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SPHERE THEOREMS FOR RCD AND STRATIFIED SPACES

SHOUHEI HONDA AND ILARIA MONDELLO

Abstract. We prove topological sphere theorems for RCD(n − 1, n) spaces
which generalize Colding’s results and Petersen’s result to the RCD setting.
We also get an improved sphere theorem in the case of Einstein stratified
spaces.

Introduction

In [14] Colding proved that if a closed n-dimensional Riemannian manifold
(Mn, g) with RicgMn ≥ n − 1 satisfies that the radius is close to π, then Mn is
homeomorphic to the standard n-dimensional unit sphere Sn, where the radius
rad(X, d) of a metric space (X, d) is defined by:

rad(X, d) = inf
x∈X

sup
y∈X

d(x, y). (1)

Thanks to Cheeger-Colding’s work [13], it is known that this homeomorphism can
be improved to a diffeomorphism. Our main results generalize the previous to a
large class of singular spaces, the so-called RCD metric measure spaces, or RCD
spaces for short, whose study is now quickly developping (see for instance [1] by
Ambrosio for a survey).

Roughly speaking, a metric measure space (X, d,m) is said to be RCD(K,N) if,
in a generalized sense, the Ricci curvature is bounded below by K, the dimension
is bounded above by N and the space carries some Riemannian structure (we refer
to the first section for a precise definition, see Definition 1.1). One of the typical
examples can be found in weighted Riemannian manifolds (Mn, dg, e

−fµg), where
dg denotes the distance defined by the Riemannian metric g, µg is the Riemannian
volume measure and f is a smooth function on Mn. In fact (Mn, dg, e

−fµg) is a
RCD(K,N) space if and only if n ≤ N and

RicgMn + Hessgf −
df ⊗ df
N − n

≥ Kg

hold. As easily noticed from this example, in the RCD theory, there is a flexibility
on the choice of reference measures even if the base metric space (X, d) is fixed. In
particular, the measure m is not necessarily the Hausdorff measure associated to
the distance.

Other examples of RCD(K,N) spaces are given by compact stratified spaces
(Xn, dg, µg) endowed with the distance and measure associated to an iterated edge
metric g, under the suitable assumptions on g. Stratified spaces are singular man-
ifolds with iterated conical singularities, isolated or not. When the metric g has
Ricci tensor bounded from below on the regular set and angles along the codimen-
sion 2 singular set are smaller than or equal to 2π, (Xn, dg, µg) is a RCD space, as
proven in [10] by Bertrand-Ketterer-Richard and the second author. In this work,
as a consequence of our main results, we will obtain a sphere theorem for Einstein
stratified spaces. It is worth pointing out that examples of Einstein stratified spaces
occur in various branches of geometry: for instance in mathematical physics, the
singular space associated to a static triple [6]; in Kähler geometry, Kähler-Einstein
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manifolds with edge singularities of cone angle smaller than 2π along a smooth
divisor [26].

We are now in a position to state the main result of the paper:

Theorem A (Topological sphere theorem for RCD spaces, I). For all n ∈ N≥2
there exists a positive constant εn > 0 such that if a compact metric space (X, d)
satisfies that rad(X, d) ≥ π − εn and that (X, d,m) is a RCD(n − 1, n) space for
some Borel measure m on X with full support, then X is homeomorphic to the
n-dimensional sphere.

This seems the first topological sphere theorem in the RCD theory. We emphasize
again that the theorem states that although there is a flexibility on the choice of m,
the topological structure is uniquely determined. Note that in the previous theorem
one cannot replace the radius by the diameter of the space, even in the case of
smooth (not weigthed) Riemannian manifolds. Indeed, for any ε > 0 Anderson
constructed in [7] manifolds of even dimension n ≥ 4, with Ricci tensor bounded
below by n − 1 and diameter larger than π − ε, which are not homeomorphic
to the sphere. Similar examples can be found in [39] by Otsu. Moreover, for a
simple counter example in the RCD setting, one can consider ([0, π], |·|, sinn−1(t)dt),
which is an RCD(n − 1, n) space, with diameter equal to π and obviously not
homeomorphic to Sn.

In order to introduce an application, let us recall a result of Petersen [42]; for
a closed n-dimensional Riemannian manifold (Mn, g) with RicgMn ≥ n − 1 the
following two conditions are equivalent quantitatively:

(1) The (n+ 1)-th eigenvalue of the Laplacian is close to n.
(2) The radius is close to π.

In particular if the one of them above holds, then Mn is diffeomorphic to Sn.
Note that even in the RCD-setting, the above equivalence is justified by the

spectral convergence result of Gigli-Mondino-Savaré [21] and the rigidity results of
Ketterer [30]. In particular we have the following;

Corollary B (Topological sphere theorem for RCD spaces, II). For all n ∈ N≥2
there exists a positive constant εn > 0 such that if a RCD(n− 1, n) space (X, d,m)
satisfies

λn+1 ≤ n+ εn, (2)
then X is homeomorphic to Sn, where λk := λk(X, d,m) denotes the k-th eigenvalue
of the (minus) Laplacian −∆ on (X, d,m).

In the second section, we give a proof for reader’s convenience. In Corollary B it
is known that if (X, d,m) is a Riemannian manifold, that is, (X, d,m) is isometric
to (Mn, dg, µg) for a closed Riemannian manifold (Mn, g), then the assumption (2)
can be replaced by a weaker one;

λn ≤ n+ εn. (3)

See [8] by Aubry (see also [9] by Bertrand and [23] by the first author). However in
the RCD setting we can not get such improvement. In fact, the n-dimensional unit
hemisphere Sn+ with the standard Riemannian measure is a RCD(n − 1, n) space
with λk = n for all 1 ≤ k ≤ n, but it is not homeomorphic to Sn. Thus Corollary
B is sharp in this sense.

Let us explain how to prove the main theorem. For that, we recall the original
proof by Colding. First, he proved that if the radius is close to π, then the volume
is almost maximal. Perelman’s topological sphere theorem [41] for almost maximal
volume then allows Colding to conclude.

We follow a similar argument. However, the almost maximality of the volume
does not make sense in the general setting of RCD spaces, because, as we pointed
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out above, there is a flexibility on the choice of measures. In order to overcome this
difficulty, the assumption in Theorem A allows us to get rid of such flexibility of
the measure m, in the following sense: we start by proving

m =
m(X)

Hn(X)
Hn, (4)

whereHn is the n-dimensional Hausdorff measure. This is justified by using a recent
result of the first author [25] which confirms a conjecture by De Philippis-Gigli (see
Remark 1.9 in [16]) in the compact setting.

Then by combining this with a compactness result for non-collapsed RCD spaces
by De Philippis-Gigli [16] and Ketterer’s rigidity [29], we can show that our situation
is reduced to the study of the following measured Gromov-Hausdorff convergent
sequence of RCD(n− 1, n) spaces:

(Xi, di,Hn)
mGH→ (Sn, dSn ,Hn).

Then we can follow an argument similar to Colding’s proof by using the intrinsic
Reifenberg theorem [13] by Cheeger-Colding instead of using Perelman’s topological
sphere theorem [41].

One step in the previous proof consists in showing that the almost maximality of
the Hausdorff measure implies that the space is homeomorphic to the sphere (see
Theorem 2.2 in the following). The same assumption in the case of an Einstein
stratified space actually allows us to get a stronger sphere theorem, independently
of the RCD theory:

Theorem C (Sphere theorem for Einstein stratified spaces). For all n ∈ N≥2
there exists a positive constant εn > 0 such that the following holds. Let (X, g) be a
compact n-dimensional stratified space endowed with an iterated edge metric g such
that Ricg ≡ n − 1 on the regular set. Assume that there is no singular stratum of
codimension 2. If µg(X) ≥ (1− εn)Hn(Sn), then (X, dg) is isometric to (Sn, dSn).

The assumption on the codimension 2 stratum cannot be dropped. Indeed,
consider a compact Riemannian surface (X, g) with sectional curvature equal to
one away from a finite number of isolated conical singularities of angles smaller
than 2π. Thanks to [10], such surface is a RCD(1, 2) space, and therefore the
almost maximality of its volume implies that (X, g) is homeomorphic to S2 and
that the angles at the singularities are close to 2π. Nevertheless, this cannot be
improved to an isometry. The strategy of our proof actually consists in showing that
there cannot be any singularity of codimension strictly greater than 2. Moreover,
a local almost maximality for the volume allows one to control the regularity in
a neighbourhood of a point (see Corollary 3.5), even if the space is not compact.
Both of these proofs do not depend on the space being a RCD space.

The paper is organized as follows: in the next section we give a quick introduction
about RCD spaces and recall related results we need later. In Section 2, after
preparing few technical results, we prove the main results. The last section is
devoted to showing Theorem C in the case of Einstein stratified spaces, for which
we state the basic notions that we need.

After we finalized this article we learned that the paper [28] by Kapovitch-
Mondino contains the same results as in Corollary B and Theorem 2.2 as an indepen-
dent work. Their proofs are close to ours, but the scopes of our works differ: while
they are mainly concerned with the topology and the boundary of non-collapsed
RCD spaces, our work also intends to discuss sphere theorems in the more specific
setting of stratified spaces.
Acknowledgement. The authors would like to thank Takumi Yokota for inform-
ing the smooth version of Theorem 3.3 and Alexander Lytchak for his comments
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concerning Alexandrov spaces. The second author would like to thank Erwann
Aubry for useful discussions. The both authors are also grateful to the referee for
valuable suggestions on earlier version of this paper, and to Andrea Mondino for
suggesting Corollary 3.7 with his useful comments. The first author acknowledges
supports of the Grantin-Aid for Young Scientists (B) 16K17585 and Grant-in-Aid
for Scientific Research (B) of 18H01118.

1. Preliminary

We say that a triple (X, d,m) is a metric measure space if (X, d) is a complete
separable metric space and m is a Borel measure on X with full support, that is,
m(Br(x)) > 0 holds for all x ∈ X and all r > 0, where Br(x) denotes the open ball
centered at x of radius r.

Throughout this section we fix K ∈ R, N ∈ (1,∞) and n ∈ N≥2.

1.1. General RCD space. Let us fix a metric measure space (X, d,m). The goal
of this section is to give a quick introduction on RCD spaces with their fundamen-
tal properties. The Cheeger energy Ch =: L2(X,m) → [0,+∞] is a convex and
L2(X,m)-lower semicontinuous functional defined as follows:

Ch(f) := inf

{
lim inf
n→∞

1

2

∫
X

(Lipfn)2dm : fn ∈ Lipb(X, d) ∩ L2(X,m), ‖fn − f‖L2 → 0

}
,

(5)
where Lipf denotes the local Lipschitz constant and Lipb(X, d) is the space of
bounded Lipschitz functions. The Sobolev space H1,2(X, d,m) then coincides with
the domain of the Cheeger energy, that is {f ∈ L2(X,m) : Ch(f) < +∞}. When
endowed with the norm

‖f‖H1,2 :=
(
‖f‖2L2(X,m) + 2Ch(f)

)1/2
this space is Banach and separable Hilbert if Ch is a quadratic form (see [3]).
According to the terminology introduced in [20], we say that a metric measure
space (X, d,m) is infinitesimally Hilbertian if Ch is a quadratic form.

By looking at minimal relaxed slopes and by a polarization procedure, one can
then define a carré du champ

Γ : H1,2(X, d,m)×H1,2(X, d,m)→ L1(X,m)

playing in this abstract theory the role of the scalar product between gradients. In
infinitesimally Hilbertian metric measure spaces, the Γ operator satisfies all natu-
ral symmetry, bilinearity, locality and chain rule properties, and provides integral
representation to Ch:

2Ch(f) =

∫
X

Γ(f, f) dm,

for all f ∈ H1,2(X, d,m).
We can now define a densely defined operator ∆ : D(∆) → L2(X,m) whose

domain consists of all functions f ∈ H1,2(X, d,m) satisfying∫
X

hgdm = −
∫
X

Γ(f, h)dm ∀h ∈ H1,2(X, d,m)

for some g ∈ L2(X,m). The unique g with this property is then denoted by ∆f
(see [2]).

We are now in a position to introduce the definition of RCD spaces.

Definition 1.1 (RCD spaces). For K ∈ R and N ∈ (1,∞), (X, d,m) is said to be
a RCD(K,N) space if the following are satisfied:

(1) Infinitesimally Hilbertian: it is inifinitesimally Hilbertian.
4



(2) Volume growth: there exist x ∈ X and c > 1 such that m(Br(x)) ≤ CeCr2

for all r > 0.
(3) Sobolev-to-Lipschitz property : any f ∈ H1,2(X, d,m) with Γ(f, f) ≤ 1

m-a.e. in X has a 1-Lipschitz representative.
(4) Bakry-Émery inequality : for all f ∈ D(∆) with ∆f ∈ H1,2(X, d,m),

1

2

∫
X

Γ(f, f)∆φdm ≥
∫
X

φ

(
(∆f)2

N
+ Γ(f,∆f) +KΓ(f, f)

)
dm (6)

for all φ ∈ D(∆) ∩ L∞(X,m) with φ ≥ 0 and ∆φ ∈ L∞(X,m).

It is worth pointing out that a RCD(K,N) space was originally defined as a
metric measure space which is infinitesimally Hilbertian and satisfies the CD(K,N)
condition in the sense of Lott-Sturm-Villani (see [3, 5, 17, 20, 34, 43, 44]). Such
definition has been proven to be equivalent to the formulation given by Definition
1.1 (see also [12] for the equivalence between RCD and RCD∗).

In order to keep our presentation short, we skip the definitions of pointed mea-
sured Gromov-Hausdorff convergence (pmGH), of measured Gromov-Hausdorff con-
vergence (mGH), and of pointed Gromov-Hausdorff convergence (pGH). We refer
to [13, 18, 21, 43, 44] for the precise definitions. Note that the radius is continuous
with respect to the Gromov-Hausdorff convergence.

Let us introduce a compactness result for RCD spaces with respect to the pmGH
convergence, which follows from [21, Cor.3.22, Thm.7.2].

Theorem 1.1 (Compactness of RCD spaces). Let N ∈ (1,∞) and let (Xi, di,mi, xi)(i =
1, 2, . . .) be a sequence of pointed RCD(K,N) spaces. If there exist vi > 0(i = 1, 2)
with v1 ≤ v2 such that v1 ≤ mi(B1(xi)) ≤ v2 holds for all i, then there exist a sub-
sequence (Xi(j), di(j),mi(j), xi(j)) and a pointed RCD(K,N) space (X, d,m, x) such
that

(Xi(j), di(j),mi(j), xi(j))
pmGH→ (X, d,m, x),

that is, (Xi(j), di(j),mi(j), xi(j)) pmGH converge to (X, d,m, x).

The next definition is a key notion of the paper. Inspired by the stratification of
Ricci limit spaces given by Cheeger-Colding theory, one can define a k-regular set
as the set of points for which the tangent cone, in the sense of pmGH convergence,
is the Euclidean space Rk. More precisely we have:

Definition 1.2 (Regular set). Let (X, d,m) be a RCD(K,N) space and let k ∈ N.
Then the k-dimensional regular set Rk = Rk(X) is defined as the set of all points
x ∈ X satisfying

(X, r−1d, (m(Br(x)))−1m, x)
pmGH→ (Rk, dRk , ω−1k L

k, 0k) (r → 0+). (7)

By the Bishop-Gromov inequality (see [34, 43, 44, 47]) it is easy to check that
Rk = ∅ for all k ∈ (N,∞) ∩ N.

Although it is also easy to check the following, we provide a proof for reader’s
convenience along the same line of the proof of [13, Prop.1.35].

Proposition 1.2. Let (X, d,m) be a RCD(K,N) space, let x ∈ X and let k ∈ N.
If (X, r−1d, x)

pGH→ (Rk, dRk , 0k), then x ∈ Rk. In particular the k-dimensional
regular set is a purely metric notion in this sense.

Proof. Thanks to Theorem 1.1 it is enough to check that if

(X, ri
−1d, x, (m(Bri(x)))−1m)

pGH→ (Rk, dRk , 0k, ν) (8)

for some ri → 0+ and some Borel measure ν on Rk, then ν = cLk for some c ∈ R>0.
The simplest proof of this statement is just to apply the splitting theorem in [19,
Thm.1.4]. Let us give another simple proof here.
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The Euclidean space endowed with the measure ν is an RCD(K,N) space. In
particular, thanks to [22, Cor.1.5] this implies that the measure contraction property
(MCP) MCP(0, N) for ν holds (see [13, 38, 44] for the precise definition). For z ∈ Rk
and A ⊂ Rk denote by

CubeR(z) := {w ∈ Rk; |wi − zi| ≤ R, ∀i},
and by Cz(A) the union of all images of geodesics starting from z and having
endpoints in A. Because of the measure contraction property, for all L,R, t ∈ R>0

with t+R < L and all v ∈ Sk−1, we have

ν(CubeR(0k))

≤ (L+R)N − (L−R)N

(L− t+R)N − (L− t−R)N
ν (CLv(CubeR(0k)) ∩ (BL−t+R(Lv) \BL−t−R(Lv))) ,

(9)

Note that CLv(CubeR(0k)) ∩ (BL−t+R(Lv) \ BL−t−R(Lv)) Hausdorff converge to
CubeR(tv) as L→∞. In particular for all ε > 0 (and fixed R, t),

CLv(CubeR(0k)) ∩ (BL−t+R(Lv) \BL−t−R(v)) ⊂ CubeR+ε(tv)

holds for all sufficiently large L. Thus, from this observation, letting L→∞ in (9)
(and then letting ε→ 0) implies ν(CubeR(0k)) ≤ ν(CubeR(tv)). Since v and t are
arbitrary, we have

ν(CubeR(0k)) = ν(CubeR(z)), ∀R ∈ R>0, ∀z ∈ Rk, (10)

which easily implies that ν = cLk for some c ∈ R>0. �

The following theorem is proved in [11, Thm.0.1] (after [37, Cor.1.2]). It gener-
alizes a result of [15, Thm.1.18] to RCD spaces and allows one to define a unique
essential dimension for a RCD space.

Theorem 1.3 (Essential dimension). Let (X, d,m) be a RCD(K,N) space. Assume
that X is not a single point. Then there exists a unique k := dimd,m(X) ∈ N∩ [1, N ]
such that m(X \ Rk) = 0. We call it the essential dimension of (X, d,m).

We end this subsection by introducing a fundamental property on the essential
dimension proved in [31, Thm.1.5];

Theorem 1.4 (Lower semicontinuity of essential dimensions). The essential di-
mension is lower semicontinuous with respect to the pointed measured Gromov-
Hausdorff convergence of RCD(K,N) spaces.

1.2. Rigidity for positively Ricci curved RCD spaces. It is worth pointing
out that in general if a RCD(K,N) space (X, d,m) has a bounded diameter, then
(X, d) must be compact and the spectrum of the (minus) Laplacian −∆ is discrete
and unbounded;

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞, (11)
where λi denotes the i-th eigenvalue counted with multiplicities (see for instance
[21] or [4]). Let us introduce some properties of RCD(N − 1, N) spaces with the
rigidity results we will use later ([29, Cor.1.3, Cor.1.6], [30, Thm.1.4]).

Theorem 1.5 (Rigidity to the sphere). Let (X, d,m) be a RCD(N − 1, N) space.
Then the following are satisfied:

(1) The diameter diam(X, d) is at most π (in particular rad(X, d) ≤ π) and
the first positive eigenvalue λ1 is at least N .

(2) If rad(X, d) = π or λ[N ]+1 = N , where [N ] is the integer part of N , then
N must be an integer, (X, d) is isometric to (SN , dSN ) and m = aHN for
some a > 0.
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The next two corollaries give us reasons for only discussing the case of integer n
in Theorem A and Corollary B.

Corollary 1.6. For all N ∈ [1,∞)\N, there exists a positive constant τN > 0 such
that any RCD(N − 1, N) space (X, d,m) satisfies λ[N ]+1 ≥ N + τN .

Proof. The proof is done by contradiction. If the statement is not satisfied, then
there exists a sequence of RCD(N − 1, N) spaces (Xi, di,mi) such that

lim
i→∞

λ[N ]+1(Xi, di,mi) = N. (12)

By Theorem 1.1 with no loss of generality we can assume that (Xi, di,mi) mGH-
converge to a RCD(N−1, N) space (X, d,m). Then the spectral convergence result
proved in [21, Thm.7.8] with (12) yields

λ[N ]+1(X, d,m) = lim
i→∞

λ[N ]+1(Xi, di,mi) = N.

Theorem 1.5 shows that N must be an integer, which is a contradiction. �

Similarly we have the following.

Corollary 1.7. For all N ∈ [1,∞)\N, there exists a positive constant δN > 0 such
that any RCD(N − 1, N) space (X, d,m) satisfies rad(X, d) ≤ π − δN .

1.3. Non-collapsed RCD space. Let us introduce a special class of RCD spaces
defined in [16], that is non-collapsed and weakly non-collapsed RCD spaces. The
non-collapsing assumption means that the measure m is chosen to coincide, or to
be absolutely continuous, with respect to the Hausdorff measure. More precisely
we have:

Definition 1.3 (Non-collapsed RCD space). Let (X, d,m) be a RCD(K,N) space.
(1) (X, d,m) is called non-collapsed if m = HN .
(2) (X, d,m) is called weakly non-collapsed if m� HN .

The following fundamental results for non-collapsed RCD(K,N) spaces are proved
in [16];

Theorem 1.8 (Fine properties of non-collapsed RCD spaces). Let (X, d,HN ) be
a non-collapsed RCD(K,N) space. Then the following are satisfied:

(1) N must be an integer.
(2) For all x ∈ X the Bishop inequality holds in the sense of

lim
r→0+

HN (Br(x))

VolK,N (r)
≤ 1, (13)

where VolK,N (r) denotes the volume of a ball of radius r in the N -dimensional
space form whose Ricci curvature is constant equal to K. Moreover the
equality in (13) holds if and only if x ∈ RN .

Let us give several remarks on the theorem above. The first property (1) is also
true for weakly non-collapsed RCD(K,N) spaces. The second property (2) can be
regarded as a rigidity result. Moreover it is proven that the almost rigidity of (13)
also holds, and this will play a role in the next section. See [16, Thm.1.6] for the
precise statement (see also [4, Prop.6.6]).

The next theorem follows from a combination of [31] and [16]. For the reader’s
convenience we give a proof:

Theorem 1.9. For n ∈ N≥2, a RCD(K,n) space (X, d,m) is weakly non-collapsed
if and only if Rn 6= ∅.
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Proof. We check only the “if” part because the “only if” part is a direct consequence
of [16, Thm.1.10]. Let x ∈ Rn. Then since Theorem 1.4 yields

lim inf
r→0+

dimr−1d,(m(Br(x)))−1m(X) ≥ dimdRn ,ω
−1
n Ln(Rn) = n,

we have dimd,m(X) = n because dimd,m(X) = dimr−1d,(m(Br(x)))−1m(X) for all
r > 0. Then [16, Thm.1.10] yields that (X, d,m) is weakly non-collapsed. �

Let us introduce one of the main results of [25] which confirmed a conjecture
raised in [16] in the compact case ([25, Cor.1.4]);

Theorem 1.10 (“Weakly non-collapsed” implies “non-collapsed”). Let (X, d,m) be
a compact weakly non-collapsed RCD(K,n) space. Then

m =
m(X)

Hn(X)
Hn.

To conclude this section, we introduce a compactness result for non-collapsed
RCD spaces with respect to pmGH convergence, which is proved in [16, Thm.1.2,
Thm.1.3] (Compare with Theorem 1.1);

Theorem 1.11 (Compactness of non-collapsed RCD spaces). Let (Xi, di,Hn, xi)(i =
1, 2, . . .) be a sequence of pointed non-collapsed RCD(K,n) spaces with

lim inf
i→∞

Hn(B1(xi)) > 0. (14)

Then there exist a subsequence (Xi(j), di(j),Hn, xi(j)) and a pointed non-collapsed
RCD(K,n) space (X, d,Hn, x) such that

(Xi(j), di(j),Hn, xi(j))
pmGH→ (X, d,Hn, x).

Remark 1.12. Let us give a remark on the assumption (14) in the theorem above.
If a sequence (Xi, di,Hn, xi) of pointed non-collapsed RCD(K,n) spaces satisfies

(Xi, di, xi)
pGH→ (X, d, x)

for some pointed proper metric space (X, d, x), then thanks to [16, (ii) of Thm.1.2]
it holds (without using (14)) that

Hn(Br(yi))→ Hn(Br(y)), ∀r ∈ R>0, ∀yi ∈ Xi → y ∈ X. (15)

This will play a role later in the proof of Theorem A.

2. Proof of main results

Throughout the section we fix n ∈ N≥2 and K ∈ R too. In the next proposition
let us consider Sturm’s D-distance between compact RCD(K,n) spaces, that is, “ε-
mGH-close” means “D < ε” below. Note that the convergence with respect to D is
equivalent to the mGH convergence for compact RCD(K,N) spaces (see [43, 44]).

Proposition 2.1 (Non-collapsed RCD is an open condition). Let (X, dX ,mX) be
a compact weakly non-collapsed RCD(K,n) space. Then there exists a positive con-
stant ε0 = ε0(X, dX ,mX) > 0 such that if a compact RCD(K,n) space (Y, dY ,mY )
is ε0-mGH-close to (X, dX ,mX), then

mY =
mY (Y )

Hn(Y )
Hn. (16)

Proof. Let us prove the proposition by contradiction. If the statement does not
hold, then there exists a mGH convergent sequence (Xi, di,mi) of RCD(K,n) spaces
to (X, dX ,mX) such that

mXi
6= mi(Xi)

Hn(Xi)
Hn. (17)
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However since Theorem 1.4 states

lim inf
i→∞

dimdi,mi
(Xi) ≥ dimdX ,mX

(X) = n,

we see that dimdi,mi
(Xi) = n for any sufficiently large i. In particular Theorem 1.9

yields that (Xi, di,mi) is weakly non-collapsed RCD(K,n) space for such i. Then
by applying Theorem 1.10 to such (Xi, di,mi) we obtain that mi = mi(Xi)

Hn(Xi)
Hn which

contradicts (17). �

Let us remark that the Bishop inequality (13) implies

Hn(X) ≤ Hn(Sn) (18)

for any non-collapsed RCD(n − 1, n) space (X, d,Hn). Since the equality easily
implies rad(X, d) = π, thus by Theorem 1.5 the equality holds if and only if the
space is isometric to the round sphere Sn.

Theorem 2.2 (Topological sphere theorem for RCD spaces, III). There exists a
positive constant εn > 0 such that if a compact non-collapsed RCD(n− 1, n) space
(X, d,Hn) satisfies Hn(X) ≥ (1− εn)Hn(Sn), then X is homeomorphic to Sn.

Remark 2.3. We point out that the previous result is known for Alexandrov
spaces, see for example Proposition A.9 in the work of Yamaguchi [46]. It can
also be easily proved by contradiction, by combining the rigidity of Bishop-Gromov
inequality and the topological stability theorem [40] for Alexandrov spaces (see
[27]). Moreover for n = 2, the work [33] showed that a non-collapsed RCD(K, 2)
space is an Alexandrov space with curvature at least K. As a consequence, our
result directly holds in dimension 2. We give here the proof in full generality.

Proof. The proof is done by contradiction. Assume that the theorem does not hold,
then there exist sequences εi → 0+ and (Xi, di,Hn) of RCD(n − 1, n) spaces such
that Hn(Xi) ≥ (1− εi)Hn(Sn) and Xi is not homeomorphic to Sn. Then we have

lim
i→∞

Hn(Xi) = Hn(Sn). (19)

It is not difficult to check that (19) implies that rad(Xi, di)→ π. Applying Theorem
1.5 with Theorem 1.11 yields

(Xi, di,Hn)
mGH→ (Sn, dSn ,Hn). (20)

On the other hand the inequality
Hn(Xi)

Hn(Sn)
≥ 1− εi, (21)

together with the Bishop (13) and the Bishop-Gromov inequalities implies that for
all x ∈ Xi we have

1 ≥ H
n(Br(x))

Hn(Br(p))
≥ 1− εi, ∀r ∈ (0, π], ∀p ∈ Sn. (22)

Applying this observation with the almost rigidity on the Bishop inequality [16,
Thm.1.5] (see also [4, Prop.6.6]) implies that for all ε > 0 there exists a positive
integer i0 ∈ N such that for all i ≥ i0 and r ∈ (0, π]

dGH(Br/2(xi), Br/2(0n)) ≤ εr, (23)

where dGH denotes the Gromov-Hausdorff distance. This means that for all i ≥ i0,
the metric spaces {(Xi, di)}i are uniformly Reifenberg flat. Then applying the in-
trinsic Reifenberg theorem [13, Thm.A.1.2 and Thm.A.1.3] yields that Xi is home-
omorphic to Sn for any sufficiently large i, which is a contradiction. �

We are in position to prove our main result.
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Proof of Theorem A. The proof is done by contradiction. Assume that the state-
ment is false: then there exists a sequence (Xi, di,mi) of RCD(n−1, n) spaces such
that rad(Xi, di)→ π, mi(Xi) = 1 and Xi is not homeomorphic to Sn. By Theorem
1.5 with no loss generality we can assume that

(Xi, di,mi)
mGH→ (Sn, dSn ,m)

for some Borel probability measure m on Sn. By Theorems 1.1 and 1.9 it follows
that (Sn, dSn ,m) is a weakly non-collapsed RCD(n− 1, n) space. Then Proposition
2.1 shows that (Xi, di,Hn) is also a RCD(n− 1, n) space for any sufficiently large
i. Moreover, since it follows from (15) that Hn(Xi)→ Hn(Sn), we have

(Xi, di,Hn)
mGH→ (Sn, dSn ,Hn).

Therefore for any sufficiently large i we obtain Hn(X) ≥ (1 − εn)Hn(Sn) and
Theorem 2.2 implies that Xi is homeomorphic to Sn, which is a contradiction. �

We can now prove Corollary B;

Proof of Corollary B. The proof follows the same lines as Theorem A. Assume that
the statement does not hold, then there exists a sequence (Xi, di,mi) of RCD(n−
1, n) spaces with mi(Xi) = 1, such that Xi is not homeomorphic to Sn and

lim
i→∞

λn+1(Xi, di,mi) = n.

With no loss of generality we can assume that the sequence (Xi, di,mi) mGH-
converges to a RCD(n− 1, n) space (X, d,m). Then the spectral convergence result
proved in [21, Thm.7.8] shows that

λn+1(X, d,m) = lim
i→∞

λn+1(Xi, di,mi) = n.

Then Theorem 1.5 yields that (X, d) is isometric to (Sn, dSn). In particular since
rad(Xi, di)→ rad(Sn, dSn) = π, Theorem A yields that Xi is homeomorphic to Sn
for any sufficiently large i, which is a contradiction. �

Remark 2.4. Thanks to the intrinsic Reifenberg theorem [13, Thm.A.1.2 and
Thm.A.1.3], it is easy to check that all topological sphere theorems stated above
can be improved to “bi-Hölder homeomorphism”. Moreover we can choose any
α ∈ (0, 1) as a Hölder exponent. For reader’s convenience let us write down the
precise statement. For all n ∈ N, r > 0 and ε > 0, let us denote byM(n, r, ε) the set
of all isometry classes of compact metric spaces (X, d) with dGH(Bt(x), Bt(0n)) ≤ εt
for all x ∈ X and all t ≤ r. Then we have:

• for all α ∈ (0, 1) there exist positive constants ε0 := ε0(n, α, r) > 0 and
δ0(n, α, r) > 0 such that if two compact metric spaces Zi ∈ M(n, r, ε0)
satisfy dGH(Z1, Z2) < δ0, then there exists a homeomorphism Φ : Z1 → Z2

such that Φ and Φ−1 are α-Hölder continuous maps.

Although we used the almost maximality of the volume (21) in the proof of Theorem
2.2 in order to simplify our argument, by an argument similar to the proof of [13,
Thm.5.11] with corresponding almost rigidity results in [16], we see that if a non-
collapsed RCD(K,n) space (X, dX ,Hn) satisfies X = Rn, then for all ε > 0 there
exist positive constants r > 0 and δ > 0 such that if a non-collapsed RCD(K,n)
space (Y, dY ,Hn) satisfies dGH(X,Y ) ≤ δ, then (Y, dY ) ∈M(n, r, ε). See also [28].
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3. Improvement in case of Einstein stratified spaces

The previous results can be improved to the case of certain (smoothly) stratified
spaces. In order to do that, we briefly recall some notions about such spaces, by
mostly referring to [35] and [10] for the precise definitions.

A (compact) stratified space X is a (compact) topological space which admits a
decomposition in strata

X =

n⊔
j=0

Σj(X)

such that for each j = 0, . . . n, Σj(X) is a smooth manifold of dimension j, Σn(X)
is open and dense in X and Σn−1(X) = ∅. We denote the higher dimension stratum
Σn(X) as Xreg, the regular set of X, and refer to n as the dimension of X. We
define the singular set of X:

Xsing =

n−2⊔
j=0

Σj(X).

For j < (n − 1), Σj(X) is called the singular stratum of dimension j. For each
point in Σj(X) there exists a neighbourhood Ux homeomorphic to the product
of an Euclidean ball in Rj and a truncated cone over a compact stratified space
Br(0j)× C[0,r)(Zj). We refer to Zj as the link of the stratum Σj(X).

By induction on the dimension, a stratified space X can be endowed with an
iterated edge metric g, which is a Riemannian metric on Xreg with the appropriate
asymptotics close to each singular stratum: by denoting kj an iterated edge metric
on the link Zj , there exist positive constants Λ and γ such that in a neighbourhood
Ux of a point x ∈ Σj(X) we have

|ϕ∗xg − (h+ dr2 + r2kj)| ≤ Λrγ , (24)

where h is the standard Riemannian metric on Rj and ϕx is the homeomorphism
between the product Br(0j)× C[0,r)(Zj) and the neighbourhood Ux.

In the case of the codimension 2 stratum, the link is a compact stratified space
of dimension 1, thus a circle. As a consequence, for each point x ∈ Σn−2(X) there
exists αx ∈ (0,+∞) such that the metric g is asymptotic, in the sense of (24), to:

h+ dr2 +
(αx

2π

)
r2dθ2,

on Rn−2 × C(S1). We refer to αx as the angle of Σn−2(X) at x.
The iterated edge metric g gives rise to a length structure and a distance dg on

X, and to a Riemannian measure µg which in the compact case is Ahlfors-regular
and finite. Note that the measure of the singular strata is zero and, as in the case
of smooth manifolds, µg coincides with the Hausdorff measure.

Moreover, thanks to the definition of the distance and iterated edge metric, we
know that each point x ∈ Σj(X) admits a unique tangent cone C(Sx) over the
tangent sphere at x. It is defined by the pGH limit as ε goes to zero:

(X, ε−1dg, x)
pGH−→ (C(Sx), dC , o),

where o is the vertex of the cone. The tangent sphere is a compact stratified space
of dimension (n− 1) given by the (j − 1)-spherical suspension of the link

Sx =
[
0,
π

2

]
× Sj−1 × Zj .

Since the convergence is smooth on the regular sets, the tangent sphere is endowed
with a double warped product metric:

hx = dψ2 + cos2(ψ)gSj−1 + sin2(ψ)kj . (25)
11



Moreover, the smoothness of the convergence and the fact that singular sets have
null measures imply that pGH-convergence can be replaced by pmGH-convergence.

Note that for x ∈ Σ0(X), the tangent sphere coincides with the link of Σ0(X).
If x belongs to Σ1(X) then Sx is a spherical suspension of the form [0, π] × Z1

endowed with the warped product metric hx = dψ2 + sin2(ψ)k1.
Also observe that a point belongs to the regular set if and only if its tangent

sphere is isometric to the round sphere Sn−1.
In view of the following, we need information about how the regularity of X

affects the regularity of tangent spheres. This is stated in the following.

Lemma 3.1. Let (X, g) be an n-dimensional compact stratified space endowed with
an iterated edge metric g. If Σn−2(X) = ∅, then for any x ∈ X the tangent sphere
Sx does not carry a singular stratum of codimension 2.

Proof. Assume x ∈ Σj(X) for j ∈ {0, . . . n− 3} and consider Zj the link of Σj(X).
Denote by dj = n − j − 1 its dimension and by ϕx the homeomorphism between
a neighbourhood of x and the product Br(0j) × C[0,r)(Zj). We first observe that
Zj does not carry any singular stratum of codimension 2. Assume by contradiction
that there exists z ∈ Σdj−2(Zj): then z has a neighbourhood homeomorphic to
Bs(0dj−2) × C[0,s)(S1). Denote by p̄ the point of coordinates (v, s, z) in Br(0j) ×
C[0,r)(Zj) and x̄ = ϕx(p̄) ∈ X. Then x̄ has a neighbourhood homeomorphic to
Bρ(0n−2)×C(S1). As a consequence, x̄ belongs to Σn−2(X), which contradicts the
assumption Σn−2(X) = ∅.

We next show that Zj not having any singular stratum of codimension 2, the
same holds for the tangent sphere Sx. If j = 0, Sx coincides with Zj and thus
have the same singular set. If j = 1, Sx is the warped product ([0, π] × Z1, dψ

2 +
sin2(ψ)k1). Its singular set Ssing

x is composed of the subsets (0, π)×Zsing
1 and {0, π}×

Z1. As for (0, π)×Zsing
1 , it only generates singularities of the same codimension as

the ones of Zsing
1 , that is at least 3. The singularities at {0}×Z1 and {π}×Z1 carry

a neighbourhood homeomorphic to C(Z1) and as a consequence have codimension
0 in Sx. Therefore Σn−2(Sx) = ∅. Similarly, for j ∈ {2, . . . , n− 3}, the singular set
of Sx is given by :

• the product (0, π/2) × Zsing
j which has codimension at least 3 because we

already know Σdj−2(Zj) = ∅;
• {0}×Sj−1×Zj : any point in this product has a neighbourhood homeomor-

phic to B(0j)×Zj , then for the same reason singularities have codimension
at least 3;

• {π/2} × Sj−1 × Zj : any point belonging to this set has a neighbourhood
homeomorphic to Sj−1 × C(Zj). This gives singularities of codimension
n− j in Sx and since j ≤ n− 3, the codimension is at least 3.

We have shown that for any x ∈ X we have Σn−2(Sx) = ∅, as we wished. �

Thanks to [10] we know the following:

Theorem. A compact stratified space (X, dg, µg) of dimension n endowed with
an iterated edge metric g is a RCD(K,N) space for K ∈ R, N ≥ 1, if and only if
n ≤ N , Ricg ≥ K on Xreg and the angles along the singular stratum of codimension
2 are smaller than or equal to 2π.

Since µg is the Hausdorff measure, a RCD(K,n) compact stratified space of
dimension n is also a non-collapsed RCD space.

An easy consequence of the definition of the iterated edge metric is the following:

Lemma 3.2. Let (X, dg, µg) be a RCD(K,n) compact stratified space of dimension
n endowed with an iterated edge metric g. Then for every x ∈ X, the tangent
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sphere (Sx, dhx
, µhx

) at x is a non-collapsed RCD(n− 2, n− 1) space. Moreover, if
for K ≥ 0 ||Ricg|| ≤ K holds on the regular set, we also have Richx

= (n − 2) on
Sreg
x .

Proof. Because of the definition of the tangent cone, we know that if Ricg ≥ K on
Xreg, then (C(Sx), ds2 + s2hx) has non-negative Ricci tensor on its regular part.
As a consequence, for each tangent sphere Richx ≥ (n− 2) on Sreg

x (see Lemma 2.1
in [36]). Analogously, if ||Ricg|| ≤ K on Xreg the tangent cone is Ricci flat and
Richx

= (n− 2) on Sreg
x .

For every x, Sx cannot carry a stratum of codimension 2 with angles larger than
2π. The argument is the same as in Lemma 3.1. If for every x ∈ Σn−2(X) the angle
αx is smaller than or equal to 2π, then the same holds for every link Zj of dimension
dj : the angles along Σdj−2(Zj) belongs to (0, 2π]. Now, if x ∈ Σj(X), singularities
of codimension 2 of Sx are determined by the singularities of codimension 2 in Zj :
as a consequence, if p ∈ Σn−3(Sx), then αp ∈ (0, 2π].

Then for any x ∈ X the tangent sphere at x satisfies the assumptions of the
previous theorem and (Sx, dhx

, µhx
) is a RCD(n− 1, n− 2) space. �

We are now in position to prove the following:

Theorem 3.3 (Sphere theorem for Einstein stratified spaces). For all n ∈ N≥2
there exists a positive constant εn > 0 such that the following holds. Let (X, g)
be a compact n-dimensional stratified space endowed with an iterated edge metric
g satisfying Ricg ≡ n − 1 on the regular set. Assume that Σn−2(X) = ∅. If
µg(X) ≥ (1− εn)Hn(Sn), then (X, dg) is isometric to (Sn, dSn).

Proof. Let us first check the theorem in the case of (X, g) not having a singular
set, that is, (X, g) is a smooth manifold. The proof is done by contradiction. If
the assertion does not hold, then there exists a sequence of n-dimensional closed
Riemannian manifolds (Mn

i , gi) such that RicgiMn
i
≡ n− 1, that µgi(Mn

i )→ Hn(Sn)

and that (Mn
i , gi) is not isometric to (Sn, gSn). Then applying the smooth conver-

gence result [13, Thm.7.3] yields that (Mn
i , gi) converge smoothly to (Sn, gSn). In

particular (Mn
i , gi) is simply connected and has positive curvature operator for sufi-

ciently large i. Then by a theorem of [45] (Mn
i , gi) has constant sectional curvature.

Thus (Mn
i , gi) is isometric to (Sn, gSn), which is a contradiction.

For all n ∈ N≥2 take a positive constant εn > 0 such that the smooth version
of Theorem 3.3 holds. Next let us fix a compact n-dimensional stratified space
(X, g) satisfying Ricg ≡ n− 1 on the regular set and Σn−2(X) = ∅. Our goal is to
prove that if µg(X) ≥ (1− ε̂n)Hn(Sn), then (X, dg) is isometric to (Sn, dSn), where
ε̂n := min{εi, 2 ≤ i ≤ n}.

The proof is done by induction. For n = 2, our assumption Σn−2(X) = ∅ yields
that (X, g) has no singular set, thus (X, g) is a smooth Riemannian manifold. By
definition of ε2 we get the desired statement.

As for n ≥ 3, let x ∈ X and consider the tangent cone (C(Sx), ds2+s2hx, o) at x.
By an argument similar to (22), we see that for all points x ∈ X and r ∈ (0, π] we
have µg(Br(x)) = Hn(Br(x)) ≥ (1− ε̂n)ωnr

n. By rescaling the metric by a factor
r−2 and by letting r go to zero, (X, r−2g,Hn, x) pmGH-converges to the tangent
cone (C(Sx), ds2+s2hx,Hn, o). As a consequence, we haveHn(B1(o)) ≥ (1−ε̂n)ωn.
Since µhx

(Sx) = nHn(B1(o)), we obtain

µhx
(Sx) ≥ (1− ε̂n)Hn−1(Sn−1) ≥ (1− ε̂n−1)Hn−1(Sn−1).

On the other hand, by Lemma 3.2, we also know that (Sx, hx) is a compact stratified
space of dimension (n− 1) with Richx ≡ (n− 2) on its regular set. Moreover, since
Σn−2(X) = ∅, Lemma 3.1 ensures that Sx does not have any singular stratum of
codimension 2. Then by the assumption on the induction, (Sx, dhx

) is isometric
13



to the round sphere (Sn−1, dSn−1). As a consequence we have proven that for any
x ∈ X, x is a regular point. This proves that Xsing = ∅, thus (X, g) is a smooth
Riemannian manifold. By definition of εn, (X, dg) is isometric to (Sn, dSn). �

Remark 3.4. In the theorem above the assumption Σn−2(X) = ∅ is essential.
Consider for all a ∈ (0, 1), the (n − 2)-spherical suspension of S1(a) := (S1, a2dθ2)
defined by:

X =
[
0,
π

2

]
× Sn−2 × S1(a),

endowed with the double warped product metric g as in (25). (X, g) is a compact
n-dimensional stratified space with the iterated edge metric g and Ricg ≡ (n − 1)
on Xreg and a non-empty, codimension 2 singular stratum given by {π/2}×Sn−2×
S1(a). If the angle α = 2πa along Σn−2(X) is close to 2π, then the volume of X
is close to the one of Sn, but (X, g) cannot be isometric to (Sn, dSn) because of its
singular stratum of codimension 2.

We now consider stratified spaces that are not necessarily compact. Of course,
also in this case tangent spheres are compact stratified space defined as above,
and Lemmas 3.1 and 3.2 still hold. In presence of a codimension 2 stratum and a
two-side Ricci bound, the previous theorem allows us to obtain the following:

Corollary 3.5. For all n ∈ N≥2 there exists a positive constant εn > 0 such that
the following holds. Let (X, g) be an n-dimensional stratified space endowed with
an iterated edge metric g such that Ricg is two-side bounded on the regular set of
X. If a point x ∈ X satisfies

lim
r→0+

µg(Br(x))

ωnrn
≥ 1− εn,

then either x belongs to Xreg, or x ∈ Σn−2(X) and αx ≥ 2π(1− εn).

Proof. Fix εn as in Theorem 3.3 and assume that

lim
r→0+

µg(Br(x))

ωnrn
≥ 1− εn. (26)

If x belongs to Σn−2(X), thanks to the definition of the tangent sphere and its
metric we know that

lim
r→0+

µg(Br(x))

ωnrn
=
αx
2π
.

Therefore if (26) holds, we obtain αx ≥ 2π(1− εn).
Consider a point x ∈ X \Σn−2(X). Observe that the tangent sphere (Sx, hx) at

x is a compact stratified space of dimension (n− 1), and with the same argument
as in Lemma 3.2, the metric hx satisfies Richx

≡ (n − 2). Moreover, since x does
not belong to Σn−2(X), Lemma 3.1 can be easily adapted to show that Sx does
not carry any singular stratum of codimension 2. By the same argument as in
the previous theorem, letting r go to zero in (Br(x), r−2g, x) leads to the volume
estimate Hn(B1(o)) ≥ (1− εn)ωn and as above we obtain:

µhx(Sx) ≥ (1− εn)Hn−1(Sn−1).

As a consequence, Theorem 3.3 applied to Sx shows that the tangent sphere at x
is isometric to Sn−1 and x belongs to the regular set. �

Remark 3.6. In Corollary 3.5 the assumption on two side bounds on the Ricci
curvature on the regular set is essential because of the following. Fix n ∈ N≥3
and r ∈ (0, 1) sufficiently close to 1. Consider the compact n-dimensional stratified
space X := [0, π]×Sn−1 with the warped product metric g = dϕ2 +sin2(ϕ)r2gSn−1 .
Then it satisfies
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• for all x ∈ X, limt→0+
µg(Bt(x))
ωntn

is close to 1;
• Ricg ≥ n− 1 on the regular set;
• there is no upper bound on Ricg.

In this case, all singular points of X belongs to Σ0(X).

Let us end this paper by giving the following direct consequence of Corollary 3.5
and of [10, Thm. A].

Corollary 3.7. For all n ∈ N≥2 there exists a positive constant εn > 0 such that
the following holds. Let (X, g) be a compact n-dimensional stratified space endowed
with an iterated edge metric g such that there exists K > 0 for which we have on
the regular set (n − 1) ≤ Ricg ≤ K. Assume that the angles along the singular
stratum of codimension 2 are smaller than or equal to 2π and

µg(X) ≥ (1− εn)Hn(Sn).

Then Xsing = Σn−2(X) and the angles at x ∈ Σn−2(X) satisfy αx ≥ 2π(1− εn).

The assumption that the angles are smaller than 2π ensures that, thanks to [10,
Thm. A], (Xn, dg, µg) is a non-collapsed RCD(n − 1, n) space, thus the Bishop-
Gromov inequality holds and allows us to apply Corollary 3.5.
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