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AN UPPER BOUND ON THE REVISED FIRST BETTI NUMBER AND A TORUS STABILITY
RESULT FOR RCD SPACES

ILARIA MONDELLO, ANDREA MONDINO, AND RAQUEL PERALES

ABSTRACT. We prove an upper bound on the rank of the abelianised revised fundamental group (called “re-
vised first Betti number”) of a compact RCD∗(K,N) space, in the same spirit of the celebrated Gromov-Gallot
upper bound on the first Betti number for a smooth compact Riemannian manifold with Ricci curvature bounded
below. When the synthetic lower Ricci bound is close enough to (negative) zero and the aforementioned upper
bound on the revised first Betti number is saturated (i.e. equal to the integer part of N, denoted by bNc), then we
establish a torus stability result stating that the space is bNc-rectifiable as a metric measure space, and a finite
cover must be mGH-close to an bNc-dimensional flat torus; moreover, in case N is an integer, we prove that the
space itself is bi-Hölder homeomorphic to a flat torus. This second result extends to the class of non-smooth
RCD∗(−δ,N) spaces a celebrated torus stability theorem by Colding (later refined by Cheeger-Colding).
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1. INTRODUCTION

Let us start by recalling that an RCD∗(K,N) space is a (possibly non-smooth) metric measure space
(X, d,m) with dimension bounded above by N ∈ [1,∞) and Ricci curvature bounded below by K ∈ R, in
a synthetic sense (see Section 2.3 for the precise notions and the corresponding bibliography). The class
of RCD∗(K,N) spaces is a natural non-smooth extension of the class of smooth Riemannian manifolds of
dimension ≤ N and Ricci curvature bounded below by K ∈ R, indeed:

• It contains the class of smooth Riemannian manifolds of dimension ≤ N and Ricci curvature
bounded below by K ∈ R;
• It is closed under pointed measured Gromov-Hausdorff convergence, so Ricci limit spaces are ex-

amples of RCD∗(K,N) spaces;
• It includes the class of bNc-dimensional Alexandrov spaces with curvature bounded below by K/(bNc−

1), the latter being the synthetic extension of the class of smooth bNc-dimensional Riemannian man-
ifolds with sectional curvature bounded below by K/(bNc − 1);
• In contrast to the class of smooth Riemannian manifolds, it is closed under natural geometric op-

erations such as quotients, foliations, conical and warped product constructions (provided natural
assumptions are met);
• Several fundamental comparison and structural results known for smooth Riemannian manifolds

with Ricci curvature bounded below and for Ricci limits have been extended to RCD∗(K,N) spaces.

It was proved by Wei and the second named author [MW19] (after Sormani-Wei [SW01, SW04b]) that an
RCD∗(K,N) space (X, d,m) admits a universal cover (X̃, dX̃ ,mX̃), which is an RCD∗(K,N) space as well.
The group of deck transformations on the universal cover is called revised fundamental group of X and
denoted by π̄1(X) (see Section 2.6.1 for the precise definitions and basic properties).

We next discuss the main results of the present paper. Let (X, d,m) be a compact RCD∗(K,N) space and
let π̄1(X) be its revised fundamental group. Set

H := [π̄1(X), π̄1(X)] and Γ := π̄1(X)/H

respectively the commutator and the abelianised revised fundamental group. As a consequence of Bishop-
Gromov volume comparison, Γ is finitely generated (see Proposition 2.25, after Sormani-Wei [SW04a]) and
thus it can be written as

Γ = Zs × Zs1
p1
× · · · × Zsl

pl .

We define the revised first Betti number of (X, d,m) as

b1(X) := rank(Γ) = s.

The goal of the paper is two-fold:

• First, we prove an upper bound for the revised first Betti number of a compact RCD∗(K,N) space,
generalising to the non-smooth metric measure setting a classical result of M. Gromov [Gro81] and
S. Gallot [Gal83] originally proved for smooth Riemannian manifolds with Ricci curvature bounded
below.
• Second, we prove a torus stability/almost rigidity result, roughly stating that if (X, d,m) is a com-

pact RCD∗(−ε,N) space with b1(X) = bNc, then a finite cover must be measured Gromov-Hausdorff
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close to a flat bNc-dimensional torus; if moreover N is an integer, then (X, d) is bi-Hölder homeo-
morphic to a flat N-dimensional torus and m is a constant multiple of the N-dimensional Hausdorff
measure. This extends to the non-smooth RCD setting a celebrated result by T. Colding originally
established for smooth Riemannian manifolds with Ricci curvature bounded below [Col97, The-
orem 0.2] and later refined by Cheeger-Colding [CC97, Theorem A.1.13]; this proved an earlier
conjecture by M. Gromov.

More precisely, the first main result is the following upper bound on b1(X):

Theorem 1.1 (An upper bound on b1(X) for RCD∗(K,N) spaces). There exists a positive function C(N, t) >
0 with limt→0 C(N, t) = bNc such that for any compact RCD∗(K,N) space (X, d,m) with supp(m) = X,
diam(X) ≤ D, for some K ∈ R,N ∈ [1,∞),D > 0, the revised first Betti number satisfies b1(X) ≤ C(N,KD2).
In particular, for any N ∈ [1,∞) there exists ε(N) > 0 such that if (X, d,m) is a compact RCD∗(K,N) space
with diam(X) ≤ D, KD2 ≥ −ε(N) then b1(X) ≤ bNc.

The upper bound of Theorem 1.1 is sharp, as a flat bNc-dimensional torus TbNc, is an example of an
RCD∗(0, bNc) space (thus of an RCD∗(−ε,N) space for any ε > 0) saturating the upper bound b1(TbNc) =

bNc.

In order to state the second main result, let us adopt the standard notation ε(δ|N) to denote a real valued
function of δ and N satisfying that limδ→0 ε(δ|N) = 0, for every fixed N. Let us also recall that (see Section
2.5 for more details and for the relevant bibliography):

• We say that (X, d,m) has essential dimension equal to N ∈ N if m-a.e. x has a unique tangent space
isometric to the N-dimensional Euclidean space RN ;
• We say that (X, d,m) is N-rectifiable as a metric measure space for some N ∈ N if there exists a

family of Borel subsets Uα ⊂ X and charts ϕα : Uα → R
N which are bi-Lipschitz on their image

such thatm(X \
⋃
α Uα) = 0 andmxUα � HNxUα, where HN denotes the N-dimensional Hausdorff

measure.

Theorem 1.2 (Torus stability for RCD∗(K,N) spaces). For every N ∈ [1,∞) there exists δ(N) > 0 with the
following property. Let (X, d,m) be a compact RCD∗(K,N) space with K diam(X)2 > −δ(N) and b1(X) =

bNc.

(1) Then (X, d,m) has essential dimension equal to bNc and it is bNc-rectifiable as a metric measure
space.

(2) There exists a finite cover (X′, dX′ ,mX′) of (X, d,m) which is ε(δ|N)-mGH close to a flat torus of
dimension bNc.

(3) If in addition N ∈ N, then m = cHN for some constant c > 0 and (X, d) is bi-Hölder homeomorphic
to an N-dimensional flat torus.

The torus stability above should be compared with the torus rigidity below, proved by Wei and the sec-
ond named author [MW19], extending to the non-smooth RCD∗(0,N) setting a classical result of Cheeger-
Gromoll [CG72]. See also Gigli-Rigoni [GR18] for a related torus rigidity result, where the maximality
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assumption on the rank of the revised fundamental group is replaced by the maximality of the rank of har-
monic one forms (recall that the rank of the space of harmonic one forms coincides with the first Betti
number in the smooth setting).

Theorem 1.3 ([MW19] after [CG72]). Let (X, d,m) be a compact RCD∗(0,N) space for some N ∈ [1,∞).
If the revised fundamental group π̄1(X) contains bNc independent generators of infinite order, then (X, d,m)
is isomorphic as metric measure space to a flat torus TbNc = RbNc/Γ for some lattice Γ ⊂ RbNc.

1.1. Outline of the arguments and organisation of the paper. Our first goal will be to establish the
Gromov-Gallot’s upper bound on b1(X) stated in Theorem 1.1. To that aim:

• Let (X, d,m) be a compact RCD∗(K,N) space. If N = 1 then all the results hold trivially (see Remark
2.7.1). So we assume that N ∈ (1,∞);
• Let (X̃, dX̃ ,mX̃) be the universal cover of (X, d,m). Recall that (X̃, dX̃ ,mX̃) is an RCD∗(K,N) space as

well, and the revised fundamental group π̄1(X) acts on (X̃, dX̃ ,mX̃) by deck transformations (actually
π̄1(X) can be identified with the group of deck transformations on X̃);
• Let H = [π̄1(X), π̄1(X)] be the commutator of π̄1(X) and consider the quotient space X̄ = X̃/H. X̄

inherits a natural quotient metric measure structure from X̃, denoted by (X̄, dX̄ ,mX̄), which satisfies
the RCD∗(K,N) condition as well (see Corollary 2.26). Moreover (X̄, dX̄ ,mX̄) is a covering space
for (X, d,m), with fibres of countable cardinality (corresponding to Γ := π̄1(X)/H);
• We will also consider X′ := X/Γ′, where Γ′ � Zb1(X) is a suitable subgroup of Γ. More precisely,

fix a point x̄ ∈ X̄; extending a classical argument of Gromov to the non-smooth RCD setting, one
can construct Γ′ < Γ isomorphic to Zb1(X) such that the distance between x̄ and any element in Γ′ x̄ is
bounded above and below uniformly in terms of diam(X) (see Lemma 3.2 for the precise statement).
The quotient space (X′, dX′ ,mX′) still satisfies the RCD∗(K,N) condition, it is a covering space for
(X, d,m), with fibres of finite cardinality (corresponding to the index of Γ′ in Γ).

After the above constructions, a counting argument combined with Bishop-Gromov’s volume comparison
Theorem in (X̄, dX̄ ,mX̄) will give Theorem 1.1 at the end of Section 3.

In order to show Colding’s torus stability for RCD∗(−δ,N) spaces (i.e. Theorem 1.2), in Section 4 we will
construct ε-mGH approximations from large balls in X̄ to balls of the same radius in the Euclidean space
RbNc (see Theorem 4.1 for the precise statement).

This is achieved by an inductive argument with bNc steps: in each step we obtain that a ball in X̄ is mGH
close to a ball in a product Rn × Y , where Y is an RCD∗(0,N − n) space. In order to prove the inductive
step and pass from n to n + 1, we show that for δ > 0 small enough, Y must have large diameter, so that
the almost splitting theorem applies to Y . Therefore, we get a mGH approximation from a ball in X̄ into
Rn+1 × Y ′. The diameter estimate for Y relies on the volume counting argument described in the previous
paragraph and contained in Section 3.

The approach above is inspired by Colding’s paper [Col97], however there are some substantial dif-
ferences: indeed Colding’s inductive argument is based on the construction of what are now known as
δ-splitting maps, while we only use ε-mGH approximations and the almost splitting theorem; moreover the
non-smooth RCD∗ setting, in contrast to the smooth Riemannian framework, poses some challenges at the
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level of regularity, of global/local structure, and of topology. Below we briefly sketch the main lines of
arguments; the expert will recognise the differences from [Col97].

The existence of ε-mGH approximations into the Euclidean space yields the first claim of Theorem 1.2:
for δ > 0 small enough, (X, d,m) has essential dimension equal to bNc, it is bNc-rectifiable as a metric
measure space and moreover, if N is an integer, the measure coincides with the Hausdorff measure HN , up
to a positive constant. This will be proved in Theorem 5.1 by combining Theorem 4.1 with an ε-regularity
result by Naber and the second named author [MN19], revisited in the light of the constancy of dimension
of RCD∗(K,N) spaces by Brué-Semola [BS20] and a measure-rigidity result by Honda [Hon20] for non-
collapsed RCD∗(K,N) spaces.

When {(Xi, di,mi)}i∈N is a sequence of spaces as in the assumptions of Theorem 1.2 with δi ↓ 0, Theorem
4.1 yields pmGH convergence for (X̄i, dX̄i

,mX̄i
) to the Euclidean space of dimension bNc. Then by taking

the subgroups ZbNc � Γ′i < Γi := π̄1(Xi)/Hi already considered above (i.e. the ones constructed in Lemma
3.2, with k = 3) and using equivariant Gromov-Hausdorff convergence (introduced by Fukaya [Fuk86]
and further developed by Fukaya-Yamaguchi [FY92]), we deduce GH-convergence of (a non re-labeled
subsequence of) X′i := X̄i/Γ

′
i to a flat torus of dimension bNc. This will show the second claim of Theorem

1.2 (see Proposition 6.2 for more details).
When N is an integer, the measure of X′i coincides with HN (up to a constant), thanks to the aforemen-

tioned result by Honda [Hon20]. This fact allows to apply Colding’s volume convergence for RCD spaces
proved by De Philippis-Gigli [DPG18] and get that the GH-convergence obtained above can be promoted to
mGH-convergence of X′i to a flat torus. A recent result by Kapovitch and the second named author [KM21]
(which builds on top of Cheeger-Colding’s metric Reifenberg theorem [CC97]) states that for N ∈ N, if
a non-collapsed RCD∗(K,N) space is mGH-close enough to a compact smooth N-manifold M, then it is
bi-Hölder homeomorphic to M. This implies that for δ > 0 small enough as in Theorem 1.2, X′ := X̄/Γ′ is
bi-Hölder homeomorphic to a flat torus and thus X̄ is locally (on arbitrarily large compact subsets) bi-Hölder
homeomorphic to RN . In order to conclude the proof of the third claim of Theorem 1.2, we show that Γ is
torsion free, yielding that Γ � ZN and thus X = X̄/Γ is bi-Hölder homeomorphic to a flat torus. This last
step uses the classical Smith’s theory of groups of transformations with finite period.

The paper is organised as follows. Section 2 is devoted to recall previous results about RCD spaces,
covering spaces and pointed Gromov-Hausdorff convergence (measured and equivariant) that are used in
the rest of the paper. In particular, we show that a metric measure space (X, d,m) is RCD∗(K,N) if and only
if any of its regular coverings with countable fibre is an RCD∗(K,N) space as well. This is essential since in
our proofs we often use properties of RCD∗ spaces on the coverings X̃, X̄ and X′ of X. Section 3 contains the
proof of the upper bound for the revised first Betti number and its consequences. In Section 4, we construct
by induction ε-mGH approximations between large balls in the covering X̄ and balls in Euclidean space of
dimension b1(X) = bNc. Section 5 is devoted to proving the bNc rectifiability, i.e. the first claim of Theorem
1.2. In Section 6, we conclude the proof of Theorem 1.2 by first showing that X′ is GH-close to a flat torus
TN and then obtaining that, for integer N, X′ is bi-Hölder homeomorphic to TN and X = X′. In the appendix
we construct two explicit mGH-approximations that are used in Section 4.
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2. BACKGROUND

In this section we recall some fundamental notions about convergence of metric measure spaces and about
metric measures spaces with a synthetic lower bound on the Ricci curvature which will be used in the paper.

2.1. Metric measure spaces and pointed metric measure spaces. A metric measure space (m.m.s. for
short) is a triple (X, d,m) where (X, d) is a complete and separable metric space and m is a locally finite
non-negative complete Borel measure on X, with X = supp(m) and m(X) > 0.
A pointed metric measure space (p.m.m.s. for short) is a quadruple (X, d,m, x̄) where (X, d,m) is a m.m.s.
and x̄ ∈ X is a given reference point.
Two p.m.m.s. (X, d,m, x̄) and (X′, d′,m′, x̄′) are said to be isomorphic if there exists an isometry

ϕ : (X, d)→ (X′, d′) such that ϕ]m = m′ and ϕ(x̄) = x̄′.

Recall that (X, d) is said to be

• proper if closed bounded sets are compact;
• geodesic if for every pair of points x, y ∈ X there exists a length minimising geodesic from x to y;

As we will recall later in this section, the synthetic Ricci curvature lower bounds used in the paper (i.e.
CD∗(K,N) for some K ∈ R, N ∈ [1,∞)) imply that (X, d) is proper and geodesic (see Remark 2.8.1).

2.2. Gromov-Hausdorff convergence. We first define pointed measured Gromov-Hausdorff (pmGH) con-
vergence of p.m.m.s. which will be used in Section 4. For details, see [BBI01], [GMS15] and [Vil09]. Then
we define equivariant pointed Gromov-Hausdorff (EpGH) convergence and state some results by Fukaya
and Fukaya-Yamaguchi which will be employed in Section 6. For details see [Fuk86], [FY92].

Definition 2.1 (Definition of pmGH convergence via pmGH approximations). Let (Xn, dn,mn, x̄n), n ∈ N ∪
{∞}, be a sequence of p.m.m.s. We say that (Xn, dn,mn, x̄n) converges to (X∞, d∞,m∞, x̄∞) in the pmGH
sense if for any ε,R > 0 there exists N(ε,R) ∈ N such that, for each n ≥ N(ε,R), there exists a Borel map
f R,ε
n : BR(x̄n)→ X∞ satisfying:

• f R,ε
n (x̄n) = x̄∞;

• supx,y∈BR(x̄n) |dn(x, y) − d∞( f R,ε
n (x), f R,ε

n (y))| ≤ ε;
• the ε-neighbourhood of f R,ε

n (BR(x̄n)) contains BR−ε(x̄∞),
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• ( f R,ε
n )](mnxBR(x̄n)) weakly converges to m∞xBR(x∞) as n→ ∞, for a.e. R > 0.

The maps f R,ε
n : BR(x̄n)→ X∞ are called ε-pmGH approximations.

If we do not require the maps f R,ε
n to be Borel, nor the last item to hold, we say that the maps f R,ε

n are ε-pGH
approximations and that the sequence converges in pointed Gromov-Hausdorff (pGH) sense.

We next define equivariant pointed Gromov-Hausdorff (EpGH) convergence. To this aim, given a metric
space (X, d), we endow its group of isometries Iso(X) with the compact-open topology. In this case, it is
known that the compact-open topology is equivalent to the topology induced by uniform convergence on
compact sets (see for example [Mun00, Theorem 46.8]). When X is proper, a sequence ( fn)n∈N of isometries
of X converges to f in the compact-open topology if and only if ( fn)n∈N converges to f point-wise on X.

Remark 2.1.1. Given any x0 ∈ X, denote

dx0( f , g) = sup
{

exp(−d(x0, x)) d( f (x), g(x))
∣∣∣ x ∈ X

}
,

where d(x, y) = min{d(x, y), 1}. If (X, d) is proper, one can check that dx0 induces the compact-open topology
and that the group (Iso(X), dx0) is a proper metric space.

Let Mp
eq be the set of quadruples (X, d, x̄,Γ), where (X, d, x̄) is a proper pointed metric space and Γ ⊂

Iso(X) is a closed subgroup of isometries. Define the set Γ(r) = {γ ∈ Γ | γ(x̄) ∈ Br(x̄)}. We are now in
position to define equivariant pointed Gromov-Hausdorff convergence for elements of Mp

eq.

Definition 2.2. Let (Xn, dn, x̄n,Γn) ∈ M
p
eq, n = 1, 2. An ε-equivariant pGH approximation is a triple of

functions ( f , φ, ψ),

f : Bε−1(x̄1)→ X2, φ : Γ1(ε−1)→ Γ2, ψ : Γ2(ε−1)→ Γ1,

that satisfies

(1) f (x̄1) = x̄2;
(2) The ε-neighbourhood of f (Bε−1(x̄1)) contains Bε−1(x̄2);
(3) For all x, y ∈ Bε−1(x̄1)

|d1(x, y) − d2( f (x), f (y))| < ε;

(4) For all γ1 ∈ Γ1(ε−1) such that x, γ1x ∈ Bε−1(x̄1), it holds

d2( f (γ1x), φ(γ1) f (x)) < ε;

(5) For all γ2 ∈ Γ2(ε−1) such that x, ψ(γ2)x ∈ Bε−1(x̄1), it holds

d2( f (ψ(γ2)x), γ2 f (x)) < ε.

Note that we do not assume f to be continuous, nor φ and ψ to be homeomorphisms.

Definition 2.3. A sequence {(Xn, dn, x̄n,Γn)}n∈N of spaces in M
p
eq converges in the equivariant pointed

Gromov-Hausdorff (EpGH for short) sense to (X∞, d∞, x̄∞,Γ∞) ∈ M
p
eq if there exist εn-equivariant pGH

approximations between (Xn, dn, x̄n,Γn) and (X∞, d∞, x̄∞,Γ∞) such that εn → 0, as n→ ∞.

Theorem 2.4. (Fukaya-Yamaguchi [FY92, Proposition 3.6]) Let {(Xn, dn, x̄n,Γn)}n∈N be a sequence in M
p
eq

such that {(Xn, dn, x̄n)}n∈N converges in the pointed Gromov-Hausdorff sense to (X∞, d∞, x̄∞). Then there ex-
ist Γ∞ a closed subgroup of isometries of X∞ and a subsequence, {(Xn j , dn j , x̄n j ,Γn j)} j ∈M

p
eq, that converges

in equivariant pointed Gromov-Hausdorff sense to (X∞, d∞, x̄∞,Γ∞) ∈Mp
eq.
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For a closed subgroup Γ in Iso(X) and x ∈ X, let Γx ⊂ X denote the orbit of x under the action of Γ. The
space of orbits is denoted by X/Γ. Let

dX/Γ(Γx,Γx′) = inf
{
dX(z, z′)

∣∣∣ z ∈ Γx, z′ ∈ Γx′
}
. (1)

It is a standard fact that dX/Γ defines a distance on X/Γ. Indeed, the equivalence between convergence in
compact-open topology and point-wise convergence in X implies that the orbits of Γ are closed in x. Then
consider Γx , Γx′ and assume by contradiction that dX/Γ(Γx,Γx′) = 0. Then there exists a sequence of points
in Γx converging to a point y in Γx′, and since orbits are closed, y belongs to Γx too. Therefore the two orbits
coincide, which we assumed not. As a consequence, whenever Γx , Γx′ we have dX/Γ(Γx,Γx′) > 0.

Theorem 2.5. (Fukaya [Fuk86, Theorem 2.1]) Let {(Xn, dn, x̄n,Γn)}n∈N be a sequence in M
p
eq that con-

verges in equivariant pointed Gromov-Hausdorff sense to (X∞, d∞, x̄∞,Γ∞) ∈Mp
eq. Then {(Xn/Γn, dXn/Γn ,Γn ·

x̄n)}n∈N converges in the pointed Gromov-Hausdorff sense to (X∞/Γ∞, dX∞/Γ∞ ,Γ∞ · x̄∞).

2.3. Synthetic Ricci curvature lower bounds. We briefly recall here the definition of RCD∗ spaces, and
we refer to [Stu06a, Stu06b, LV09, BS10, AGS14, Gig15, AGMR15, EKS15, AMS19] for more details
about synthetic curvature-dimension conditions and calculus on metric measure spaces. There are differ-
ent ways to define the curvature-dimension condition, that are now known to be equivalent in the case of
infinitesimally Hilbertian m.m.s. (see for example [EKS15, Theorem 7]). We chose to give here only the
definitions of the CD∗(K,N) condition and infinitesimally Hilbertian m.m.s., since this will be the framework
of the paper. For κ, s ∈ R, we introduce the generalised sine function

sinκ(s) =


sin(
√
κs)

√
κ

if κ > 0

s if κ = 0
sinh(

√
−κs)

√
−κ

if κ < 0.

For (t, θ) ∈ [0, 1] × R+ and κ ∈ R, the distortion coefficients are defined by

σ(t)
κ (θ) =


sinκ(tθ)
sinκ(θ)

if κθ2 , 0 and κθ2 < π2

t if κθ2 = 0

+∞ if κθ2 ≥ π2.

For a metric space (X, d), let P2(X) be the space of Borel probability measures µ over X with finite second
moment, i.e. satisfying ∫

X
d(x0, x)2 dµ(x) < ∞,

for some (and thus, for every) x0 ∈ X. The L2-Wasserstein distance between µ0, µ1 ∈ P2(X) is defined by

W2(µ0, µ1)2 = inf
q

∫
X×X

d(x, y)2dq(x, y), (2)

where q is a Borel probability measure on X × X with marginals µ0, µ1. A measure q ∈ P(X2) achieving
the minimum in (2) is called an optimal coupling. The L2-Wasserstein space (P2(X),W2) is a complete
and separable space, provided (X, d) is so. Let P2(X, d,m) ⊂ P2(X) denote the subspace of m-absolutely
continuous measures and P∞(X, d,m) the set of measures in P2(X, d,m) with bounded support.
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Definition 2.6. Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d,m) satisfies the curvature-
dimension condition CD∗(K,N) if and only if for each µ0, µ1 ∈ P∞(X, d,m), with µi = ρim, i = 0, 1, there
exists an optimal coupling q and a W2-geodesic (µt)t∈[0,1] ⊂ P∞(X, d,m) between µ0 and µ1 such that for all
t ∈ [0, 1] and N′ ≥ N∫

X
ρ
− 1

N′
t dµt ≥

∫
X×X

(
σ(1−t)

K/N′(d(x0, x1))ρ0(x0)−
1

N′ + σ(t)
K/N′(d(x0, x1))ρ1(x1)−

1
N′

)
dq(x0, x1). (3)

Given a metric measure space (X, d,m), the Sobolev space W1,2(X, d,m) is by definition the space of
L2(X,m) functions having finite Cheeger energy, and it is endowed with the natural norm ‖ f ‖2

W1,2 := ‖ f ‖2
L2 +

2Ch( f ) which makes it a Banach space. Here, the Cheeger energy is given by the formula

Ch( f ) :=
1
2

∫
X
|D f |2w dm,

where |D f |w denotes the weak upper differential of f .
The metric measure space (X, d,m) is said to be inifinitesimally Hilbertian if the Cheeger energy is a qua-
dratic form (i.e. it satisfies the parallelogram identity) or, equivalently, if the Sobolev space W1,2(X, d,m) is
a Hilbert space.

Definition 2.7. Let K ∈ R and N ∈ [1,∞). We say that a metric measure space (X, d,m) is an RCD∗(K,N)
space if it is infinitesimally Hilbertian and it satisfies the CD∗(K,N) condition.

Remark 2.7.1 (The case N = 1). If (X, d,m) is a compact RCD∗(K,N) space with N = 1, then by Kitabeppu-
Lakzian [KL16] we know that (X, d,m) is isomorphic either to a point, or a segment, or a circle. Hence, all
the statements of this paper will hold trivially. For instance:

• The revised first Betti number upper bound b1(X) ≤ 1 holds trivially;
• The torus stability holds trivially since b1(X) = 1 only if (X, d,m) is isomorphic to a circle.

Without loss of generality, we will thus assume N ∈ (1,∞) throughout the paper to avoid trivial cases.

Remark 2.7.2 (Other synthetic notions: CD(K,N), CDloc(K,N), RCD(K,N)). For K,N ∈ R, N ≥ 1 one can
consider the τ-distortion coefficients

τ(t)
K,N(θ) := t1/Nσ(t)

K/(N−1)(θ)
(N−1)/N .

Replacing the σ-distortion coefficients with the τ-distortion coefficients in (3), one obtains the CD(K,N)
condition. Since τ(t)

K,N(θ) ≥ σ(t)
K/N(θ), the CD(K,N) condition implies CD∗(K,N). Conversely, the CD∗(K,N)

condition implies CD(K∗,N) for K∗ = K(N − 1)/N, see Proposition 2.5 (ii) in [BS10].
Analogously to Definition 2.7, one can define the class of RCD(K,N) spaces as those CD(K,N) spaces
which in addition are infinitesimally Hilbertian. It is clear from the above discussion that RCD(K,N) implies
RCD∗(K,N), and that RCD∗(K,N) implies RCD(K∗,N). An important property of RCD∗(K,N) spaces is
the essential non-branching [RS14], roughly stating that every W2-geodesic with endpoints in P2(X, d,m)
is concentrated on a set of non-branching geodesics. This has been recently pushed to full non-branching in
[Den20].
The local version of CD(K,N), called CDloc(K,N), amounts to require that every point x ∈ X admits a
neighbourhood U(x) such that for each pair µ0, µ1 ∈ P∞(X, d,m) supported in U(x) there exists a W2-
geodesic from µ0 to µ1 (not necessarily supported in U(x)) satisfying the CD(K,N) concavity condition. For
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essentially non-branching spaces, it is not hard to see that CD∗(K,N) is equivalent to CDloc(K,N). It is much
harder to establish the equivalence in turn with CD(K,N). This was proved for essentially non-branching
spaces with finite total measure in [CM]. In particular it follows that, for spaces of finite total measure, the
conditions RCDloc(K,N), RCD(K,N) and RCD∗(K,N) are all equivalent.

We state here some well-known properties of RCD∗(K,N) spaces that we are going to use throughout the
paper. First of all, we have the following natural scaling properties: if (X, d,m) is an RCD∗(K,N) space,
then

for any c > 0, (X, d, cm) is an RCD∗(K,N) space,

for any λ > 0, (X, λd,m) is an RCD∗(λ−2K,N) space.

The following sharp Bishop-Gromov volume comparison was proved in [Stu06b] for CD(K,N) spaces,
then generalised to non-branching CDloc(K,N) spaces in [CS12], and to essentially non-branching CDloc(K,N)
spaces in [CM18]. In particular it holds for RCD∗(K,N) spaces. It will be useful in proving the appropriate
upper bound for the revised first Betti number b1(X).

Theorem 2.8 (Bishop-Gromov volume comparison). Let K ∈ R and N ∈ (1,∞). If K < 0 then for any
RCD∗(K,N) space (X, d,m), all x ∈ X and all r ≤ R,

m(Br(x))
m(BR(x))

≥

∫ r
0 sinhN−1(

√
−K/(N − 1)t) dt∫ R

0 sinhN−1(
√
−K/(N − 1)t) dt

.

If K ≥ 0 then
m(Br(x))
m(BR(x))

≥

( r
R

)N
.

Remark 2.8.1. The Bishop-Gromov volume comparison implies that RCD∗(K,N) spaces are locally dou-
bling and thus proper. It is also not hard to check directly from the Definition 2.6 that suppm (and thus
X, since we are assuming throughout that X = suppm) is a length space. Since a proper length space is
geodesic, we have that RCD∗(K,N) spaces are proper and geodesic. Thus, without loss of generality, we
will assume that all the metric spaces in the paper are proper and geodesic.

The set of RCD∗(K,N) spaces is compact when endowed with the pointed measured Gromov-Hausdorff
topology ([LV09, Stu06a, AGS14, GMS15, EKS15]):

Theorem 2.9 (Stability w.r.t. pmGH convergence). Let K ∈ R and N ∈ [1,∞) and C > 1. The set{
(X, d,m, x̄) p.m.m.s. such that (X, d,m) is an RCD∗(K,N) space and C−1 ≤ m(B1(x̄)) ≤ C

}
endowed with the pmGH topology is compact.

Following the terminology of De Philippis-Gigli [DPG18] (after Cheeger-Colding [CC97]), recall that an
RCD∗(K,N) space (X, d,m) is said

• non-collapsed if m = HN up to a positive constant;
• weakly non-collapsed if m � HN .

It follows from [DPG18, Theorem 1.12] that whenever (X, d,m) is a weakly non-collapsed RCD∗(K,N)
space, N is necessarily an integer. Honda [Hon20, Corollary 1.3] proved the following additional property
of compact weakly non-collapsed spaces:
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Theorem 2.10. Let K ∈ R and N ∈ N. For any compact weakly non-collapsed RCD∗(K,N) space (X, d,m),
there exists c > 0 such that m = cHN .

2.4. Almost Splitting. We recall some results from [MN19] that we will use in the proofs, starting from
an Abresh-Gromoll inequality on the excess function. For a metric measure space (X, d,m) we consider two
points p, q and define the excess function as:

ep,q(x) := d(p, x) + d(x, q) − d(p, q).

For radii 0 < r0 < r1, let Ar0,r1({p, q}) be the annulus around p and q:

Ar0,r1({p, q}) = {x ∈ X | r0 < d(p, x) < r1 ∨ r0 < d(q, x) < r1 }.

We will use the following estimates, contained in [MN19, Theorem 3.7, Corollary 3.8 and Theorem 3.9].

Theorem 2.11. Let (X, d,m) be an RCD∗(K,N) space for some K ∈ R, N ∈ (1,∞), and let p, q ∈ X be with
dp,q := d(p, q) ≤ 1. For any ε0 ∈ (0, 1) there exists r̄ = r̄(K,N, ε0) ∈ (0, 1] such that if x ∈ Aε0dp,q,2dp,q({p, q})
satisfies ep,q(x) ≤ r2 dp,q for some r ∈ (0, r̄], then

(i) The following integral estimate holds:?
Brdp,q (x)

ep,q(y) dm(y) ≤ C(K,N, ε0)r2 dp,q.

(ii) There exists α = α(N) ∈ (0, 1) such that

sup
y∈Brdp,q (x)

ep,q(y) ≤ C(K,N, ε0)r1+αdp,q. (4)

(iii) If moreover x is such that the ball B2rdp,q(x) is contained in the annulus Aε0dp,q,2dp,q({p, q}), then there
exists α = α(N) ∈ (0, 1) such that?

Brdp,q (x)
|Dep,q|

2dm ≤ C(K,N, ε0)r1+α. (5)

The almost splitting theorem for RCD∗ spaces states that if there exist k points in (X, d,m) that are far
enough, and whose excess function and derivatives satisfy the appropriate smallness condition, then the
space almost splits k Euclidean factors, meaning that (X, d,m) is mGH-close to a product Rk × Y , for an
appropriate RCD∗ metric measure space (Y, dY ,mY ). More precisely, we follow the notation of [MN19,
Theorem 5.1], where pi + p j denotes a point and dp is the distance function dp(·) = d(p, ·):

Theorem 2.12. Let ε > 0, N ∈ (1,∞) and β > 2. Then there exists δ(ε,N) > 0 with the following property.
Assume that, for some δ ≤ δ(ε,N), the following holds:

(i) (X, d,m) is an RCD∗(−δ2β,N) space;
(ii) there exist points x, {pi, qi, pi + p j}1≤i< j≤k in X for some k ≤ N, such that

d(pi, x), d(qi, x), d(pi + p j, x) ≥ δ−β, for 1 ≤ i < j ≤ k,

and for all r ∈ [1, δ−1]:
k∑

i=1

sup
Br(x)

epi,qi +

k∑
i=1

?
Br(x)
|Depi,qi |

2 dm +
∑

1≤i< j≤k

?
Br(x)

∣∣∣∣∣∣D
(
dpi + dp j

√
2
− dpi+p j

)∣∣∣∣∣∣2 dm ≤ δ.
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Then there exists a p.m.m.s. (Y, dY ,mY , y) such that

dmGH(BX
ε−1(x), BR

k×Y
ε−1 ((0k, y))) < ε.

More precisely:

1) if N − k < 1 then Y = {y} is a singleton;
2) if N−k ∈ [1,+∞) then (Y, dY ,mY ) is an RCD∗(0,N−k)-space, there exist maps u : X ⊃ Bε−1(x)→ Rk

and v : X ⊃ Bε−1(x)→ Y , where ui = d(pi, ·) − d(pi, x), such that the product map

(u, v) : X ⊃ Bε−1(x)→ Rk × Y is a ε-mGH approximation on its image.

Theorem 2.12 was proved in [MN19] by Naber and the second named author, building on top of Gigli’s
proof of the Splitting Theorem for RCD∗(0,N) spaces [Gig13], after Cheeger-Gromoll Splitting Theorem
[CG72] and Cheeger-Colding’s Almost Splitting Theorem [CC96].

2.5. Structure of RCD∗(K,N) spaces and rectifiability. We collect here some known results about the
structure of RCD∗(K,N) spaces, which extended to the RCD∗(K,N) setting previous work on Ricci limit
spaces [Col97, CC97, CC00a, CC00b, CN12]. They will be used in order to prove that for ε > 0 small
enough, a compact RCD∗(−ε,N) space (X, d,m) with b1(X) = bNc and diam(X) = 1 is bNc-rectifiable and
the measure m is absolutely continuous with respect to the Hausdorff measure HbNc.

We first recall the notion of k-rectifiability for metric and metric measure spaces.

Definition 2.13 (k-Rectifiability). Let k ∈ N. A metric measure space (X, d,m) is said to be (m, k)-rectifiable
as a metric space if there exists a countable collection of Borel subsets {Ai}i∈I such that m(X \

⋃
i∈I Ai) = 0

and there exist bi-Lipschitz maps between Ai and Borel subsets of Rk. A metric measure space (X, d,m) is
said to be k-rectifiable as a metric measure space if, additionally, the measure m is absolutely continuous
with respect to the Hausdorff measure Hk.

We next recall the definitions of tangent space and of k-regular set Rk.

Definition 2.14. Let (X, d,m) be an RCD∗(K,N) space for N ∈ (1,∞) and K ∈ R, and let x ∈ X. A metric
measure space (Y, dY ,mY , ȳ) is a tangent space of (X, d,m) at x if there exists a sequence ri ∈ (0,+∞), ri ↓ 0
such that (X, r−1

i d,mx
ri
, x) converges in the pmGH topology to (Y, dY ,mY , ȳ), where

m
x
r =

(∫
Br(x)

(
1 −

d(x, y)
r

)
dm(y)

)−1

m.

The set of all tangent spaces of (X, d,m) at x is denoted by Tan(X, d,m, x).

Definition 2.15. Let (X, d,m) be an RCD∗(K,N) space for N ∈ (1,∞) and K ∈ R. For any k ∈ N, the k-th
regular set Rk is given by the set of points x ∈ X such that tangent space at x is unique and equal to the
Euclidean space (Rk, dRk , ckH

k, 0k), with

ck =

(∫
B1(0k)

(1 − |y|) dLk(y)
)−1

.
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In [MN19, Theorem 1.1] it was proved that for any RCD∗(K,N) space (X, d,m), the k-regular sets Rk for
k = 1, . . . , bNc are (m, k)-rectifiable as a metric spaces and form an essential decomposition of X, i.e.

m
(
X \

bNc⋃
k=0

Rk
)

= 0.

A subsequent refinement by the independent works [KM18, DPMR17, GP] showed that the measure m
restricted to Rk is absolutely continuous with respect to Hk. Moreover, in [BS20], E. Bruè and D. Semola
showed that there exists exactly one regular set Rk having positive measure. It is then possible to define the
essential dimension of an RCD∗(K,N) space as follows.

Definition 2.16 (Essential dimension). Let K ∈ R,N ∈ (1,∞) and let (X, d,m) be an RCD∗(K,N) space.
The essential dimension of X is the unique integer k ∈ {1, ..., bNc} such that m(Rk) > 0.

Observe that, as a consequence, any RCD∗(K,N) space of essential dimension equal to k is k-rectifiable
as a metric measure space.

We finally state two theorems that will be used in the final part of the paper, to show that an RCD∗(K,N)
space with b1(X) = N ∈ N and diam(X)2K ≥ −ε is mGH-close and bi-Hölder homeomorphic to a flat torus
TN .

Theorem 2.17 ([DPG18, Theorem 1.2]). Let N ∈ N, N > 1 and let (Xi, di,H
N , xi) be a sequence of non-

collapsed RCD∗(K,N) spaces such that (Xi, di, xi) converges to (X, d, x) in the pointed Gromov-Hausdorff
sense. Then one of the following holds.

(i) If lim supi H
N(B1(xi)) > 0, then HN(B1(xi)) converges to HN(B1(x)) and (Xi, di,H

N , xi) converges
in the pmGH sense to (X, d,HN , x).

(ii) If limi→∞HN(B1(xi)) = 0, then dimH(X) ≤ N − 1.

In the following statement, we rephrase Theorem 1.10 of [KM21]:

Theorem 2.18 ([KM21, Theorem 1.10]). Let (M, g) be a compact manifold of dimension N (without boudary).
There exists ε = ε(M) > 0 such that the following holds. If (X, d,m, x) is a pointed RCD∗(K,N) space for
some K ∈ R satisfying dpmGH(X,M) < ε, then m = cXH

N for some cX > 0 and (X, d) is bi-Hölder homeo-
morphic to M.

2.6. Covering spaces, universal cover and revised fundamental group. We first discuss the definition
of covering spaces, universal cover, revised fundamental group, and actions of groups of homeomorphisms
over topological spaces. Then we focus on length metric measure spaces and see that the RCD∗(K,N)
condition can be lifted to the total space of an RCD∗(K,N) base, when having a covering map.

2.6.1. Covering spaces. Let us provide some definitions and results related to coverings spaces from [Spa66,
Hat02]. In particular, we state the notion of a group acting properly discontinuously as it appears in these
references. Note that sometimes this is defined differently.

We say that a topological space Y is a covering space for a topological space X if there exists a continuous
map pY,X : Y → X, called covering map, with the property that for every point x ∈ X there exists a
neighbourhood U ⊂ X of x such that p−1

Y,X(U) is the disjoint union of open subsets of Y and so that the
restriction of pY,X to each of these subsets is homeomorphic to U. By definition, the covering map is a local
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homeomorphism. Two covering spaces Y,Y ′ of X are said to be equivalent if there exists an homeomorphism
between them, h : Y → Y ′, so that pY′,X ◦ h = pY,X .

If X is path-connected then the cardinality of p−1
Y,X(x) does not depend on x ∈ X. We recall that given

a topological space Z and z ∈ Z, the fundamental group of Z, π1(Z, z), is the group of the equivalence
classes under based homotopy of the set of closed curves from [0, 1] to Z with endpoints equal to z. Any
covering map pY,X induces a monomorphism pY,X] : π1(Y, y0)→ π1(X, pY,X(y0)); moreover, when both Y and
X are path-connected, the cardinality of p−1

Y,X(x) agrees with the index of pY,X](π1(Y, y0)) in π1(X, pY,X(y0)).
For Y path-connected, the covering map pY,X is called regular if pY,X](π1(Y, y0)) is a normal subgroup of
π1(X, pY,X(y0)).

Before defining the group of deck transformations of a covering space, we introduce some terminology
of group actions.

Definition 2.19. A group of homeomorphisms G of a topological space Y is said to act effectively or faith-
fully if

⋂
y∈Y

{
g | g(y) = y

}
= {e}, where e denotes the identity element of G. It acts without fixed points or

freely if the only element of G that fixes some point of Y is the identity element. We say that G acts discon-
tinuously if the orbits of G in Y are discrete subsets of Y and we say that G acts properly discontinuously if
every y ∈ Y has a neighbourhood U ⊂ Y so that U ∩ gU = ∅ for all g ∈ G \ {e}1.

So, acting properly discontinuously implies acting discontinuously and without fixed points, and every
free action is effective.

The group of deck transformations of a covering space Y of X is the group of self-equivalences of Y:

G(Y | X) :=
{
h : Y → Y | h is an homeomorphism and pY,X ◦ h = pY,X

}
.

By the unique lifting property, G(Y | X) acts without fixed points. Combining this fact with the definition of
covering map, we see that G(Y | X) also acts properly discontinuously on Y .

If Y is connected and locally path-connected, then pY,X is regular if and only if the group G(Y | X) acts
transitively on each fibre of pY,X . In this case, for any y0 ∈ Y we have:

• An isomorphism of groups:

G(Y | X) � π1(X, pY,X(y0))
/
pY,X](π1(Y, y0));

• A bijection between any fibre of pY,X and G(Y | X);
• A homeomorphism of spaces:

X � Y/G(Y | X).

Definition 2.20 (Universal cover of a connected space). Given a connected topological space X, a universal
covering space X̃ for X is a connected covering space for X such that for any other connected covering space
Y of X there exists a map f : X̃ → Y that forms a commutative triangle with the corresponding covering
maps, i.e. pY,X ◦ f = pX̃,X .

Since we do not require X to be semi-locally simply connected, then X̃ might not be simply connected.
Thus, the group G(X̃ | X) of deck transformations of X̃ might not be isomorphic to the fundamental group

1This is sometimes defined differently, i.e. G acts properly discontinuously if every y ∈ Y has a neighbourhood U ⊂ Y so that
U ∩ gU , ∅ for finitely many g ∈ G
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of X. However, G(X̃ | X) acts properly discontinuously on X̃, transitively on each fibre of pY,X; thus pX̃,X is
regular. Moreover, any (connected) covering space of X is covered by X̃. In particular, universal covering
spaces of a connected and locally path-connected space are equivalent.

Recall also that for a connected topological space Y and a group G of homeomorphisms of Y acting
properly discontinuously on Y , the projection map Y → Y/G is a regular covering whose group of deck
transformations coincides with G, i.e. G(Y |Y/G) = G.
We conclude this subsection summarising some results that will be used later.

Proposition 2.21. Let p : Y → X be a regular covering and let H ≤ G(Y | X).

• If Y is connected, then the projection map Y → Y/H is a regular covering map and G(Y |Y/H) = H;
• If Y is path connected and locally path connected and H is a normal subgroup of G(Y | X), then the

projection map Y/H → X is a regular covering map and G(Y/H | X) = G(Y | X)/H.

Proof. For a covering map, the group of deck transformations acts properly discontinuously on the total
space. Hence, H also acts properly discontinuously on Y and so the first item holds by the paragraph above
this proposition. The second item can be proved in a similar way: first observe that Y/H is connected
because it is the image of the projection map which is continuous, then note that G(Y | X)/H acts properly
discontinuously on Y/H (see also Exercise 24 in [Hat02, Chapter 1, Section 1.3]). �

2.6.2. Coverings of metric spaces and RCD∗(K,N) spaces. We now discuss some definitions and results
related to coverings of metric spaces. For more details we refer to [SW04a] and [MW19].

Let (X, dX) be a length metric space and pY,X : Y → X be a covering map. The length and metric structure
of X can be lifted to Y so that the covering map becomes a local isometry. Explicitly, denoting by LX the
length structure of X, define the metric dY : Y × Y → R as

dY (y, y′) := inf
{
LX(pY,X ◦ γ)

∣∣∣ γ : [0, 1]→ Y, pY,X ◦ γ is Lipschitz and γ(0) = y, γ(1) = y′
}
. (6)

This lifting process implies that Y is complete whenever X is so. In particular, if X is compact, then Y
will be a complete, locally compact length space, thus proper [BBI01, Proposition 2.5.22].

If X is locally compact and mX is a Borel measure on it, we can lift mX to a Borel measure mY on Y that
is locally isomorphic to mX . In order to define mY , denote by B(Y) the family of Borel subsets of Y and
consider the following collection of subsets of Y:

Σ :=
{

E ⊂ Y
∣∣∣ pY,X |E : E → pY,X(E) is an isometry

}
.

Note that Σ is stable under intersections and that Y is locally compact given that pY,X is a local isometry.
Thus, the smallest σ-algebra that contains Σ equals B(Y). For E ∈ Σ, definemY (E) := mX

(
pY,X(E)

)
and then

extend it to all B(Y).
From now on, all the covering spaces will be endowed with this metric and measure. The following result

was proved in [MW19].

Theorem 2.22. For any K ∈ R and any N ∈ (1,∞), any RCD∗(K,N) space admits a universal cover space
(X̃, dX̃ ,mX̃) which is itself an RCD∗(K,N) space.

We now state Sormani-Wei’s definition of revised fundamental group [SW04a].
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Definition 2.23. (Revised fundamental group) Given a complete length metric space (X, dX) that admits a
universal cover (X̃, dX̃), the revised fundamental group of X, denoted by π̄1(X), is defined to be the group of
deck transformations G(X̃ | X).

Recall that the covering map pX̃,X associated to the universal cover space of X is regular and thus π̄1(X)
acts transitively on each fibre of pX̃,X and properly discontinuously on X̃ by homeomorphisms; such home-
omorphisms are measure-preserving isometries on X̃, provided X̃ is endowed with the lifted distance and
measure of X, as described above.

We conclude this subsection by mentioning two properties that will be used later. First, for a covering
map pY,X : Y → X, one can prove (by lifting geodesics of X to Y) that for any x, x′ ∈ X and y ∈ Y with
y ∈ p−1

Y,X(x) there exists y′ ∈ p−1
Y,X(x′) such that dY (y, y′) = dX(x, x′). It follows that if pY,X is regular, and thus

G(Y | X) acts transitively on its fibres, then for any y, y′′ ∈ Y there exists h ∈ G(Y | X) such that

dY (y, h(y′′)) ≤ diam(X). (7)

The second property is that a quotient space Y/H as in Proposition 2.21 is an RCD∗(K,N) space provided
either X or Y is an RCD∗(K,N) space. We give more details below. In Theorem 1.1 we will use this fact to
get an upper bound on the revised first Betti number of an RCD∗(K,N) by passing to a quotient space (X̃/H
for H = [π̄1(X), π̄1(X)]); this fact will be also useful in Lemma 6.3 to infer that the GH convergence of a
sequence of quotient spaces can be promoted to mGH convergence.

Lemma 2.24. Let (X, dX ,mX) be a compact m.m.s with a regular covering map pY,X : Y → X. Assume
that (Y, dY ,mY ) has the structure of m.m.s. so that pY,X is a surjective local isomorphism of m.m.s. and that
p−1

Y,X(x) is at most countable. Let K ∈ R and N ∈ (1,∞). Then (X, dX ,mX) is an RCD∗(K,N) space if and
only if (Y, dY ,mY ) is so.

Proof. We argue along the lines of [MW19, Lemma 2.18].
Assume that (X, dX ,mX) is an RCD∗(K,N) space. Then (X, dX) is complete, separable, proper and ge-

odesic. Since pY,X is a regular covering map, we can apply [BBI01, Proposition 3.4.16] stating that the
length metrics on X are in 1-1 correspondence with the G(Y | X)-invariant length metrics on Y; thus (Y, dY )
is a length metric space. Since pY,X is a local isometry, we automatically get that (Y, dY ) is a complete and
locally compact space. Moreover, by our assumption on p−1

Y,X(x), (Y, dY ) is separable. Now every complete
locally compact length space is geodesic [BBI01, Theorem 2.5.23]. Hence, (Y, dY ) is a complete, separable
and geodesic space.

In order to prove that (Y, dY ,mY ) is an RCD∗(K,N), first recall that by [EKS15, Theorem 3.17] we
know that (Y, dY ,mY ) is RCD∗(K,N) if and only if it is infinitesimally Hilbertian and it satisfies the strong
CDe(K,N) condition, defined as in Definition 3.1 of [EKS15]. Since (X, dX ,mX) is an RCD∗(K,N) space,
by [EKS15, Theorem 3.17, Remark 3.18] we infer that (X, dX ,mX) satisfies the strong CDe(K,N) condition.
Now [EKS15, Theorem 3.14] says that on a geodesic m.m.s. the strong CDe(K,N) condition is equivalent
to the strong local CDe

loc(K,N) condition, thus in particular (X, dX ,mX) satisfies the strong local CDe
loc(K,N)

condition. Now each point y ∈ Y has a compact neighbourhood Uy such that (Uy, dY |Uy×Uy ,mYxUy) is iso-
morphic as metric measure space to (pY,X(Uy), dX |pY,X(Uy)×pY,X(Uy),mXxpY,X(Uy)). It follows that the strong local
CDe

loc(K,N) condition satisfied by (X, dX ,mX) passes to the covering (Y, dY ,mY ). Since Y is geodesic, then
by [EKS15, Theorem 3.14] it also satisfies the strong CDe(K,N) condition.
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It remains to show that (Y, dY ,mY ) is infinitesimally Hilbertian. This follows by a partition of unity on
Y made by Lipschitz functions with compact support contained in small metric balls isomorphic to metric
balls in X, using the fact that the Cheeger energy is a local object (see [AGS14, Gig15]). Indeed, the validity
of the parallelogram identity for the Cheeger energy on Y can be checked locally (on each small ball) using
a partition of unity. Since such small balls in Y are isomorphic to small balls of X where the Cheeger energy
satisfies the parallelogram identity, we conclude that the Cheeger energy on Y satisfies the parallelogram
identity as well.

Thus (Y, dY ,mY ) is infinitesimally Hilbertian, satisfies the CDe(K,N) condition and supp(mY ) = Y . It
follows by [EKS15, Theorem 3.17] that (Y, dY ,mY ) is an RCD∗(K,N) space.

The converse implication can be proved with analogous arguments. �

Proposition 2.25. Let (X, d,m) be a compact RCD∗(K,N) space, for some K ∈ R and N ∈ (1,∞). Then the
revised fundamental group π̄1(X) is finitely generated.

Proof. By [SW04a, Proposition 6.4 and Lemma 6.2] and Bishop-Gromov volume comparison theorem, for
any compact RCD∗(K,N) space (X, d,m), its revised fundamental group π̄1(X) can be generated by a set of
cardinality at most N(δ0, diam(X)) < ∞, where δ0 corresponds to the δ0-cover of X so that X̃ = Xδ0 and
N(δ0, diam(X)) is the maximal number of balls in X̃ of radius δ0 in a ball of radius diam(X). �

Corollary 2.26. Let (X, d,m) be a compact RCD∗(K,N) space, for some K ∈ R and N ∈ (1,∞). Then for any
normal subgroup H of the revised fundamental group π̄1(X), the metric measure space (X̃/H, dX̃/H ,mX̃/H)
is an RCD∗(K,N) space which is covered by X̃ and covers X.

Proof. Since from Proposition 2.25 we know that π̄1(X) is finitely generated, then it is at most countable.
Thus the cardinality of each fibre of the covering map is at most countable. We can thus conclude using
Proposition 2.21 and Lemma 2.24. �

Remark 2.26.1. Since the group of deck transformations G(Y | X) acts properly discontinuously on Y , the
semi-metric

dY/H(Hy,Hy′) = inf
{
dY (z, z′)

∣∣∣ z ∈ Hy, z′ ∈ Hy′
}

(8)

defined on the quotient space Y/H = {Hy | y ∈ Y} is actually a metric (this can be seen, for example, using
Section 2.2). We also observe that, under the assumptions of Proposition 2.21, since Y/H is a cover of X it
can also be endowed with the lifted metric of X as defined in (6). We note that this metric coincides with
(8), so we will use the quotient metric of Y/H whenever it is convenient. Notice that, in particular, all the
covering maps appearing in Proposition 2.21 are local isometries.

3. UPPER BOUND ON THE REVISED FIRST BETTI NUMBER: b1 ≤ bNc

In this section we obtain an upper bound for the revised first Betti number of an RCD∗(K,N) space with
K ≤ 0 and N ∈ (1,∞). In the case of smooth manifolds, the estimate is due to M. Gromov [Gro81] and
S. Gallot [Gal83] (compare also [Pet16, Section 9.2]).

We consider a compact geodesic space admitting a universal cover and define its revised first Betti num-
ber as the rank of the abelianisation of the revised fundamental group, whenever the abelianisation is finitely
generated. Indeed, the fundamental theorem of finitely generated abelian groups states that for any finitely
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generated abelian group G there exist a rank s ∈ N, prime numbers pi and integers si such that G is isomor-
phic to Zs × Zs1

p1 × · · · × Z
sl
pl .

Definition 3.1. Let (X, d) be a compact geodesic space admitting a universal cover. Let π̄1(X) be its revised
fundamental group, set H := [π̄1(X), π̄1(X)] the commutator and Γ := π̄1(X)/H. Then we define the revised
first Betti number of X as

b1(X) :=

s if Γ is finitely generated, Γ = Zs × Zs1
p1 × · · · × Z

sl
pl ,

∞ otherwise.

From now on, we denote by X̄ the quotient space X̃/H:

(X̄, dX̄ ,mX̄) := (X̃/H, dX̃/H ,mX̃/H). (9)

By Proposition 2.21, we know that X̄ is a cover of X; moreover, Γ acts on X̄ as an abelian group of isometries.
Since the action of π̄1(X) is properly discontinuous, the same is true for Γ. In particular, the action is
discontinuous and all the orbits Γx, x ∈ X, are discrete.

The first step in proving the upper bound on the revised first Betti number consists in showing the appro-
priate analog of a result of Gromov [Gro07, Lemma 5.19]. In the case of smooth manifolds, compare with
[Pet16, Lemma 2.1, Section 9.2] for k = 1 and for general k ∈ N with [Col97, Lemma 3.1].

Lemma 3.2. Let (X, d) be a compact geodesic space that admits a universal cover (X̃, dX̃), assume that
Γ := π̄1(X)/H is finitely generated and let (X̄, dX̄) be as in (9). Then for any k ∈ N and x ∈ X̄ there exists a
finite index subgroup Γ′ =< γ̃1, . . . , γ̃b1(X) > of Γ isomorphic to Zb1(X) such that for any non trivial element
γ̃ ∈ Γ′

k diam(X) < dX̄(γ̃(x), x) (10)

and for all i = 1, ..., b1(X)
dX̄(γ̃i(x), x) ≤ 2k diam(X). (11)

Proof. We first find a subgroup Γ′′ ≤ Γ of finite index and generated by elements that satisfy (11) for k = 1.
For any ε > 0, set rε = 2 diam(X) + ε and let Γε be the subgroup of Γ generated by the set

Γ(rε) := {γ ∈ Γ | dX̄(γ(x), x) ≤ 2 diam(X) + ε}.

Observe that the previous set is not empty since, because of (7), there exists γ ∈ Γ such that dX̄(γ(x), x) ≤
diam(X). Endow X̄/Γε with the quotient topology and the distance dX̄/Γε induced by dX̄ , c.f. (1). Let
πε : X̄ → X̄/Γε be the covering map.

Step 1. We claim that X̄/Γε ⊂ Bdiam(X)+ε(πε(x)), i.e. that for each z ∈ X̄ it holds

dX̄/Γε(πε(x), πε(z)) ≤ diam(X) + ε. (12)

By contradiction, assume that there is z ∈ X̄ such that dX̄/Γε(πε(x), πε(z)) > diam(X) + ε. Since X̄/Γε is a
geodesic space, we can take a point in the geodesic connecting πε(x) to πε(z), that we denote again by πε(z),
so that dX̄/Γε(πε(x), πε(z)) = diam(X) + ε. Since the action of Γ in X̄ is discontinuous and hence the same
is true for the action of Γε, there exist representatives x, z ∈ X̄ that achieve dX̄/Γε(πε(x), πε(z)), c.f. (1), we
have:

dX̄(x, z) = dX̄/Γε(πε(x), πε(z)) = diam(X) + ε.
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Now, there is γ ∈ Γ such that dX̄(γ(x), z) ≤ diam(X), c.f. (7). Then,

dX̄(γ(x), x) ≤ dX̄(γ(x), z) + dX̄(z, x) ≤ 2 diam(X) + ε.

This implies that γ ∈ Γε. Thus, πε(γ(x)) = πε(x) and

0 = dX̄/Γε(πε(x), πε(γ(x))) ≥ dX̄/Γε(πε(x), πε(z)) − dX̄/Γε(πε(z), πε(γ(x))) ≥ ε,

where we used that by definition of the quotient distance dX̄/Γε and the choice of γ we have

dX̄/Γε(πε(z), πε(γ(x))) ≤ dX̄(z, γ(x)) ≤ diam(X).

This is a contradiction, and thus claim (12) is proved.
Step 2. Proof of (11) in case k = 1.

From step 1 we know that X̄/Γε ⊂ Bdiam(X)+ε(πε(x)). Since X̄/Γε is proper, we infer that X̄/Γε is compact
and thus the index of Γε in Γ is finite.

Since the action of Γ in X̄ is discontinuous, the set

Γ(3 diam(X)) := {γ ∈ Γ | d(x, γ(x)) < 3 diam(X)}

is finite. Thus, there exists some ε1 < diam(X) such that for all ε ≤ ε1 the sets Γ(rε) have bounded
cardinality. Since their intersection is not empty, we get that it coincides with some finite set Γ(rε0) =

{γ1, . . . , γm} for ε0 small enough, i.e.:

Γ(rε0) =
⋂
ε>0

Γ(rε) = Γ(2 diam(X)) := {γ ∈ Γ| d(x, γ(x)) ≤ 2 diam(X)}.

Hence, for every element of Γ(rε0) inequality (11) holds with k = 1.
Step 3. Conclusion by induction.

We are going to select b1 elements of Γ(rε0), say {γ̃1, . . . , γ̃b1}, in such a way that the subgroup Γ′ generated
by {γ̃1, . . . , γ̃b1} satisfies the conclusions of the lemma. First observe that, since the rank of Γε0 equals b1, by
possibly discarding some elements we can choose a linearly independent subset of Γ(rε0) with cardinality
b1. For simplicity, let us denote this subset by {γ1, . . . , γb1}. Consider Γ′′ ⊂ Γε0 the subgroup generated by
{γ1, . . . , γb1}. For fixed k ∈ N, we are going to choose {γ̃1, . . . , γ̃b1} in Γ′′ ∩ Γ(2 diam(X)) and such that both
(10) and (11) hold. In order to do that, we proceed by induction on j = 1, . . . , b1 and we choose γ̃1, . . . , γ̃ j

in Γ′′ ∩ Γ(2 diam(X)) such that:

(a) the subgroup < γ̃1, ..., γ̃ j > has finite index in < γ1, ..., γ j >;
(b) γ̃ j = γ = `1 jγ̃1 + · · · + ` j−1, jγ̃ j−1 + ` j jγ j is chosen so that

l j j = max
{
|k|, k ∈ Z s.t. ∃ `1 j, . . . , ` j−1, j ∈ Z s.t. if γ = `1 jγ̃1 + · · · + ` j−1, jγ̃ j−1 + kγ j

then dX̄(γ(x), x) ≤ 2k diam(X)
}
.

Notice that condition (b) ensures that Γ′ =< γ̃1, . . . , γ̃b1 > satisfies (11). We now show that Γ′ also satisfies
(10). For any element γ ∈ Γ′ there exists j ∈ {1, . . . , b1} such that γ can be written as γ = m1γ̃1 + · · · + m jγ̃ j

with m j , 0. Assume by contradiction that d(x, γ(x)) ≤ k diam(X) and consider

2γ(x) = 2m1γ̃1 + · · · + 2m jγ̃ j =

j−1∑
i=1

(2mi + 2m j`i j)γ̃i + 2m j` j jγ j.
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Then by using the triangle inequality and (11) we obtain that

dX̄(x, 2γ(x)) ≤ dX̄(x, γ(x)) + dX̄(γ(x), 2γ(x)) = 2dX̄(x, γ(x)) ≤ 2k diam(X).

Then 2γ satisfies dX̄(2γ(x), x) ≤ 2k diam(X) and |2m j` j j| > |` j j|, contradicting the way we chose ` j j and γ̃ j

in (b). This concludes the proof. �

Remark 3.2.1. With a more careful analysis, a similar version of Lemma 3.2 holds true if one replaces
geodesic space by length spaces. c.f. [Gro07]. Furthermore, the same conclusion holds if we consider X̄/T
instead of X̄, where T is any torsion subgroup of Γ.

Remark 3.2.2. Note that X̄ is not compact. Indeed, for any x̄ ∈ X̄ and corresponding Γ′ given by Lemma
3.2, the orbit Γ′ x̄ = {γ(x̄), | γ ∈ Γ′} is countable, since Γ′ acts properly discontinuously on X̄ and Γ′ is
isomorphic to Zb1 . Now, if by contradiction X̄ is compact, then Γ′ x̄ has a converging subsequence {γi(x̄)}.
By using either that the action is properly discontinuous or property (10), it is not difficult to show that
{γi(x̄)} must be a constant sequence starting from i large enough, giving a contradiction.

Remark 3.2.3. It is not difficult to see that Γ′ is a closed discrete group in the compact-open topology. Recall
if a sequence of isometries γi in Γ′ converges to γ in the compact-open topology, then it converges uniformly
on every compact subset and in particular for any x̄ ∈ X̄ we have γi(x̄) → γ(x̄). We know that for any fixed
x̄ ∈ X̄, the only converging sequences in the orbit Γ′ x̄ are (definitely) constant sequences. Thus there exist
γ ∈ Γ′ and i0 ∈ N such that for all i ≥ i0 we have γi(x̄) = γ(x̄). Therefore any converging sequence γi in Γ′

is constantly equal to an element γ of Γ′, yielding that Γ′ is closed and discrete.

In the following, we consider a compact RCD∗(K,N) space, (X, d,m) with N ∈ (1,∞). By Theorem 2.22,
we know that it admits a universal cover space, (X̃, d̃, m̃), that satisfies the RCD∗(K,N) condition. Using
the same notation as in Lemma 3.2, by Corollary 2.26, the quotient m.m.s. (X̄, d̄, m̄) is also an RCD∗(K,N)
space. Since by Proposition 2.25 we know that the revised fundamental group π̄1(X) is finitely generated,
we infer that the revised first Betti number of (X, d,m) is finite.

We are now ready to prove the first main result of the paper, namely the desired upper bound for b1(X).
This is done by combining Lemma 3.2 with Theorem 2.8 for (X̄, d̄, m̄), and generalises to the non-smooth
RCD setting the celebrated upper bound proved in the smooth setting by M. Gromov [Gro81] and S. Gallot
[Gal83] (see also [Pet16, Theorem 2.2, Section 9.2] and [Gro07, Theorem 5.21]).

Proof of Theorem 1.1
Let (X, d,m) be a compact RCD∗(K,N) space with K ∈ R, N ∈ [1,∞), supp(m) = X and diam(X) ≤ D.

If N = 1, the claim holds trivially (see Remark 2.7.1); thus, we can assume N ∈ (1,∞) without loss of
generality. By Theorem 1.2 in [MW19] if K > 0 then π̄1(X) is finite. Hence, b1(X) = rank(Γ) = 0. Thus the
claim holds trivially.

Assume that K ≤ 0 and take x ∈ X̄ = X̃/H. Recall that both X and X̄ are geodesic spaces (see Section
2), thus we can apply Lemma 3.2 with k = 1. Therefore, there exists a subgroup of deck transformations
Γ′ =< γ1, ..., γb1 >⊂ Γ such that

diam(X) < dX̄(γ(x), x), for all non trivial γ ∈ Γ′, (13)

dX̄(γi(x), x) ≤ 2 diam(X), for all i = 1, . . . , b1. (14)
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By (13) all the open balls Bdiam(X)/2(γ(x)), γ ∈ Γ′, are mutually disjoint. Now set,

Ir =
{
γ = l1γ1 + · · · + lb1γb1 ∈ Γ′ : |l1| + · · · + |lb1 | ≤ r, li ∈ Z

}
.

By (14), since each element of Γ is an isometry and applying the triangle inequality, for all γ ∈ Ir we have
dX̄(γ(x), x) ≤ 2r diam(X). Hence, for all γ ∈ Ir

Bdiam(X)/2(γ(x)) ⊂ B2r diam(X)+diam(X)/2(x).

Since each element of Γ preserves the measure, i.e. γ]mX̄ = mX̄ , then all the balls Bdiam(X)/2(γ(x)) have the
same mX̄-measure and thus

|Ir |mX̄(Bdiam(X)/2(γ(x))) ≤ mX̄(B2r diam(X)+diam(X)/2(x)).

By the definition of Ir, |Ir | is non decreasing with respect to r. If r = 1 then {γi}
b1
i=1 ⊂ Ir and thus

b1 ≤ |Ir | for r ≥ 1. (15)

For arbitrary r ∈ N, it is easy to check that

|Ir | = (2r + 1)b1 . (16)

Now we apply the relative volume comparison theorem, Theorem 2.8, to obtain an upper bound on the
cardinality of Ir. Since the right hand sides of both equations in Theorem 2.8 are non increasing as a function
of K, we can assume that K < 0. Thus,

|Ir | ≤
mX̄(B2r diam(X)+diam(X)/2(x))
mX̄(Bdiam(X)/2(γ(x)))

≤

∫ 2r diam(X)+diam(X)/2
0 sinhN−1(

√
−K/(N − 1)s) ds∫ diam(X)/2

0 sinhN−1(
√
−K/(N − 1)s) ds

=

∫ (2r+1/2)
√
−K diam(X)2/(N−1)

0 sinhN−1(s) ds∫ √−K diam(X)2/(N−1)/2
0 sinhN−1(s) ds

=:Cr(N,−K diam(X)2/(N − 1)). (17)

That is, Cr(N, ·) : [0,−KD2/(N − 1)]→ R is the function given by

Cr(N, t) =

∫ (2r+1/2)
√

t
0 sinhN−1(s) ds∫ √t/2

0 sinhN−1(s) ds
.

By (15) and since Cr(N, t) is non decreasing as a function of t, we have b1(X) ≤ Cr(N,−KD2/(N − 1)).
By using the Taylor expansion of sinh, we calculate that

lim
t→0

Cr(N, t) =

(
(2r + 1/2)

1/2

)N

.

Thus, for small t we have

Cr(N, t) < 2N
(
2r +

1
2

)N

+ δ. (18)

Now assume by contradiction that there exists a sequence εi ↓ 0 and RCD∗(Ki,N) metric measure spaces
(Xi, di,mi) such that

−Ki diam(Xi)2 ≤ εi, b1(Xi) > N.



22 ILARIA MONDELLO, ANDREA MONDINO, AND RAQUEL PERALES

Thanks to (16) and (17), we know that for any integer r ≥ 1 we have

(2r + 1)b1(Xi) ≤ Cr(N,−Ki diam(Xi)2/(N − 1)).

For εi small enough, we can apply (18), so that for all r ∈ N, r ≥ 1

(2r + 1)b1(Xi) ≤ Cr(N, εi) < 2N(2r + 1/2)N + δ.

Thus for r large enough

(2r + 1)b1(Xi) ≤ 5NrN .

Now, if b1(Xi) > N, it is easily seen that the last inequality fails for r = r(N) large enough. Hence, we have
shown that there exists ε(N) > 0 such that if (X, d,m) is an RCD∗(K,N) m.m.s. with −K diam(X)2 ≤ ε(N),
then b1(X) ≤ N. Since by definition b1(X) is integer, the last bound is actually equivalent to b1(X) ≤ bNc.
This concludes the proof of the second assertion.
In order to prove the first assertion, set

C(N, t) = sup{ b1(X) : (X, d,m) is an RCD∗(K,N) m.m.s. with − K diam(X)2 = t }

and observe that, thanks to (17), C(N, t) is bounded by Cr(N, t/(N − 1)). Since it is a bounded supremum of
integer numbers, C(N, t) is an integer. Moreover, the flat torus TbNc is an RCD∗(0,N) space with b1(TN) =

bNc, hence C(N, t) ≥ bNc. The previous argument also shows that for t ≤ ε(N), b1(X) ≤ N, thus for any
t ≤ ε(N) we have bNc ≤ C(N, t) ≤ N. This implies that C(N, t) = bNc for any t ≤ ε(N). As a consequence,
C(N, t) is the desired function tending to bNc as t → 0. �

Remark 3.2.4. In the case of n-dimensional manifolds, Gallot proved an optimal bound for b1(M) and
expressed the function C(n, t) as ξ(n, t)n, where ξ(n, t) is an explicit function tending to one as t tends to zero
[Gal83, Section 3].

Corollary 3.3. Let (X, d,m) be a compact RCD∗(K,N) space with N ∈ (1,∞) and diam(X) = 1. Let
(X̄, dX̄ ,mX̄) be as in (9). Then for any x̄ ∈ X̄, k ∈ N and R > 1, the open ball BR(x̄) contains at least
bR/kcb1(X) disjoint balls of radius k/2.

Proof. By Lemma 3.2 there exists a subgroup of deck transformations Γ′ =< γ1, ..., γb1 >⊂ Γ such that

k diam(X) < dX̄(γ(x), x), for all non trivial γ ∈ Γ′,

dX̄(γi(x), x) ≤ 2k diam(X), for all i = 1, . . . , b1.

Arguing as in the proof of Theorem 1.1 we get that, for any r ∈ N, the number of disjoint balls of radius k/2
in Bk/2+2kr(x̄) is larger than or equal to the number of elements in

Ir =
{
γ ∈ Γ′ | γ = `1γ1 + . . . + `b1(X)γb1(X), |`1| + . . . + |`b1(X)| < r

}
.

The cardinality of Ir equals (2r + 1)b1(X). Then for R > 1 write bRc = k(2r + 1) and get that BR(x̄) contains
at least (2r + 1)b1(X) = bR/kcb1(X) disjoint balls of radius k/2. �
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4. CONSTRUCTION OF MGH-APPROXIMATIONS IN THE EUCLIDEAN SPACE

This section is devoted to proving Theorem 4.1, which corresponds to the non-smooth RCD version of
[Col97, Lemma 3.5]. The main goal is to show that if (X, d,m) is an RCD∗(−δ,N) space with δ = δ(ε,N)
small enough, diam(X) = 1 and b1(X) = bNc, then the covering space (X̄, dX̄ ,mX̄) (defined in (9)) is locally
(on suitably large metric balls) mGH close to the Euclidean space RbNc.

The proof consists in applying inductively the almost splitting theorem. More precisely, we show that
(X̄, dX̄ ,mX̄) is locally (on suitably large metric balls) mGH close to a product Rk × Yk by induction on
k = 1, . . . , bNc. Since the diameter of the covering space X̄ is infinite (see Remark 3.2.2), the base case of
induction k = 1 will follow by carefully applying the almost splitting theorem. As for the inductive step,
thanks to Corollary 3.3 we will prove a diameter estimate on Yk that allows us to apply the almost splitting
theorem on Yk. We will conclude by deducing the almost splitting of an additional Euclidean factor by
constructing an ε-mGH approximation into Rk+1 × Yk+1.

Theorem 4.1. Fix N ∈ (1,∞) and β > (2 + α)/α, where α = α(N) is given by Theorem 2.11. For any
ε ∈ (0, 1) there exists δ(ε,N) > 0 such that the following holds. Let (X, d,m) be an RCD∗(−δ2β,N) space
with δ ∈ (0, δ(ε,N)], b1(X) = bNc and diam(X) = 1, and let (X̄, dX̄ ,mX̄) be the covering space as in (9).
Then there exists x̄ ∈ X̄ such that

dmGH(BX̄
ε−1(x̄), BR

bNc

ε−1 (0bNc)) ≤ ε.

Remark 4.1.1. From Theorem 4.1 it directly follows that the point x̄ ∈ X̄ has a bNc-dimensional Euclidean
tangent cone and it belongs to the bNc-regular set RbNc.
Indeed, if (Xi, di,mi) is a sequence of RCD∗(−δ2β

i ,N) spaces with δi → 0, b1(Xi) = bNc, diam(Xi) =

1 and x̄i are as in Theorem 4.1, then the covering spaces (X̄i, dX̄i
,mX̄i

, x̄i) converge in pointed measured
Gromov-Hausdorff sense to the Euclidean space (RbNc, dRbNc ,LbNc, 0bNc). The claim follows by applying this
observation to a sequence of blow-ups of X̄ centred at x̄.

In order to prove the base case of induction k = 1, we start by showing the almost splitting of a line
for (X̄, dX̄ ,mX̄). This will be a direct consequence of the next proposition, which in turn will follow by
combining Theorems 2.11 and 2.12 with suitable blow-up arguments.

Proposition 4.2. Fix N ∈ (1,∞) and β > (2 + α)/α, where α = α(N) is given by Theorem 2.11. For any
ε > 0 there exists δ1 = δ1(ε,N) > 0, δ1(ε,N) → 0 as ε goes to zero, such that for any δ ∈ (0, δ1] the
following holds. Let (X, d,m) be an RCD∗(−δ2β,N) m.m.s. such that

diam(X, d) ≥ 2δ−β.

Then there exist xε ∈ X, a pointed RCD∗(0,N − 1) metric measure space (Yε, dYε ,mYε , yε) such that

dmGH(BX
ε−1(xε), B

R×Yε
ε−1 (0, yε)) ≤ ε.

Proof. Let (X, d,m) be an RCD∗(−δ2β,N) space. Because of the assumption on the diameter, there exist
points p, q ∈ X such that d(p, q) = 2δ−β. Define xε as the midpoint of a geodesic connecting p and q. Con-
sider the rescaled metric dδ = (δβ/2) d. Since X is an RCD∗(−δ2β,N) space, (X, dδ,m) is an RCD∗(−4,N)
space. Observe that dδ(p, q) = 1. With respect to the metric dδ, we have that xε ∈ A1/4,2({p, q}) and
eδp,q(xε) = 0.
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Step 1: Estimate on the sup of the excess.
We can apply Theorem 2.11 and infer that there exist r̄ = r̄(N) > 0,C = C(N) > 0, α = α(N) ∈ (0, 1) such
that the estimate (4) centred at xε holds for dδ. By scaling back to the metric d, such an estimate can be
written as follows:

sup
y∈Br(xε)

ep,q(y) ≤ C(N) δα β r1+α, for all r ∈ (0, 2δ−βr̄(N)]. (19)

We aim to choose δ > 0 such that (19) can be turned into the following:

sup
y∈Br(xε)

ep,q(y) < δ/2, for all r ∈ [1, δ−1]. (20)

Hence we first require
1 ≤ δ−1 ≤ 2δ−βr̄(N), (a)

so that (19) applies to all radii r ∈ [1, δ−1]. Secondly, we need

C(N) δα β(δ−1)1+α < δ/2,

so the right-hand side of (19) is bounded above by δ/2. That means

δβα−2−α < 1/(2C(N)). (b)

Such a choice is possible since the assumption β > (2 + α)/α ensures that the exponent on the left-hand
side is strictly positive. By choosing δ > 0 sufficiently small so that both conditions (a) and (b) are satisfied,
we obtain from (19) that estimate (20) holds.

Step 2: L2-estimate on the gradient of the excess.
Consider again the rescaled metric dδ = (δβ/2) d and choose r > 0 so that r ≤ min {r̄(N), 1/4}. Then
BX

2r(xε) ⊂ A1/4,2({p, q}) and estimate (5) of Theorem 2.11 holds as well. By scaling back to the metric d, we
have: ?

BX
r (xε)
|Dep,q|

2dm ≤ C(N) δβ(1+α)r1+α, for all r ≤ 2δ−β min {r̄(N), 1/4} . (21)

As in step 1, we aim to choose δ > 0 so that (21) implies the following:?
BX

r (xε)
|Dep,q|

2dm ≤ δ/2, for all r ∈ [1, δ−1]. (22)

Hence we require
1 ≤ δ−1 ≤ 2δ−β min {r̄(N), 1/4} . (c)

In order for the right-hand side of (21) to be less than or equal to δ/2 we need

C(N)δβ(1+α)δ−(1+α) < δ/2,

that is,
δ(1+α)(β−1)−1 < 1/(2C(N)). (d)

Note that since β > 2, the exponent on the left-hand side is strictly positive.
Step 3: Conclusion.

Fix δ0 = δ0(N) > 0 satisfying inequalities (a), (b), (c) and (d). Then for all δ ∈ (0, δ0(N)] inequalities (a),
(b), (c) and (d) hold as well. Now, for any ε > 0 let δ(ε,N) > 0 be as in Theorem 2.12. We define

δ1 = δ1(ε,N) = min{δ0(N), δ(ε,N)}.
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Then, for all δ ∈ (0, δ1] inequalities (20) and (22) hold and we have

sup
y∈BX

r (xε)
ep,q(y) +

?
BX

r (xε)
|Dep,q|

2dm ≤ δ, for all r ∈ [1, δ−1].

Since δ ≤ δ1 ≤ δ(ε,N), we can apply Theorem 2.12 and conclude the proof. �

Proposition 4.2 can be in particular applied to the covering space (X̄, dX̄ ,mX̄). Indeed, thanks to Corollary
2.26 it is an RCD∗ space and it is not compact (thus it must have infinite diameter, since it is proper), as it
was pointed out in Remark 3.2.2. This gives the base case of induction, k = 1.

Corollary 4.3. Let (X, d,m) and (X̄, dX̄ ,mX̄) be as in Theorem 4.1. Then there exist x̄1,ε ∈ X̄ and a pointed
RCD∗(0,N − 1) space (Y1,ε, dY1,ε ,mY1,ε , y1,ε) such that

dmGH(BX̄
ε−1(x̄1,ε), B

R×Y1,ε

ε−1 (0, y1,ε)) ≤ ε.

Observe that for the base case of induction (i.e. in Corollary 4.3), we did not use the assumptions on the
diameter and revised first Betti number. These assumptions will play a key role in the following, instead.
Let us state the induction hypothesis.

Assumption Ak: Fix N ∈ (1,∞) and let k ∈ N with k < bNc. For all η ∈ (0, 1) there exists δk = δk(η,N) > 0
such that for all δ ∈ (0, δk], the following holds: if (X, d,m) and (X̄, dX̄ ,mX̄) are as in Theorem 4.1, then
there exists x̄k,η ∈ X̄ and a pointed RCD∗(0,N − k) space (Yk,η, dYk,η ,mYk,η , yk,η) such that

dmGH(BX̄
η−1(x̄k,η), B

Rk×Yk,η

η−1 (0k, yk,η)) ≤ η.

In order to prove Ak+1 given Ak we aim to apply Proposition 4.2 to the space Yk,η: in this way, Yk,η will
almost split a line, thus X̄ will almost split an additional Euclidean factor, yielding Ak+1. To this aim, the
following diameter estimate will be key.

Lemma 4.4. Assume that Ak holds. For any η ∈ (0, 1), let δk(η,N) > 0, (X, d,m) and (X̄, dX̄ ,mX̄) be as in
Ak and (Yk,η, dYk,η ,mYk,η , yk,η) be the corresponding RCD∗(0,N − k) p.m.m.s..
Then there exist cN ∈ (0, 1) and η0(N) > 0 such that for all η ∈ (0, η0(N)] and for all δ ∈ (0, δk(η,N)], it
holds:

diam(BYk,η

η−1 (yk,η)) > cNη
−1.

Proof. We argue by contradiction. Assume there exist a sequence ηi ↓ 0, corresponding δi = δk(ηi,N) → 0
and pointed RCD∗(−δ2β

i ,N) spaces (X̄i, dX̄i
,mX̄i

, x̄i) for which there exists pointed RCD∗(0,N − k) spaces
(Yi, dYi ,mYi , yi) such that

dmGH(BX̄i

η−1
i

(x̄i), B
Rk×Yi

η−1
i

((0k, yi))) ≤ ηi and lim
i→+∞

ηi diam(BYi

η−1
i

(yi)) = 0. (23)

Let i be sufficiently large so that ηi < 1. By Corollary 3.3 we know that BX̄i

η−1
i

(x̄i) contains at least (bη−1
i c)

b

disjoint balls of radius 1/2, at positive mutual distance. Using (23) we infer that, for i large enough, the ball
BR

k×Yi

η−1
i

((0k, yi)) in Rk × Yi also contains at least (bη−1
i c)

b disjoint balls of radius 1/2.

Rescale the metric of Rk × Yi by a factor ηi and denote the resulting space as (Rk × Yi)ηi . Then for large
enough i the ball of radius 1 in (Rk × Yi)ηi centred at (0k, yi) contains at least ( bη−1

i c)
b disjoint balls of radius
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ηi
2 at positive mutual distance. Furthermore, since ηi diam(BYi

η−1
i

(yi)) tends to zero as i tends to infinity, when

taking the Gromov-Hausdorff limit of such balls we obtain:

lim
i→∞

dGH(B(Rk×Yi)ηi

1 (0k, yi), B
(Rk)ηi

1 (0)) = 0.

As a consequence, for large enough i, B(Rk)ηi

1 (0) contains at least (bη−1
i c)

b disjoint balls of radius ηi
2 . Denote

by ωk the volume of BR
k

1 (0). Since we only rescaled the metric of Rk×Yi by a factor ηi, the mass of B(Rk)ηi

1 (0)

equals ωk(η−1
i )k and the mass of a ball of radius ηi

2 in B(Rk)ηi

1 (0) equals ωk(1/2)k. Hence,

ωk(bη−1
i c)

b(1/2)k ≤ ωk(η−1
i )k. (24)

However, since 1 ≤ k < bNc = b and ηi → 0, the estimate (24) cannot hold for i sufficiently large. �

Remark 4.4.1. Notice that we used the hypotheses diam(X) = 1 and b := b1(X) = bNc to have a given
number of disjoint balls of radius 1/2 in a ball in X̄ of radius larger than 1.

We next combine Lemma 4.4 and Proposition 4.2 in order to prove that the space Yk,η almost splits a line,
for η > 0 small enough depending on ε > 0.

Proposition 4.5. Assume that Ak is satisfied. Then for any ε ∈ (0, 1) there exists η(ε,N) > 0 such that the
following holds. For any η ∈ (0, η(ε,N)], let (Yk,η, dYk,η ,mYk,η , yk,η) be the pointed m.m.s. given by Ak. Then

there exist y ∈ BYk,η

η−1/2
(yk,η) and a pointed RCD∗(0,N − k − 1) space (Y ′, dY′ ,mY′ , y′) such that

BYk,η

ε−1 (y) ⊆ BYk,η

η−1 (yk,η) and dmGH(BYk,η

ε−1 (y), BR×Y′
ε−1 (0, y′)) ≤ ε.

Proof. Define

η(ε,N) = min
{
ε

2
, η0(N),

cN

2
δ1(ε,N)β

}
,

where δ1(ε,N) > 0 is the quantity given by Proposition 4.2 and cN , η0(N) are defined in Lemma 4.4. Then
by assumption Ak and Lemma 4.4, for any η ∈ (0, η(ε,N)] and for all δ ∈ (0, δk(η,N)], if (X, d,m) is an
RCD∗(−δ2β,N) space as in assumption Ak, then there exist x̄k,η ∈ X̄ and a pointed RCD∗(0,N − k) space
(Yk,η, dYk,η ,mYk,η , yk,η) such that

dmGH(BX̄
η−1(x̄k,η), B

Rk×Yk,η

η−1 (0k, yk,η)) ≤ η

diam(BYk,η

η−1 (yk,η)) > cN η
−1. (25)

Let ξ > 0 be such that cN η
−1 = 2ξ−β. Our choice of η(ε,N) ensures that for any η ∈ (0, η(ε,N)] we have

ξ ∈ (0, δ1(ε,N)]. Therefore we can apply Proposition 4.2 to Yk,η and get that there exist y ∈ Yk,η and a
pointed RCD∗(0,N − k − 1) space (Y ′, dY′ ,mY′ , y′) such that

dmGH(BYk,η

ε−1 (y), BR×Y′
ε−1 (0, y′)) ≤ ε.

It remains to show that y ∈ BYk,η

η−1/2
(yk,η) and that BYk,η

ε−1 (y) ⊆ BYk,η

η−1 (yk,η).
From the proof of Proposition 4.2, we know that y is a midpoint of a geodesic between two points p, q at
distance equal to cNη

−1. Since Yk,η is a geodesic space and cN ∈ (0, 1), it is easily seen that (25) implies
that there exists a point q ∈ BYk,η

η−1 (yk,η) such that dYk,η(q, yk,η) = cNη
−1. Then, in the proof of Proposition 4.2
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we can chose p = yk,η, q ∈ Yk,η with dYk,η(q, yk,η) = cNη
−1 and y a midpoint of a geodesic between p and q.

Therefore dYk,η(y, yk,η) = cNη
−1/2. Now, for any point z ∈ BYk,η

ε−1 (y) we have

dYk,η(z, yk,η) ≤ dYk,η(z, y) + dYk,η(y, yk,η) < ε−1 + cNη
−1/2.

Moreover, our choice of η ≤ η(ε,N) ≤ ε/2 ensures that ε−1 ≤ η−1/2. Therefore, for any z ∈ BYk,η

ε−1 (y), we
have dYk,η(z, yk,η) < η−1, as desired. �

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1 . We proceed by induction. For k = 1, A1 follows from Corollary 4.3. Now assume
that Ak holds for some 1 ≤ k < bNc and let us show Ak+1. Denote by C1,C2 > 0 the constants appearing in
Propositions 7.1 and 7.2 respectively and define C := max{C1C2, 2C1}. Fix ε ∈ (0, 1) and let

ε1 := min{1/2, 1/C} ε, η1 := min{ε1/4, η(ε1,N)},

where η(ε1,N) > 0 is given by Proposition 4.5.
With these choices, if δ ∈ (0, δk(η,N)) and (X, dX ,mX) is an RCD∗(−δ2β,N) space that satisfies Ak, then

there exist x̄k,η1 ∈ X̄, a pointed RCD∗(0,N−k) space (Yk,η1 , dYk,η1
,mYk,η1

, yk,η1) and an η1-mGH approximation:

φ : BX̄
η−1

1
(x̄k,η1)→ B

Rk×Yk,η1

η−1
1

(0k, yk,η1).

Moreover, by Proposition 4.5, there exist y ∈ B
Yk,η1

η−1
1 /2

(yk,η1) with B
Yk,η1

ε−1
1

(y) ⊂ B
Yk,η1

η−1
1

(yk,η1), an RCD∗(0,N−k−1)

space (Y ′, dY′ ,mY′ , y′) and an ε1-mGH approximation

ϕ′ : B
Yk,η1

ε−1
1

(y)→ BR×Y′

ε−1
1

(0, y′).

Since η1 ∈ (0, ε1), the inclusion B
Yk,η1

ε−1
1

(y) ⊂ B
Yk,η1

η−1
1

(yk,η1) ensures that B
Rk×Yk,η1

ε−1
1

((0k, y)) ⊂ B
Rk×Yk,η1

η−1
1

((0k, yk,η1)).

Therefore, there exists x̄k+1,η1 in BX̄
η−1

1
(x̄k,η1) such that

dRk×Yk,η1
((0k, y), φ(x̄k+1,η1)) ≤ η1.

We aim to show that
dmGH(BX̄

ε−1(x̄k+1,η1), BR
k+1×Y′

ε−1 (0k+1, y′)) ≤ ε. (26)

We first claim that
BX̄
η−1

1 /4(x̄k+1,η1) ⊂ BX̄
η−1

1
(x̄k,η1). (27)

Indeed, since φ is an η1-mGH approximation, by the definition of x̄k+1,η1 and y we have

dX̄(x̄k+1,η1 , x̄k,η1) ≤ dRk×Yk,η1

(
φ(x̄k+1,η1), (0k, yk,η1)

)
+ η1

≤ dRk×Yk,η1

(
φ(x̄k+1,η1), (0k, y)

)
+ dRk×Yk,η1

(
(0k, y), (0k, yk,η1)

)
+ η1 ≤ 2η1 +

1
2
η−1

1 .

The claim (27) follows by triangle inequality.

As a consequence, since ε−1 ≤ η−1
1 /4, by Proposition 7.1 we can construct a (C1η1)-mGH approximation

out of φ:

φ1 : BX̄
ε−1(x̄k+1,η1)→ B

Rk×Yk,η1
ε−1 ((0k, y)).
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Thanks to Proposition 7.2, there exists a (C2ε1)-mGH approximation:

ϕ : BR
k

ε−1
1

(0k) × B
Yk,η1

ε−1
1

(y)→ BR
k

ε−1
1

(0k) × BR×Y′

ε−1
1

((0, y′)).

Since the ball centred at (0k, y) of radius ε−1 ≤ ε−1
1 /
√

2 is included in the previous product of balls, we can
use again Proposition 7.1 to construct a (C1C2ε1)-mGH approximation out of ϕ:

ϕ1 : B
Rk×Yk,η1
ε−1 ((0k, y))→ BR

k+1×Y′
ε−1 ((0k+1, y′)).

The composition of ϕ1 with φ1 then gives a (2C1η1 + C1C2ε1)-mGH approximation:

f = ϕ1 ◦ φ1 : Bε−1(x̄k+1,η1)→ BR
k+1×Y′

ε−1 ((0k+1, y′)).

Thanks to our choices of C, ε1 and η1, the map f is an ε-mGH approximation and the claim (26) is proved.
Finally, set Yk+1,ε := Y ′ and yk+1,ε := y′. We have proven that given Ak, for any ε ∈ (0, ε(N)] there exists

δk+1 := δk(ε,N) such that for any δ ∈ (0, δk+1(ε,N)) and any RCD∗(−δ−2β,N) space (X, d,m) with diam(X) =

1 and b1(X) = bNc, there exist x̄k+1,ε ∈ X̄ and a pointed RCD∗(0,N−k−1) space (Yk+1,ε, dYk+1,ε ,mYk+1,ε , yk+1,ε)
such that

dmGH(BX̄
ε−1(x̄k+1,ε), B

Rk+1×Yk+1,ε

ε−1 ((0k+1, yk+1,ε)) ≤ ε.

This shows that for any integer 0 < k < bNc, Ak implies Ak+1. �

5. PROOF OF THEOREM 1.2, FIRST CLAIM

In this section we prove the first part of the main Theorem 1.2, by combining Theorem 4.1 with the
structure theory of RCD∗(K,N) spaces [MN19, KM18, GP, BS20]. More precisely we show the following
result, which in turn immediately implies the first claim of Theorem 1.2 by a standard scaling argument.

Theorem 5.1. For any ε ∈ (0, 1) and N ∈ (1,∞) there exists δ(ε,N) > 0 such that for all δ ∈ (0, δ(ε,N)], any
RCD∗(−δ,N) space (X, d,m) with b1(X) = bNc and diam(X) = 1 has essential dimension equal to bNc and
it is bNc-rectifiable as a metric measure space. Moreover, if N ∈ N, there exists c > 0 such that m = cHbNc.

In [MN19, Theorem 6.8], the authors proved that for any ε > 0 there exists δ > 0 such that if (X, d,m)
is an RCD∗(−δ,N) space and a ball of radius δ−1 is δ-mGH close to a Euclidean ball of the same radius in
RbNc, then there exists a subset (of large measure) Uε of the unit ball which is (1 + ε) bi-Lipschitz to a subset
of RbNc. In order to construct Uε and the bi-Lipschitz map into RbNc, they showed the existence of a function
u on the unit ball which, restricted to any ball Bs(x) centred at a point x of Uε, is an (εs)-mGH isometry. We
summarise these results in the following statement.

Theorem 5.2 ([MN19, Theorem 6.8]). For every N ∈ (1,∞) there exists δ0 = δ0(N) > 0 with the following
property. Let (X, d,m) be an RCD∗(−δ,N) space for some δ ∈ [0, δ0) and assume that for some x0 ∈ X it
holds

dmGH(BX
δ−1(x0), BR

bNc

δ−1 (0bNc)) ≤ δ.

Then there exists a Borel subset Uε ⊂ B1(x̄) such that

1. m(B1(x0) \ Uε) ≤ ε;
2. Uε is (1 + ε) bi-Lipschitz to a subset of RbNc;
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3. For all x ∈ Uε and for all r ∈ (0, 1] such that BX
r (x) ⊂ BX

1 (x), we have

dmGH(BX
r (x), BR

bNc

r (0bNc)) ≤ εr.

In particular, for any x ∈ Uε and for any tangent cone (Y, dY ,mY ) at x we have

dmGH(BY
1 (x), BR

bNc

1 (0bNc)) ≤ ε.

The third property is contained in the proof of [MN19, Theorem 6.8]. Thanks to the constancy of the
dimension of RCD∗(K,N) spaces proved by Brué-Semola [BS20], the following holds.

Corollary 5.3. For every N ∈ (1,∞) there exists δ0 = δ0(N) > 0 with the following property. Let (X, d,m)
be an RCD∗(−δ,N) space for some δ ∈ [0, δ0) and assume that for some x0 ∈ X it holds

dGH(BX
δ−1(x0), BR

bNc

δ−1 (0bNc)) ≤ δ. (28)

Then the essential dimension of X is equal to bNc and (X, d,m) is bNc-rectifiable as a metric measure space.

Proof. By the definition of the dimension of RCD spaces, we know that there exists a unique n ∈ N, with
n ≤ bNc, such that the n-th regular stratum Rn has positive measure. Therefore, by definition of Rn for
m-a.e. x ∈ X, tangent cones at x are unique and equal to the Euclidean space (Rn, dRn ,Ln). Now assume
by contradiction that n < bNc. Because of Theorem 5.2, (28) implies the existence of a set Uε satisfying
properties 1 to 3, with m(Uε) > 0. As a consequence, there exists x ∈ Uε with unique tangent cone equal to
Rn. Property 3 then implies that the unit ball in Rn is ε-GH close to the unit ball in RbNc, which is impossible
for n < bNc and ε > 0 sufficiently small. Therefore, bNc is the essential dimension of (X, d,m) and (X, d,m)
is bNc-rectifiable as a metric measure space. �

The combination of Corollary 5.3 and Theorem 4.1 yields the following result.

Corollary 5.4. For any ε ∈ (0, 1) and N ∈ (1,∞) there exists δ(ε,N) > 0 with the following property. If
(X, d,m) is an RCD∗(−δ,N) space with b1(X) = bNc and diam(X) = 1, then the covering space (X̄, dX̄ ,mX̄)
has essential dimension equal to bNc and it is bNc-rectifiable as a metric measure space.

Proof. Fix ε ∈ (0, 1) and let β > 0 be as in Theorem 4.1. Let η(ε,N) be given in Corollary 5.3 and set
ε1 = η(ε,N). Then by Theorem 4.1, there exists δ1(ε1,N) > 0 such that for any δ ∈ (0, δ1(ε1,N)] and for
any RCD∗(−δ2β,N) space (X, d,m) with b1(X) = bNc and diam(X) = 1, there exists x̄ ∈ X̄ such that

dmGH(BX̄
ε−1

1
(x̄), BR

bNc

ε−1
1

(0bNc)) ≤ ε1.

As a consequence, (X̄, dX̄ ,mX̄) satisfies the assumptions of Corollary 5.3, thus it has essential dimension
equal to bNc and it is bNc-rectifiable as a metric measure space. It suffices then to choose δ(ε,N) =

δ1(ε1,N)
1

2β . �

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let p̄ : X̄ → X be the covering map and denote by RbNc(X̄) the bNc-th regular set of
X̄. Recall that mX̄(X̄ \ RbNc(X̄)) = 0. Let BX̄

r (x̄) be a sufficiently small ball in X̄ such that

p̄|BX̄
r (x̄) : BX̄

r (x̄)→ BX
r ( p̄(x̄))
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is an isomorphism of metric measure spaces. Since for mX̄-a.e. x̄′ ∈ BX̄
r (x̄) the tangent cone is unique and

equal to RbNc, the same is true for m-a.e. x′ ∈ BX
r ( p̄(x̄)) and thus the regular set RbNc of X has positive

m-measure. Therefore (X, d,m) has essential dimension equal to bNc and it is bNc-rectifiable as a metric
measure space. In particular, m � HbNc.

If N is an integer, then m � HN and (X, d,m) is a compact weakly non-collapsed RCD∗(−δ,N) space.
Corollary 1.3 in [Hon20] ensures that for any compact weakly non-collapsed RCD∗(−δ,N) space, there
exists c > 0 such that m = cHN , thus concluding the proof. �

6. PROOF OF THEOREM 1.2, SECOND AND THIRD CLAIMS

Now we are in position to conclude the proof of Theorem 1.2. Given a sequence of RCD∗(−Ki,N) spaces
(Xi, di,mi) with Ki < 0 tending to zero, diam(Xi) = 1 and b1(Xi) = bNc, the proof consists in applying the
results of equivariant pointed Gromov-Hausdorff convergence as in Section 2.2 to the sequence (X̄i, di, x̄i)
and subgroups Γ′i as in Lemma 3.2, in order to obtain equivariant convergence (up to a subsequence) to
(Rb, dRb , 0,Zb). Then we will conclude that the quotients X̄i/Γ

′
i mGH converge to a flat torus, which, by

applying Theorem 2.18, will imply that for large i the quotients are bi-Hölder homeomorphic to this torus.
In the last step we show that X̄i/Γ

′
i = Xi.

We start with the following lemma.

Lemma 6.1. Let (Xi, di, xi,Γi) ∈ M
p
eq be a sequence of spaces that converge in equivariant pGH sense to

(X∞, d∞, x∞,Γ∞) ∈ M
p
eq. Assume Γi is an abelian group, for each i ∈ N. Then Γ∞ is an abelian group as

well.

Proof. Given arbitrary γ∞1, γ∞2 ∈ Γ∞, we will show that they commute. For that, by hypothesis there exist
εi-equivariant pGH approximations ( fi, φi, ψi):

fi : BX∞
ε−1

i
(x∞)→ Xi, φi : Γ∞(ε−1

i )→ Γi, ψi : Γi(ε−1
i )→ Γ∞,

satisfying the conditions of Definition 2.2 and so that εi → 0.
Take an arbitrary point z∞ ∈ X∞. By the triangle inequality and for i large enough such that z∞, γ∞1z∞, γ∞1γ∞2z∞ ∈
BX∞
ε−1

i
(x∞) and γ∞1γ∞2 ∈ Γ∞(ε−1

i ), we get

di( fi(γ∞1γ∞2z∞), φi(γ∞1)φi(γ∞2) fi(z∞)) ≤di( fi(γ∞1γ∞2z∞), φi(γ∞1) fi(γ∞2z∞))

+ di(φi(γ∞1) fi(γ∞2z∞), φi(γ∞1)φi(γ∞2) fi(z∞)).

Applying (4) of Definition 2.2 and that φi(γ∞1) is an isometry, we see that each term in the right hand
side of the previous inequality is bounded above by εi. We conclude that

di( fi(γ∞1γ∞2z∞), φi(γ∞1)φi(γ∞2) fi(z∞)) ≤ 2εi.

The same estimate holds reversing the roles of γ∞1 and γ∞2, that is:

di( fi(γ∞2γ∞1z∞), φi(γ∞2)φi(γ∞1) fi(z∞)) ≤ 2εi.

By the triangle inequality and using that Γi is abelian, so that φi(γ∞2)φi(γ∞1) = φi(γ∞1)φi(γ∞2), we get:

di( fi(γ∞1γ∞2z∞), fi(γ∞2γ∞1z∞)) ≤ 4εi.
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From (3) of Definition 2.2, we also have:

|d∞(γ∞1γ∞2z∞, γ∞2γ∞1z∞) − di( fi(γ∞1γ∞2z∞), fi(γ∞2γ∞1z∞))| < εi.

Therefore, when taking the limit as i→ ∞ we obtain d∞(γ∞1γ∞2z∞, γ∞2γ∞1z∞) = 0.
Since z∞ ∈ X∞ is an arbitrary point, we conclude that γ∞1 and γ∞2 commute. �

We are now ready to prove the key result of this section, which directly gives the second claim of Theorem
1.2 by a standard compactness/contradiction argument.

Proposition 6.2. Let N ∈ (1,∞) and let (Xi, di,mi) be a sequence of RCD∗(−Ki,N) spaces with b1(Xi) =

bNc, diam(Xi) = 1 and Ki > 0 such that Ki ↓ 0. Fix some x̄i ∈ X̄i and let Γ′i be as in Lemma 3.2, for k = 3.
Then any Gromov-Hausdorff limit of X′i = X̄i/Γ

′
i is isometric to an bNc-dimensional flat torus.

Remark 6.2.1. In Proposition 6.2 we require diam(Xi) = 1 instead of the bound Ki diam(Xi)2 ↓ 0. To show
that the latter condition is not enough, consider a sequence Xi of manifolds with Ki = i and diam(Xi) = i−1.
Then Ki diam(Xi)2 ↓ 0 but any GH limit of this sequence collapses due to diam(Xi) → 0. We could also
consider manifolds Xi with Ki = i−3 and diam(Xi) = i then Ki diam(Xi)2 ↓ 0 and any GH converging
subsequence has a limit space with infinite diameter. Hence, it is necessary to have two sided uniform
bounds on diam(Xi) and for simplicity we set them equal to 1.

Proof of Proposition 6.2. Set b := bNc = b1(Xi). For simplicity of notation, we will not relabel sub-
sequences. By Theorem 4.1 and Remark 4.1.1, the sequence (X̄i, dX̄i

, x̄i) converges in pointed Gromov-
Hausdorff sense to (Rb, dRb , 0b). By Gromov’s compactness Theorem and stability of the RCD∗(0,N) con-
dition, there exists an RCD∗(0,N) space (X, dX ,mX) with diam(X) = 1 such that Xi → X in mGH sense, up
to a subsequence. From Remark 3.2.3 we know that, for any i ∈ N, the groups Γ′i given by Lemma 3.2 are
closed. Thus, by Theorem 2.4 there exist a group of isometries of Rb, Γ′∞, and a subsequence (X̄i, dX̄i

, x̄i,Γ
′
i)

that converges in the equivariant pointed Gromov-Hausdorff sense to (Rb, dRb , 0b,Γ′∞). Moreover, Rb is the
universal cover of X, and Γ′∞ is contained in the corresponding group of deck transformations.

We will show that Rb/Γ′∞ is a flat torus. To this aim, we prove that Γ′∞ is isomorphic to Zb.

Step 1. We claim that

dRb(γ∞y∞, y∞) ≥ 1, for all y∞ ∈ Rb and for all γ∞ ∈ Γ′∞, γ∞ , id. (29)

Let ( fi, φi, ψi) be equivariant εi-pGH approximations, εi → 0, as in Definition 2.2:

fi : BR
b

ε−1
i

(0b)→ X̄i, φi : Γ′∞(ε−1
i )→ Γ′i ψi : Γ′i(ε

−1
i )→ Γ′∞.

To prove (29), we first show that the claim holds for all non trivial γi ∈ Γ′i and all yi ∈ X̄i, i ∈ N. Then a
convergence argument will show that the claim holds.

Since diam(Xi) = 1, for all i ∈ N and yi ∈ X̄i there exists γ ∈ Γ′i such that dX̄i
(γx̄i, yi) ≤ 1. Moreover, by

Lemma 3.2 for any γ′ ∈ Γ′i \ {id}, we have 3 < dX̄i
(γ′ x̄i, x̄i). Then, by the triangle inequality,

3 < dX̄i
(γ′ x̄i, x̄i) =dX̄i

(γ′γx̄i, γx̄i)

≤dX̄i
(γ′γx̄i, γ

′yi) + dX̄i
(γ′yi, yi) + dX̄i

(yi, γx̄i)

≤2 + dX̄i
(γ′yi, yi).
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Therefore:

dX̄i
(γ′yi, yi) > 1, for all γ′ ∈ Γ′i \ {id} and yi ∈ X̄i. (30)

Now let γ∞ ∈ Γ′∞ \ {id} and y∞ ∈ Rb. For i large enough, γ∞y∞, y∞ ∈ Γ′∞(ε−1
i ) and then by (3) of Definition

2.2 it holds:

dRb(γ∞y∞, y∞) > −εi + dX̄i
( fi(γ∞y∞), fi(y∞)). (31)

By (4) of Definition 2.2, we also have:

dX̄i
( fi(γ∞y∞), φi(γ∞) fi(y∞)) < εi. (32)

Combining (31), the triangle inequality and (32) we get

dRb(γ∞y∞, y∞) > − εi + dX̄i
( fi(y∞), φi(γ∞) fi(y∞)) − dX̄i

( fi(γ∞y∞), φi(γ∞) fi(y∞))

>dX̄i
( fi(y∞), φi(γ∞) fi(y∞)) − 2εi.

(33)

If we show that φi(γ∞) , id then we have that dX̄i
(φi(γ∞) fi(y∞), fi(y∞)) > 1 and by passing to the limit we

will be able to conclude the proof of the claim. We are going to prove that dX̄i
(φi(γ∞) fi(y∞), fi(y∞)) > 0, so

that φi(γ∞) , id. By the triangle inequality, arguing as in (31) and using (32) we get

dX̄i
( fi(y∞), φi(γ∞) fi(y∞)) ≥dX̄i

( fi(y∞), fi(γ∞y∞)) − dX̄i
( fi(γ∞y∞), φi(γ∞) fi(y∞))

≥dRb(y∞, γ∞y∞) − 2εi.
(34)

Since by hypothesis γ∞ is a non trivial isometry and elements in the deck transformations do not fix points,
we have dRb(y∞, γ∞y∞) > 0. Thus by (34) for sufficiently large i, dX̄i

( fi(y∞), φi(γ∞) fi(y∞)) > 0. This shows
that φi(γ∞) is non trivial and thus dX̄i

( fi(y∞), φi(γ∞) fi(y∞)) > 1. Therefore, as i → ∞, inequality (33) im-
plies the claim (29).

Step 2. We show that Γ′∞ � Z
b.

From Lemma 3.2 we know that Γ′i � Z
b. Let {γi j}

b
j=1 be a set of generators for Γ′i .

By the Arzelá-Ascoli theorem there exist a subsequence (X̄ik , dX̄ik
, x̄ik ,Γ

′
ik

) and corresponding subse-
quences of isometries {γik1}

∞
k=1, . . . , {γikb}

∞
k=1 that converge to γ∞1, . . . , γ∞b ∈ Γ′∞, respectively. We are going

to show that {γ∞ j}
b
j=1 are independent generators of Γ′∞ and that they have infinite order.

To simplify notation consider that the whole sequence converges. Given γ∞ ∈ Γ′∞, notice that φi(γ∞) →
γ∞ in Arzelá-Ascoli sense. Indeed, for all z ∈ Rb and zi ∈ X̄i such that dX̄i

( fi(z), zi) → 0, by using the
triangle inequality and (4) in Definition 2.2, and since φi(γ∞) is an isometry, we have

dX̄i
(φi(γ∞)zi, fi(γ∞z)) ≤dX̄i

(φi(γ∞)zi, φi(γ∞) fi(z)) + dX̄i
(φi(γ∞) fi(z), fi(γ∞z))

≤dX̄i
(zi, fi(z)) + εi → 0.

Moreover, for any γ∞ ∈ Γ′∞, there exist s1, . . . sb ∈ Z such that φi(γ∞) = γs1
i1 · · · γ

sb
ib . Then we know that the

left hand side of the previous equation converges to γ∞, while the right hand side converges to γs1
∞1 · · · γ

sb
∞b.

Thus, any γ∞ ∈ Γ′∞ can be written as a composition of elements in {γ∞ j}
b
j=1.

We next show that {γ∞ j}
b
j=1 are independent and have infinite order. Let (s1, . . . , sb) ∈ Zb \ {(0, . . . , 0)}.

We claim that γs1
∞1 · · · γ

sb
∞b , id. From the previous arguments, we know that γs1

i1 · · · γ
sb
ib → γs1

∞1 · · · γ
sb
∞b as
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i → ∞. Since {γi j}
b
j=1 are independent generators of Γ′i � Z

b, we have that γs1
i1 · · · γ

sb
ib , id. Hence, from

(30) it follows that

1 < dX̄i
(γs1

i1 · · · γ
sb
ib fi(z), fi(z))→ dRb(γs1

∞1 · · · γ
sb
∞b z, z), for all z ∈ Rb,

and thus γs1
∞1 · · · γ

sb
∞b , id.

In conclusion, by the fundamental theorem of finitely generated abelian groups, we infer that Γ′∞ � Zb.
Thus, Rb/Γ′∞ is a b-dimensional flat torus. The proposition follows now by Theorem 2.5. �

Corollary 6.3. For all N ∈ N, N > 1, there exists ε(N) > 0 with the following property. Let (X, d,HN)
be a compact RCD∗(K,N) space with K diam2(X) > −ε(N) and b1(X) = N. Then X′ := X̄/Γ′ is bi-Hölder
homeomorphic to an N-dimensional flat torus, where Γ′ is given by Lemma 3.2, for k = 3.

Proof. Suppose by contradiction that there is no such ε(N) > 0. Then there exists a sequence of compact
RCD∗(K,N) spaces (Xi, di,H

N) with Ki diam2(Xi) > −εi, b1(Xi) = N, εi → 0 such that none of the Xi

is bi-Hölder homeomorphic to a flat torus of dimension N. Consider the rescaled spaces (X′i , d
′
i ,H

N) :=
(Xi, diam(Xi)−1di,H

N). Clearly X′i has diameter equal to 1 and it is an RCD∗(Ki diam2(Xi, di),N) space with
b1(X′i ) = N. Thus we can apply Proposition 6.2 and infer that any GH-limit is a flat torus TN .

Moreover, from Theorem 2.17 (i) we have that (X′i , d
′
i ,H

N) converges in mGH sense to (TN , dTN ,HN).
For i large enough so that dmGH(X′i ,T

N) ≤ ε(TN), we can apply Theorem 2.18 and get that X′i is bi-Hölder
homeomorphic to TN . When scaling back to the original metric, the same conclusion holds. This is a
contradiction.

�

We can now conclude the proof of the main theorem.

Proof of the third claim of Theorem 1.2, i.e. when N ∈ N. If N = 1, the claim holds trivially (see Remark
2.7.1); thus, we can assume N ≥ 2 without loss of generality.
From Corollary 6.3, we know that (X̄, dX̄) is locally (on arbitrarily large compact subsets) bi-Hölder home-
omorphic to RN (thus in particular it has the integral homology of a point) and mX̄ is a constant multiple
of the N-dimensional Hausdorff measure HN . By construction, we also know that the abelianised revised
fundamental group Γ := π̄1(X)/H acts by deck transformations on X̄ := X̃/H and that X = X̄/Γ. Thus,
summarising:

(X̄, dX̄) is a topological manifold with the integral homology of a point

and the action of Γ on X̄ has no fixed points.
(35)

In order to prove that (X, d) is bi-Hölder homeomorphic to a flat torus and that m is a constant multiple of
HN , it is enough to prove that Γ � ZN . Since Γ is a finitely generated abelian group (recall Proposition 2.25),
it is sufficient to show that Γ has no subgroup isomorphic to Z/pZ with p prime. This follows from (35):
indeed, from Smith theory (see for instance [Bre72, Chap. 3]), if Z/pZ, with p prime, acts on a topological
manifold with the mod p homology of a point then the set of fixed points is non empty. �

7. APPENDIX: SOME BASIC PROPERTIES OF MGH APPROXIMATIONS

For the reader’s convenience, in this appendix we recall some well known properties of mGH approxi-
mations used in the paper.
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Proposition 7.1 (Restriction of mGH approximations). Fix K ∈ R, N ∈ (1,∞) and V > 0. Then there exists
a constant C = C(K,N,V) > 0 with the following properties. Let (X, dX ,mX) and (Y, dY ,mY ) be CD∗(K,N)
spaces. Assume that V−1 ≤ mX(BX

R(x)) ≤ V and that there exists an ε-mGH approximation

φ : BX
R(x)→ BY

R(y), with φ(x) = y.

Let r ∈ (0, ε) and y′ ∈ Y with dY (y′, y) ≤ R−r+2ε, so that BY
r (y′) ⊂ BY

R(y) and thus we can choose x′ ∈ BX
R(x)

such that

dY (φ(x′), y′) < ε (36)

and BX
r (x′) ⊂ BX

R(x). Then the function ϕ : BX
r (x′)→ BY

r (y′) given by

ϕ(z) =

φ(z) if φ(z) ∈ BY
r (y′)

w for some w ∈ ∂BY
r (y′) with dY (w, φ(z)) = dY (BY

r (y′), φ(z)) otherwise.
(37)

is a Cε-mGH approximation.

Proof. Before calculating the distortion of ϕ we see that for all z ∈ BX
r (x′) we have

dY (ϕ(z), φ(z)) ≤ 2ε. (38)

Indeed, for any z ∈ BX
r (x′), using that φ is an ε-GH approximation and the definition of x′ in (36), we get

dY (φ(z), y′) ≤dY (φ(z), φ(x′)) + dY (φ(x′), y′) ≤ dX(z, x′) + 2ε < r + 2ε.

Hence, if φ(z) < BY
r (y′) then dY (ϕ(z), φ(z)) ≤ 2ε. The other case is trivial.

Step 1. Control of the distortion of ϕ.
Let z, z′ ∈ BX

r (x′) such that ϕ(z) = w and ϕ(z′) = w′. Then by (38) and using that φ is a ε-GH approximation,
we get

dY (ϕ(z), ϕ(z′)) ≤dY (w, φ(z)) + dY (φ(z), φ(z′)) + dY (φ(z′),w′)

≤2ε + {dX(z, z′) + ε} + 2ε

≤5ε + dX(z, z′).

In a similar way, we can get dX(z, z′) ≤ 5ε + dY (ϕ(z), ϕ(z′)). So, dist(ϕ) ≤ 5ε.
Step 2. Almost surjectivity of ϕ.

Next, we show that for any w ∈ BY
r (y′) there exists z′ ∈ BX

r (x′) such that dY (w, ϕ(z′)) ≤ 7ε.
Let w ∈ BY

r (y′). Since BY
r (y′) ⊂ BY

R(y) and φ is an ε-GH approximation, there exists z ∈ BX
R(x) such that

dY (w, φ(z)) ≤ ε. If z ∈ BX
r (x′) we set z′ = z. By (38) we get

dY (ϕ(z′),w) ≤ dY (ϕ(z′), φ(z′)) + dY (φ(z′),w) ≤ 2ε + ε = 3ε.

If z < BX
r (x′), let z′ ∈ ∂BX

r (x′) be a closest point to z. Then, by (38) and using that φ is a ε-GH approximation,
we get

dY (ϕ(z′),w) ≤dY (ϕ(z′), φ(z′)) + dY (φ(z′), φ(z)) + dY (φ(z),w)

≤2ε + {dX(z′, z) + ε} + ε.



UPPER BOUND ON THE REVISED FIRST BETTI NUMBER AND TORUS STABILITY FOR RCD SPACES 35

We next estimate dX(z′, z). For this, by the definition of z′ it is enough to estimate dX(z, x′). We have:

dX(z, x′) ≤dY (φ(z), φ(x′)) + ε

≤{dY (φ(z),w) + dY (w, y′) + dY (y′, φ(x′))} + ε

≤{ε + r + ε} + ε = 3ε + r.

Thus, dX(z′, z) ≤ 3ε and dY (ϕ(z′),w) ≤ 7ε.
Step 3. Control of the measure distortion.

Using that φ is an ε-GH approximation and the definition (37) of ϕ, it is clear that

ϕ ≡ φ on Br−2ε(x). (39)

From the Bishop-Gromov volume comparison, we have that there exists C̄ = C̄(K,N,V) > 0 such that

mX(BX
r (x) \ BX

r−2ε(x)) ≤ C̄(K,N,V) ε. (40)

The combination of (39), (40) with the fact that φ is a ε-GH approximation gives (together with steps 1 and
2) that φ is a Cε-GH approximation for some C = C(K,N,V) > 0. �

Remark 7.1.1. Observe that the previous argument also shows that if φ : BX
R(x) → BY

R(y) is an ε-GH
approximation and r < R, the restriction ϕ : BX

r (x)→ BY
r (y) defined in (37) is a 7ε-GH approximation. The

dependence of C on K,N and V comes only in estimating the distortion of the measure.

Proposition 7.2 (Product with an Euclidean factor). There exists a universal constant C > 0 with the
following properties. Let (Y, dY ,mY ) and (Y ′, dY′ ,mY′) be metric measure spaces. Let

φ : B̄Y
r (y)→ B̄Y′

r (y′)

be an ε- mGH approximation with φ(y) = y′ and ε ∈ (0, 1).
Define ϕ : B̄R

k

r (0k) × B̄Y
r (y)→ B̄R

k

r (0k) × B̄Y′
r (y′) by

ϕ(a, z) = (a, φ(z)), for all (a, z) ∈ B̄R
k

r (0k) × B̄Y
r (y).

Then ϕ is a Cε-mGH approximation.

Proof. Step 1. We first show that ϕ : B̄R
k

r (0k) × B̄Y
r (y)→ B̄R

k

r (0k) × B̄Y′
r (y′) is a 3ε-GH approximation.

To this aim, note that since φ is an ε-GH approximation

|dRk×Y′(ϕ(a1, z1), ϕ(a2, z2))2 − dRk×Y ((a1, z1), (a2, z2))2| = |d2
Y′(φ(z1), φ(z2)) − d2

Y (z1, z2)| (41)

≤ ε2 + 2ε dY (z1, z2).

In case dY (z1, z2) ≤ ε, by (41) and since φ is an ε-GH approximation we have

|dRk×Y′(ϕ(a1, z1), ϕ(a2, z2)) − dRk×Y ((a1, z1), (a2, z2))| =
|dRk×Y′(ϕ(a1, z1), ϕ(a2, z2))2 − dRk×Y ((a1, z1), (a2, z2))2|

dRk×Y′(ϕ(a1, z1), ϕ(a2, z2)) + dRk×Y ((a1, z1), (a2, z2))

≤
|d2

Y′(φ(z1), φ(z2)) − d2
Y (z1, z2)|

dY′(φ(z1), φ(z2)) + dY (z1, z2)
≤ |dY′(φ(z1), φ(z2)) − dY (z1, z2)| ≤ ε. (42)
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If instead dY (z1, z2) ≥ ε, proceeding as in (42) we obtain

|dRk×Y′(ϕ(a1, z1), ϕ(a2, z2)) − dRk×Y ((a1, z1), (a2, z2))| ≤
ε2 + 2ε dY (z1, z2)

dRk×Y′(ϕ(a1, z1), ϕ(a2, z2)) + dRk×Y ((a1, z1), (a2, z2))

≤
ε2 + 2ε dY (z1, z2)

dY (z1, z2)
≤ 3ε. (43)

Combining (42) with (43), we obtain the claim.
Step 2. Control of the measure distortion.

In order to obtain the closeness of the measures ϕ]
(
Lk ⊗mYxB̄R

k

r (0k) × B̄Y
r (y)

)
and Lk ⊗ mY′xB̄R

k

r (0k) ×
B̄Y′

r (y′), it is enough to notice that for each ψ1 ∈ C(Rk), ψ2 ∈ C(Y ′) with
∫

B̄Rk
r (0k) ψ1 dLk = 1 it holds∣∣∣∣∣∫ ψ1 ⊗ ψ2 dϕ]

(
Lk ⊗mYxB̄R

k

r (0k) × B̄Y
r (y)

)
−

∫
ψ1 ⊗ ψ2 d

(
Lk ⊗mY′xB̄R

k

r (0k) × B̄Y′
r (y′)

)∣∣∣∣∣
=

∣∣∣∣∣∫ ψ2 dϕ]
(
mYx×B̄Y

r (y)
)
−

∫
ψ2 d

(
mY′xB̄Y′

r (y′)
)∣∣∣∣∣ ,

where we used Fubini-Tonelli’s Theorem. �
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[Den20] Qin Deng, Hölder continuity of tangent cones in RCD(K,N) spaces and applications to non-branching, Preprint

arXiv:2009.07956 (2020).
[DPG18] Guido De Philippis and Nicola Gigli, Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. polytech.
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