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We propose a method to control networks involving both cooperative and competitive interactions simultaneously under proximity and collision-avoidance constraints. The control design is of gradient type, using a barrier-Lyapunov function. Then, under the assumption that the network is undirected and structurally balanced, we establish asymptotic stability of the leaderless and leader-follower bipartite formation-consensus manifold. We assume that the agents are modeled by secondorder integrators, but we also demonstrate the utility of our theoretical findings via numerical simulations on a problem of formation-consensus control of nonholonomic vehicles.

Introduction

Most of the works done in the literature on consensus and synchronization of multiagent systems apply to the case of networks having only cooperative interactions [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF]. In these protocols, all agents reach a global agreement regarding a certain quantity of interest through collaboration [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]. This excludes several scenarios where some agents cooperate, and others compete, as e.g., in the context of herding control [START_REF] Chipade | Multi-swarm herding: Protecting against adversarial swarms[END_REF][START_REF] Grover | Noncooperative herding with control barrier functions: Theory and experiments[END_REF] or in social networks [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Networks in which competitive interactions are represented by negative weights on the edges and cooperative ones by positive weights, are called coopetition networks [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF]. For these networks, agreement on a common value is generally not attainable. Still, an achievable goal is the so-called multi-partite consensus, in which case the system has more than one equilibrium point. More precisely, considering a structurally balanced and connected undirected signed network, bipartite consensus can be achieved and all the agents converge to the same state in modulus, but with opposite sign [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. There are multiple studies on the bipartite consensus-control problem for single-integrators [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], double-integrators [START_REF] Yang | Bipartite consensus for a class of double-integrator multi-agent systems with antagonistic interactions[END_REF], and linear high-order dynamics [START_REF] Valcher | On the consensus and bipartite consensus in highorder multi-agent dynamical systems with antagonistic interactions[END_REF].

For these kinds of problems considered in the literature, the main objective is to attain the goal destination or to follow the reference trajectory. However, when application scenarios are considered, for instance, in formation of autonomous vehicles, the latter must also satisfy secondary objectives, such as guaranteeing collision avoidance between two agents or maintaining information exchange between the ones cooperating with each other. Those objectives are encoded as inter-agent constraints and are usually handled by barrier functions-see e.g., [START_REF] Dimarogonas | Connectedness preserving distributed swarm aggregation for multiple kinematic robots[END_REF], [START_REF] Cheng | Decentralized formation control with connectivity maintenance and collision avoidance under limited and intermittent sensing[END_REF] and [START_REF] Panagou | Multi-objective control for multi-agent systems using lyapunov-like barrier functions[END_REF]. The latter uses Lyapunov-like barrier functions to encode collision avoidance and connectivity maintenance control goals and assures the convergence to desired destinations for a network of multiple nonholonomic vehicles.

In [START_REF] Chipade | Multi-swarm herding: Protecting against adversarial swarms[END_REF], the multi-swarm herding problem is solved under connectivity constraints using a mixed integer quadratically constrained program; in [START_REF] Grover | Noncooperative herding with control barrier functions: Theory and experiments[END_REF], a control strategy is proposed for the non-cooperative herding problem described by first-order dynamics and control barrier functions are used to prevent some agents from escaping from a protected zone. Yet, in [START_REF] Chipade | Multi-swarm herding: Protecting against adversarial swarms[END_REF] and [START_REF] Grover | Noncooperative herding with control barrier functions: Theory and experiments[END_REF], the system is modeled by a network in which all the agents cooperate and the control laws are optimization-based. Moreover, in [START_REF] Grover | Noncooperative herding with control barrier functions: Theory and experiments[END_REF] only a two-agent scenario is considered. In [START_REF] Fan | Bipartite flocking for multi-agent systems[END_REF], the bipartite flocking-control problem is studied, and artificial potential functions are used to guarantee collision avoidance and connectivity maintenance. The statements rely on LaSalle's invariance principle. However, collisions are avoided in [START_REF] Fan | Bipartite flocking for multi-agent systems[END_REF], but a minimal safety distance between agents is not guaranteed. Thus, only a few works in the literature focus on inter-agent constrained control problems for coopetition networks. In [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF], a controller is proposed to solve the bipartite formation-control problem with inter-agent collision avoidance and connectivity maintenance for structurally balanced undirected networks. However, the proposed controller requires the global knowledge of the network topology. This paper proposes a fully distributed control law that reduces high communication burdens on the system.

We study the leaderless and leader-follower bipartite formation-consensus problems for structurally balanced undirected signed networks described by second-order systems under inter-agent distance constraints. We propose a distributed bipartite formation control law that prevents inter-vehicle collisions and keeps vehicles in their sensors' range. We base our control law and analysis on the edge representation for signed networks [START_REF] Du | Edge convergence problems on signed networks[END_REF]. This also allows to recast the bipartite formation-consensus problem into the space of the error coordinates. In contrast to [START_REF] Chipade | Multi-swarm herding: Protecting against adversarial swarms[END_REF], [START_REF] Grover | Noncooperative herding with control barrier functions: Theory and experiments[END_REF], and [START_REF] Fan | Bipartite flocking for multi-agent systems[END_REF], we encode the inter-agent distance constraints using barrier-Lyapunov functions, and our controller is based on the gradient of a barrier-Lyapunov function. With respect to [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF], our control law is fully distributed, and we demonstrate our theoretical findings on more realistic scenarios with nonholonomic mobile robots following a leader.

Thus, relative to the existing literature, we contribute with a fully distributed control law that solves leader-follower and leaderless bipartite formation-consensus-control problems for structurally balanced undirected signed networks described by secondorder systems. Our controller guarantees inter-agent collision avoidance by ensuring all agents keep a minimum safety distance between one another and ensures maintenance of information exchange for all agents having cooperative interactions. Furthermore, we establish asymptotic stability of the bipartite formation-consensus manifold by applying Lyapunov's direct method and employing edge-based formulation for signed networks.

Model and Problem Formulation

Consider a network of N dynamical systems having the following dynamics.

ẋi = v i , (1a) vi = u i , xi ∈ R n , i ≤ N, (1b) 
where xi = x i -d i , x i is the agent's position, and d i is a relative displacement with respect to a consensus value. For instance, for vehicles moving on the plane, x i ∈ R 2 may represent a pair of Cartesian coordinates and d i ∈ R 2 an offset relative to the center of a desired formation-see Section 4. Let such systems be interconnected over an undirected network so that the ith agent exchanges state measurements with a set of neighbors with state xj , but under the assumption that some agents are cooperative and others are competitive. Such networks are referred to as coopetitive [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF]. In general, the inputs of a coopetitive network are defined as-cf. [START_REF] Yang | Bipartite consensus for a class of double-integrator multi-agent systems with antagonistic interactions[END_REF],

u i = - N j=1 |a ij | k 1 [x i -sgn(a ij )x j ] + k 2 [v i -sgn(a ij )v j ] , a ij ∈ {-1, 0, 1}, (2) 
where |a ij | = 1 if there is an interconnection between the ith and jth agents and a ij = 0 if there is not. The expression ( 2) is reminiscent of classical consensus control laws for second-order systems [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], but with the important difference that a ij ∈ {-1, 0, 1}; a ij = 1 if the agents j and i are cooperative and a ij = -1 if they are competitive.

Because of the presence of competitive agents, in general, consensus cannot be reached, but following the framework of [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], which focuses on first-order systems, we may define the synchronization errors ēxk := xi -sgn(a ij )x j , ēvk :

= v i -sgn(a ij )v j , k ≤ M, (3) 
where k denotes the index of the interconnection between the ith and jth agents. Then, we are interested in the conditions under which the following property is attained.

Definition 1 (Leaderless bipartite consensus). The systems (1)-( 2) are said to achieve bipartite position and velocity consensus if

lim t→∞ ēxk (t) = 0, lim t→∞ ēvk (t) = 0, k ≤ M. (4) 
That is, for agents i and j cooperative with each other, bipartite consensus implies that (x i , v i ) → (x j , v j ) while for agents competitive with each other we have (x i , v i ) → (-x j , -v j ). In [START_REF] Yang | Bipartite consensus for a class of double-integrator multi-agent systems with antagonistic interactions[END_REF], it is established that the distributed control law in (2) guarantees bipartite consensus provided that the network enjoys the following property, which was introduced earlier, in [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF].

Definition 2 (Structural balance). Let V, of cardinality N , denote a set of vertices (nodes) ν k , let E ⊆ V 2 , of cardinality M , denote the set of edges (interconnections) ε k := (i, j), and let G(V, E) denote the corresponding graph. Then, a signed graph is structurally balanced if it may be split into two disjoint sets of vertices V 1 and V 2 , where

V 1 ∪ V 2 = V, V 1 ∩ V 2 = ∅ such that for every i, j ∈ V p , p ∈ {1, 2}, if a ij ≥ 0,
while for every i ∈ V p , j ∈ V q , with p, q ∈ {1, 2}, p = q, if a ij ≤ 0. It is structurally unbalanced, otherwise.

ν 1 ν 2 ν 3 ν 4 (a) ν 1 ν 2 ν 3 ν 4 (b) Figure 1.
Example of two signed networks, where the cooperative interactions are represented by solid black lines and the competitive interactions by red dashed lines: (a) the nodes can be separated into two disjoint subsets such as V 1 = {ν 1 , ν 3 } and V 2 = {ν 2 , ν 4 } so the graph is structurally balanced, (b) the nodes cannot be separated into 2 disjoint subsets so the graph is structurally unbalanced.

That is, for structurally balanced networks -see Figure 1, bipartite consensus means that the elements of the two sets of vertices V 1 and V 2 converge to the same state in the module but with opposite signs. In [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], the final states of the agents are defined by their initial conditions. However, there are some cases in which an external factor decides the final states of the agents. Thus, a virtual leader ν 0 can be introduced to coordinate with at least one agent. Assume that the dynamics of the virtual leader are described by ẋ0 = 0, x 0 ∈ R n .

(

Let φ i = {1, -1} describe the interaction relationship between the virtual leader and the agents ν i , i ≤ N . Then, we define

êi := xi -φ i x 0 , i ≤ N, (6) 
and the leader-follower bipartite consensus is introduced next.

Definition 3 (Leader-follower bipartite consensus). Let x 0 ∈ R n be the position of the virtual leader ν 0 , whose dynamics are given in [START_REF] Du | Edge convergence problems on signed networks[END_REF], provided to at least one follower. Then, the systems (1)-( 2) are said to achieve leader-follower bipartite position and velocity consensus if (4) and

lim t→∞ êi (t) = 0, i ≤ N. (7) 
That is, for agents i cooperative with the virtual leader, bipartite consensus implies that (x i , v i ) → (x 0 , 0) while for agents competitive with the virtual leader we have (x i , v i ) → (-x 0 , 0). This paper addresses these two problems in a scenario that imposes proximity and collision avoidance constraints between all agents x i , i ≤ N .

Consider a group of systems (1) interconnected through inputs u i such that they form a communication network with a signed, undirected, structurally balanced graph G(V, E).

For each pair of communicating nodes ν i and ν j ∈ V, labeled k ≤ M , let δ k := x i -x j , let R k > 0 and ∆ k > 0 be given. Also, consider the sets V l , with l ∈ {1, 2}, as defined in Definition 2. Then, define the set of proximity constraints I r and the set of collision-avoidance constraints I c as

I r := {δ k ∈ R n : |δ k | < R k , ∀i, j ∈ V l , l = {1, 2}} (8) 
I c := {δ k ∈ R n : |δ k | > ∆ k ∀k ≤ M }. (9) 
Under these conditions, it is required to design a distributed bipartite consensus control law u * i such that the synchronization errors (ē xk , ēvk ) in ( 3) satisfy ( 4) and the agents' trajectories satisfy the proximity and collision-avoidance constraints, that is, δ i (t) ∈ I for all t ≥ 0, with I := I r ∩ I c . Remark 1. Proximity constraints are not imposed on competitive interactions since it is assumed that the agents competitive with each other have different objectives, so they do not stay close to each other.

•

Bipartite consensus under constraints

We solve the bipartite formation-consensus problem over undirected signed networks using a barrier-Lyapunov function [START_REF] Panagou | Multi-objective control for multi-agent systems using lyapunov-like barrier functions[END_REF] and a gradient-based consensus control law. Moreover, we recast the problem stated above into the space of the synchronization errors using the edge-based framework [START_REF] Mesbahi | Graph theoretic methods in multiagent networks[END_REF]. Thus, we first recall some facts on signed networks [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] and on the edge-based formulation for signed networks [START_REF] Du | Edge convergence problems on signed networks[END_REF].

Remark 2. For notational simplicity, in this section, we assume that x i ∈ R, but with obvious modifications (involving the Kronecker product ⊗) all the statements may be reformulated for systems with x i ∈ R n . In Section 4, e.g., we consider the problem of bipartite-formation consensus for vehicles moving on the plane, hence, with n = 2. •

The edge-based formulation for signed networks

The elements of the Laplacian matrix of a signed graph,

L s ∈ R N ×N , are sij = h≤N |a ih | i = j -a ij i = j. (10) 
In the following definition, we introduce the elements of the incidence matrix of a structurally balanced signed graph. Definition 4. Consider a structurally balanced undirected signed network G that contains N nodes and M edges. The incidence matrix E s ∈ R N ×M of G is defined as

[E s ] ik :=        +1 if v i is the initial node of the edge e k ; -1 if v i , v j ∈ V l and v i is the terminal node of the edge e k ; +1 if v i ∈ V p , v j ∈ V q
and v i is the terminal node of the edge e k ; 0 otherwise, where e k = v i v j , k ≤ M, i, j ≤ N are arbitrarily oriented edges, l, p, q ∈ {1, 2} with p = q and V 1 and V 2 are the two disjoint sets of vertices.

Using Definition 4, we express the synchronization errors in (3), in the vector forms

ēx = E s x, ēv = E s v. (11) 
We may also express the node and edge Laplacians using the definition of the incidence matrix. The Laplacian matrix L s and the edge Laplacian matrix L es of a structurally balanced graph G satisfy-see [13, Claim 1],

L s = E s E s , L es = E s E s . (12) 
Furthermore, for a structurally balanced signed graph containing a spanning tree, we can distinguish the state variables corresponding to the spanning tree from the states corresponding to the cycles (the rest of the edges). The incidence matrix satisfies

E s = [E ts E cs ], (13) 
where E ts ∈ R N ×N -1 is the incidence matrix representing the edges of the spanning tree corresponding to a spanning tree graph G t and E cs ∈ R N ×M -(N -1) is the incidence matrix representing the remaining edges corresponding to G c := G\G t . After ( 11) and ( 13) we partition the synchronization errors as

ēx = [(E ts x) (E cs x) ] := [ē xt ē xc ] , ēv = [(E ts v) (E cs v) ] =: [ē vt ē vc ] .
The indices t and c correspond to states of the graphs G t and G c , respectively. Then, we establish a relation between the errors of the spanning tree and the synchronization errors. For a structurally balanced signed graph, there exists a matrix R s such that

E s = E ts R s , (14) 
where R s := [I N -1 T s ] and T s := (E ts E ts ) -1 E ts E cs -[13, Proposition 1]. This relation between the incidence matrices E s and E ts also indicates a link between all synchronization errors ēx and the ones corresponding to the spanning-tree ēxt . We note that after [START_REF] Valcher | On the consensus and bipartite consensus in highorder multi-agent dynamical systems with antagonistic interactions[END_REF] we have

ēx = (E ts R s ) x = R s ēxt , ēv = (E ts R s ) v = R s ēvt . (15) 
Then, the studied problem may be addressed as that of stabilizing the origin of a reduced-order system of the spanning-tree errors, and it follows that the objective ( 4) is attained if ēxt → 0 and ēvt → 0.

Barrier-Lyapunov Function based controller

We first define a barrier-Lyapunov function (BLF)-cf. [START_REF] Mesbahi | Graph theoretic methods in multiagent networks[END_REF], [START_REF] Panagou | Multi-objective control for multi-agent systems using lyapunov-like barrier functions[END_REF], [START_REF] Restrepo-Ochoa | Coordination control of autonomous robotic multi-agent systems under constraints[END_REF].

Definition 5. Consider the system ẋ = f (x) and let I be an open set containing the origin. A BLF is a positive definite function W :

I → R ≥0 , x → W (x), that is C 1 , satisfies ∇W (x)f (x) ≤ 0,
where ∇W (x) := ∂V /∂x, and has the property that W (x) → ∞, and ∇W (x) → ∞ as x → ∂I.

We proceed to define a barrier-Lyapunov function of the synchronization errors ēxk . To that end, we remark that for a pair of agents cooperative with each other, the synchronization errors in position, defined in (3), are

ēxk = xi -xj = δ k -dk , i, j ∈ V l , l ∈ {1, 2}, (16) 
while for a pair of agents competitive with each other, the synchronization errors are

ēxk = xi + xj = δ k -dk + 2x j , i ∈ V p , j ∈ V q , p, q ∈ {1, 2} p = q, (17) 
with dk = d i -sgn(a ij )d j . Then, from ( 16) and ( 17), the constraints sets in ( 8) and ( 9) may be rewritten as

I r = {ē xk ∈ R n : |ē xk + α k | < R k , ∀k ∈ E m }, (18a) 
I c = {ē xk ∈ R n : ∆ k < |ē xk + α k |, ∀k ≤ M }. (18b) 
E m consists in the indexes of m edges corresponding to cooperative interactions between agents, such that 0 ≤ m < M , and α k is defined as

α k := dk if i, j ∈ V l , l ∈ {1, 2} δ k -ēxk if i ∈ V p , j ∈ V q , p, q ∈ {1, 2}, p = q. ( 19 
)
Then, for each edge e k , k ≤ M , we define the BLF

W k : R → R ≥0 , W k (ē xk ) = 1 2 [|ē xk | 2 + B k (ē xk )], (20) 
where B k (ē xk ) encodes the constraints in (18) and is given by

B k (ē xk ) = B ck (ē xk ) + 1 2 (1 + σ k )B rk (ē xk ). ( 21 
)
B k (ē xk ) consists in two functions satisfying Definition 5. B ck (ē xk ) encodes the interagent collision avoidance constraints for each edge, whether it is a cooperative or a competitive one. B rk (ē xk ) encodes the inter-agent connectivity maintenance constraints for cooperative edges, such that σ k = 1 if k ∈ E m , and

σ k = -1 otherwise. Furthermore, B k (ē xk ) 1 is non-negative and satisfies B k (0) = 0 and B k (ē xk ) → ∞ as |ē xk | → ∆ k for all k ≤ M and as |ē xk | → R k for k ∈ E m .
However, for the system's solution to lie within the constraint sets defined in (18) and for the agents to converge to the desired equilibrium point, the barrier function must be modified. To this end, we use the concept of a gradient recentered barrier function [START_REF] Wills | A recentred barrier for constrained receding horizon control[END_REF]. Let W k : I r × R → R ≥0 for competitive and W k : I r ∩ I c × R → R ≥0 for cooperative edges be defined as

W k (α k , ēxk ) := W k (ē xk + α k ) -W k (α k ) - ∂W k ∂s (α k )ē xk . (22) 
The gradient recentered barrier function in (22

) satisfies W k (α k , 0) = 0, ∇ ēx k W k (α k , 0) = 0, where ∇ ēx k W k = ∂ Wk ∂ēx k , and W k (α k , ēxk ) → ∞ as |δ k | → ∆ k for k ≤ M , and as |δ k | → R k for all σ k = 1. Furthermore, W k (α k , ēxk ) satisfies κ1 2 ē2 xk ≤ W k (α k , ēxk ) ≤ κ 2 [∇ ēx k W k ] 2 .
Let k 1 , k 2 > 0 and k 3 ≥ 0. Then, we introduce the BLF-gradient-based bipartite formation-consensus control law,

u i := -k 1 M k=1 [E s ] ik ∇ ēx k W k -k 1 M k=1 [E] ik ∇ αk W k -k 2 M k=1 [E s ] ik ēvk -k 3 v i -k 1 N i=1 a il êi , (23) 
where E := E -E s , with E corresponding to the incidence matrix of the unsigned version of the signed network. 2 Then, E is a matrix representing only the competitive edges in the network. We define

W (α, ēx , ê) = M k=1 W k (α k , ēxk ) + 1 2 N i=1 a li |ê i | 2 , ( 24 
)
where a li = 1 if there is an information exchange between the virtual leader and the agent i and a li = 0 otherwise. Thus, the control law in ( 23) is given in the vector form as

u = -k E s ∇ ēx W -k 1 E∇ α W -k 2 E s ēv -k 3 v -k 1 ∇ ê W . (25) 
The first two terms in (25) ensure bipartite position consensus while the third guarantees velocity bipartite consensus, i.e., that (4) holds. The second term is needed specifically to cope with competitive agents; technically, it stems from a Lyapunovcontrol redesign-see the proof of Proposition 1. In the fourth term, if k 3 > 0, the velocities v → 0. Therefore, this gain may be set to a positive value or zero, depending on the control goal. For instance, for a swarm of autonomous vehicles, it may be desired that the vehicles continue to advance (v → 0) or that they converge to two rendezvous points in formation (v → 0), one for cooperative and one for competitive agents-see Section 4 for an example. The last term is equal to zero if there is no virtual leader, and all agents converge to a final state which is computed by their initial conditions, depending on k 3 . If there is a virtual leader, it ensures that all agents cooperative with the virtual leader converge to the virtual leader's position and k 3 should be greater than zero.

Remark 3. In [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF], the authors propose a bipartite formation control law for multiagent systems over undirected signed networks and under inter-agent distance constraints. In [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF], the control law is given by

u i := -k 1 M k=1 [E s ] ik ∇ ēx k W k -k 1 M k=1 [B] ik ∇ αk W k -k 2 M k=1 [E s ] ik ēvk -k 3 v i where B = (1+β)(βI+E ts L -1 ets E ts ) -1 (E-E s ), β > 0, is a term needing global knowledge
of the network, making the controller not fully distributed. The control law proposed in this paper, in (23), is fully distributed and solves leaderless and leader-follower bipartite formation control problems. •

Main statement

Using the definitions of Section 3.1 on the edge-based formulation, we analyze the stability of the system (1) in closed loop with the bipartite formation control law (25), with and without a virtual leader. We express the control law in terms of the spanning tree errors ēt by introducing a function W as W (α, ēxt , ê) = W (α, R s ēxt , ê), with W defined in (25). After [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF], its gradient with respect to ēxt gives

∇ ēx t W = ∂ W (α, ēxt , ê) ∂ē x ∂ē x ∂ē xt = ∇ ēx W R s . (26) 
Using (26), we first consider the leaderless and then the leader-follower bipartite formation-consensus-control problems.

Leaderless bipartite formation-consensus

After ( 14) and ( 26), the control law in (25) becomes

u = -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W . (27) 
Differentiating ( 11) on both sides and using v = u with u defined in (27), we obtain the following in terms of the errors corresponding to the spanning-tree ėxt = ēvt (28a

) ėvt = -k 1 L ets ∇ ēx t W -k 2 L ets R s R s ēvt -k 3 ēvt -k 1 E ts E∇ α W (28b)
Remark 4. E ts E ts = L ets corresponds to the edge Laplacian of a spanning tree and has N -1 edges-see [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF]Remark 3]. • Proposition 1. Consider the system (1) in closed loop with the distributed control law given by (27). Assume that the resulting network is structurally balanced and contains a directed spanning tree. Then, the origin of the closed-loop system depicted in (28) is asymptotically stable under any initial conditions respecting the constraints in (18), |α k (0)| > ∆ k for all k ≤ M , and these constraints are satisfied for all t.

Proof. First, employing [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF], we express the inter-agent distance constraints in (18) in terms of the errors corresponding to the spanning tree. Let I t = I rt ∩ I ct , with

I rt := {ē xt k ∈ R n : |r sk ēxt k + α k | < R k , ∀k ∈ E m }, (29) 
I ct := {ē xt k ∈ R n : ∆ k < |r sk ēxt k + α k |, ∀k ≤ M }. ( 30 
)
where r sk is the kth column of R s . Then, we consider the Lyapunov function candidate

V (α, ēxt , v) = k 1 W (α, ēxt ) + 1 2 |v| 2 . ( 31 
)
Considering the definition of W (α, ēxt , ê) in equation ( 24), and the positive nature of k 1 , we note that V in (31) is positive definite with respect to the state variables ēxt and ēvt as long as ēt = 0 and respects the constraints in (29) and (30). This positivity property holds uniformly in α. It is essential to note that in this part, where a virtual leader is not considered, a il = 0 for all i ≤ N , and W only depends on α and ēxt and V depends on α, ēxt and v. In addition, by its construction, V (α, ēxt , v) → ∞ as ēxt approaches the boundary ∂I t of the set I t , for a given ēvt and v.

Next, we calculate the total derivative of V . From the definition of α in (19), we have that α = E x -E s x. Its derivative gives α = (E -E s ) v = E v. For (1b) and (27), we have

v = -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W . ( 32 
)
Then,

V (α, ēxt , v) = k 1 ∇ ēx t W ėxt + k 1 ∇ α W E v + v -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W
and using ( 14) and ( 15), we obtain

V (α, ēxt , v) = -k 2 |ē v | 2 -k 3 |v| 2 ,
which is negative semidefinite. Next, Barbashin-Krasovskȋi's theorem is applied. For the set {(ē, v) : V = 0} it is established that ēv = 0 and v = 0. Consequently, α = E v = 0 leading to α being constant. Furthermore, following (32), we have

-k 1 E ts ∇ ēx t W = k 1 E∇ α W . ( 33 
)
After ( 22), it is also derived that

∇ α W = ∇ ēx t W - ∂ ∂α ∂W ∂α (α) ēxt . ( 34 
)
Since α remains constant on { V = 0}, the last term on the right-hand-side of (34) equals zero. Thus, (33) holds if and only if

-k 1 [E ts + E t -E ts ]∇ ēx t W = 0.
Here, E t corresponds to the incidence matrix of a spanning tree and is full rank. Then, we have ∇ ēx t W only vanishes at zero. It can be deduced that the origin is the only solution of (28) that remains in {(ē, v) : V = 0} for all t. Thus, asymptotic stability in the large, within the domain of the definition of V , is established. Next, we establish inter-agent collision avoidance and ensure connectivity preservation. Referring to (29), we note that if ēxt ∈ I t then ēx ∈ I, where I = I r ∩I c . To prove the forward invariance of I t , we employ a proof by contradiction. Assume that there exist a T > 0 such that ēxt (T ) / ∈ I t . This implies that either

|ē xt k + α k | → ∆ k , k ≤ M or |ē xt k + α k | → R k , k ∈ E m for at least one k ≤ M . In either case, Wk (α k , ēxt k ) → ∞, leading to V (α, ēxt , v) → ∞ as t → T .
However, this contradicts the fact that V (α, ēxt , v) ≤ 0. Hence, inter-agent collision avoidance and connectivity maintenance are ensured.

We now demonstrate that the set I serves as the domain of attraction for the closed-loop system (28), by proving that all solutions originating from I t converge to the origin. Consider any 1 ∈ (0, R k ) and 2 ∈ (0, ∆ k ). Define the subsets I r t ⊂ I rt and I c t ⊂ I ct as follows: I r t := {ē xk ∈ R :

|ē xk + α k | < R k -1 , ∀k ∈ E m } and I c t := {ē xk ∈ R : ∆ k + 2 < |ē xk + α k |, ∀k ≤ M } with I r t ∩ I c t = I t .
With the definition of W (α, ēxt ), it follows that V (α, ēxt , v) is positive definite for all ēxt ∈ I t and ēvt ∈ R satisfying

a|ē xt | 2 + b|ē vt | 2 + c|v| 2 ≤ V (α, ēxt , v) ≤ h(|ē xt |) + d|ē vt | 2 + f |v| 2 with
a, b, c, d, f > 0 and h is a strictly increasing everywhere in I t . Then, V (α, ēxt , v) → 0 as ēt → 0 and v → 0. Hence, the origin is asymptotically stable for all trajectories for the closed-loop system starting in I t . Since 1 and 2 are arbitrarily small, letting 1 → 0 and 2 → 0 establishes the asymptotic stability of the origin of (28) for all trajectories originating from I t . Consequently, bipartite formationconsensus is achieved with inter-agent collision avoidance and connectivity.

Leader-follower bipartite formation-consensus

In this Subsection, we introduce a virtual leader in the system, and we analyse the stability of ( 1) and ( 5), in closed loop with the bipartite formation control law (25). Now, after ( 15), ( 14) and ( 26), the control law in (25) becomes

u = -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W -k 1 ∇ ê W . (35) 
Then, differentiating on both sides of ( 11) we obtain

ėxt = ēvt (36a) ėvt = -k 1 L ets ∇ ēx t W -k 2 L ets R s R s ēvt -k 3 ēvt -k 1 E ts E∇ α W -k 1 E ts ∇ ê W (36b)
Proposition 2. Consider the system (1) and (5) in closed loop with the distributed control law (35) and assume that the resulting network is structurally balanced and contains an underlying spanning tree. Then, the origin for the closed-loop system (36) is asymptotically stable for any initial conditions respecting the constraints in (18), and |α k (0)| > ∆ k for all k ≤ M . In addition, the constraints are satisfied for all t. Moreover, x → Φx 0 as t → ∞.

Proof. We consider the Lyapunov function candidate in (31). In this context, where a virtual leader is taken into account within the network, the Lyapunov function also depends on ê leading to V (α, ēxt , v, ê) = k 1 W (α, ēxt , ê) + 1 2 |v| 2 . Next, we compute its total derivative. For (1b) and (35), we have

v = -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W -k 1 ∇ ê W . (37) 
Then,

V (α, ēxt , v, ê) = k 1 ∇ ēx t W ėxt + k 1 ∇ α W E v + k 1 ∇ ê W ė + v -k 1 E ts ∇ ēx t W -k 2 E ts R s R s ēvt -k 3 v -k 1 E∇ α W -k 1 ∇ ê W
and using the fact that ė = v and, ( 14) and ( 15), we obtain

V (α, ēxt , v) = -k 2 |ē v | 2 -k 3 |v| 2 ,
which is negative semidefinite. Next, Barbashin-Krasovskȋi's theorem is applied. For the set {(ē, v, ê) : V = 0} it is established that ēv = 0 and v = 0, which gives that α is constant. In turn, after (37), we have

-k 1 E ts ∇ ēx t W -k 1 ∇ ê W = k 1 E∇ α W . (38) 
On the other hand, since we have α ≡ const on { V = 0}, it follows that with (34)

-E t ∇ ēx t W -∇ ê W = 0 ⇔ -E t I N ∇ ēx t W ∇ ê W = 0.
E t corresponds to the incidence matrix of a spanning-tree, so it is full rank, and I N is also full rank. The matrix E t I N has linearly independent columns, so is also full rank and has a pseudoinverse, such that E t I N + E t I N = I. Then, it is deduced that the only solution is ∇ ēx t W = 0 and ∇ ê W = 0 so ēxt = 0 and ê = 0, which gives xi -sgn(a ij )x j = 0 and xi = φ i x 0 for all i, j ≤ N . It follows that the only solution of (36) that remains in {(ē, v, ê) : V = 0} for all t, is the origin. Thus, asymptotic stability in the large, within the domain of the definition of V , is established. Next, we establish inter-agent collision avoidance and ensure connectivity preservation, as in the proof of Proposition 1. Referring to (29), we note that if ēxt ∈ I t then ēx ∈ I, where I = I r ∩ I c . To prove the forward invariance of I t , we employ a proof by contradiction. Assume that there exist a T > 0 such that ēxt (T ) / ∈ I t . This implies that either

|ē xt k + α k | → ∆ k , k ≤ M or |ē xt k + α k | → R k , k ∈ E m for at least one k ≤ M , which makes Wk (α k , ēxt k , ê) → ∞, leading to V (α, ēxt , v, ê) → ∞ as t → T .
However, the latter contradicts the fact that V (α, ēxt , v, ê) ≤ 0. Hence, inter-agent collision avoidance and connectivity maintenance are ensured.

Then, we demonstrate that the set I serves as the domain of attraction for the closed-loop system (36), by proving that all solutions originating from I t converge to the origin. For any 1 ∈ (0, R k ) and 2 ∈ (0, ∆ k ), define subsets I r t ⊂ I rt and I c t ⊂ I ct as in the proof of Proposition 1. From the definition of W (α, ēxt , ê), it follows that V (α, ēxt , v, ê) is positive definite for all ēxt ∈ I t and ēvt ∈ R and satisfies

a 1 |ē xt | 2 + b 1 |ē vt | 2 + c 1 |v| 2 + d 1 |ê| 2 ≤ V (α, ēxt , v, ê) ≤ h(|ē xt |) + b 2 |ē vt | 2 + c 2 |v| 2 + d 2 |ê| 2 with a 1 , b 1 , c 1 , d 1 , b 2 , c 2 , d 2 > 0
and h is a strictly increasing everywhere in I t . Then, V (α, ēxt , v, ê) → 0 as ēt → 0, v → 0 and ê → 0. Hence, the origin is asymptotically stable for all trajectories for the closed-loop system starting in I t . Since 1 and 2 are arbitrarily small, letting 1 → 0 and 2 → 0 establishes the asymptotic stability of the origin of (28) for all trajectories originating from I t . Consequently, bipartite formationconsensus is achieved with inter-agent collision avoidance and connectivity.

Simulation Results

In this section, we present some numerical examples to show the performance of our control laws. We consider a structurally balanced signed network of nonholonomic mobile robots. Let r i = [r xi r yi ] be the inertial position, θ i the orientation, v i the linear speed, ω i the angular speed, m i the mass, J i the moment of inertia, η i be the applied force and torque, and F i be Lagrangian dynamics. Then, the robot's model is given by

  ṙxi ṙyi θ   =   v i cos θ i v i sin θ i ω i   , vi ω = 1 mi 0 0 1 Ji [η i + F i ]. (39) 
Then, we define s θi := sin θ i and c θi := cos θ i and choose the reference point p i = r i + δ i c θi s θi located at a distance δ i = 0.1m along the line that is perpendicular to the wheels' axis and we define

ζ :=       r xi + δ i c θi r yi + δ i s θi v i c θi -δ i ω i s θi v i s θi + δ i ω i c θi θ i       . ( 40 
)
In transformed coordinates, with

p i = [ζ 1i ζ 2i ] , we have ζ1i ζ2i = ζ 3i ζ 4i , ζ3i ζ4i = -v i ω i s θi -δ i ω 2 i c θi v i ω i c θi -δ i ω 2 i s θi + 1 mi c θi -δi Ji s θi 1 mi s θi δi Ji c θi [η i + F i ], ζ5i = - 1 2δ i ζ 3i sin ζ 5i + 1 2δ i ζ 4I cos ζ 5i . (41) 
The feedback-linearizing control η i is given by

η i = 1 mi c θi -δi Ji s θi 1 mi s θi δi Ji c θi -1 u i - -v i ω i s θi -δ i ω 2 i c θi v i ω i c θi -δ i ω 2 i s θi -F i (42) 
which yields [ ζ3i ζ4i ] = u i .

Leaderless bipartite formation-consensus

We first provide a numerical example to show the performance of our control law (25) with k 1 = 1, k 2 = 1.2, k 3 = 1 and the barrier-Lyapunov function in (22), with

B rk (s) = ln R 2 k R 2 k -|s| 2 , B ck (s) = ln |s| 2 |s| 2 -∆ 2 k , (43) 
We implement (42) with u i as in (25),

x i = [ζ 1i ζ 2i ] , v i = [ζ 3i ζ 4i ] , m i = 8kg and J i = 0.12kg/m 2 , ∀i ≤ N .
We consider an undirected signed network of 10 agents and 10 edges as the one depicted in Figure 2, subject to inter-agent collision avoidance and connectivity maintenance restrictions. We define the orientation of the edges as fol- lows:

e 1 = ν 1 + ν 2 , e 2 = ν 1 -ν 3 , e 3 = ν 1 -ν 4 , e 4 = ν 2 -ν 5 , e 5 = ν 2 -ν 6 , e 6 = ν 2 -ν 7 , e 7 = ν 3 -ν 8
, e 8 = ν 5 -ν 9 , e 9 = ν 6 + ν 10 and e 10 = ν 3 + ν 5 . The incidence matrix corresponding to the graph is The set of nodes may be split into two disjoint subsets, such as V 1 = {ν 1 , ν 3 , ν 4 , ν 8 , ν 10 } and V 2 = {ν 2 , ν 5 , ν 6 , ν 7 , ν 9 } so the network is structurally balanced. From the decomposition in [START_REF] Sekercioglu | Bipartite formation over undirected signed networks with collision avoidance[END_REF], edges e i , i ≤ 9 correspond to G t and the remaining edge e 10 corresponds to G c . The eigenvalues of L s and L es are λ Ls = λ Le s = {0, 0.33, 0.58, 0.67, 0.79, 2, 2.5, 3.41, 4, 5.7} as the considered network has the same number of edges as the number of nodes. The respective agents' initial states are r x (0) = [3.5, 3.7, -2.5, 3.5, -2, 5, 5, 8, 6, -4] , r y (0) = [2, 1.7, -6, 2.5, 1, 2.3, 1.8, -3, 5.5, -4] , v(0) = [0.2, 0.45, 0.32, 0.32, 1.12, 0.3, 0.4, 0.22, 0.42, -0.14] , θ(0) = [0, -0.46, -1.25, 0.32, -0.46, 0, 0, -1.11, -0.79, -0.79] and the relative displacements are d x = [-0.8, -0.8, -0.4, 0.4, -0.4, 0.4, -0.4, -0.4, 0.4, 0.4] and d y = [0, 0, 0.4, 0.4, 0.4, 0.4, -0.4, -0.4, -0.4, -0.4] . The constraint sets are ∆ k = 0.2 for all k ≤ M and R k = 11 for all k ∈ E m . The paths of each agent up to bipartite formation are depicted in Figure 3. The reference points of the mobile robots reach the desired formation around two symmetric consensus points. The velocities of mobile robots are depicted in Figure 4, and velocities converge to zero. Moreover, it is clear from Figure 6 that the inter-agent collision avoidance and connectivity maintenance constraints in (8)-( 9) are always respected.

E s =                1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 -1 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 1 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0                . - 4 

Leader-follower bipartite formation-consensus

We then provide a numerical example to show the performance of our control law (35), in the presence of a virtual leader ν 0 , with k 1 = 1, k 2 = 1.2, k 3 = 1 and the barrier-Lyapunov function in (22), with (43). We consider the same undirected signed network in Figure 2 with a virtual leader 0 giving information to agent ν 1 , depicted in . The constraints are also set as before. The paths of each agent up to leader-follower bipartite formation are depicted in Figure 8. Agents in V 1 converge around the virtual leader's position, while agents in V 2 reach formation around the virtual leader's symmetric position. The velocities of mobile robots are depicted in Figure 10, and velocities converge to zero. Moreover, it is clear from Figure 11 that the inter-agent collision avoidance and connectivity maintenance constraints in ( 8)-( 9) are always respected.

Conclusions

We presented a BLF-based distributed control law to solve the bipartite formationconsensus control problem for double integrators over structurally balanced undirected signed networks. The proposed control law guarantees inter-agent collision avoidance for every agent in the networks and connectivity maintenance for two cooperative agents. We analyzed the asymptotic stability of the system in terms of the errors and using Lyapunov's direct method. We also illustrated the practical application of our results through numerical simulations involving the formation-consensus control of nonholonomic vehicles. Further research is focused on extending these results to directed signed networks with one or more leaders.
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 52 Figure 2. Network 1: A structurally balanced, leaderless, and undirected signed network of 10 mobile robots. The black lines represent cooperative edges, and the red lines represent the competitive ones.
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 3 Figure 3. Bipartite formation of system (39) with control input (25) in the leader centered reference frame. The asterisks are the inertial positions of the robots. The reference points p i of the mobile robots, on the black circles around the asterisks, of the two disjoint subgroups form a formation around two symmetrical consensus points.
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 456 Figure 4. Bipartite formation of system (39) with control input (25) on velocity, where k 3 > 0. The velocities of all agents converge to zero.
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 578 Figure 7. Network 2: A structurally balanced undirected signed network of 10 mobile robots with a virtual leader ν 0 .

Figure 7 .

 7 The virtual leader's position isx 0 = [-2 -3] , A l = diag(1, 0, . . . , 0) and Φ = [1, -1, 1, 1, -1, -1, -1, 1, -1, 1] . Thus, we implement (42) with u i as in (35), x i = [ζ 1i ζ 2i ] , v i = [ζ 3i ζ 4i ] , m i =8kg and J i 0.12kg/m ∀i ≤ N . respective inertial positions, velocities, and orientations are the same as before, while the relative displacements are d x = [-0.8, 0.8, -0.4, 0.4, 0.4, -0.4, 0.4, -0.4, -0.4, 0.4] and d y = [0, 0, 0.4, 0.4, 0.4, 0.4, -0.4, -0.4, -0.4, -0.4]

Figure 9 .Figure 10 .

 910 Figure 9. Bipartite formation of system (39) with control input (25) on velocity, where k 3 > 0. The velocities of all agents converge to zero.

Figure 11 .

 11 Figure 11. Trajectories of the norm of the inter-agent distances with control input (25). The dashed lines are the minimum, and the dotted lines are the maximum distance constraints for agents. All inter-agent safety proximity constraints are respected.

A particular choice for Br k (ēx k ), Bc k (ēx k ) is given in Section 4.

A structurally balanced signed network can be transformed into an unsigned one using the gauge transformation-see[START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF][START_REF] Du | Edge convergence problems on signed networks[END_REF].
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