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ABSTRACT
We propose a method to control networks involving both cooperative and com-
petitive interactions simultaneously under proximity and collision-avoidance con-
straints. The control design is of gradient type, using a barrier-Lyapunov function.
Then, under the assumption that the network is undirected and structurally bal-
anced, we establish asymptotic stability of the leaderless and leader-follower bipartite
formation-consensus manifold. We assume that the agents are modeled by second-
order integrators, but we also demonstrate the utility of our theoretical findings via
numerical simulations on a problem of formation-consensus control of nonholonomic
vehicles.

KEYWORDS
Formation consensus; coopetition networks; barrier-Lyapunov functions

1. Introduction

Most of the works done in the literature on consensus and synchronization of multi-
agent systems apply to the case of networks having only cooperative interactions [15].
In these protocols, all agents reach a global agreement regarding a certain quantity of
interest through collaboration [11]. This excludes several scenarios where some agents
cooperate, and others compete, as e.g., in the context of herding control [3, 7] or
in social networks [1]. Networks in which competitive interactions are represented
by negative weights on the edges and cooperative ones by positive weights, are called
coopetition networks [8]. For these networks, agreement on a common value is generally
not attainable. Still, an achievable goal is the so-called multi-partite consensus, in
which case the system has more than one equilibrium point. More precisely, considering
a structurally balanced and connected undirected signed network, bipartite consensus
can be achieved and all the agents converge to the same state in modulus, but with
opposite sign [1]. There are multiple studies on the bipartite consensus-control problem
for single-integrators [1], double-integrators [17], and linear high-order dynamics [14].
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For these kinds of problems considered in the literature, the main objective is to
attain the goal destination or to follow the reference trajectory. However, when appli-
cation scenarios are considered, for instance, in formation of autonomous vehicles, the
latter must also satisfy secondary objectives, such as guaranteeing collision avoidance
between two agents or maintaining information exchange between the ones cooper-
ating with each other. Those objectives are encoded as inter-agent constraints and
are usually handled by barrier functions—see e.g., [4], [2] and [10]. The latter uses
Lyapunov-like barrier functions to encode collision avoidance and connectivity main-
tenance control goals and assures the convergence to desired destinations for a network
of multiple nonholonomic vehicles.

In [3], the multi-swarm herding problem is solved under connectivity constraints
using a mixed integer quadratically constrained program; in [7], a control strategy is
proposed for the non-cooperative herding problem described by first-order dynamics
and control barrier functions are used to prevent some agents from escaping from a
protected zone. Yet, in [3] and [7], the system is modeled by a network in which all
the agents cooperate and the control laws are optimization-based. Moreover, in [7]
only a two-agent scenario is considered. In [6], the bipartite flocking-control problem
is studied, and artificial potential functions are used to guarantee collision avoidance
and connectivity maintenance. The statements rely on LaSalle’s invariance principle.
However, collisions are avoided in [6], but a minimal safety distance between agents
is not guaranteed. Thus, only a few works in the literature focus on inter-agent con-
strained control problems for coopetition networks. In [13], a controller is proposed to
solve the bipartite formation-control problem with inter-agent collision avoidance and
connectivity maintenance for structurally balanced undirected networks. However, the
proposed controller requires the global knowledge of the network topology. This paper
proposes a fully distributed control law that reduces high communication burdens on
the system.

We study the leaderless and leader-follower bipartite formation-consensus problems
for structurally balanced undirected signed networks described by second-order sys-
tems under inter-agent distance constraints. We propose a distributed bipartite for-
mation control law that prevents inter-vehicle collisions and keeps vehicles in their
sensors’ range. We base our control law and analysis on the edge representation for
signed networks [5]. This also allows to recast the bipartite formation-consensus prob-
lem into the space of the error coordinates. In contrast to [3], [7], and [6], we encode
the inter-agent distance constraints using barrier-Lyapunov functions, and our con-
troller is based on the gradient of a barrier-Lyapunov function. With respect to [13],
our control law is fully distributed, and we demonstrate our theoretical findings on
more realistic scenarios with nonholonomic mobile robots following a leader.

Thus, relative to the existing literature, we contribute with a fully distributed con-
trol law that solves leader-follower and leaderless bipartite formation-consensus-control
problems for structurally balanced undirected signed networks described by second-
order systems. Our controller guarantees inter-agent collision avoidance by ensuring all
agents keep a minimum safety distance between one another and ensures maintenance
of information exchange for all agents having cooperative interactions. Furthermore,
we establish asymptotic stability of the bipartite formation-consensus manifold by ap-
plying Lyapunov’s direct method and employing edge-based formulation for signed
networks.
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2. Model and Problem Formulation

Consider a network of N dynamical systems having the following dynamics.

˙̄xi = vi, (1a)

v̇i = ui, x̄i ∈ Rn, i ≤ N, (1b)

where x̄i = xi − di, xi is the agent’s position, and di is a relative displacement with
respect to a consensus value. For instance, for vehicles moving on the plane, xi ∈ R2

may represent a pair of Cartesian coordinates and di ∈ R2 an offset relative to the
center of a desired formation—see Section 4.

Let such systems be interconnected over an undirected network so that the ith agent
exchanges state measurements with a set of neighbors with state x̄j , but under the
assumption that some agents are cooperative and others are competitive. Such net-
works are referred to as coopetitive [8]. In general, the inputs of a coopetitive network
are defined as—cf. [17],

ui =−
N∑
j=1

|aij |
[
k1[x̄i − sgn(aij)x̄j ] + k2[vi − sgn(aij)vj ]

]
, aij ∈ {−1, 0, 1}, (2)

where |aij | = 1 if there is an interconnection between the ith and jth agents and aij = 0
if there is not. The expression (2) is reminiscent of classical consensus control laws for
second-order systems [11], but with the important difference that aij ∈ {−1, 0, 1};
aij = 1 if the agents j and i are cooperative and aij = −1 if they are competitive.
Because of the presence of competitive agents, in general, consensus cannot be reached,
but following the framework of [1], which focuses on first-order systems, we may define
the synchronization errors

ēxk
:= x̄i − sgn(aij)x̄j , ēvk := vi − sgn(aij)vj , k ≤M, (3)

where k denotes the index of the interconnection between the ith and jth agents. Then,
we are interested in the conditions under which the following property is attained.

Definition 1 (Leaderless bipartite consensus). The systems (1)-(2) are said to achieve
bipartite position and velocity consensus if

lim
t→∞

ēxk
(t) = 0, lim

t→∞
ēvk(t) = 0, k ≤M. (4)

That is, for agents i and j cooperative with each other, bipartite consensus implies
that (xi, vi)→ (xj , vj) while for agents competitive with each other we have (xi, vi)→
(−xj ,−vj). In [17], it is established that the distributed control law in (2) guarantees
bipartite consensus provided that the network enjoys the following property, which
was introduced earlier, in [1].

Definition 2 (Structural balance). Let V, of cardinality N , denote a set of vertices
(nodes) νk, let E ⊆ V2, of cardinality M , denote the set of edges (interconnections)
εk := (i, j), and let G(V, E) denote the corresponding graph. Then, a signed graph is
structurally balanced if it may be split into two disjoint sets of vertices V1 and V2,
where V1 ∪ V2 = V,V1 ∩ V2 = ∅ such that for every i, j ∈ Vp, p ∈ {1, 2}, if aij ≥ 0,

3



while for every i ∈ Vp, j ∈ Vq, with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0. It is structurally
unbalanced, otherwise.

ν1 ν2

ν3 ν4

(a)

ν1 ν2

ν3 ν4

(b)

Figure 1. Example of two signed networks, where the cooperative interactions are represented by solid black

lines and the competitive interactions by red dashed lines: (a) the nodes can be separated into two disjoint

subsets such as V1 = {ν1, ν3} and V2 = {ν2, ν4} so the graph is structurally balanced, (b) the nodes cannot
be separated into 2 disjoint subsets so the graph is structurally unbalanced.

That is, for structurally balanced networks –see Figure 1, bipartite consensus means
that the elements of the two sets of vertices V1 and V2 converge to the same state in
the module but with opposite signs. In [1], the final states of the agents are defined
by their initial conditions. However, there are some cases in which an external factor
decides the final states of the agents. Thus, a virtual leader ν0 can be introduced to
coordinate with at least one agent. Assume that the dynamics of the virtual leader
are described by

ẋ0 = 0, x0 ∈ Rn. (5)

Let φi = {1, −1} describe the interaction relationship between the virtual leader and
the agents νi, i ≤ N . Then, we define

êi := x̄i − φix0, i ≤ N, (6)

and the leader-follower bipartite consensus is introduced next.

Definition 3 (Leader-follower bipartite consensus). Let x0 ∈ Rn be the position of the
virtual leader ν0, whose dynamics are given in (5), provided to at least one follower.
Then, the systems (1)-(2) are said to achieve leader-follower bipartite position and
velocity consensus if (4) and

lim
t→∞

êi(t) = 0, i ≤ N. (7)

That is, for agents i cooperative with the virtual leader, bipartite consensus implies
that (xi, vi) → (x0, 0) while for agents competitive with the virtual leader we have
(xi, vi)→ (−x0, 0). This paper addresses these two problems in a scenario that imposes
proximity and collision avoidance constraints between all agents xi, i ≤ N .

Consider a group of systems (1) interconnected through inputs ui such that they
form a communication network with a signed, undirected, structurally balanced graph
G(V, E).

For each pair of communicating nodes νi and νj ∈ V, labeled k ≤M , let δk := xi−xj ,
let Rk > 0 and ∆k > 0 be given. Also, consider the sets Vl, with l ∈ {1, 2}, as defined
in Definition 2. Then, define the set of proximity constraints Ir and the set of collision-
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avoidance constraints Ic as

Ir := {δk ∈ Rn : |δk| < Rk, ∀i, j ∈ Vl, l = {1, 2}} (8)

Ic := {δk ∈ Rn : |δk| > ∆k ∀k ≤M}. (9)

Under these conditions, it is required to design a distributed bipartite consensus control
law u∗i such that the synchronization errors (ēxk

, ēvk) in (3) satisfy (4) and the agents’
trajectories satisfy the proximity and collision-avoidance constraints, that is, δi(t) ∈ I
for all t ≥ 0, with I := Ir ∩ Ic.

Remark 1. Proximity constraints are not imposed on competitive interactions since
it is assumed that the agents competitive with each other have different objectives, so
they do not stay close to each other. •

3. Bipartite consensus under constraints

We solve the bipartite formation-consensus problem over undirected signed networks
using a barrier-Lyapunov function [10] and a gradient-based consensus control law.
Moreover, we recast the problem stated above into the space of the synchronization
errors using the edge-based framework [9]. Thus, we first recall some facts on signed
networks [1] and on the edge-based formulation for signed networks [5].

Remark 2. For notational simplicity, in this section, we assume that xi ∈ R, but with
obvious modifications (involving the Kronecker product ⊗) all the statements may be
reformulated for systems with xi ∈ Rn. In Section 4, e.g., we consider the problem of
bipartite-formation consensus for vehicles moving on the plane, hence, with n = 2. •

3.1. The edge-based formulation for signed networks

The elements of the Laplacian matrix of a signed graph, Ls ∈ RN×N , are

`sij =

{ ∑
h≤N
|aih| i = j

−aij i 6= j.
(10)

In the following definition, we introduce the elements of the incidence matrix of a
structurally balanced signed graph.

Definition 4. Consider a structurally balanced undirected signed network G that con-
tains N nodes and M edges. The incidence matrix Es ∈ RN×M of G is defined as

[Es]ik :=


+1 if vi is the initial node of the edge ek;
−1 if vi, vj ∈ Vl and vi is the terminal node of the edge ek;
+1 if vi ∈ Vp, vj ∈ Vq and vi is the terminal node of the edge ek;
0 otherwise,

where ek = vivj , k ≤ M, i, j ≤ N are arbitrarily oriented edges, l, p, q ∈ {1, 2} with
p 6= q and V1 and V2 are the two disjoint sets of vertices.

5



Using Definition 4, we express the synchronization errors in (3), in the vector forms

ēx = E>s x̄, ēv = E>s v. (11)

We may also express the node and edge Laplacians using the definition of the incidence
matrix. The Laplacian matrix Ls and the edge Laplacian matrix Les of a structurally
balanced graph G satisfy—see [13, Claim 1],

Ls = EsE
>
s , Les = E>s Es. (12)

Furthermore, for a structurally balanced signed graph containing a spanning tree, we
can distinguish the state variables corresponding to the spanning tree from the states
corresponding to the cycles (the rest of the edges). The incidence matrix satisfies

Es = [Ets Ecs ], (13)

where Ets ∈ RN×N−1 is the incidence matrix representing the edges of the spanning
tree corresponding to a spanning tree graph Gt and Ecs ∈ RN×M−(N−1) is the incidence
matrix representing the remaining edges corresponding to Gc := G\Gt. After (11) and
(13) we partition the synchronization errors as

ēx = [(E>ts x̄)> (E>cs x̄)>]> := [ē>xt
ē>xc

]>, ēv = [(E>tsv)> (E>csv)>]> =: [ē>vt ē>vc ]
>.

The indices t and c correspond to states of the graphs Gt and Gc, respectively. Then,
we establish a relation between the errors of the spanning tree and the synchronization
errors. For a structurally balanced signed graph, there exists a matrix Rs such that

Es = EtsRs, (14)

where Rs := [IN−1 Ts] and Ts := (E>tsEts)
−1E>tsEcs—[13, Proposition 1]. This re-

lation between the incidence matrices Es and Ets also indicates a link between all
synchronization errors ēx and the ones corresponding to the spanning-tree ēxt

. We
note that after (14) we have

ēx = (EtsRs)
>x̄ = R>s ēxt

, ēv = (EtsRs)
>v = R>s ēvt . (15)

Then, the studied problem may be addressed as that of stabilizing the origin of a
reduced-order system of the spanning-tree errors, and it follows that the objective (4)
is attained if ēxt

→ 0 and ēvt → 0.

3.2. Barrier-Lyapunov Function based controller

We first define a barrier-Lyapunov function (BLF)—cf. [9], [10], [12].

Definition 5. Consider the system ẋ = f(x) and let I be an open set containing
the origin. A BLF is a positive definite function W : I → R≥0, x 7→ W (x), that
is C1, satisfies ∇W (x)f(x) ≤ 0, where ∇W (x) := ∂V/∂x, and has the property that
W (x)→∞, and ∇W (x)→∞ as x→ ∂I.
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We proceed to define a barrier-Lyapunov function of the synchronization errors ēxk
.

To that end, we remark that for a pair of agents cooperative with each other, the
synchronization errors in position, defined in (3), are

ēxk
= x̄i − x̄j = δk − d̄k, i, j ∈ Vl, l ∈ {1, 2}, (16)

while for a pair of agents competitive with each other, the synchronization errors are

ēxk
= x̄i + x̄j = δk − d̄k + 2xj , i ∈ Vp, j ∈ Vq, p, q ∈ {1, 2} p 6= q, (17)

with d̄k = di − sgn(aij)dj . Then, from (16) and (17), the constraints sets in (8) and
(9) may be rewritten as

Ir = {ēxk
∈ Rn : |ēxk

+ αk| < Rk, ∀k ∈ Em}, (18a)

Ic = {ēxk
∈ Rn : ∆k < |ēxk

+ αk|, ∀k ≤M}. (18b)

Em consists in the indexes of m edges corresponding to cooperative interactions be-
tween agents, such that 0 ≤ m < M , and αk is defined as

αk :=

{
d̄k if i, j ∈ Vl, l ∈ {1, 2}

δk − ēxk
if i ∈ Vp, j ∈ Vq, p, q ∈ {1, 2}, p 6= q.

(19)

Then, for each edge ek, k ≤M , we define the BLF Wk : R→ R≥0,

Wk(ēxk
) =

1

2
[|ēxk
|2 +Bk(ēxk

)], (20)

where Bk(ēxk
) encodes the constraints in (18) and is given by

Bk(ēxk
) = Bck(ēxk

) +
1

2
(1 + σk)Brk(ēxk

). (21)

Bk(ēxk
) consists in two functions satisfying Definition 5. Bck(ēxk

) encodes the inter-
agent collision avoidance constraints for each edge, whether it is a cooperative or
a competitive one. Brk(ēxk

) encodes the inter-agent connectivity maintenance con-
straints for cooperative edges, such that σk = 1 if k ∈ Em, and σk = −1 otherwise.
Furthermore, Bk(ēxk

)1 is non-negative and satisfies Bk(0) = 0 and Bk(ēxk
) → ∞ as

|ēxk
| → ∆k for all k ≤ M and as |ēxk

| → Rk for k ∈ Em. However, for the system’s
solution to lie within the constraint sets defined in (18) and for the agents to converge
to the desired equilibrium point, the barrier function must be modified. To this end, we

use the concept of a gradient recentered barrier function [16]. Let Ŵk : Ir ×R→ R≥0

for competitive and Ŵk : Ir ∩ Ic × R→ R≥0 for cooperative edges be defined as

Ŵk(αk, ēxk
) := Wk(ēxk

+ αk)−Wk(αk)−
∂Wk

∂s
(αk)ēxk

. (22)

The gradient recentered barrier function in (22) satisfies Ŵk(αk, 0) = 0,

∇ēxk
Ŵk(αk, 0) = 0, where ∇ēxk

Ŵk = ∂Ŵk

∂ēxk

, and Ŵk(αk, ēxk
)→∞ as |δk| → ∆k

1A particular choice for Brk (ēxk ), Bck (ēxk ) is given in Section 4.
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for k ≤ M , and as |δk| → Rk for all σk = 1. Furthermore, Ŵk(αk, ēxk
) satisfies

κ1

2 ē
2
xk
≤ Ŵk(αk, ēxk

) ≤ κ2[∇ēxk
Ŵk]

2.
Let k1, k2 > 0 and k3 ≥ 0. Then, we introduce the BLF-gradient-based bipartite

formation-consensus control law,

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
Ŵk − k1

M∑
k=1

[E]ik∇αk
Ŵk − k2

M∑
k=1

[Es]ikēvk

− k3vi − k1

N∑
i=1

ail êi, (23)

where E := E − Es, with E corresponding to the incidence matrix of the unsigned
version of the signed network.2 Then, E is a matrix representing only the competitive
edges in the network. We define

W̄ (α, ēx, ê) =

M∑
k=1

Ŵk(αk, ēxk
) +

1

2

N∑
i=1

ali |êi|2, (24)

where ali = 1 if there is an information exchange between the virtual leader and the
agent i and ali = 0 otherwise. Thus, the control law in (23) is given in the vector form
as

u = −k1Es∇ēxW̄ − k1E∇αW̄ − k2Esēv − k3v − k1∇êW̄ . (25)

The first two terms in (25) ensure bipartite position consensus while the third guar-
antees velocity bipartite consensus, i.e., that (4) holds. The second term is needed
specifically to cope with competitive agents; technically, it stems from a Lyapunov-
control redesign—see the proof of Proposition 1. In the fourth term, if k3 > 0, the
velocities v → 0. Therefore, this gain may be set to a positive value or zero, depending
on the control goal. For instance, for a swarm of autonomous vehicles, it may be desired
that the vehicles continue to advance (v 6→ 0) or that they converge to two rendezvous
points in formation (v → 0), one for cooperative and one for competitive agents—see
Section 4 for an example. The last term is equal to zero if there is no virtual leader,
and all agents converge to a final state which is computed by their initial conditions,
depending on k3. If there is a virtual leader, it ensures that all agents cooperative with
the virtual leader converge to the virtual leader’s position and k3 should be greater
than zero.

Remark 3. In [13], the authors propose a bipartite formation control law for multi-
agent systems over undirected signed networks and under inter-agent distance con-
straints. In [13], the control law is given by

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
Ŵk − k1

M∑
k=1

[B]ik∇αk
Ŵk − k2

M∑
k=1

[Es]ikēvk − k3vi

where B = (1+β)(βI+EtsL
−1
etsE

>
ts )−1(E−Es), β > 0, is a term needing global knowledge

2A structurally balanced signed network can be transformed into an unsigned one using the gauge

transformation—see [1, 5].

8



of the network, making the controller not fully distributed. The control law proposed
in this paper, in (23), is fully distributed and solves leaderless and leader-follower
bipartite formation control problems. •

3.3. Main statement

Using the definitions of Section 3.1 on the edge-based formulation, we analyze the
stability of the system (1) in closed loop with the bipartite formation control law (25),
with and without a virtual leader. We express the control law in terms of the spanning
tree errors ēt by introducing a function W̃ as W̃ (α, ēxt

, ê) = W̄ (α,R>s ēxt
, ê), with W̄

defined in (25). After (15), its gradient with respect to ēxt
gives

∇ēxt
W̃ =

∂W̃ (α, ēxt
, ê)>

∂ēx

∂ēx
∂ēxt

= ∇ēxW̄>R>s . (26)

Using (26), we first consider the leaderless and then the leader-follower bipartite
formation-consensus-control problems.

3.3.1. Leaderless bipartite formation-consensus

After (14) and (26), the control law in (25) becomes

u = −k1Ets∇ēxt
W̃ − k2EtsRsR

>
s ēvt − k3v − k1E∇αW̃ . (27)

Differentiating (11) on both sides and using v̇ = u with u defined in (27), we obtain
the following in terms of the errors corresponding to the spanning-tree

˙̄ext
= ēvt (28a)

˙̄evt =− k1Lets∇ēxt
W̃ − k2LetsRsR

>
s ēvt − k3ēvt − k1E

>
tsE∇αW̃ (28b)

Remark 4. E>tsEts = Lets corresponds to the edge Laplacian of a spanning tree and
has N − 1 edges—see [13, Remark 3]. •

Proposition 1. Consider the system (1) in closed loop with the distributed control law
given by (27). Assume that the resulting network is structurally balanced and contains
a directed spanning tree. Then, the origin of the closed-loop system depicted in (28)
is asymptotically stable under any initial conditions respecting the constraints in (18),
|αk(0)| > ∆k for all k ≤M , and these constraints are satisfied for all t. �

Proof. First, employing (15), we express the inter-agent distance constraints in (18)
in terms of the errors corresponding to the spanning tree. Let It = Irt ∩ Ict , with

Irt := {ēxtk
∈ Rn : |r>sk ēxtk

+ αk| < Rk, ∀k ∈ Em}, (29)

Ict := {ēxtk
∈ Rn : ∆k < |r>sk ēxtk

+ αk|, ∀k ≤M}. (30)

where rsk is the kth column of Rs. Then, we consider the Lyapunov function candidate

V (α, ēxt
, v) = k1W̃ (α, ēxt

) +
1

2
|v|2. (31)
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Considering the definition of W̃ (α, ēxt
, ê) in equation (24), and the positive nature of

k1, we note that V in (31) is positive definite with respect to the state variables ēxt

and ēvt as long as ēt 6= 0 and respects the constraints in (29) and (30). This positivity
property holds uniformly in α. It is essential to note that in this part, where a virtual
leader is not considered, ail = 0 for all i ≤ N , and W̃ only depends on α and ēxt

and
V depends on α, ēxt

and v. In addition, by its construction, V (α, ēxt
, v) → ∞ as ēxt

approaches the boundary ∂It of the set It, for a given ēvt and v.
Next, we calculate the total derivative of V . From the definition of α in (19), we

have that α = E>x−E>s x̄. Its derivative gives α̇ = (E −Es)>v = E>v. For (1b) and
(27), we have

v̇ = −k1Ets∇ēxt
W̃ − k2EtsRsR

>
s ēvt − k3v − k1E∇αW̃ . (32)

Then,

V̇ (α, ēxt
, v) = k1∇ēxt

W̃> ˙̄ext
+ k1∇αW̃>E>v + v̇>

[
−k1Ets∇ēxt

W̃

−k2EtsRsR
>
s ēvt − k3v − k1E∇αW̃

]
and using (14) and (15), we obtain

V̇ (α, ēxt
, v) =− k2|ēv|2 − k3|v|2,

which is negative semidefinite.
Next, Barbashin-Krasovsk̆ıi’s theorem is applied. For the set {(ē, v) : V̇ = 0} it is

established that ēv = 0 and v = 0. Consequently, α̇ = E>v = 0 leading to α being
constant. Furthermore, following (32), we have

−k1Ets∇ēxt
W̃ = k1E∇αW̃ . (33)

After (22), it is also derived that

∇αW̃ = ∇ēxt
W̃ − ∂

∂α

{
∂W

∂α
(α)

}
ēxt
. (34)

Since α remains constant on {V̇ = 0}, the last term on the right-hand-side of (34)
equals zero. Thus, (33) holds if and only if −k1[Ets + Et − Ets ]∇ēxt

W̃ = 0. Here, Et
corresponds to the incidence matrix of a spanning tree and is full rank. Then, we have
∇ēxt

W̃ only vanishes at zero. It can be deduced that the origin is the only solution of

(28) that remains in {(ē, v) : V̇ = 0} for all t. Thus, asymptotic stability in the large,
within the domain of the definition of V , is established.

Next, we establish inter-agent collision avoidance and ensure connectivity preserva-
tion. Referring to (29), we note that if ēxt

∈ It then ēx ∈ I, where I = Ir∩Ic. To prove
the forward invariance of It, we employ a proof by contradiction. Assume that there
exist a T > 0 such that ēxt

(T ) /∈ It. This implies that either |ēxtk
+αk| → ∆k, k ≤M

or |ēxtk
+αk| → Rk, k ∈ Em for at least one k ≤M . In either case, W̃k(αk, ēxtk

)→∞,
leading to V (α, ēxt

, v) → ∞ as t → T . However, this contradicts the fact that
V̇ (α, ēxt

, v) ≤ 0. Hence, inter-agent collision avoidance and connectivity maintenance
are ensured.
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We now demonstrate that the set I serves as the domain of attraction for the
closed-loop system (28), by proving that all solutions originating from It converge to
the origin. Consider any ε1 ∈ (0, Rk) and ε2 ∈ (0,∆k). Define the subsets Iεrt ⊂ Irt
and Iεct ⊂ Ict as follows: Iεrt := {ēxk

∈ R : |ēxk
+ αk| < Rk − ε1, ∀k ∈ Em}

and Iεct := {ēxk
∈ R : ∆k + ε2 < |ēxk

+ αk|, ∀k ≤ M} with Iεrt ∩ Iεct = Iεt .
With the definition of W̃ (α, ēxt

), it follows that V (α, ēxt
, v) is positive definite for all

ēxt
∈ Iεt and ēvt ∈ R satisfying a|ēxt

|2 + b|ēvt |2 + c|v|2 ≤ V (α, ēxt
, v) ≤ h(|ēxt

|) +
d|ēvt |2 + f |v|2 with a, b, c, d, f > 0 and h is a strictly increasing everywhere in Iεt .
Then, V (α, ēxt

, v) → 0 as ēt → 0 and v → 0. Hence, the origin is asymptotically
stable for all trajectories for the closed-loop system starting in Iεt . Since ε1 and ε2 are
arbitrarily small, letting ε1 → 0 and ε2 → 0 establishes the asymptotic stability of the
origin of (28) for all trajectories originating from It. Consequently, bipartite formation-
consensus is achieved with inter-agent collision avoidance and connectivity.

3.3.2. Leader-follower bipartite formation-consensus

In this Subsection, we introduce a virtual leader in the system, and we analyse the
stability of (1) and (5), in closed loop with the bipartite formation control law (25).
Now, after (15), (14) and (26), the control law in (25) becomes

u = −k1Ets∇ēxt
W̃ − k2EtsRsR

>
s ēvt − k3v − k1E∇αW̃ − k1∇êW̃ . (35)

Then, differentiating on both sides of (11) we obtain

˙̄ext
= ēvt (36a)

˙̄evt =− k1Lets∇ēxt
W̃ − k2LetsRsR

>
s ēvt − k3ēvt − k1E

>
tsE∇αW̃ − k1E

>
ts∇êW̃ (36b)

Proposition 2. Consider the system (1) and (5) in closed loop with the distributed
control law (35) and assume that the resulting network is structurally balanced and
contains an underlying spanning tree. Then, the origin for the closed-loop system (36)
is asymptotically stable for any initial conditions respecting the constraints in (18),
and |αk(0)| > ∆k for all k ≤ M . In addition, the constraints are satisfied for all t.
Moreover, x̄→ Φx0 as t→∞. �

Proof. We consider the Lyapunov function candidate in (31). In this context, where
a virtual leader is taken into account within the network, the Lyapunov function also
depends on ê leading to V (α, ēxt

, v, ê) = k1W̃ (α, ēxt
, ê) + 1

2 |v|
2. Next, we compute its

total derivative. For (1b) and (35), we have

v̇ = −k1Ets∇ēxt
W̃ − k2EtsRsR

>
s ēvt − k3v − k1E∇αW̃ − k1∇êW̃ . (37)

Then,

V̇ (α, ēxt
, v, ê) = k1∇ēxt

W̃> ˙̄ext
+ k1∇αW̃>E>v + k1∇êW̄> ˙̂e+ v>

[
−k1Ets∇ēxt

W̃

−k2EtsRsR
>
s ēvt − k3v − k1E∇αW̃ − k1∇êW̃

]

11



and using the fact that ˙̂e = v and, (14) and (15), we obtain

V̇ (α, ēxt
, v) =− k2|ēv|2 − k3|v|2,

which is negative semidefinite.
Next, Barbashin-Krasovsk̆ıi’s theorem is applied. For the set {(ē, v, ê) : V̇ = 0}

it is established that ēv = 0 and v = 0, which gives that α is constant. In turn, after
(37), we have

−k1Ets∇ēxt
W̃ − k1∇êW̃ = k1E∇αW̃ . (38)

On the other hand, since we have α ≡ const on {V̇ = 0}, it follows that with (34)

−Et∇ēxt
W̃ −∇êW̃ = 0⇔ −

[
Et IN

] [∇ēxt
W̃

∇êW̃

]
= 0.

Et corresponds to the incidence matrix of a spanning-tree, so it is full rank, and IN is
also full rank. The matrix

[
Et IN

]
has linearly independent columns, so is also full

rank and has a pseudoinverse, such that
[
Et IN

]+ [
Et IN

]
= I. Then, it is deduced

that the only solution is ∇ēxt
W̃ = 0 and ∇êW̃ = 0 so ēxt

= 0 and ê = 0, which gives
x̄i − sgn(aij)x̄j = 0 and x̄i = φix0 for all i, j ≤ N . It follows that the only solution

of (36) that remains in {(ē, v, ê) : V̇ = 0} for all t, is the origin. Thus, asymptotic
stability in the large, within the domain of the definition of V , is established.

Next, we establish inter-agent collision avoidance and ensure connectivity preserva-
tion, as in the proof of Proposition 1. Referring to (29), we note that if ēxt

∈ It then
ēx ∈ I, where I = Ir ∩ Ic. To prove the forward invariance of It, we employ a proof
by contradiction. Assume that there exist a T > 0 such that ēxt

(T ) /∈ It. This implies
that either |ēxtk

+ αk| → ∆k, k ≤ M or |ēxtk
+ αk| → Rk, k ∈ Em for at least one

k ≤ M , which makes W̃k(αk, ēxtk
, ê) → ∞, leading to V (α, ēxt

, v, ê) → ∞ as t → T .

However, the latter contradicts the fact that V̇ (α, ēxt
, v, ê) ≤ 0. Hence, inter-agent

collision avoidance and connectivity maintenance are ensured.
Then, we demonstrate that the set I serves as the domain of attraction for the

closed-loop system (36), by proving that all solutions originating from It converge
to the origin. For any ε1 ∈ (0, Rk) and ε2 ∈ (0,∆k), define subsets Iεrt ⊂ Irt and

Iεct ⊂ Ict as in the proof of Proposition 1. From the definition of W̃ (α, ēxt
, ê), it

follows that V (α, ēxt
, v, ê) is positive definite for all ēxt

∈ Iεt and ēvt ∈ R and satisfies
a1|ēxt

|2 + b1|ēvt |2 + c1|v|2 + d1|ê|2 ≤ V (α, ēxt
, v, ê) ≤ h(|ēxt

|) + b2|ēvt |2 + c2|v|2 + d2|ê|2
with a1, b1, c1, d1, b2, c2, d2 > 0 and h is a strictly increasing everywhere in Iεt . Then,
V (α, ēxt

, v, ê) → 0 as ēt → 0, v → 0 and ê → 0. Hence, the origin is asymptotically
stable for all trajectories for the closed-loop system starting in Iεt . Since ε1 and ε2 are
arbitrarily small, letting ε1 → 0 and ε2 → 0 establishes the asymptotic stability of the
origin of (28) for all trajectories originating from It. Consequently, bipartite formation-
consensus is achieved with inter-agent collision avoidance and connectivity.

4. Simulation Results

In this section, we present some numerical examples to show the performance of our
control laws. We consider a structurally balanced signed network of nonholonomic
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mobile robots. Let ri = [rxi
ryi ]
> be the inertial position, θi the orientation, vi the

linear speed, ωi the angular speed, mi the mass, Ji the moment of inertia, ηi be the
applied force and torque, and Fi be Lagrangian dynamics. Then, the robot’s model is
given by ṙxi

ṙyi
θ̇

 =

vi cos θi
vi sin θi
ωi

 , [
v̇i
ω̇

]
=

[ 1
mi

0

0 1
Ji

]
[ηi + Fi]. (39)

Then, we define sθi := sin θi and cθi := cos θi and choose the reference point pi =

ri + δi
[
cθi sθi

]>
located at a distance δi = 0.1m along the line that is perpendicular

to the wheels’ axis and we define

ζ :=


rxi

+ δicθi
ryi + δisθi

vicθi − δiωisθi
visθi + δiωicθi

θi

 . (40)

In transformed coordinates, with pi = [ζ>1i
ζ>2i

]>, we have[
ζ̇1i

ζ̇2i

]
=

[
ζ3i

ζ4i

]
,[

ζ̇3i

ζ̇4i

]
=

[
−viωisθi − δiω2

i cθi
viωicθi − δiω2

i sθi

]
+

[
1
mi
cθi − δi

Ji
sθi

1
mi
sθi

δi
Ji
cθi

]
[ηi + Fi],

ζ̇5i
= − 1

2δi
ζ3i

sin ζ5i
+

1

2δi
ζ4I

cos ζ5i
. (41)

The feedback-linearizing control ηi is given by

ηi =

[
1
mi
cθi − δi

Ji
sθi

1
mi
sθi

δi
Ji
cθi

]−1[
ui −

[
−viωisθi − δiω2

i cθi
viωicθi − δiω2

i sθi

]]
− Fi (42)

which yields [ζ̇3i
ζ̇4i

]> = ui.

4.1. Leaderless bipartite formation-consensus

We first provide a numerical example to show the performance of our control law (25)
with k1 = 1, k2 = 1.2, k3 = 1 and the barrier-Lyapunov function in (22), with

Brk(s) = ln

(
R2
k

R2
k − |s|2

)
, Bck(s) = ln

(
|s|2

|s|2 −∆2
k

)
, (43)

We implement (42) with ui as in (25), xi = [ζ1i
ζ2i

]>, vi = [ζ3i
ζ4i

]>, mi = 8kg and
Ji = 0.12kg/m2, ∀i ≤ N .

We consider an undirected signed network of 10 agents and 10 edges as the
one depicted in Figure 2, subject to inter-agent collision avoidance and connec-
tivity maintenance restrictions. We define the orientation of the edges as fol-
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Figure 2. Network 1: A structurally balanced, leaderless, and undirected signed network of 10 mobile robots.

The black lines represent cooperative edges, and the red lines represent the competitive ones.

lows: e1 = ν1 + ν2, e2 = ν1 − ν3, e3 = ν1 − ν4, e4 = ν2 − ν5, e5 = ν2 − ν6, e6 = ν2 − ν7,
e7 = ν3 − ν8, e8 = ν5 − ν9, e9 = ν6 + ν10 and e10 = ν3 + ν5. The incidence matrix cor-
responding to the graph is

Es =



1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0
0 −1 0 0 0 0 1 0 0 1
0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 1
0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0


.

-4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

Figure 3. Bipartite formation of system (39) with control input (25) in the leader centered reference frame.
The asterisks are the inertial positions of the robots. The reference points pi of the mobile robots, on the black

circles around the asterisks, of the two disjoint subgroups form a formation around two symmetrical consensus
points.

The set of nodes may be split into two disjoint subsets, such as
V1 = {ν1, ν3, ν4, ν8, ν10} and V2 = {ν2, ν5, ν6, ν7, ν9} so the network is
structurally balanced. From the decomposition in (13), edges ei, i ≤ 9 correspond
to Gt and the remaining edge e10 corresponds to Gc. The eigenvalues of Ls and Les
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Figure 4. Bipartite formation of system (39) with control input (25) on velocity, where k3 > 0. The velocities

of all agents converge to zero.
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Figure 5. Control input (25) of all agents converge to zero.
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Figure 6. Trajectories of the norm of the inter-agent distances with control input (25). The dashed lines are

the minimum, and the dotted lines are the maximum distance constraints for agents. All inter-agent safety
proximity constraints are respected.

are λLs
= λLes

= {0, 0.33, 0.58, 0.67, 0.79, 2, 2.5, 3.41, 4, 5.7} as the considered
network has the same number of edges as the number of nodes. The respective
agents’ initial states are rx(0) = [3.5, 3.7, −2.5, 3.5, −2, 5, 5, 8, 6, −4]>,
ry(0) = [2, 1.7, −6, 2.5, 1, 2.3, 1.8, −3, 5.5, −4]>, v(0) =
[0.2, 0.45, 0.32, 0.32, 1.12, 0.3, 0.4, 0.22, 0.42, −0.14]>, θ(0) =
[0, −0.46, −1.25, 0.32, −0.46, 0, 0, −1.11, −0.79, −0.79]> and the relative
displacements are dx = [−0.8, −0.8, −0.4, 0.4, −0.4, 0.4, −0.4, −0.4, 0.4, 0.4]>

and dy = [0, 0, 0.4, 0.4, 0.4, 0.4, −0.4, −0.4, −0.4, −0.4]>. The constraint sets are
∆k = 0.2 for all k ≤ M and Rk = 11 for all k ∈ Em. The paths of each agent up to
bipartite formation are depicted in Figure 3. The reference points of the mobile robots
reach the desired formation around two symmetric consensus points. The velocities
of mobile robots are depicted in Figure 4, and velocities converge to zero. Moreover,
it is clear from Figure 6 that the inter-agent collision avoidance and connectivity
maintenance constraints in (8)–(9) are always respected.

4.2. Leader-follower bipartite formation-consensus

We then provide a numerical example to show the performance of our control law
(35), in the presence of a virtual leader ν0, with k1 = 1, k2 = 1.2, k3 = 1 and the

15



ν1

ν0

ν2

ν3

ν4

ν5

ν6

ν7

ν8 ν9

ν10

e1

e2

e10

e4

e3

e7

e6

e8

e9

e5

Figure 7. Network 2: A structurally balanced undirected signed network of 10 mobile robots with a virtual

leader ν0.
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Figure 8. Bipartite formation of system (39) with control input (25). The asterisks are the inertial positions
of the robots. The reference points pi of the mobile robots, on the black circles around the asterisks, of the two

disjoint subgroups form a formation around two symmetrical consensus points.

barrier-Lyapunov function in (22), with (43). We consider the same undirected signed
network in Figure 2 with a virtual leader ν0 giving information to agent ν1, depicted
in Figure 7. The virtual leader’s position is x0 = [−2 − 3]>, Al = diag(1, 0, . . . , 0) and
Φ = [1,−1, 1, 1,−1,−1,−1, 1,−1, 1]>. Thus, we implement (42) with ui as in (35), xi =
[ζ1i

ζ2i
]>, vi = [ζ3i

ζ4i
]>,mi = 8kg and Ji = 0.12kg/m2, ∀i ≤ N . The respective agents’

inertial positions, velocities, and orientations are the same as before, while the relative
displacements are dx = [−0.8, 0.8, −0.4, 0.4, 0.4, −0.4, 0.4, −0.4, −0.4, 0.4]>

and dy = [0, 0, 0.4, 0.4, 0.4, 0.4, −0.4, −0.4, −0.4, −0.4]>. The constraints are
also set as before. The paths of each agent up to leader-follower bipartite formation
are depicted in Figure 8. Agents in V1 converge around the virtual leader’s position,
while agents in V2 reach formation around the virtual leader’s symmetric position.
The velocities of mobile robots are depicted in Figure 10, and velocities converge to
zero. Moreover, it is clear from Figure 11 that the inter-agent collision avoidance and
connectivity maintenance constraints in (8)–(9) are always respected.

5. Conclusions

We presented a BLF-based distributed control law to solve the bipartite formation-
consensus control problem for double integrators over structurally balanced undirected
signed networks. The proposed control law guarantees inter-agent collision avoidance
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Figure 9. Bipartite formation of system (39) with control input (25) on velocity, where k3 > 0. The velocities

of all agents converge to zero.
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Figure 10. Control input (25) of all agents converge to zero.
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Figure 11. Trajectories of the norm of the inter-agent distances with control input (25). The dashed lines
are the minimum, and the dotted lines are the maximum distance constraints for agents. All inter-agent safety

proximity constraints are respected.

for every agent in the networks and connectivity maintenance for two cooperative
agents. We analyzed the asymptotic stability of the system in terms of the errors
and using Lyapunov’s direct method. We also illustrated the practical application of
our results through numerical simulations involving the formation-consensus control
of nonholonomic vehicles. Further research is focused on extending these results to
directed signed networks with one or more leaders.
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