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Abstract We prove that a minimizer of the Yamabe functional does not ex-
ist for a sphere Sn of dimension n ≥ 3, endowed with a standard edge-cone
spherical metric of cone angle greater than or equal to 4π, along a great circle
of codimension two. When the cone angle along the singularity is smaller than
2π, the corresponding metric is known to be a Yamabe metric, and we show
that all Yamabe metrics in its conformal class are obtained from it by constant
multiples and conformal diffeomorphisms preserving the singular set.
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1 Introduction

The Yamabe problem on a Riemannian smooth manifold (Mn, g) with n ≥ 3
consists in finding a metric with constant scalar curvature within the conformal
class of a fixed metric. It is well known that one way of solving such problem
is to minimize the Einstein-Hilbert functional over the conformal class of g,
that is

E(g̃) =

∫
M

Rg̃dµg̃

Volg̃(M)
n−2
n

, g̃ ∈ [g] = {e2fg | f ∈ C∞(M)},

The first author is partially supported by he Grants-in-Aid for Scientific Research (B), Japan
Society for the Promotion of Science, No. 18HO1117.

K. Akutagawa
Department of Mathematics, Chuo University, Tokyo 112-8551, Japan
E-mail: akutagawa@math.chuo-u.ac.jp

I. Mondello
Université Paris Est Créteil, Laboratoire d’Analyse et Mathématiques Appliquées, France
E-mail: ilaria.mondello@u-pec.fr



2 Kazuo Akutagawa, Ilaria Mondello

where Rg̃, dµg̃ and Volg̃(M) denote respectively the scalar curvature, the vol-
ume form associated to g̃ and the volume of (M, g̃). The infimum of E over
the conformal class [g] is called the Yamabe constant of (M, g) and denoted by
Y (M, [g]). We refer to a metric minimizing E as a Yamabe metric. Thanks to
the combined work of Yamabe, Trudinger, Aubin and Schoen (cf. [20], [12]),
we know that a Yamabe metric always exists on a compact smooth manifold
without boundary. One of the key point in order to prove such a result is
Aubin’s inequality : for any compact smooth manifold (Mn, g) we have

Y (M, [g]) ≤ Yn

where Yn denotes the Yamabe constant of the unit sphere Sn endowed with
the round metric. Whenever the inequality is strict, there exists a Yamabe
metric; in the case of equality, the manifold is conformally equivalent to the
round sphere, and thus a Yamabe metric exists as well.

It is natural to ask whether it is possible to solve the Yamabe problem in
other settings. For example, one can consider manifolds with conical or edge-
cone singularities. For these latter, the local geometry at codimension-two
singularities is modeled on the product Rn−2 × C(S1a), where S1a is the circle
of length α = 2πa, a > 0. We refer to α as the cone angle at the singularity.
Edge-cone singularities naturally appear in the study of converging sequences
of smooth manifolds: for instance, a recent result of [14] showed that when
considering the pointed Gromov-Hausdorff limit (X, d, p) of a non-collapsing
sequence of smooth manifolds with a lower Ricci bound, the tangent cone at
codimension two singularities is almost everywhere isometric to Rn−2×C(S1a),
with a ∈ (0, 1]. Metrics with edge-cone singularities have also been studied in
various different contexts: for example, [10] is concerned with obstructions to
the existence of Einstein edge-cone metrics on manifolds of dimension 4; [13]
is devoted to the study of the Yamabe flow on manifolds with edge-cone sin-
gularities. Furthermore, metrics with edge-cone singularities along a smooth
divisor of real dimension two also played an important role in proving the ex-
istence of Kähler-Einstein metrics on Fano manifolds (see [15], [17]). It is then
interesting to investigate to which extent the Yamabe problem on manifolds
with edge-cone singularities corresponds to its smooth counterpart.

Thanks to [3], an existence result for the Yamabe problem in the singular
setting is available in the more general context of pseudomanifolds and com-
pact stratified spaces carrying an iterated edge metric (see [5] for more general
settings), which include manifolds with conical singularities [2], orbifolds [1]
and manifolds with edge-cone singularities [24]. The proof of such result relies
on a generalized Aubin’s inequality introducing a new conformal invariant, the
local Yamabe constant, which takes in account the local geometry at singular
points. If the Yamabe constant of the whole space is strictly smaller than
the local Yamabe constant, then a Yamabe metric does exists (see the next
section for definitions). Nevertheless, the situation is quite different from the
smooth setting. First of all, the local Yamabe constant may be strictly smaller
than Yn and its value is in general unknown. A first result in [1] gave the
local Yamabe constant in the case of orbifolds with isolated singularities; [25]
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provides an expression for the local Yamabe constant for a compact strati-
fied space whose singularities have cross sections carrying an Einstein iterated
edge metric. This applies in particular to general orbifolds and to the case of
codimension two edge-cone singularities: if the cone angle α = 2πa along the
singularity is smaller than 2π, the local Yamabe constant is equal to a

2
nYn;

it coincides with Yn otherwise.
Another remarkable difference with respect to the smooth setting, is that

in the case of equality between the local and the global Yamabe constants,
examples of non-existence for the Yamabe minimizers do occur. Indeed, J. Vi-
aclovsky [30] gave a family of examples, each with one isolated orbifold singu-
larity, for which the local and global Yamabe constants coincide and moreover
a Yamabe minimizer does not exist. Such singular manifolds are constructed
as the conformal orbifold compactification of any hyperkähler ALE 4-manifold
with group of order n > 1.

We observe that in Viaclovsky’s examples, the conical singularity has the
maximal codimension in the ambient manifold. In this work, we are concerned
in getting a better insight of the Yamabe problem for edge-cone singularities
of the minimal codimension one can allow without creating a boundary, that
is, codimension two. As we stated above, in this case the value of the local
Yamabe constant is known and it only depends on the dimension and on the
cone angle at the singularities. We then consider a class of examples whose
Yamabe constants coincide with that value. Those are given by spheres Sn
endowed with metrics ha carrying an edge-cone singularity of angle 2πa along
a great circle of codimension 2. Such metrics are in addition Einstein away
from the singularity.

When the cone angle is smaller than 2π, we know that ha is a Yamabe
metric (see Corollary 3.2 in [25]). We additionally show that the conformal
class of ha behaves precisely as the one of the smooth round metric: any other
Yamabe metric in the conformal class is obtained from ha by a conformal
diffeomorphism preserving the singular set, up to constant multiples.

The case of angle greater than 2π is substantially different. Indeed, ha is
no longer a Yamabe metric. Moreover, our main result states that, when the
cone angle is greater than or equal to 4π, the conformal class of the singular
metric does not admit any Yamabe metric, in the sense of a metric minimizing
E in [ha]. More precisely:

Main Theorem. Let Sna = (Sn, ha) be the n-dimensional sphere endowed
with a standard edge-cone spherical metric of cone angle α = 2πa along a
great circle Sn−2 for some a ≥ 2. Then there is no Yamabe metric in the con-
formal class [ha].

Our proof by contradiction depends on a combination of a branched cover-
ing version of Aubin’s lemma for finite coverings [11], [7], the computation of
the Yamabe constant of (Sn, [ha]) [24], [25], and regularity results for Yamabe
minimizers [4], [24], [26]. We conjecture that an analog result should hold true
for a ∈ (1, 2) as well.
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We point out that one of the reasons for investigating the Yamabe problem
in a singular setting is an application to the study of the Yamabe invariant
[18] (or σ-invariant [28]) of a smooth compact manifold M . This latter is a
differential-topological invariant defined as the supremum of Yamabe constants
over all conformal classes

Y (M) = sup
g∈M(M)

Y (M, [g]) = sup
g∈M(M)

inf
g̃∈[g]
E(g̃),

where M(M) denotes the set of smooth Riemannian metrics on M . It is a
very difficult problem to explicitly compute, or even give estimates for the
Yamabe invariant, especially when it is positive (see for example Section 1.2
in [9], or [21], for reviews of the known results about the Yamabe invariant).
In an upcoming work [6], we address to the question of obtaining a positive
lower bound for the Yamabe invariant, given by the Yamabe constant of a
singular Einstein metric with a edge-cone singularity of codimension two and
cone angle smaller than 2π. This can be done because, thanks to [25], such
metrics are known to be Yamabe metrics for angle smaller than 2π. When the
angle is greater than 2π, our main theorem shows that the situation is more
involved, because not only there exist singular Einstein metrics on the sphere
that are not Yamabe metrics, but also their conformal class does not contain
any Yamabe metric.

This paper is organized as follows. In the first section, we give some basic
definitions and preliminary results about the singular spaces that we deal
with, the metrics we consider and their local and global Yamabe constants.
We define in particular singular spheres with edge-cone singularities and show
that their local and global Yamabe constants coincide. Section 2 is devoted
to prove regularity results about Schrödinger equations on stratified spaces
endowed with an Einstein metric. Even if we use such results only in the case
of singular spheres, we state them in their full generality, as they can be of
interest in the study of Einstein edge-cone metrics in a more general setting.
In the two following sections, we focus on the edge-cone spheres Sna = (Sn, ha)
with a cone angle α = 2πa along a great circle of codimension two. In section
3, we consider the case of angle smaller than 2π. Section 4 contains the proof
of the main result of this paper. The last section rephrases the previous results
in terms of a Sobolev inequality in Rn × C(S1).

2 Preliminaries

We briefly recall some notions about smoothly stratified spaces, and refer to
[3] and [25] for the precise definitions.

A compact stratified space is a compact topological space X that can be
decomposed into two disjoint subsets, the regular set Ω, which is a smooth
open manifold of dimension n, dense in the whole space, and the singular
set Σ. This latter has different components Σj , the singular strata, that are
smooth manifolds of dimension j, with 0 ≤ j ≤ (n − 2). Assume that each
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singular stratum Σj has only finitely many connected components. Each point
x of a singular stratum Σj has a neighbourhood which is homeomorphic to
the product Bj(ε) × C[0,ε)(Zx), where Bj(ε) is an Euclidean open ball in Rj
and C[0,ε)(Zx) is the truncated cone over Zx, a compact stratified space which
is called the link of the stratum Σj .

An iterated edge metric on a stratified space can be defined by iteration
on the dimension; it is a Riemannian metric on the regular set with precise
asymptotics close to the singular stratum (see for example Section 3 in [8]).
Here, we are mostly interested in the case of one singular stratum of minimum
codimension two. In this case, the link at any point is a circle and we can
define a model metric on Rn−2 × C(S1)

h+ dr2 + a2r2dθ2,

where h is a Riemannian metric on Rn−2 and the parameter a > 0 determines
the angle α = 2πa of the two-dimensional cone C(S1). For a stratified space
with only one stratum of codimension two, an iterated edge metric, also called
an edge-cone metric (cf. [10]), is defined as follows:

Definition 2.1. Let X be a compact stratified space of dimension n with one
singular stratum of codimension 2, denoted Σn−2. An edge-cone metric g on
X is a Riemannian metric on the regular set Ω = X − Σn−2 such that there
exist positive constants γ, Λ and for any x ∈ Σn−2 there exists ax > 0 such
that

|g − (h+ dr2 + a2xr
2dθ2)| ≤ Λrγ .

Here, r = r(·) = d(· , Σn−2). We refer to αx = 2πax as the cone angle of Σn−2

at the point x.

All the curvatures that are associated with a Riemannian metric g, scalar
curvature Rg and Ricci curvature Ricg, are well-defined on the regular set Ω.
Therefore, an Einstein metric on a compact stratified space is defined by an
iterated edge metric g such that there exists λ ∈ R for which Ricg = λg on Ω.

2.1 The Yamabe Problem on stratified spaces

We follow here the lines of [3]. LetX be a compact stratified space of dimension
n ≥ 3. We can define the Sobolev space W 1,2(X) as the W 1,2-completion of
Lipschitz functions on X with the usual Sobolev norm, and the Laplacian as
the Friedrichs operator associated to the Dirichlet energy. Given an iterated
edge metric g the Yamabe functional is defined as follows: for a function u in
W 1,2(X)

Qg(u) :=
Eg(u)

||u||22n
n−2

=

∫
X

(an|du|2 +Rgu
2)dµg

||u||22n
n−2

,

where an = 4(n−1)
n−2 . Observe that Sobolev’s inequality holds for X. As a conse-

quence, if we assume that the scalar curvature Rg belongs to Lq(X) for some



6 Kazuo Akutagawa, Ilaria Mondello

q > n
2 , Sobolev’s and Hölder’s inequality guarantee that the infimum of Qg

over non-vanishing Sobolev functions is a well-defined positive number, thus
we can define the Yamabe constant similarly to the smooth case. From now
on, we then consider iterated edge metrics g for which Rg ∈ Lq(X) for some
q > n/2. The Yamabe constant Y (X, d) is then defined as the infimum of Qg:

Y (X, d) := Y (Ω, [g]) = inf{Qg(u)| u ∈ C1
0 (Ω), u 6≡ 0}

= inf{Qg(u)| u ∈W 1,2(X), u 6≡ 0}.

As in the smooth setting, Aubin’s inequality holds, that is, the Yamabe con-
stant Y (X, [g]) is always smaller than or equal to Yn.

Remark 2.1. In order to define the Yamabe constant, we could also assume
that the negative part of Rg belongs to Lq(X) for q > n/2, or that Rg lies in
the “Morrey regularity class”, as it was done in [3].

A Yamabe minimizer is a positive function u such that Qg(u) equals the
Yamabe constant. If such a u exists, the metric g̃ = u

4
n−2 g is called a Yamabe

metric and it has constant scalar curvature on the regular set. As shown by
Theorem 1.12 in [3], if a Yamabe minimizer does exist, it belongs toW 1,2(X)∩
L∞(X) and it satisfies the Yamabe equation on the regular set Ω:

− an∆gu+Rgu = Y (M, [g])u
n+2
n−2 , (1)

where −∆g denotes the non-negative Laplacian of g.
For an open ball Br(p) (of radius r centered at p ), we define the Yamabe

constant of the ball similarly, by taking the infimum of Qg over W 1,2
0 (Br(p)∩

Ω):
Y (Br(p)) = inf{Qg(u) | u ∈W 1,2

0 (Br(p) ∩Ω), u 6≡ 0},

Here, W 1,2
0 (Br(p) ∩ Ω) denotes the W 1,2-completion of C1

0 (Br(p) ∩ Ω). This
allows us to introduce the local Yamabe constant

Y`(X) = inf
p∈X

lim
r→0

Y (Br(p)).

As in the smooth case, a generalized Aubin’s inequality holds

Y (X, d) ≤ Y`(X).

The value of the local Yamabe constant is known in the case of orbifolds [1]
or more generally when the links of the singular strata carry Einstein metrics
[25]. This latter result holds in particular when there is only one stratum of
codimension two. As stated in the introduction, in this case it is indeed possible
to give an expression of the local Yamabe constant that only depends on the
dimension and on the angle along the singular stratum. More precisely:

Theorem 2.2. ([25]) Let (Xn, g) be a compact stratified space with singular
set Σn−2 of codimension two, endowed with an edge-cone metric. One of the
two possibilities holds:
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(i) If there exists x ∈ Σn−2 such that αx ≤ 2π, then

Y`(X) =
( α
2π

) 2
n

Yn, α := inf
x∈Σn−2

αx.

(ii) If for all x ∈ Σn−2, we have αx > 2π, then Y`(X) = Yn.

Thanks to Theorem 4.1 in [26], we also know that if αx ≤ 2π for all
x ∈ Σn−2, then an Einstein metric is also a Yamabe metric. This is not
necessarily true when the cone angles along the singular set are greater than
2π (see Remark 2.5 for a simple example).

2.2 Standard edge-cone spheres

We are now going to define an edge-cone metric on the unit sphere Sn in such a
way that it has a cone angle along a great circle of codimension 2. For a ∈ R>0,
we consider the following double warped product metric:

ha = dρ2+sin2 ρ gSn−2(x)+a2 cos2 ρ dθ2 on (ρ, x, θ) ∈ X =
(
0,
π

2

)
×Sn−2×S1,

where gSn−2 denotes the standard round metric of constant curvature 1 on
Sn−2. The edge-cone sphere Sna is defined to be the metric completion ofX with
respect to the metric defined by ha. We refer to ha as the standard edge-cone
spherical metric (cf. [10]). When a equals 1, this is simply the round n-sphere
Sn. Otherwise, Sna = (Sn, ha) is a compact stratified space, homeomorphic to
the sphere, with one singular stratum of codimension two given by:

Σ =
({π

2

}
× Sn−2 × S1

)/
∼ = Sn−2 × {∗}.

Here, ∗ denotes the conical singular point in the spherical cone (
(
0, π2

)
×

S1, dρ2 + a2 cos2 ρ dθ2). Observe that the metric ha on the regular set is of
constant curvature 1, and hence it is an Einstein metric with Richa

= (n−1)ha.
Now consider Rn seen as the product Rn−2 × R2(3 (x, r)) and define the

metric:
ga = gEn−2(x) + dr2 + a2r2dθ2,

where gEn−2 denotes the Euclidean metric on Rn−2. As above, when a equals
1, the previous metric is the Euclidean metric; otherwise we have a metric
with an edge-cone singularity of cone angle α = 2πa along Rn−2.

The metrics ha on Sn and ga on Rn are conformally equivalent via the
stereographic projection, as in the smooth case. Indeed, let N be a point in
the singular set Σ of Sna and denote by π be the stereographic projection π
from Sn−{N} onto Rn. If Φ is its inverse, it is easy to check that the pull-back
of ha is conformal to ga and it is equal to:

Φ∗ha =

(
2

1 + |x|2 + r2

)2

ga,
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where | · | denotes the Euclidean norm in Rn−2. We also observe that (Sn, ha)
can be seen as the spherical suspension of (Sn−1, hn−1a ), meaning that it is
isometric to:

([0, π]× Sn−1, dt2 + sin2 t hn−1a ).

For the sake of simplicity, from now on we denote the local Yamabe con-
stant of (Sn, [ha]) by Ya, its Yamabe functional Qha by Qa, the energy Eha by
Ea, the Laplacian and volume form associated to ha by ∆a and dµa respec-
tively.

Since ha is an Einstein metric on Ω, we can apply Theorem 2.2 and get
the value of the local Yamabe constant of (Sn, [ha]):

Corollary 2.3. Let a ∈ R>0 and consider Sna = (Sn, ha) defined as above.
Then its local Yamabe constant Ya satisfies:

(a) if a ∈ (0, 1), Ya = a
2
nYn,

(b) if a ≥ 1, Ya = Yn.

Moreover we have the following result:

Lemma 2.4. For any a ∈ R>0, the local Yamabe constant and the Yamabe
constant of (Sn, [ha]) coincide:

Y (Sn, [ha]) = Ya.

Proof. A simple computation shows that for any a:

Qa(ha) = a
2
nYn

See for instance Lemma 4.3 in [24]. If a < 1, ha is a Yamabe metric and thus the
Yamabe constant Y (Sn, [ha]) coincides with Qa(ha). Together with statement
(a) in the previous Corollary, this directly shows that Y (Sn, [ha]) = Ya.

If a ≥ 1, then (Sn, [ha]) is conformally equivalent to (Rn, [ga]), and thanks
to Proposition 4.7 in [25] we know that

Y (Sn, [ha]) = Y (Rn, [ga]) = Yn = Ya.

Remark 2.5. The fact that Qa(ha) equals a
2
nYn does not depend on a being

smaller than 1. In particular, the previous lemma shows that the Einstein
metric ha is not a Yamabe metric when a > 1.

3 Regularity results

Our proofs rely on having precise information about the regularity of a Yamabe
minimizer and its gradient. Such regularity is not specific to the particular case
of edge-cone spheres, nor to the only presence of codimension two singularities,
but it actually holds on a general compact stratified space, with possibly higher
codimension strata whose links are not necessarily smooth. The results of this
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section are therefore stated in their full generality. We point out that previous
results concerning to regularity of solutions to elliptic PDEs and Schrödinger’s
equation can be found in [3,4,22,23].

We are going to prove the following:

Proposition 3.1. Let (Xn, g) be a compact stratified space with singular set
Σ, endowed with an Einstein edge-cone metric. Assume that there exists a
Yamabe minimizer u ∈W 1,2(X) ∩ L∞(X). Then the following hold:

(i) If for all x ∈ Σn−2 the cone angle at x satisfies αx ≤ 2π, then u belongs
to W 2,2(X) and its gradient is bounded. In particular, u is a Lipschitz
function.

(ii) If there exists x ∈ Σn−2 such that the cone angle at x is αx > 2π, then
u belongs to C0,ν(X), with ν = ν(X) ∈ (0, 1). Moreover for any ε > 0 we
have

||du||L∞(X\Σε) ≤ Cεν−1.

In both cases, the integration by parts formula holds true for u

−
∫
X

u∆gudµg =

∫
X

|du|2dµg. (2)

The first statement (i) was proven in [26], Lemma 4.6. The integration
by parts formula then follows easily by choosing a family of cut-off functions
vanishing on an ε-tubular neighborhood Σε of the singular set and whose
norm in L2 tends to zero as ε goes to zero (see for example fε in the proof of
Theorem 2.1 in [25]).

The rest of this section is devoted to the proof of the second case (ii) of
Proposition 3.1. In order to do that, first observe that we can consider the
Yamabe equation (1) as a Schrödinger equation on the regular set Ω

−∆gu = V u,

where
V = a−1n (Y (X, [g]u

4
n−2 −Rg) ∈ L∞(X).

Since g is an Einstein metric, the scalar curvature Rg is constant, therefore V
belongs to L∞(X). We can also define the locally Lipschitz function

F (x) = a−1n (Y (X, [g])x
4

n−2 −Rg)x,

and the Yamabe equation can be written as an equation of the form

−∆gu = F (u).

The proof of Proposition 3.1 combines these two ways of considering the Yam-
abe equation.
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Regularity for solutions of Schrödinger equations

For a compact stratified space (Wn, h) endowed with an iterated edge metric,
we denote by λ1(W ) the first non-zero eigenvalue of the Laplacian −∆h, that
is

λ1(W ) = inf
u∈W 1,2(W ),

u 6=0

∫
W

|du|2dµh∫
W

u2dµh

.

Following [4], we define

ν1(W ) =


1 if λ1(W ) ≥ n
the unique value in (0, 1) s.t.
ν1(W )(n− 1 + ν1(W )) if λ1(W ) < n.

Then, for a compact stratified space (Xn, g), we define

ν(X) = inf
x∈X

ν1(Zx),

where Zx is the link at x.
Consider for example a stratified space which only has codimension 2 sin-

gularities. Then the links are circles S1x = (S1, (αx/2π)2dθ2) of length αx.
Therefore we have

ν1(S1x) =

1 if αx ≤ 2π
1

ax
if αx = 2πax > 2π.

In this case we can then express the value ν(X) in terms of the cone angles
αx:

ν(X) =

1 if ∀x ∈ Σ αx ≤ 2π,

inf
x∈Σ

2π

αx
if ∃x ∈ Σ αx > 2π.

(3)

For the sake of simplicity, we assume that ν(X) > 0, that is, there is no
sequence of singular points for which the angle tends to infinity.

The Lichnerowicz theorem for stratified spaces (Theorem 2.1 in [25]) en-
sures that expression (3) for ν(X) holds true whenever the metric has Ricci
tensor bounded from below on the regular set. Indeed we have the following:

Lemma 3.2. Let (Xn, g) be a compact stratified space with singular set Σ.
Assume that there exists k ∈ R such that Ricg ≥ k g on the regular set X−Σ.
Then, ν(X) is given by (3).

Proof. The lower bound on the Ricci tensor on the regular set implies that
for any x ∈ Σ the tangent cone at x is Ricci flat on its regular set, and in
particular any link Zx = (Z, kx) is such that Rickx ≥ (dim(Z) − 1) kx on the
regular set of Z (see Lemma 2.1 in [24]). In particular, when dim(Z) > 1,
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that is, when x belongs to a singular stratum of codimension greater than
two, we can apply Lichnerowicz theorem to (Z, kx) and get λ1(Zx) ≥ dim(Z).
As a consequence, whenever x belongs to a singular stratum of codimension
greater than two, ν(Zx) = 1 and therefore ν(X) only depends on angles at the
codimension 2 stratum. This proves (3).

By combining Theorem A in [4] and Moser’s iteration technique (see Lemma
1.16 in [24]), we obtain the following result for weak solutions of a Schrödinger
equation:

Proposition 3.3. Let (Xn, g) be a compact stratified space endowed with an
iterated edge metric and V ∈ Lq(X) for q > n

2 . Assume that u ∈ W 1,2(X) ∩
L∞(X) is a weak solution of

−∆gu = V u (4)

and moreover there exists a constant c > 0 such that

∆g|du| ≥ −c|du| on Ω.

Then for any ε > 0 we have

(i) if ν(X) = 1 and V ∈ L∞(X), there exists a positive constant C such that

||du||L∞(X\Σε) ≤ C
√
| ln(ε)|,

(ii) if ν(X) ∈ (0, 1) and V ∈ L∞(X), then u ∈ C0,ν(X) for ν = ν(X) and
there exists a positive constant C such that

||du||L∞(X\Σε) ≤ Cεν−1,

(iii) if ν(X) ∈ (0, 1] and q ∈
(
n
2 ,∞

)
, then u ∈ C0,µ(X) for

µ = min

{
ν(X), 1− n

2q

}
,

and there exists a positive constant such that

||du||L∞(X\Σε) ≤ Cεµ−1.

In cases (ii) and (iii), we deduce the integration by parts formula (2) for a
weak solution u of (4).

Lemma 3.4. Let (Xn, g) be a compact stratified space with singular set Σ,
endowed with an iterated edge-cone metric. Assume that there exists x in the
stratum of codimension two such that αx > 2π and that ν(X) > 0. For u ∈
W 1,2(X) ∩ L∞(X) satisfying the same assumptions of Proposition 3.3, the
integration by parts formula (2) holds.
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Proof. Fix ε > 0 and consider an ε-tubular neighbourhood Σε of the singular
set. Then we can write:∫

X

|du|2dµg = lim
ε→0

(
−
∫
X\Σε

u∆gudµg +

∫
∂Σε

u〈du,N〉dσg

)
, (5)

where N is the unit outward normal of ∂Σε. We are going to show that the
second term in the previous limit tends to zero as ε goes to zero. In order
to do that, observe that u is bounded and the norm in L∞ of its gradient is
controlled by a constant times εβ away from Σε. The exponent β is either equal
to ν(X) or to µ; in both cases 0 < β < 1. By using this and Cauchy-Schwarz’s
inequality we get the estimate∫

∂Σε

u〈du,N〉dσg ≤ ||u||∞εβ−1 Volσg (∂Σ
ε) ≤ cεβ ,

for some positive constant c. Here we used the fact that, since Σ has minimal
codimension 2, the volume of the boundary of an ε-tubular neighbourhood is
bounded by a constant times ε. Since β > 0, by taking the limit in (5) when
ε goes to zero we obtain the desired equality (2).

Proof of Proposition 3.1

We observed at the beginning of this section that, in the Einstein case, a
Yamabe minimizer u is a weak solution of a Schrödinger equation for V ∈
L∞(X). Hence, in order to prove Proposition 3.1, it suffices to show that the
gradient of u satisfies inequality

∆g|du| ≥ −c|du|

on the regular set, for some positive constant c.
The following is proven in Proposition 2.3 in [24], that we recall here:

Proposition 3.5. Let (Xn, g) be a compact stratified space endowed with an
iterated edge metric such that for some k ∈ R the inequality Ricg ≥ k g holds
on the regular set. Let F be a locally Lipschitz function on R and u a non-
negative function in W 1,2(X) ∩ L∞(X) which is a weak solution of

−∆gu = F (u) (6)

Then there exists a positive constant c such that ∆g|du| ≥ −c|du| on the regular
set.

As we stated above, the Yamabe equation can be seen as an equation of
the form (6). As a consequence, the assumptions of Proposition 3.1 ensure that
we can apply both Proposition 3.5 and Proposition 3.3. We then get that a
Yamabe minimizer belongs to the Hölder space C0,ν(X) for ν = ν(X) given by
expression (3). Moreover, Lemma 3.4 proves the integration by parts formula.

This concludes the proof of Proposition 3.1.
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Remark 3.6. If we denote by Lg = −an∆g + Rg the conformal Laplacian
associate to the metric g, Proposition 3.1 implies in particular the following
equality, which will be useful in the following∫

X

uLgudµg = Eg(u) =

∫
X

(an|du|2 +Rgu
2)dµg. (7)

4 Singular spheres of angle smaller than 2π

We consider the standard edge-cone sphere Sna = (Sn, ha) for a ≤ 1. In this
case, ha is a Yamabe metric and we are going to show that the behavior of
its conformal class is analog to the one of the round metric h1 = gS. For the
smooth round sphere (Sn, h1), any Yamabe metric, not homothetic to h1, is
obtained from h1 by a conformal diffeomorphism (see [27] or Proposition 3.1
in [20]).

Now consider a Yamabe minimizer u in the conformal class of ha, h =

u
4

n−2ha. We can eventually apply Proposition 3.1 to u and obtain that it is a
Lipschitz function. This, together with Corollary 4.8 of [26], allows us to prove
the following:

Proposition 4.1. Let a ≤ 1. If there exists a conformal metric h ∈ [ha] with
constant scalar curvature, then there exists a conformal diffeomorphism ϕ of
(Sn, ha), preserving the singular set, such that h = ϕ∗ha, up to a constant
multiple . As a consequence, the Yamabe functional on (Sn, ha) is minimized
by constant multiples of ha and its images under conformal diffeomorphism.

Proof. We already know that ha minimizes the Yamabe functional when a ≤ 1.
Therefore it suffices to show the existence of the desired conformal diffeomor-
phism. Let h = u

4
n−2ha be a conformal metric with constant scalar curvature.

Up to a constant multiple, we may assume that Rh = n(n− 1). By Theorem
4.3 in [26], the metric h is an Einstein metric. Moreover, by Corollary 4.8 in
[26], (Sn, h) is isometric to a spherical suspension: that is, there exists a strat-
ified space X of dimension (n− 1), with singularities of dimension (n− 3) and
angles smaller than 2π, endowed with an Einstein metric g, and an isometry ϕ
from (Sn, h) to the warped product (X × [0, π], dt2 + sin2 t g). The isometry ϕ
preserves the singular set, meaning that it sends Σn−2 onto Xsing× [0, π]. We
know that the the point P = X ×{0} belongs to the singular set of X × [0, π]
and by the proof of the Obata singular theorem in [26] the tangent cone at P
is a cone over X. More explicitly, the truncated tangent cone at P is given by
the following Gromov-Hausdorff limit:

(C[0,1)(X), ds2 + s2g) = lim
ε→0

(Bε(P ), ε
−2(dt2 + sin2 t g), P ),

Moreover, the convergence is in C∞loc on the regular sets. Now consider x =
ϕ−1(P ) ∈ Σn−2. Since ϕ is an isometry, the truncated tangent cone at x with
respect to the metric h is isometric to C[0,1)(X):

lim
ε→0

(Bε(x), ε
−2h, x) = (C[0,1)(X), ds2 + s2g).
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We also know that the tangent cone at x with respect to the metric ha is a
cone over Sn−1a . Indeed, ha is isometric to the warped product metric dρ2 +
sin2 ρ hn−1a on [0, π] × Sn−1. On the regular part of the ball Bε(x), we can
consider the change of coordinates ρ = εr and as ε goes to zero we obtain

ε−2ha = ε−2(ε2dr2 + sin2(εr)hn−1a )→ dr2 + r2hn−1a .

For the conformal metric h = φha, with φ = u
4

n−2 , we know that φ is a
Lipschitz and bounded function, thanks to Proposition 3.1 (i). Therefore, for
any z ∈ Bε(x), we have

|φ(z)− φ(p)| ≤ Cε.

As a consequence, when considering the limit as ε goes to zero of the metric
ε−2h, we have, with the same change of coordinates as above, on the regular
part of Bε(x):

ε−2h = ε−2φha → dr2 + r2hn−1a .

But the tangent cone at x is unique, and therefore C(Xreg) and C(Sn−1,rega )
must be isometric. Moreover, the convergence is in the pointed Gromov-Hausdorff
sense, then the isometry sends the vertex of C(Xreg) to the vertex of C(Sn−1,rega ).
Now, both s and r are the distances from the vertices of the cone, and therefore
each slice {s}×Xreg is isometric to a slice {r}×Sn−1,rega . By taking the metric
completions of the regular set, we deduce that there is an isometry between X
and Sn−1a preserving the singular sets. As an immediate consequence (Sn, h)
is isometric to (Sn, ha). More precisely, we have shown that there exists an
isometry ϕ : (Sn, h) → (Sn, ha) which preserves the singular sets. Since the
pullback ϕ∗ha is conformal to ha, ϕ is the conformal diffeomorphism of the
sphere (Sn, ha) that we were looking for. Therefore, for any conformal met-
ric h of constant scalar curvature there exists a conformal diffeomorphism of
(Sn, ha), preserving the singular set, such that h = ϕ∗ha, as we wished.

This result allows us to express the conformal factor of any metric h min-
imizing the Yamabe functional on (Sn, ha) in terms of functions defined in
(Rn−2 × C(S1), ga), in the same way as in the smooth case. Indeed, consider
N ∈ Σ and the stereographic projection π from Sn − {N} to Rn. Denote by
Φ its inverse; as we noticed above, the stereographic projection is as usual a
conformal diffeomorphism such that

Φ∗ha = 4u
4

n−2 ga,

where we denote
u(x, r) = (1 + |x|2 + r2)

2−n
2 .

Consider the conformal diffeomorphism ϕ constructed in the previous Propo-
sition and define

ψ : Rn → Rn, ψ = π ◦ ϕ ◦ Φ.

Then ψ is a conformal diffeomorphism of (Rn, ga) preserving the singular set
S = Rn−2 × {0}. Now, any conformal diffeomorphism of the Euclidean space
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preserves the singular set, so ψ can be expressed as the composition of a
rotation, a translation τv in the direction v and a dilation δλ(x) = λx. It is
then possible to write, as in the smooth case:

Φ∗ψ∗ha = 4u
4

n−2

λ,v ga,

where uλ,v = u ◦ τv ◦ δλ. This gives all Yamabe minimizers on the edge-cone
sphere Sna = (Sn, ha).

5 Singular spheres of cone angle greater than or equal to 4π and
non-existence

This section is devoted to proving that a non trivial Yamabe minimizer does
not exists on standard edge-cone spheres Sna = (Sn, ha) with a ≥ 2. The proof
is by contradiction and it relies on Theorem 2.2 and on a lemma by Aubin [11]
for the Yamabe constant of Riemannian normal coverings (see [7] for the case
of non-normal coverings).

Aubin’s lemma states that if (Mn, g) is a smooth compact manifold with
positive Yamabe constant, and Mk a finite covering of order k > 1 of M , then
the Yamabe constants of Mk is strictly larger than the one of M . Now, if
we consider a ≥ 2 and b = a/2, Sna = (Sn, ha) is a double branched cover of
Snb = (Sn, hb). If we assume the existence of a Yamabe minimizer, the regularity
and integration by parts formula proven in Proposition 3.1 will allow us to show
Aubin’s lemma in the setting of singular spheres. As a consequence, we will
get

Y (Sn, [ha]) > Y (Sn, [hb]).

But we know that for a, b ≥ 1 both of the Yamabe constants coincide with
the one of the round sphere. Therefore, we will obtain a contradiction and a
Yamabe minimizer cannot exist.

In the following, we give the details of the proof of the Main Theorem.

Theorem 5.1. Let (Sn, ha) be the standard edge-cone n-sphere with an edge-
cone singularity of cone angle α = 2πa along a great circle Sn−2 for some
a ≥ 2. Then, there is no Yamabe minimizer on (Sn, ha).

Proof. We follow the lines of [11]. Consider Sna = (Sn, ha) and Snb = (Sn, hb)
for b = a

2 . Then (Sn, ha) is a double branched cover of (Sn, hb) with branched
set Σ = Sn−2. Denote by P : Sna → Snb the covering map. Suppose that a
Yamabe minimizer u > 0 with ||u|| 2n

n−2
= 1 does exist on (Sn, ha). Proposition

3.1 clearly applies to (Sn, ha), thus we know that u is Hölder continuous: it
belongs to C0,ν(Sna) for ν = 1/a. Moreover, by Proposition 3.1 (ii) we control
by εν−1 the norm of its gradient away from an ε-tubular neighbourhood of the
singular set Σ. Starting from u, we are going to construct a function v0 on Snb
with the same regularity as u, which satisfies Qb(v0) < Y (Sn, [ha]).



16 Kazuo Akutagawa, Ilaria Mondello

Let G = {id, γ} be the deck transformation group of the double branched
covering P : Sna → Snb . Consider the average

v := u+ u ◦ γ on Sna ,

and define for p > 0

v〈p〉 := up + (u ◦ γ)p on Sna .

Note that γ is an isometry of (Sn, ha) as well as id. As a consequence, v, v〈p〉
and their gradients have the same regularity as u and |du|. We also observe
that, since the γ is an isometry, we have∫

Sn
v〈

2n
n−2 〉dµa = 2

∫
Sn
u

2n
n−2 dµa. (8)

Notice that on the regular set Ω we have

Lav = La(u+ u ◦ γ) = Ya(u
n+2
n−2 + (u ◦ γ)

n+2
n−2 ) = Yav

〈 n+2
n−2 〉. (9)

Consider v0 ∈ C0,ν(Snb ) the function on (Sn, hb) whose lift on (Sn, ha) is v.
We are going to show that Qb(v0) < Ya. We first compute Qb(v0),

Qb(v0) =

1

2

∫
Sn
(an|dv|2 +Rav

2)dµa

2−
n−2
n ||v||22n

n−2

= 2−
2
n
Ea(v)

||v||22n
n−2

.

Thanks to Proposition 3.1 and in particular to (7), we know that

Ea(v) =

∫
Sn
vLavdµa,

and by using (9) we obtain

Ea(v) = Ya

∫
Sn
v · v〈

n+2
n−2 〉dµa.

By Hölder’s inequality, we get

Ea(v) ≤ Ya
∫
Sn
v
(
u

n
n−2 + (u ◦ γ)

n
n−2
)n−2

n

(
u

2n
n−2 + (u ◦ γ)

2n
n−2

) 2
n

dµa

We now use that, since u, u ◦ γ > 0, the following strict inequality holds(
u

n
n−2 + (u ◦ γ)

n
n−2
)n−2

n < u+ u ◦ γ at each point of Sna ,

and then obtain

Ea(v) < Ya

∫
Sn
v2
(
u

2n
n−2 + (u ◦ γ)

2n
n−2

) 2
n

dµa.
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Finally, thanks to Hölder’s inequality and (8), we get∫
Sn
v2
(
u

2n
n−2 + (u ◦ γ)

2n
n−2

) 2
n

dµa ≤ ||v||22n
n−2

(∫
Sn
v〈

2n
n−2 〉

) 2
n

= ||v||22n
n−2

2
2
n .

By collecting this information, we have proven that

Qb(v0) < Ya.

In particular:
Y (Sn, [hb]) < Y (Sn, [ha]).

But since a ≥ 2, both a and b are greater than or equal to one, therefore
[25] ensures that both Y (Sn, [hb]) and Y (Sn, [ha]) coincide with Yn. This con-
tradicts the previous strict inequality, thus a Yamabe minimizer cannot exist
on (Sn, ha).

Remark 5.2. We point out that an argument similar to the one of Viaclovsky
[30] can hardly be applied in our setting. His proof is also by contradiction
and goes as follows. Consider the orbifold conformal compactification (X̂, ĝ)
of (X4

n, g) a hyperkähler ALE metric with group G of order n > 1 at infinity,
and assume that there exists a Yamabe minimizer g̃ in the conformal class of
ĝ. The metric ĝ is Einstein, and Viaclovsky shows a generalization of a result
by Obata for Einstein manifolds: if ĝ is an Einstein metric, then any other
constant scalar curvature metric g̃ = ϕ−2g in its conformal class is an Einstein
metric as well. This implies that on (X4

n, g) there exists a concircular scalar
field: a rigidity result by Tashiro [29] for manifolds carrying such fields and
the classification of hyperkähler ALE 4-manifolds due to Kronheimer [19] lead
then to a contradiction.

Viaclovsky is able to use the result on the conformal class of an Einstein
metric because in his case the conformal factor and its gradient are appropri-
ately controlled in a neighbourhood of the orbifold singularity.

Now, Theorem 4.3 in [26] provides the analog of Obata’s result for a com-
pact stratified space endowed with an Einstein iterated edge metric with an-
gles smaller than 2π along the codimension 2 singular set. This strongly de-
pends on the conformal factor being Lipschitz, with both bounded gradient
and Laplacian. As we have seen in Section 2, when the cone angle along the
codimension 2 singularity is greater than 2π, the sharp regularity for a Yam-
abe minimizer is Hölder continuity, and therefore the proof Obata’s result for
stratified spaces does not hold. Indeed, for any constant scalar curvature met-
ric g = u4/(n−2) ha ∈ [ha] on Sn, u has the following expansion in a standard
transversal polar coordinate system (ρ, x, θ) ∈ (0, π2 ) × Sn−2 × S1 near the
singular stratum Sn−2:

u(ρ, x, θ) = φ0(x, θ) + φ1(x, θ) ρ
1
a + · · · ,

where φ0, φ1 ∈ C∞(Sn−2× S1), L−1 ≤ φ0 ≤ L (for some L ≥ 1) on Sn−2× S1,
and moreover

∂u

∂ρ
= O(ρ

1
a−1).
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Hence, when a > 1, u is only C0, 1a -Hölder continuous generally (see [3, Sec-
tion 3] for details).

6 Sobolev inequalities in Rn with a singular metric

Thanks to the conformal equivalence between (Sn, ha) and (Rn, ga), we know
that a Sobolev inequality holds on (Rn, ga). Moreover, we know that the opti-
mal constant of such Sobolev inequality is given by the Yamabe constant Ya
of the standard edge-cone sphere (Sn, ha). More precisely, if we denote by µa
the measure associated to ga, for any Sobolev function with compact support
u ∈W 1,2

0 (Rn, µa), we have

Ya

(∫
Rn

u
2n

n−2 dµa

)n−2
n

≤
∫
Rn

|du|2dµa. (10)

Note that dµa = adµ1, where µ1 is the usual Lebesgue measure on Rn. The
previous inequality can be extended to functions u ∈W 1,2

loc (Rn, µa).
When considering Rn endowed with the Euclidean metric g1 = gE, we

know that there exist extremal functions attaining the equality in the Sobolev
inequality (10). They are the functions uλ,v defined in Section 3, by composing
the conformal factor of ϕ∗h1 with a dilation δλ and a translation τv. We also
know that for a ∈ (0, 1]

ϕ∗ha = 4u
4

n−2

λ,v ga

are Yamabe metrics. As a consequence, for a ∈ (0, 1] and for any λ ∈ R, vector
v ∈ Rn, the functions uλ,v attain the equality in the Sobolev inequality (10).
As for a > 1, observe the following

Yn

(∫
Rn

|uλ,v|
2n

n−2 dµa

)n−2
n

= Yna
n−2
n

(∫
Rn

|uλ,v|
2n

n−2 dµ1

)n−2
n

= a
n−2
n

(∫
Rn

|duλ,v|2dµ1

)
= a

n−2
n −1

(∫
Rn

|duλ,v|2dµa
)
.

This implies

Ya

(∫
Rn

u
2n

n−2 dµa

)n−2
n

< a
2
nYn

(∫
Rn

|uλ,v|
2n

n−2 dµa

)n−2
n

=

∫
Rn

|duλ,v|2dµa.

This means that the functions uλ,v never attain the equality in (10) when
a > 1. This corresponds to the fact that ha is not a Yamabe metric for a > 1.
We also know that for a ≥ 2, the conformal class of ha does not contain any
Yamabe metric. As a consequence, the equality in (10) cannot be attained
when a ≥ 2. We can summarize this in the following:
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Proposition 6.1. Consider Rn endowed with the metric ga = gEn−2 + dr2 +
a2r2dθ2.

(a) If a ≤ 1, for any u ∈W 1,2
loc (Rn) we have

a
2
nYn

(∫
Rn

|u|
2n

n−2 dµa

)n−2
n

≤
∫
Rn

|du|2dµa.

Moreover, the functions uλ,µ are extremal for the previous inequality.
(b) If a > 1, for any u ∈W 1,2

loc (Rn) we have:

Yn

(∫
Rn

|u|
2n

n−2 dµa

)n−2
n

≤
∫
Rn

|du|2dµa.

Moreover, if a ≥ 2, extremal functions for the latter inequality do not exist.

In the second case, an interesting question would be to study the existence
in (Rn, ga), a > 1, of not necessarily positive solutions to the Yamabe equation
(see for example [16]).

Acknowledgements The first author would like to thank Jeff Viaclovsky for valuable
discussions on the article Atiyah-LeBrun [10].

References

1. K.Akutagawa, Computations of the orbifold Yamabe invariant, Math. Z. 271 (2012),
611–625.

2. K.Akutagawa and B.Botvinnik, Yamabe metrics on cylindrical manifolds, Geom.
Funct. Anal. 13 (2003), 259–333.

3. K.Akutagawa, G.Carron and R.Mazzeo, The Yamabe problem on stratified spaces,
Geom. Funct. Anal. 24 (2014), 1039–1079.

4. K.Akutagawa, G.Carron and R.Mazzeo, Hölder regularity of solutions for Schrödinger
operators on stratified spaces, J. Funct. Anal. 269 (2015), 815–840.

5. K.Akutagawa, G.Carron and R.Mazzeo, The Yamabe problem on Dirichlet spaces,
Tsinghua Lectures in Mathematics, 101–122, edited by L. Ji, Y.-S. Poon and S.-T. Yau,
Adv. Lect. in Math. 45, International Press, 2018.

6. K.Akutagawa and I.Mondello, Edge-cone Einstein metrics and the Yamabe invariant,
in preparation.

7. K.Akutagawa and A.Neves, 3-manifolds with Yamabe invariant greater than that of
RP3, J. Differential Geom. 75 (2007), 359–386.

8. P.Albin, E. Leichtnam, R.Mazzeo and P.Piazza The signature package on Witt spaces
Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 241–310.

9. B.Ammann, M.Dahl and E.Humbert, Low-dimensional surgery and the Yamabe in-
variant J. Math. Soc. Japan 67 (2015), 159–182.

10. M.Atiyah and C. LeBrun, Curvature, cone and characteristic numbers, Math. Proc.
Cambridge Philos. Soc. 155 (2013), 13–37.

11. T.Aubin, The scalar curvature, Differential Geometry and Relativity, edited by
M.Cahen and M.Flato, Reidel Publ., 1976.

12. T.Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, 1998.
13. E. Bahuaud and B.Vertman, Long-time existence of the edge Yamabe flow J. Math. Soc.

Japan 71 (2019), 651–688.
14. J. Cheeger, W. Jiang and A.Naber, Rectifiablity of singular sets in noncollapsed spaces

with Ricci curvature bounded below, available at arXiv:1805.07988.



20 Kazuo Akutagawa, Ilaria Mondello

15. X.Chen, S.Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Ap-
proximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), 183–197.

16. M. del Pino, M.Musso, F. Pacard and A.Pistoia, Large energy entire solutions for the
Yamabe equation J. Differential Equations 251 (2011), 2568–2597.

17. T. Jeffres, R.Mazzeo and Y.Rubinstein,Kähler-Einstein metrics with edge singularities,
Ann. of Math. (2) 183 (2016), 95–176.

18. O.Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987),
253–265.

19. P. B.Kronheimer, The construction of ALE spaces as hyker-Kähler quotients, J. Differ-
ential Geom. 29 (1989), 665–683.

20. J. Lee and T.Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91.
21. H.Macbeth, Conformal classes realizing the Yamabe invariant Int. Math. Res. Not.

IMRN (2019), 1333–1349.
22. R.Mazzeo Elliptic theory of differential edge operators. I. Comm. Partial Differential

Equations 16 (1991), no.10, 1615–1664.
23. R.Mazzeo Regularity for the singular Yamabe problem Indiana Univ. Math. J. 40

(1991), no. 4, 1277-1299.
24. I.Mondello, The Yamabe problem on stratified spaces, Ph.D. Thesis, available at HAL

Id: tel-01204671 (2015).
25. I.Mondello, The local Yamabe constant of Einstein stratified spaces, Ann. Inst.

H. Poincaré Anal. Non Linéaire 34 (2017), 249–275.
26. I.Mondello, An Obata singular theorem for staratified spaces, Trans. Amer. Math. Soc.

370 (2018), 4147–4175.
27. M.Obata, The conjecture on conformal transformations of Riemannian manifolds, J.

Differential Geom. 6 (1971), 247–258.
28. R. Schoen, Variational theory for the total scalar curvature functional for Riemannian

metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987),
120–154, Lecture Notes in Math. 1365, Springer-Verlag, 1989.

29. Y.Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math.
Soc. 117 (1965), 251–275.

30. J. Viaclovsky, Monopole metrics and the orbifold Yamabe problem, Ann. Inst. Fourier
(Grenoble) 60, 2503–2543.


	Introduction
	Preliminaries
	Regularity results
	Singular spheres of angle smaller than 2
	Singular spheres of cone angle greater than or equal to 4 and non-existence
	Sobolev inequalities in Rn with a singular metric

