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pericellular fluid under ultrasound
stimulation

C. Baron?, E. Doveri®, P. Jodlowski®, P. Lasaygues®
and C. Guivier-Curien®

2Aix Marseille Univ, CNRS, Centrale Méditerranée, IRPHE UMR
7342, Marseille, France; ®Aix Marseille Univ, CNRS, Centrale
Méditerranée, LMA UMR 7031, Marseille, France

1. Introduction

The use of ultrasound (US) stimulation for bone heal-
ing is a therapeutic approach that dates back over
half a century. Nevertheless, the therapeutic efficacy
of US stimulation of bone remodelling remains an
open question, as the underlying mechanisms
involved are still poorly understood. Among the pos-
sible hypotheses, the propagation of ultrasonic waves
in bone tissue could generate acoustic streaming (AS)
resulting in fluid shear stress exerted on the wall of
osteocytes known as the mechanosensitive conductors
of bone remodeling. Osteocytes are dendritic cells
surrounded by a viscous pericellular fluid (PCF),
ubiquituous in the bone extra-cellular matrix (ECM)
forming a complex micrometric 3D network called
the lacuno-canalicular network (LCN). A first finite-
element (FE) model is proposed to investigate the AS
induced by a US stimulation inside the PCF consid-
ered as a viscous fluid. The resulting wall shear stress
(WSS) applied on the osteocyte process is estimated
for different shapes of PCF space and different viscos-
ities of PCF.

The aim is to explore the relevance of two simpli-
fying assumptions commonly used in the literature: a
geometry of the space occupied by the PCF equivalent
to an annular-section tube, and a PCF viscosity equal
to the viscosity of water. Finally, its quantification is
questioned in regard of stress levels that can trigger a
biological response.

2. Methods

It has been clearly demonstrated that the most sensi-
tive parts of the osteocyte are its processes. According
to the ratio of the transverse dimensions of the canali-
cus (~0.1 um) to its length (~10 um), a 2D FE model
is implemented on Comsol Multiphysics (v. 6.0) rep-
resenting a cross-section of an osteocyte process sur-
rounded by a layer of viscous fluid representing the
PCF bounded by a wall representing the ECM.
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Figure 1. (a) Idealized I-model and (b) realistic R-model of
PCF (in blue) and process (in gray). Rc = 0.25um is the canali-
culus radius, R, = R./2 is the process radius.

The goal of this work is to estimate the influence of
the shape of the canaliculi and process on the WSS
(averaged WSSav and maximum value WSSmax along
the contour of the process). An idealized (I-model)
geometry of two concentric circles is compared to
realistic (R-model) contour extracted from images
published in (Kamioka et al. 2012) (Figure 1).

The acoustic properties of the cell process and of
the PCF are similar to those of water, except that the
viscosity of the PCF is supposed to vary between
0.65x 10 °Pa s (viscosity of water at 37°C) and
0.05Pa s (Lee et al. 1993). The ECM/PCF interface is
considered as a wall.

To mimic the influence of US stimulation, we
assume that the walls are oscillating in the x-direc-
tion. A first order oscillating velocity Ul(f) =
i2nfdOex parallel to the x-direction is imposed along
the ECM/PCF interface to model a harmonic acoustic
wave at frequency f of 1 MHz with an amplitude of
displacement d0.

The Navier-Stokes equations are solved inside the
PCF domain using the perturbation method in order
to calculate the acoustic streaming velocity V2 (time
average of the 2nd order term) and to deduce the
resulting WSS applied at the PCF/process interface.
In Comsol Multiphysics 6.0, the Thermoviscous
Acoustics module (in frequency domain) is used in
order to resolve the first order acoustic field. Then,
the acoustic streaming is taken into account by using
the Laminar Flow module and weak form formula-
tions (Muller and Bruus 2014).

3. Results and discussion

The acoustic streaming velocity V2 is calculated inside
the PCF space.

Considering the PCF as water at 37°C
(WPCF = pwater = 0.0065 Pa s), and the amplitude of
the oscillation d0=0.4nm the I-model provides a
V2max = 0.09um/s whereas the R-model gives
V2max = 0.11 pm/s (Figure 2).
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Figure 2. Acoustic streaming velocity V2 for (a) idealized and
(b) realistic contours of PCF and process.

Table 1. Ratios of WSS between idealized (I-model) and real-
istic (R-model) contours for 3 values of PCF viscosity.

UPCF/puwater 1 3.85 7.7
WSSav(R-model)/WSSav(l-model) 25 3 3
WSSmax(R_model)/WSSmax(I-model) 16 19 19.5

The influence of the geometry is quite the same
whatever the viscosity (Table 1). WSS, is more
dependent to the geometry of the contours as
expected (Table 1). It is worth noting that the WSS,,
values for the R-model is more than 2 times higher
than WSS,, for the I-model and up to 20 times for
WSS nax values (Table 1) showing that it is necessary
to take into account a realistic geometry to relevantly
investigate US stimulation effect on osteocytes.

Regarding the potential biological response of
osteocytes under US stimulation, it is interesting to
know that for viscosity higher than pref, a value of
d0=0.8nm is sufficient to induce WSSmax higher
than 0.8 Pa which has been defined as the threshold
to trigger osteocyte mechanotransduction (Weinbaum
et al. 1994). The WSSav reaches this threshold for an
oscillation amplitude d0 =2nm if pPCF = 0.025Pa s
and for d0=1.8nm if pPCF = 0.05Pa s. Note that
WSSav along the process contour is proportional to
do? for the two geometries.

Although the model is 2D and has the limitations
mentioned above, it tends to confirm that acoustic
streaming can be induced by US stimulation in such
a way that it can trigger biological response.
Moreover, one of the strengths of this model is to
easily investigate other contour shapes to test the
WSS pattern associated with. One can notice that

these realistic geometries can be further complicated
including the tethering elements and ECM protru-
sions present inside the PCF space. In addition, the
viscous fluid model of PCF and cell can be improved
considering them as poroelastic medium and visco-
elastic solid respectively. These considerations will
affect the fluid velocity patterns obtained. Some fur-
ther investigations are in progress to question the
choice of mimicking US stimulation by an oscillating
velocity. Moreover the low intensity ultrasound stimu-
lation used in therapeutics is a pulsed stimulation,
which needs to develop a model in time domain. This
work can give new insights on stimulation of bone
remodeling and could help to understand the under-
lying mechanisms in order to a better care for the
patient.
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