V o L + L V o ,
which is positive semi-definite-see Lemma 1 in the Appendix. Furthermore, we note that

-x Q o x = -x -1 n 1 n x /n Q o x -1 n 1 n x /n ≤ -λ 2 (Q o )|x | 2 A ,
where |x | A denotes the distance of x to the set A and λ 2 (Q o ) is the second smallest eigenvalue of Q o . Now, on one hand, we have that v i > 0 for all i ∈ {1, 2, . . . , n} and, on the other,

-H i (x i ) > 0 only if |x i | ≤ ρ i . Therefore, the constant H := - n i=1 max |xi|≤ρi v i H i x i > 0. Therefore, after (14), we get Ẇ (x ) ≤ H -γλ 2 (Q o )|x | 2 A ∀ x ∈ R n . ( 15 
)
In turn, given γ o > 0 and > 0, for all γ ≥ γ o , we have

Ẇ (x ) ≤ H -γ o λ 2 (Q o )|x | 2 A ≤ - ∀x / ∈ C, (16) 
where

C := x ∈ R n : |x | A ≤ √ n R e := + H γ o λ 2 (Q o )
.

Next, let ρ := arg max i∈{1,2,...,n } ρ i and

B β := {x ∈ R n : |x | ≤ β := √ n ρ + 2R e )}.
Note that for all x / ∈ B β , we have |x | > √ n (ρ + 2R e ) and, for all x ∈ C\B β ,

|x | > √ n (ρ + 2R e ) and |x | A ≤ √ n R e . ( 17 
)
Furthermore, we use the fact that x = 1 n (1 n x )/n + x -1 n (1 n x )/n , and the fact that

|x | A = |x -1 n (1 n x )/n |, to conclude that |x | ≤ |x | A + |1 n x |/ √ n . (18) 
Now, combining ( 17) and ( 18), we conclude that for all

x ∈ C\B β , √ n (ρ + 2R e ) < |x | ≤ |x | A + |1 n x |/ √ n ≤ √ n R e + |1 n x |/ √ n . (19) 
So, for all x ∈ C\B β , |1 n x |/n > ρ + R e . Next, we use the fact that

x i = 1 n x /n + x i -1 n x /n ∀i ∈ {1, 2, ..., n } to conclude that |x i | > |1 n x |/n -| x i -1 n x /n |. Hence, |x i | > ρ + R e - √ n R e > ρ ∀i ∈ {1, 2, ..., n }
for all x ∈ C\B β . The latter, under Assumption 2, implies that

- n i=1 v i H i (x i ) ≤ - n i=1 v i ψ i (|x i |) ≤ 0 ∀x ∈ C\B β .
As a result, setting Ψ(x ) :

= n i=1 v i ψ i (|x i |)-note that Ψ is continuous and positive-we conclude that Ẇ (x ) ≤ -Ψ(x ) ∀x ∈ C\B β .
Combining the latter inequality to (16), we conclude that

Ẇ (x ) ≤ -min{Ψ(x ), } ∀x ∈ R n \B β .
The latter is enough to conclude global attractivity and forward invariance of the set

S σ := {x ∈ R n : W (x ) ≤ σ}, σ := max{W (y) : y ∈ B β }.
Furthermore, since W : R n → R ≥0 is continuous and B β is bounded, we conclude that σ is well defined. Consequently, the ultimate bound is

r := min i {α i } - (σ),
where, with an abuse of notation, min i {α i } corresponds to the function s → ψ(s) defined as ψ(s) := min i {α i (s)} for each s ≥ 0 and α i is defined in Assumption 2, so ψ : R ≥0 → R ≥0 is strictly increasing and radially unbounded, hence, globally invertible. Thus, W (x ) ≤ σ implies that |x | ≤ r .

Next, we compute an upperbound T (r o , γ o ) on the time that the solutions to (10a), with γ ≥ γ o and starting from

B ro := {x ∈ R n : |x | ≤ r o }, take to reach the compact set B β ⊂ S σ .
For this, we assume without loss of generality that r o ≥ β, and we define

ro := min{min{Ψ(x ), } : |x | ≥ β, x ∈ S σo },
where

S σo := {x ∈ R n : W (x ) ≤ σ o }, σ o := max{W (y) : y ∈ B ro }. (20) 
Clearly, S σo is compact; hence, ro is positive.

Therefore, along every solution t → x (t) to (10a) starting from x (0) ∈ B ro \B β , we have Ẇ (x (t)) ≤ro , up to the earliest time when x reaches B β . For any earlier time, we have

W (x (t)) ≤ -ro t + W (x (0)), (21) 
so we can take T (r o , γ o ) = σ o / ro . Clearly, T depends only on (r o , γ o ) and r depends only on γ o . Thus, the ultimate bounded guaranteed for the solutions of (10a) is uniform in γ.

2) Uniform ultimate boundedness for the follower dynamics: following up the previous computations and arguments, establish global uniform ultimate boundedness for the non-leading component, determined by (10b).

Using Lemma 2, we conclude that the matrices S := P M f + M f P and P := blkdiag M f -1 n blkdiag M - f 1 n are symmetric and positive definite. We also note that P is diagonal. Then, let p i , for i ∈ {1, 2, ..., n f }, be the ith diagonal element of P . In addition, let Z(x f ) :=

n f i=1 p i V i (x f i )
. Its total derivative along the trajectories of (10b) satisfies

Ż(x f ) ≤ - n f i=1 p i H i (x f i ) -γx f [P M f + M f P ]x f + 2γx f [P A f ]x . ( 22 
)
On one hand, we already established the existence of r (γ o ) > 0 and T (γ o , r o ) such that

|x (t)| < r ∀t ≥ T .
On the other, for all |x | ≤ r l ,

Ż(x f ) ≤ H f -γλ 1 (S)|x f | 2 + 2γ pr |x f |, (23) 
where p :

= |P A f | and H f := n f i=1 max |xi|≤ρi {v i H i x f i }. Now, from this and (22), we obtain Ż(x f ) ≤ H f -γx f Sx f + 2γx f [P A f ]x ≤ H f -γ x f Sx f /2 -2x A f P S -P A f x .
At the same time, integrating (15), we obtain that, for each t ∈ [0, T ],

W (x (t)) ≤ H T + W (x (0)) ≤ H T + σ o ,
where σ o comes from (20). Defining

R := min i {α i } - (H T + σ o ) , we have Ż(x f ) ≤ H f -γ λ 1 (S)|x f | 2 /2 -2|A f P S -P A f |R 2 , for all |x | ≤ R .
Note that, for all x f such that

|x f | 2 > d 2 f := 4|A f P S -P A f |R 2 λ 1 (S) + 42H f λ 1 (S)γ o , Ż(x f ) ≤ 0. This implies that, for all t ∈ [0, T ], Z(x f (t)) ≤ max {σ f o , σ f } , σ f := max{Z(x f ) : |x f | ≤ d f } σ f o := max{Z(x f ) : |x f | ≤ r o }. (24) 
In turn, for each t ∈ [0, T ],

|x f (t)| ≤ ro := n f i=1 p i min i {α i } - (max {σ f o , σ f }) . (25) 
Clearly, the previous upper bound is uniform in γ ≥ γ o .

Next, we focus on the solutions' behaviour after T (i.e., once |x | ≤ r ). Given > 0, we see that, for all γ ≥ γ o and for all x f and x such that

|x f | > β 1 := 1 + 2pr λ 1 (S) + + H f γ o λ 1 (S)
and |x | ≤ r , after (23), we conclude that Ż(x f ) ≤ -. Furthermore, |x (t)| ≤ r for all t ≥ T , then the set

S σ1 := {x f ∈ R n f : Z(x f ) ≤ σ 1 }, σ 1 := max{Z(y) : y ∈ B β1 }, B β1 := {x f ∈ R n f : |x f | ≤ β 1 },
is attractive and becomes forward invariant after time T .

Since Z : R n → R ≥0 is continuous and B β1 is bounded, we conclude that σ 1 is well defined. As a result, the ultimate bound for x f (t) is

r f = n f i=1 p i min i {α i } - (σ 1 ). Indeed, Z(x f ) ≤ σ 1 implies |x f | ≤ r f .
Finally, as for t → x (t) we give next an upperbound, denoted by T f (r o , γ o ), on the time that the solutions to (10b), with γ ≥ γ o and starting from

B ro := {x f ∈ R n : |x f | ≤ r o }, take to reach B β1 ⊂ S σ1 .
Let a solution t → x f (t) to (10b) starting from x f (0) ∈ B ro . Now, we use the fact |x f (T )| ≤ ro with ro coming from (25) and ro is uniform in γ. As a result, along the solution t → x f (t), we have Ż(x f (t)) ≤ -from T and up to when it reaches B β1 for the first time after T . Hence, before reaching B β1 , we have Z(x f (t)) ≤ -t + Z(x f (T )) (26) and, thus, using (24), we can take T f = T + max{σ f o , σ f }/ . Clearly, T f and r f depend only on (r o , γ o ). Thus, the ultimate bounded guaranteed for the solutions of (10b) is also uniform in γ.

Corollary 1 (Uniform boundedness) Under Assumptions 1 and 2 the solutions of the closedloop system in (8) are globally uniformly bounded, i.e., Property (P1) holds. 

In turn, for each t ≥ 0, we have

|x f (t)| ≤ R f := n f i=1 p i min i {α i } - (max {σ f o , σ f }) . (28) 

Proof:

  The statement of Theorem 1 holds, therefore, given r o > 0 and γ o > 0, for all γ ≥ γ o , we have|x (0)| ≤ r o =⇒ |x (t)| ≤ r (γ o ) ∀t ≥ T (r o , γ o ).Furthermore, we were able to show that on the interval [0, T (r o , γ o )], we haveW (x (t)) ≤ H T + W (x (0)).Hence, if we let σ := max{W (y) :|y| ≤ r o }, it follows that |x (t)| ≤ R := min i {α i } σ + H T + r ∀t ≥ 0.Next, for the solutions to (10b), for any γ > γ o and |x f (0)| ≤ r o , we know that|x f (t)| ≤ r f ∀t ≥ T f (γ o , r o ).At the same time, from the previous proof, we know thatŻ(x f ) ≤ H f -γ λ 1 (S)|x f | 2 /2 -2|A f P S -P A f |R 2 .As a result, when|x f | 2 > d 2 f := 4|A f P S -P A f |R 2 λ 1 (S) + 42H f λ 1 (S)γ o , then Ż(x f ) ≤ 0. Hence, for each t ≥ 0, Z(x f (t)) ≤ max {σ f o , σ f } , σ f := max{Z(x f ) : |x f | ≤ d f }, σ f o := max{Z(x f ) : |x f | ≤ r o }.
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Appendix

The following lemma is proposed in [START_REF] Javed | Excitation conditions for uniform exponential stability of the cooperative gradient algorithm over weakly connected digraphs[END_REF], see also [START_REF] Qu | Cooperative control of dynamical systems: applications to autonomous vehicles[END_REF].

Lemma 1 Let L ∈ R n×n be the Laplacian matrix of a directed and strongly connected graph.

the left eigenvector of L associated to the null eigenvalue of L.

Then, the vector v has strictly positive entries and, for

The next result can be deduced from [6, Section 4.