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Abstract: 
Artificial neural networks have revolutionized electronic computing. Similarly, molecular 
networks with neuromorphic architectures may enable molecular decision-making on a 
level comparable to gene regulatory networks1–4. Nonenzymatic networks could in 
principle support neuromorphic architectures, and seminal proof-of-principles have been 
reported5,6. However, leakages, as well as issues with sensitivity, speed, nonlinearities and 
preparation, make the composition of layers delicate, and molecular classifications 
equivalent to a multilayer neural network (e.g. nonlinear partitioning of a concentration 
space) remain elusive. Here we introduce DNA-encoded enzymatic neurons with tunable 
weights and biases, and which are assembled in multilayer architectures to classify 
nonlinearly separable regions. We first leverage the sharp decision margin of the neurons 
to compute various majority functions on 10 bits. We then compose neurons into a two-
layer network, and synthetize a parametric family of rectangular functions on a microRNA 
input. Finally, we connect neural and logical computations into a hybrid circuit that 
recursively partitions a concentration plane according to a decision tree in cell-sized 
droplets. This computational power and extreme miniaturization open avenues to query 
and manage molecular systems with complex contents, such as liquid biopsies or DNA 
databases. 
 
Synthetic DNA has emerged as a versatile polymer to store and process information at the 
molecular scale. It has powered a rich library of computational molecular devices ranging from 
logic circuits7–10 to self-assembling automata11. Departing from the biological model of 
computation, most DNA computing devices imitate the Boolean paradigm of electronics. However, 
their computing power has fallen short of the exponential growth of Moore’s law: their size has 
been plateauing at ~5-10 logic gates for a decade8. In parallel, various groups have started looking 
at the brain, rather than the CPU, as an inspiration for computing with molecules2,12,3–6. This is 
because neuronal and chemical networks share striking similarities: massively parallel and 
recurrent architectures, analog and asynchronous operation, fault-tolerant and redundant 
computations (Figure S12) 
 
 
In 2018, Lopez et al. reported a DNA-based linear classifier6 that performs all of its computations 
with a nonenzymatic mechanism: toehold-mediated strand displacement13. Using similar DNA-



only mechanisms on many more inputs and taking inspiration from competitive neural networks2,3, 
Cherry and Qian reported in a tour de force a DNA classifier for the MNIST database5. Together, 
these molecular classifiers showcased the benefits of neuromorphic networks over Boolean 
circuits: massive parallelism, handling of analog inputs, and tolerance to corrupted patterns. 
However, these nonenzymatic classifiers had limited decision margins, i.e. they could not 
discriminate between two similar inputs belonging to different classes. They also suffered from 
leaks that made the composition of layers delicate. Overall, fully molecular classification was only 
demonstrated on datasets that could be linearly separated by a wide margin. 
 
DNA-processing enzymes are the workhorse of biotechnology, synthetic biology and molecular 
biology. They perform an astounding variety of transactions on DNA: production, degradation, 
cleavage, ligation, scouting, cutting and pasting, or editing. In addition, enzymes are fast and 
processive, and their kinetic control is tight, making them prime candidates for powering DNA 
computing devices. Previous reports showcased the power of enzymatic networks for running 
advanced spatio-temporal dynamics like logic computation14, switches15–18, clocks19,20, predator-
prey oscillators21, quorum sensing22, spatial waves23, maze pathfinders24 or artificial 
morphogenesis25,26 - many of which still resist implementation with strand-displacement only. We 
set out to explore the potential of neuromorphic architectures combining the programmability of 
DNA with the efficiency of enzymatic processing.  
 
 



 
Fig.  1 Architecture of DNA-encoded enzymatic neural networks. a, Multilayer neural networks can 
classify nonlinearly separable regions. b, Our individual neuron computes a weighted sum on its inputs and 
generates an output if the sum exceeds a threshold (linear classification). c, Chemical architecture of the 
neuron. The autocatalytic amplification of the output strand α (red arrow) is triggered when the weighted 
activation (blue and orange) by input strands Xi and Xj overcomes the thresholding mechanism (purple). d, 
The chemical neuron is powered by three enzymes producing (polymerase), cutting (nickase) and 
degrading (exonuclease) DNA. e, Building blocks of the enzymatic neural networks. Positive and negative 
weights are computed by converter templates cTp and cTn. They produce species α or dTn whose steady 
state concentration is proportional to the input Xi. Weights can be independently tuned with fake templates 
(fT) that compete with cT for the inputs. The activation function -a step function - is encoded in a bistable 
switch composed of an amplification template (aT, which replicates the species α) and a drain template (dT, 
which deactivates α and controls the bias). α concentration is monitored using a reporter template (rT). f, 



Experimental validation of the basic components: weight adjustment on a single input (left), weighted 
summation on two inputs (w1 = 0.5, w2 = 1) (middle) and application of the step function on α (right). Full 
traces are available in Extended Data Figure 1. 
 
 

Linear Classifier 
Our neuromorphic networks are built around a generic enzymatic neuron (Fig. 1) that emulates 
the perceptron proposed by Rosenblatt in 195827. The neuron takes DNA or RNA strands as input. 
The state of the neuron is encoded by the concentration of a short DNA strand a (the signal sent 
by the neuron). The neuron computes a weighted sum of its inputs thanks to converter templates. 
They act like programmable-gain amplifiers in analog electronics, the gain being tuned by the 
composition of the templates28 (Fig. 1f). The neuron then takes an ON state (yielding a high 
concentration of a) if the weighted sum of inputs exceeds a concentration threshold, and remains 
OFF otherwise (low concentration of a). In modern terms, this mimics a perceptron with a step 
function as the nonlinear activation function. The inputs here are two DNA analogues of the miR-
21 and miR-31 microRNAS (miRNAs), which are involved in cancer29. The network is modular 
and can easily be rewired to accept different inputs or produce new outputs.  
 
We tested the neuron in bulk (~10 μL)  (Fig. 2a). It is sensitive (working with subnanomolar inputs), 
fast (classifying in a few hours) and sharp (OFF and ON states are clearly demarcated). We then 
shrunk volumes by a factor of 105 with droplet microfluidics30. We immobilized a layer of droplets 
with  the classifier in a silicon chamber - a material with excellent optical, thermal and mechanical 
properties31 - and incubated the chamber in a thermal platform (Extended Data Fig. 2). Overall, 
this microfluidic setup offers a superb control of concentrations and temperatures, and enables a 
precise visualization of the decision boundary (Fig. 2 c,d). End-point analysis confirms the 
exquisite sensitivity and robustness of the classifier in these ~100 pL compartments: OFF and 
ON regions remain clearly delineated by a linear and sharp boundary (Hill coefficient of ~16, 
Extended Data Figure 5). This endows the classifier with a narrow decision margin (Fig. 2c): it 
can discriminate between inputs whose concentrations differ by only ~10-20% (such being the 
case in majority voting over 10 bits, vide infra). The statistical metrics of performance (such as 
accuracy) are in the range of 80%-99% (Fig.2i) 
 
Versatile linear classification requires negative weights. We opted for a strategy of induced 
inhibition, in which an input produces a drain template17, which in turn suppresses the replication 
of the signal strand - implementing a negative weight (model in Supplementary Information 
Section S2). This strategy was successful in bulk and droplets (Fig. 2  b,d), also producing a sharp 
demarcation between OFF and ON, although the boundary is slightly less linear than for positive 
weights (Hill coefficient of ~63, Extended Data Fig. 5, Supplementary Information S2)  
 
The chemical neuron is analog, and its computation varies continuously with its parameters. On 
the one hand, this can be used to program the parameters of the neuron, for instance changing 
the bias by tuning the drain, or the weights by tuning the converters (Fig. 2c). On the other hand, 
it makes the neuron sensitive to uncertainties on experimental parameters. However, we find that 



the deviations are likely to be minimal for a typical operation. More precisely, we analyzed the 
sensitivity of the bias of a single-input neuron to the drain and temperature. A pipetting error of 
~3% on the concentration of drain (typical for a calibrated pipette) translates into a ~10% error on 
the bias, and an error of ~0.1°C on temperature (typical reproducibility for a thermocycler) 
translates into a ~2% error on the bias (both measured for drain = 20 nM and T = 41.5°C, 
Extended Data Figure 4). 
 

 
Fig. 2  Operation and tuning of linear classifiers in bulk and microdroplets. Here the input X1 and X2 
are DNA analogues of miR-21 and miR-31. a, Positive-weighted classification with two positive converters 



and a bistable switch (left). This classifier partitions the concentration space with a negative-sloped line 
(right). The matrix of plots shows the dynamics of the classifier in bulk (~10 μl), measured by following the 
fluorescence of the reporter over 6 hours at 45°C, for varying combinations of inputs. For clarity, the 
background is green when the classifier finishes in the ON state, and grey otherwise. b, Computation of a 
negative-weighted classifier for the same concentrations of inputs. This classifier partitions the 
concentration space with a positive-sloped line (right). c, Tuning the weights and bias of a positive-weighted 
classifier (the activity of an input is modulated by changing the composition of its converter and fake 
templates). d, Effect of temperature on a negative-weighted classifier. e,f Computation in droplets. The 
smoothed plots show the fluorescence of the a reporter in droplets prepared with varying concentrations 
inputs (measured after 6 h). The red line is a linear fit of the OFF/ON boundary. g,h Slicing of the 
fluorescence (black/green curve) and its derivative (grey curve) along one of the diagonal (dashed white 
line in the smoothed plot). The Full Width at Half Maximum (FWHM) of the derivative is a proxy for the 
decision margin of classifier (i.e. the distance between unambiguously OFF and ON regions. i, The 
confusion matrices show the number of ON and OFF droplet in each plot, based on their actual (act.) 
fluorescence, and predicted (pred.) value accordin to the linear fit. The corresponding accuracy, precision, 
sensitivity, specificity and negative predictive value (NPV) are indicated on the sides of the matrices. 

Majority voting 
The majority function is a central Boolean primitive essential to many decision rules. It does not 
have any parameter to tune - a robustness and simplicity which help to overcome a common 
issue of statistical inference with gene expression datasets: their low sample size and high 
dimensionality32. Majority voting with Boolean DNA circuits has been reported on 3 inputs33, with 
designs that do not easily generalize to more bits. Our enzymatic linear classifiers have the 
necessary decision margin to compute the strict majority function on up to 10 bits (Supplementary 
Information Section S3). We developed an ad-hoc protocol that equalizes the production rate of 
signal strand for 10 converter templates, in order to ensure the equibalance of each vote 
(Extended Data Fig. 6). These converters are connected to a neuron whose bias is adjusted just 
above 5 votes (Fig. 3). We tested the majority network on 10-bits patterns whose number of inputs 
ranged from 0 to 10, totaling 92 patterns (the two patterns that are fully OFF and fully ON, plus 
10 patterns for each number of bits between 1 and 9). The network achieved a classification 
accuracy of 97% (Fig. 3b,c). Noticeably, the few errors are all localized at the boundary of the 
decision region (5 inputs). This performance compares favorably with previous nonenzymatic 
neuromorphic DNA circuits which, based on their reported decision margins, would not be able to 
perform majority voting beyond 2-3 bits (Supplementary Information Section 3). 
 
We then generalized majority voting with two functionalities: veto and majority right 
(Supplementary Information Section 3, Figure 3d,e). These rights are arbitrarily granted to any 
input strand by tuning the nature and concentration of its template. We retested six times the 
network on 47 patterns, thrice with a veto right given to one of X3, X7 or X8,, twice with a majority 
right to X3 or X4,  and once without any exception right as a control (Fig. 3b,c). In all cases the 
accuracy is between 96% and 100%, the only errors clustering again near the decision boundary.  
 
 



 
Fig. 3  Majority functions on 10 bits with a high-dimensional linear classifier. a, Ten input strands Xi 
(each input being encoded by a strand at concentration 0 or c) are connected by equal-weight converters 
to a single neuron. The threshold is adjusted so that more than 5 inputs must be present to trigger the 
replication of α. (The inputs X1 and X2 are unrelated to the strands used in Fig. 1 and Fig. 5) b, Bulk time 
traces of majority voting for 92 inputs patterns. The color of traces reflects the instantaneous level of α. c, 
Summary of results. The output color corresponds to the maximum fluorescence intensity over 800 minutes 
of incubation. d, Majority vote with veto or majority right. A strand is discretionarily granted a veto right by 
replacing its positive-weighted converter by a negative-weighted converter (veto right).  Similarly, a strand 
is granted a majority right by increasing the concentration of its positive-weighted converter (green arrows). 
e, Examples of majority voting with or without veto right (left) or majority right (right). f, Summary of majority 
voting on a batch of patterns, and with different rules (democratic, veto right to X3, X7 or X8, majority right to 
X3 or X4).  



 

Synthesis of a parametric family of rectangular functions with multilayer 
networks 
Nonlinear classification requires the composition of multiple layers, which we demonstrate here 
on the canonical example of a rectangular function. Taking a single input at concentration x, this 
function is constant inside the interval cmin<x<cmax, and null outside. Such window functions are 
widely used in electronics to filter signals, but biological systems also use them to produce a 
response when the input is neither too big nor too small34. To demonstrate biological relevance, 
we selected a human microRNA as the input (let7a, involved in development, cancer, aging and 
metabolism35). 
 
To instantiate the two thresholds cmin and cmax we use a hidden layer with two neurons: α is 
activated by low concentrations of input, and activates the neuron γ in the second layer, while 
neuron β is activated at high concentrations of input, but inactivates the neuron γ (Fig. 4a). This 
architecture – where two neurons have opposite actions on the output - mimics an incoherent 
feedforward loop (a ubiquitous motif in gene regulatory networks36). This three-neurons network 
defines a family of functions on let7a, which are parametrized by the weights and biases of the 
neurons. We expect the bias of β – i.e. its drain concentration – to control linearly cmax, 
independently of cmin. We thus fixed the concentration of all species but two, the drain for β and 
the input let7a, scanned them with microfluidics and read out the three neurons at steady state 
(Fig. 4b,c). As expected, the concentration cmin is independent of the drain for β (as shown by the 
vertical black strip in the α plot); the concentration cmax varies linearly with the drain for β; and the 
activated region of the output γ is correctly computed as the intersection of the activated (green) 
region for α and the inactivated (black) region for β. Taking smoothed horizontal slices of these 
2D plots, we extracted the profiles of individual functions in the family (Fig. 4c). Those plots 
confirm that the output rises and then falls sharply with the input, although the rise is steeper than 
the fall (this asymmetry is due to the asymmetry of the bistable switch, which is easier to turn ON 
than OFF). The width of the rectangular function is linear with the drain and varies between ~35 
pM and (at least) 90 pM of let7a.  
 



 
Fig. 4  Synthesis of a parametric family of rectangular functions with a multilayer perceptron. a, A 
microRNA input activates two neurons (α and β) in the hidden layer. The output neuron γ is activated by α 
and inhibited by β. As a result of these opposing actions, γ is only active when α is active and β inactive – 
producing a rectangular function on the input. b, Droplet microfluidic scanning of the concentration of input 
and a parameter of the network (the concentration of drain for β) . The steady state fluorescence of α, β 
and γ (after 14h) are shown against the concentrations of let7a and β drain. c, Smoothed horizontal slices 
in the γ plot (gray arrows) reveal the tunable rectangular function. 

Recursive Space Partitioning by a decision tree 
Finally, we composed linear classifiers with a logic gate to classify nonlinearly separable regions 
and compute a decision tree. In healthcare, decision trees are often used for making a diagnosis 
based on a clinical presentation, and they are gaining traction in molecular diagnosis, for instance 
for classifying tumors based on the expression levels of miRNAs37. Taking as input a point X = 
(X1, X2) in the concentration plane (Fig. 5a), the algorithm starts from the root node of the tree, 
and gradually moves toward the leaves. At each node, the algorithm queries the membership of 
the input to the corresponding half-plane, and moves to either child based on this membership 
(YES/NO). The algorithm finishes when it reaches a leaf, giving the result of the classification.  
 
Here, we partition the 2D concentration plane into three nonlinearly separable regions (α, β and 
γ). The network is hybrid and comprises 2 computational layers (Fig. 5 b): a hidden neural layer 
deciding membership of the α and β region with linear classifiers, and a logical layer deciding 
membership of the γ region with a NOR gate: its fluorescence is high only when both α and β 
strands are absent (Extended Data Fig. 7). Membership of the α and β region are computed by 
two linear classifiers. By tuning the working temperature (Extended Data Fig. 8), we found 



conditions where the two linear classifiers become indirectly coupled21 and α represses β. The 
network then correctly partitions the concentration space into 3 nonlinearly separable regions (Fig. 
5 c,d). We trained two artificial neural networks on the experimental data: a single-layer 
perceptron and a two-layer perceptron. Unsurprisingly, the single-layer perceptron is unable to 
correctly classify regions that are nonlinearly separable, while the two-layer perceptron accurately 
fits our experimental dataset (Fig. 5e) 
 

 
Fig. 5  A hybrid network computing recursive space partitioning. a, A space partitioning tree takes a 
point X=(X1, X2) in the concentration plane, and at each of its nodes, tests if X is a member of the 
corresponding half-plane. Computation finishes when a leaf is reached. The tree can be traversed in 3 ways, 
partitioning the plane into three convex regions. b, Architecture of a hybrid network computing the 
partitioning tree (Supplementary Information Fig. S5). The inputs are two strands encoding a position 
(X1,X2)  in the concentration plane. The hidden layer is neural and decides membership of the α and β 
region with two linear classifiers that are indirectly coupled by competitive inhibition (membership is readout 
by fluorescent reporters). The output layer is logical and decides membership of the γ region with a NOR 
gate (which turns its fluorescence OFF if X is a member of either α or β region). c Fluorescence levels of 
α, β and γ, measured in ~25,000 droplets after 16 hours. d, Merged fluorescence plots e, Fit of d by a 
single-layer perceptron (top), and a two-layer perceptron (bottom). The hatched filling indicates erroneous 
areas where two classes are outputted. 



Discussion 
Our enzymatic neural networks bring tangible benefits over nonenzymatic ones, namely speed of 
operation, compactness of network, composition of computations, sharpness of decision margins, 
sensitivity of detection, correction of errors, and weighing of analog variables with programmable-
gain enzymatic amplification (Supplementary Information Section 4). Yet developments will be 
needed to match the modern form of perceptrons, which apply a wider variety of activation 
functions than a step function, such as the sigmoid function, for making soft decisions and 
predicting probabilities4, or the Rectified Linear Unit (ReLU) to ease training. Sigmoidal responses 
have long been known in systems biology to be feasible with enzymatic networks (e.g. with 
cooperativity or push/pull motifs38), and simple chemical schemes to compute ReLU were recently 
proposed39,40. 
 
More generally, the scale of our networks is sufficient for molecular diagnosis (see below), but 
work will be needed to reach the scale of in-silico machine learning, where neural nets typically 
have dozens of layers and millions of weights, and are trained on datasets with tens of thousands 
of examples. In principle, enzymatic networks and droplet microfluidics can handle these scales 
(as evidenced by the intricate computations performed by gene regulatory networks in cells, or 
by consortium of single celled organisms), but the current tools for writing, handling, and reading 
DNA would struggle (Supplementary Information Section 6). However, these hurdles could be 
overcome by an exponential drop in the cost of DNA synthesis - which is expected in the coming 
years in response to fields that make heavy use of synthetic DNA. In the long term, enzymatic 
neural networks could empower the nascent field of DNA data storage41. Large amount of data 
could be stored in DNA databases, and queried, labelled or processed in a massively parallel 
fashion with enzymatic neural networks and droplet microfluidics.  
 
In the short term, neuromorphic computation could readily find applications in diagnostic. Our 
enzymatic toolbox previously detected a tumor suppressor miRNA in total RNA from human colon 
with high specificity and sensitivity42, and our enzymatic neural networks are similar in size to in-
silico neural networks that reliably diagnosed breast tumors43 or prognosed  metastasis44 from 
multiple molecular clues. This suggests that cancerous patients could be monitored at the point-
of-care, using enzymatic neural networks that make diagnosis or prognosis from a panel of 
miRNAs present in liquid biopsies. 
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Methods 
1.Materials 
DNA strands were purchased from Integrated DNA Technology (IDT) or Biomers (Germany), 
resuspended in 1X Tris-EDTA buffer (Sigma-Aldrich) and stored at -20 °C. DNA templates were 
chemically protected from enzymatic degradation with phosphorothioate backbones on their 5’ 
ends.   
 
The DNA polymerase (Vent (exo-), M0257) and nickases (Nb.BsmI,R0706, and Nt.BstNBI, 
R0607), Bovine Serum Albumin (BSA9000S), were purchased from New England Biolabs, and 
stored at -20 °C. The exonuclease was expressed by our means in E. Coli and purified by 
chromatography according to a published protocol45, and stored at -20 °C. This is a thermophile 
variant of RecJ that works in the temperature range (~40-50 °C) for which the templates were 
designed, enabling fast melting and release of the output strands from the templates. (Note that 
that this enzymatic framework can be redesigned to work at 37°C, as demonstrated by recent 
experiments with biological cells46) 
 
The surfactant for droplet generation (Fluosurf) was purchased from Emulseo (France) and stored 
dry at room temperature away from light. Before use, surfactant was freshly dissolved in 
fluorinated oil (HFE-7500, 3M). Fluorescent dextrans with a molecular weight of 10,000 Da were 
bought from Thermo Fischer (dextran Cascade Blue D1976, dextran Alexa Fluor 594 D22913 and 
dextran Alexa Fluor 647 D22914) or Xarxbio (Dextran Cy7 R-CD7-002). 
 
 
2.Sample preparation 
The mastermix (containing all common reagents at constant concentrations and excluding the 
varying reagents) was assembled on ice. We first mixed the DNA templates, the buffer and the 
dextrans, then added BSA and enzymes. After gentle vortexing, the master mix was split into 
several tubes, and the varying reagents were added with their fluorescent dextrans for barcoding.  
 
Bulk fluorescence traces were acquired with a Biorad CFX96 thermocycler. 
 



3.Microdroplet generation 
Droplets of varying compositions were generated with an in-house microfluidic platform according 
to published protocols30,47. Briefly, we connected tubes containing an aqueous or oil solution to a 
flow-focusing microfluidic chip: a PDMS device replicated by soft-lithography from an SU8 or 
Silicon mold (height of ~55 µm) and plasma bonded to a ~1 mm thick glass slide. The solutions 
from the aqueous tubes merge inside the chip into a common channel that intersects the oil 
channel, resulting in the formation of monodisperse droplets at the exit of the junction. The 
droplets’ composition was controlled by varying the pressure applied to each aqueous tube with 
a pressure controller (MFCS-EZ from Fluigent, France). We scripted the pressure profiles (with 
AutoIt) to explore an interval, a rectangle, or a cube in the concentration space. The droplets were 
collected in a pipette tip planted at the outlet before being transferred to a chamber for imaging.   
 
 
4.Imaging  
After droplet generation, the emulsion was spread into a monolayer inside a silicon chamber 
closed by a coverslip. The silicon chambers were fabricated by standard microfabrication 
(photolithography and deep Reactive Ion Etching) by opening a square (1 cm x 1 cm) or a 
rectangle (1 cm x 3 cm) with a depth ~50 μm in a silicon wafer. The coverslip and the chamber 
were rendered hydrophobic by spin-coating 10% Cytop CTL-809M (Asahi Glass) and baking at 
180°C for one hour. After using a pipette to fill the chamber with droplets, the chamber was sealed 
with a thin coverslip (thickness ~170 μm) by capillarity by leaving a layer of oil between the silicon 
and the coverslip. Then the chamber was incubated inside a custom platform for thermal control48 
(Extended Data Fig. 2 ), which comprised a copper plate (16 cm x 4 cm x 0.5 mm) and two Peltier 
elements (Adaptive, 40 x 40 mm ET-161-12-08-E) equipped with CPU coolers as a heatsink 
(Enermax, AM4 ETS – N31 – 02) and controlled by a Peltier controller (TEC-1122, Meerstetter). 
The temperature near each Peltier element was read by a Pt100 sensor (RS-Pro, 10 mm x 2 mm 
probe, 4-wire, Class A). The chamber was incubated either in a uniform temperature field (by 
setting the two Peltier elements to the same temperature), or in a temperature gradient (by setting 
the two Peltier elements at distinct temperatures). The chamber was imaged with a motorized 
Nikon Ti2-E epifluorescence microscope, equipped with a LED light source (pE-4000, CoolLed), 
a sCMOS camera (Prime 95B 25 mm, Photometrics), a 10x objective (CFI Plan Apo Lambda S 
10X, NA=0.45, Nikon) and appropriate filters (purchased from Semrock or Chroma). After 
acquisition, images were unshaded with the BaSiC plugin49 and stitched50 in ImageJ before further 
processing.  
 
 
5.Analysis 
After acquisition, the images were processed with Mathematica according to previous 
protocols30,47. Briefly, the images were segmented to individually detect the droplets, and their 
fluorescence intensity in each channel was extracted. The fluorescence of the Dextran barcodes 
was converted into concentrations of inputs or templates, and the fluorescence of the reporters 
was normalized. For multiplexed experiments, the droplets were separated into subpopulation 
using the corresponding dextran barcodes. For droplets incubated in a temperature gradient, the 
local temperature was linearly interpolated with respect to the positions and temperatures of the 



Peltier elements. To smooth the raw droplet plots, we replaced the raw fluorescence of each point 
by the median fluorescence of the k nearest points  (including the point itself), where k is a fraction 
(typically between 1 and 2% and adjusted according to the plot) of the total number of droplets 
(which also includes calibration droplets that extends beyond the plotted area30). For distributions 
with dissimilar ranges or physical dimensions (for instance in Figure 3 where the input varies over 
100 nM, while the drain varies only over 20 nM, or in Extended Data Figure 4 where one 
coordinate is a concentration while the other is a temperature), we normalized the distributions 
by their standard deviation before finding the nearest neighbors. 
 
We fitted the separatrix of the linear classifiers as follows. First, we bin the droplets along one 
axis, say X1, by groups of ~100 droplets. For each bin, we then determine the position of the 
boundary along the X2 axis by running a moving median on the fluorescence of the droplets, and 
finding the first X2 for which the median hits a given threshold. (We chose a common threshold of 
0.3, rather 0.5, because it fitted better the datasets for the negative classifier – which had a slightly 
lower fluorescence at their boundaries). This procedure yielded a set of points on the boundary, 
which we linearly fit to extract the equation of the separatrix.  
 
We used Mathematica to train a single-layer perceptron (3 nodes in its output layer) and a multi-
layer perceptron (2 nodes in its hidden layer, 3 nodes in its output layer) on the smoothed data of 
the space partitioning network. The activation function is a logistic sigmoid. For the training of the 
SLP, we adjusted the initial weights and biases to approximately match the boundaries of the 3 
regions, which was found to improve the subsequent training. We trained both nets for 50 rounds, 
without a test set.  
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Extended Data 
 
 
 

 



 
Extended Data Fig.1  Experimental validation of the basic components of a chemical neuron. To 
demonstrate the weighted summation mechanism (a, weight adjustment and b, summation), we used high 
concentrations of input strands, which allows for the direct visualization of the linear production of α strand 
(i.e. in absence of the amplification reaction that composes the activation function). The threshold activation 
function and the possibility to control the bias (c) is estimated by measuring the concentration of  α required 
to trigger the amplification reaction at given drain template (dTα) concentrations.  a, Weight adjustment: w1 
corresponds to the ratio of X1toα (cT) and X1tof (fT) (10 nM total). The production of α from various 
concentrations of X1 is directly monitored using 25 nM of rTα. b, Summation of X1 and X2: all samples 
contain 5 nM X1toα, 5 nM X1tof (w1 = 0.5) and 10 nM X2toα (w2 = 1). The production of α from different 
concentrations of X1 and X2 is directly monitored using 25 nM of rTα. c, Activation function: the amplification 
reaction of samples containing various initial concentrations of α is monitored in real-time. The bias (i.e. 
amplification threshold, noted t) is tuned according to the concentration of dTα. 
 
 
 
 
 
 
 
 
 



 
Extended Data Fig. 2  Thermal setup for droplet incubation and imaging. a, After generation, an 
emulsion is spread into a monolayer of droplets inside a silicon chamber. Silicon offers ideal conditions for 
imaging and incubation: high thermal conductivity, mechanical rigidity and optical reflectivity. The inset 
shows a monolayer of droplets imaged by fluorescence. Scale bar = 500 μm. b, Bottom view of the setup. 
The chamber is fixed against a copper plate by capillarity by sandwiching a drop of mineral oil between the 
plate and the chamber. Two Peltier elements, separated by ~ 7.5 cm, impose a thermal gradient across the 
copper plate. Pt100 sensors report the local temperature near each Peltier element to a Peltier controller. 
The whole setup is encased into a 3D printed frame that is fitted into the microscope stage. c, Side view of 
the setup. Heat is extracted from the Peltier elements with CPU cooling fans. 
 

 
 
 
 
 



 
Extended Data Fig. 3  Microfluidic workflow for measuring the dependence of the separatrix on the 
concentration of reagents. a, We determined the equation of the separatrix in the (X1,X2) plane for 3 
conditions in a multiplexed experiment. We first performed 3 rounds of droplet generation. During each 
round, we scanned the (X1,X2) plane by mixing 3 tubes (which all derive from the same master mix) and 
collected the emulsion in a separate tube. Between each round, we changed the set of 3 tubes - thus 
changing their common mastermix. This allowed us to vary the concentrations of converter templates or 
drain templates in the master mix. After generation, we simultaneously imaged the three subpopulations 
together. To that end, we sequentially and gently filled a chamber with each population: the subpopulations 
remained spatially separated. We then incubated and imaged the chamber. During image processing, we 
separated the subpopulation by selecting 3 distinct regions (shown as red boxes in the right picture).  



 
Extended Data Fig.4  See next page for caption. 



Extended Data Fig. 4  Design and kinetics of the linear classifier. a, Full architecture of the linear 
classifier for one input X1. The classifier comprises three templates: a converter template (which produces 
α when bound to its input X1), a autocatalytic template (which autocatalytically replicates α), and a drain 
template (which deactivates α). The strand α is continuously degraded by the exonuclease. b, Production 
and removal curves showing the rate of production of α by the autocatalytic template (left), and the rate of 
removal of α by the drain template and the exonuclease (middle). Inactivation by drain template is fast but 
quickly saturated, while degradation by the exonuclease is slow but linear. This interplay creates a kink in 
the removal curve, resulting in the existence of 3 intersection points between the production curve and the 
removal curve. The upper and lower intersection points are the two stable steady states (OFF and ON), 
while the middle point is an unstable steady state, a threshold which controls the crossover between 
autocatalytic production and removal. If α is over the threshold, the drain is saturated, production overcomes 
the removal by the exonuclease and the drain, and α is amplified up to the ON state. Otherwise, α is 
removed down to the OFF state. The existence of an unstable steady state is controlled by the shape of 
production and removal curves, which must intersect at three points. The shape of the removal curve is 
controlled by the concentrations of drain templates, exonuclease and polymerase (for the inactivation step 
in the drain). The shape of the production curve is controlled by the concentration of autocatalytic templates, 
polymerase and nickase. c, Microfluidic mapping of the dependence of the bias on X1 to the drain. We 
prepared droplets with varying concentrations of drain for α and input X1. We incubated the droplets in a 
temperature gradient, and imaged their content after 6 hours. The top plots show the fluorescence of 
droplets in the space (drain, X1), the colour indicating the level of α. The bottom plots show the fluorescence 
of droplets in the space (temperature, X1). The red lines are linear fit of the boundary, with equation 
indicated above each plot. The concentration are in nM and the temperature in Celsius. 
 
 
 

 

 

 
Extended Data Fig. 5  Enzymatic classifiers have stronger nonlinearities and higher sensitivities 
than a state-of-the-art  nonenzymatic classifier. a, Steady-state fluorescence of a reported negative-
weighted  nonenzymatic linear classifier6. The fitted Hill equation cn/(cn +xn) is shown in plain, the 
interpolation from the 8 points along the diagonal of Fig. 3.d of reference6 is shown in dashed. b, Steady-
state fluorescence of our negative-weighted enzymatic linear classifier (Fig. 2d, left), and its fit by a Hill 
equation cn/(cn +xn). c, Steady-state fluorescence of our positive-weighted enzymatic linear classifier (Fig.2c, 
middle) and its fit by a Hill equation xn/(cn +xn). Hill equations were fitted with a prefactor to improve the 
goodness of fit. 
 



 
Extended Data Fig. 6  Majority voting weight adjustment. a-b. Trigger production by 10 converter 
templates at 1 nM concentration (a) or adjusted proportionally to the production rate, arbitrarily choosing 
X3 as reference (b). c. Comparison of the production rate from panel a. and b. At constant cT concentration, 
we observed large rate discrepancies depending on the input sequence (mean production rate = 39 pM ± 
18 pM/min). A factor of 4.6 was computed between the fastest and the slowest converter template. 
Balancing the cT concentration reduces the coefficient of variation from 47 % to 14 % (29 +/- 4 pM/min). d-
e. Majority voting with balanced cT concentrations. In a first attempt, we perform a majority voting 
experiment on 28 samples. Concentrations of the 1X cT bundle were 0.8, 0.7, 1.2, 1.9, 3, 0.6, 1.2, 0.5, 1.4, 
1.4 nM, respectively from X1 to X10. Enzyme concentrations were set to 70 u/mL Vent(exo-), 300 u/mL 
Nb.BsmI and 23 nM of ttRecJ. d. Amplification curves for the 28 samples spiked with 0 to 10 inputs (5 nM 
each, various combinations). e. Bar chart of the amplification times (Cq). As expected, Cq are negatively 
correlated to the number of spiked inputs (the more inputs, the faster the amplification). Interestingly, all ten 
inputs exert a consistent activation force on the switch, triggering the amplification between 112 and 148 
minutes when spiked individually (123±11 min on average, hence a coefficient of variation of less than 
10 %). In these conditions, all samples amplify within 150 minutes (except for the negative control, NC), 
suggesting that the production rate for each input is too high to unambiguously classify samples with less 
than 5 inputs from samples with more than 5 inputs. f. Effect of the cT bundle concentration on sample 
classification. To further reduce the weight of all inputs, we decreased the concentration of all converter 
templates from 1 X to 0.04 X. For the lowest concentration of cT bundle, no amplification is observed within 
1000 minutes for all samples (from 0 to 6 inputs). 1X cT bundle results reproducibly in the amplification of 
all samples (except the negative control, NC), with a poor discrimination between 4, 5 and 6 inputs samples. 
Interestingly, we observed a sharp threshold between ≤ 2 and > 2 inputs with a 3-fold dilution of the cT 
bundle concentration. This demonstrates that the amplification threshold can be tuned finely by adjusting 
the production rate of all inputs, allowing to set an arbitrary number of input voters to return a positive 



answer. Finally, 0.15 X of cT bundle allows us to compute a majority voting algorithm, set a clear 
discrimination between 4 and 6 inputs.  

 
Extended Data Fig. 7  Operation of the NOR gate. a, A NOR gate is formed by hybridizing a template 
strand (accepting α or β as primers) with a molecular beacon γ. In the absence of α and β, the fluorescence 
of the molecular beacon is high because its dye and quencher are far apart. This codes for the ON state of 
the gate. If α or β is present, it induces polymerase-mediated displacement of the molecular beacon from 
the template, resulting in a low level of fluorescence. b, Verification of the assembly of the beacon with the 
template. The fluorescence of the beacon is monitored as the solution is cooled in a thermocycler, with and 
without template. The presence of the template induces a large fluorescence increase, due to the 
hybridization of the beacon. c, A two-layer network with the NOR gate as its output (left) and its truth table 
(middle) The network consists of two linear classifiers (α and β), each accepting a distinct input (X1 or X2). 
The correct operation of the network is verified by fluorescence: presence of either input drives the 
polymerization of the gate and the displacement of the beacon, leading to a drop in fluorescence. 
 
 
 
 

 



 
 
 

 
Extended Data Fig. 8  Thermal dependence of the space partitioning network (Figure 5). Droplets 
with the network and varying inputs were incubated in a graded temperature field to reveal how the quality 
of classification varies with temperature. At low temperature (~43 °C), α and β coexist, as indicated by the 
yellow region. When temperature increases, the yellow region shrinks and disappears, indicating that α and 
β do not coexist. 
 
 
 

 
 
 
 


