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Abstract

The estimation of wall thermal properties through an inverse problem procedure enables to

increase the reliability of the model predictions for building energy e�ciency. Nevertheless, it

requires de�ning an experimental campaign to obtain in situ observations for existing buildings.

The quality of the estimated parameter strongly depends on the quality of the experimental

data used for the parameter identi�cation. In other words, there is a close relation between the

experiment design and the precision of the retrieved parameters. The design of experiments

enables to search for the optimal measurement plan. It ensures the highest precision of the

parameter to be estimated. For in situ measurement in buildings, the design of experiments

seeks to answer the following questions: How many sensors do we need? What is the sensor

position in the wall? The optimal experiment design methodology enables us to answer those

questions. The unknown parameter is the thermal conductivity of wall façade modeled consid-

ering two-dimensional heat transfer induced by time and space varying boundary conditions.
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Introduction

In Europe, approximately 80% of today's buildings will still be in use in 2050, in which

75% of this stock is energy ine�cient, highlighting a crucial environmental issue on building

retro�tting. To e�ciently plan such actions, in-situ diagnoses are required to determine the

uncertain thermophysical properties of the materials composing the walls. This kind of problem

can be solved using experimental observations of the temperature inside the wall [1] and solving

inverse problem [2]. To maximize the accuracy of the estimation, the optimal experiment design

(OED) can be carried out before the in-situ experiments so the parameters to be estimated

have minimum variance. There is a close relation between the experiment design and the

precision of the retrieved parameters [3]. For example, Nenamorokov et al. [4] searched the

OED for the estimation of radiation properties while in [5] and [6] the OED is de�ned for

the estimation of thermal properties of high conductivity materials. Artyukhin and Budnik

[7] inspected the optimal sensor location and their quantity in the inverse heat conduction

boundary problem. More recently, in [8], the optimal heating period and the duration of the

experiment were investigated for the thermal conductivity estimation in building walls. In this

article, the OED is explored concerning the sensor positioning, considering a two-dimensional

inverse heat conduction problem [9] in a wall façade composed of concrete and subjected

to climatic boundary conditions. The latter are varying according to time and space. The

OED is determined by solving an optimization problem. It seeks in determining the decision

elements to place a sensor at one position (0/1 sensor). Since the exhaustive search is too

expensive in terms of computational cost, two alternative strategies are investigated. The

�rst one uses an exchange algorithm which ensure to �nd a local optimal solution. With the

second strategy, the problem is relaxed by setting the decision elements as real numbers in unit

interval. Thus, probabilities of sensor positioning are obtained and convergence of algorithm

is faster. The article is structured as follows. First, the mathematical model is described.

Then, the numerical model to solve the governing equation is presented and veri�ed using an

analytical solution. Section introduces the D-optimum criterion and optimization strategies
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to determine the OED. A realistic case study is then considered in Section before addressing

some conclusion and outlooks for future works.

Mathematical formulation of the problem

The transfer problem considers heat conduction through a solid material as illustrated in

Figure 1 and described by the following partial di�erential equation:

ρ c p
∂T

∂t
= ∇ ·

(
λ∇T

)
(1)

where ρ [kg .m−3], the material density, c p [J . kg−1 .K−1] is the material speci�c heat, T [K] is

the temperature, t [s] is the time, and λ [W .m−1 .K−1] being the thermal conductivity. The

transport phenomena is observed for the duration t ∈ [ 0, τ ], where τ [s] is the horizon time

of simulation. For two-dimensional transfers, the spatial domain is de�ned for x ∈ [ 0, lx ] and

y ∈ [ 0, ly ] with lx [m] and ly [m] being the thickness and the height of the material.

At boundaries a mixed-type condition is de�ned, which include the convection and short-

wave length radiation phenomena:

λ
∂T

∂x
= hL(y , t)

(
T − TL

∞(t)
)
− α q∞(y , t) , for x = 0, ∀y, t > 0 (2a)

−λ
∂T

∂x
= hR

(
T − TR

∞(t)
)
, for x = lx, ∀y, t > 0 (2b)

−λ
∂T

∂y
= hT

(
T − T T

∞(t)
)
, for y = ly, ∀x, t > 0 (2c)

λ
∂T

∂y
= hB

(
T − TB

∞(t)
)
, for y = 0, ∀x, t > 0 (2d)

where T∞ [K] is the ambient air temperature and h [W .m−2 .K−1] is the convective heat

transfer coe�cient. In the bounding surface in contact with the outdoor air, q∞ [W .m−2] is

the total solar radiation, which includes the direct, di�use and re�exive radiations and α is the

surface solar absorptivity. The solar absorptivity is assumed as a known constant since the
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wall is considered as a di�use-gray surface [10].

For the initial condition, at t = 0, a two-dimensional temperature distribution in function

of space is considered:

T (x, y, 0) = T 0 (x, y) (3)

Dimensionless form

It is of capital importance to get a dimensionless formulation of the problem under con-

sideration before solving the problem directly. Important scaling parameters are de�ned so

that a whole class of dimensional problems can be solved. It may also allow to simplify the

problem based on asymptotic methods. Last, the rounding errors are minimimal if computer

manipulates numbers of same magnitude. In this way, the following dimensionless quantities

for one dimensional transfer are de�ned:

u
def
:=

T − T ref

∆T ref

, x⋆ def
:=

x

lx
, y⋆

def
:=

y

ly
, t⋆

def
:=

t

t ref
, ν

def
:=

t ref · λ
l 2x · ρ · cp

,

R
def
:=

l 2x
l 2y

, BiL
def
:=

hL · lx
λ

, BiR
def
:=

hR · lx
λ

, BiT
def
:=

hT · ly
λ

, BiB
def
:=

hB · ly
λ

,

q⋆∞
def
:=

lx · α · q∞

∆T ref · λ
(4)

where the subscript ref represents a reference value, chosen according to the application prob-

lem and the star ⋆ represents a dimensionless quantity of the same parameter. Therefore, the

governing Equation (1), for two dimensional transfer can be written in a dimensionless form

as:

∂u

∂t ⋆
= ν

∂2u

∂x⋆ 2
+ ν R

∂2u

∂y⋆ 2
(5)
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The dimensionless formulation of the boundary conditions are:

∂u

∂x⋆

∣∣∣∣
x⋆ =0

= BiL
(
u − uL

∞(t⋆)
)
− q ⋆

∞(y⋆ , t⋆) (6a)

− ∂u

∂x⋆

∣∣∣∣
x⋆ =1

= BiR
(
u − uR

∞(t⋆)
)

(6b)

− ∂u

∂y⋆

∣∣∣∣
y⋆ =1

= BiT
(
u − uT

∞(t⋆)
)

(6c)

∂u

∂y⋆

∣∣∣∣
y⋆ =0

= BiB
(
u − uB

∞(t⋆)
)

(6d)

and the initial condition:

u(x⋆, y⋆, 0) = u 0 (x
⋆, y⋆) (7)

Numerical solution for the direct problem

The 2D-Spectral-ROM method

Consider the linear isotropic di�usion Equation (5) for the two-dimensional space trans-

formed to the canonical interval x̄, ȳ ∈ [−1, 1]. By using the Spectral-ROM approach, the

solution is approximated by the sum [11]:

u (x̄, ȳ, t ⋆) ≈
N∑

i=1

M∑
j=1

a i j (t
⋆)T i−1 (x̄)T j−1 (ȳ) (8)

Here, {T i−1 (x̄)}Ni=1 and {T j−1 (ȳ)}Mj=1 are sets of basis functions (Chebyshev polynomials)

and {a i j (t)}N,M
i,j=1 are the corresponding time-dependent spectral coe�cients which are the un-

knowns of the problem. This approach is proven to be very e�cient in one dimensional problems
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[12]. Then, the residual R is composed by substituting Equation (8) into Equation (5):

R (x̄, ȳ, t ⋆) =
N∑

i=1

M∑
j=1

ȧ i j (t
⋆)T i−1 (x̄)T j−1 (ȳ) − 4 ν

N∑
i=1

M∑
j=1

˜̃ax
i j (t

⋆)T i−1 (x̄)T j−1 (ȳ)

− 4 ν R
N∑

i=1

M∑
j=1

˜̃a y
i j (t

⋆)T i−1 (x̄)T j−1 (ȳ) (9)

where ȧ i j
def
:=

da i j ( t
⋆ )

dt ⋆
. The spatial derivatives are expanded in the same Chebyshev basis

function. Thus, coe�cients ˜̃ax
i j and ˜̃a y

i j are expressed in terms of coe�cients a i j according

to the explicit relations obtained from the recurrence relation of the Chebyshev polynomial

derivatives [13]. Here, ˜̃ax
i j and ˜̃a y

i j denotes:

˜̃ax
i j =

1

c i

N∑
p= i+2
p+ i even

p
(
p 2 − i 2

)
a p j , i ∈

{
1 , 2 , . . . , N − 2

}
(10a)

˜̃ax
N − 1 j ≡ ˜̃ax

N j ≡ 0 , ∀ j ∈
{
1 , 2 , . . . , M

}
(10b)

˜̃a y
i j =

1

c j

M∑
p= j+2
p+ j even

p
(
p 2 − j 2

)
a i p , j ∈

{
1 , 2 , . . . , M − 2

}
(10c)

˜̃a y
iM − 1 ≡ ˜̃a y

iM ≡ 0 , ∀ i ∈
{
1 , 2 , . . . , N

}
(10d)

with the constants c i and c j being given by:

c k =


2 , k = 0

1 , k > 0

(11)

The residual R (x̄, ȳ, t ⋆) is minimized via the collocation method:

R (x̄ k, ȳ l, t
⋆) = 0 (12)
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which requires that the residual be equal to zero at the Chebyshev�Gauss�Lobatto points:

x̄ k = − cos

(
π · k
N− 1

)
, k ∈ {0, 1, 2, . . . , N− 1} (13a)

ȳ l = − cos

(
π · l
M− 1

)
, l ∈ {0, 1, 2, . . . , M− 1} (13b)

These points are chosen in order to minimize the error of the numerical solution and to avoid

Runge's phenomenon [14]. Figure 2 presents the spatial distribution of the points following

Equation (13).

To solve the problem, the residual can be written in a matricial form. For this, consider the

spatial derivatives approximated as in [15]:

∂ 2u

∂x̄ 2
=

N∑
i=1

M∑
j=1

T i−1 (x̄ k)T j−1 (ȳ l) ˜̃a
x
i j (t

⋆)

=
[
C (x̄ k)⊗ C (ȳ l)

]
·
[( ˜̃Dx ⊗ Id y

)
· A i j (t

⋆)
]

(14)

and

∂ 2u

∂ȳ 2
=

N∑
i=1

M∑
j=1

T i−1 (x̄ k)T j−1 (ȳ l) ˜̃a
y
i j (t

⋆)

=
[
C(x̄ k)⊗ C(ȳ l)

]
·
[(
Idx ⊗ ˜̃D y

)
· A i j(t

⋆)
]

(15)

where Idx is the identity matrix of size N×N with respect to x̄, Id y is the identity matrix of

size M×M with respect to ȳ and the operation denoted by ⊗ is the Kronecker product [16].

The matrix of spectral coe�cients {a i j}N,M
i,j=1 was transformed into a vector:

A i j =
[
a 11, a 12, . . . , a 1N, a 21, a 22, . . . , a 2N, aM1, aM2, . . . , aMN

]⊤
(NM×1)

(16)

In addition, ˜̃Dx and
˜̃D y correspond to the second order di�erentiation matrices with respect to

x and y respectively such that ˜̃Dx ∈ Mat N×N (R) and ˜̃D y ∈ MatM×M (R), which are deduced
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from the recurrence relation [17, Eq.3.26]. Finally, the vector of the Chebyshev polynomial

values are:

C (x̄ k) =
[
T 0 (x̄ k), T 1 (x̄ k), T 2 (x̄ k), . . . , TN (x̄ k)

]
(1×N)

(17a)

C (ȳ l) =
[
T 0 (ȳ l), T 1 (ȳ l), T 2 (ȳ l), . . . , TM (ȳ l)

]
(1×M)

(17b)

Therefore, the original problem is reduced to a system of ordinary di�erential equations,

which has the following form:

[
C(x̄ k)⊗ C(ȳ l)

]
· Ȧ i j =

[
C(x̄ k)⊗ C(ȳ l)

]
·
[(
4 ν R · Idx ⊗ ˜̃D y + 4 ν · ˜̃Dx ⊗ Id y

)
· A i j

]
(18)

which is valid only for the internal collocation points:

k = 1, 2, . . . , N− 2 and l = 1, 2, . . . , M− 2 .

The approximation of the solution and derivatives are also applied to the four boundary con-
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ditions equations which complete the problem:

−
N∑

i=1

M∑
j=1

ãx
i j (t

⋆)T i−1 (−1)T j−1 (ȳ l) +
BiL

2

[
N∑

i=1

M∑
j=1

a i j (t
⋆)T i−1 (−1)T j−1 (ȳ l)

− uL
∞ (t ⋆)

]
− q ⋆

∞ (t ⋆)

2
= 0 (19a)

N∑
i=1

M∑
j=1

ãx
i j (t

⋆)T i−1 (1)T j−1 (ȳ l) +
BiR

2

[
N∑

i=1

M∑
j=1

a i j (t
⋆)T i−1 (1)T j−1 (ȳ l)− uL

∞ (t ⋆)

]
= 0

(19b)

−
N∑

i=1

M∑
j=1

ã y
i j (t

⋆)T i−1 (x̄ k)T j−1 (−1) +
BiB

2

[
N∑

i=1

M∑
j=1

a i j (t
⋆)T i−1 (x̄ k)T j−1 (−1)− uB

∞ (t ⋆)

]
= 0

(19c)

N∑
i=1

M∑
j=1

ã y
i j (t

⋆)T i−1 (x̄ k)T j−1 (1) +
BiT

2

[
N∑

i=1

M∑
j=1

a i j (t
⋆)T i−1 (x̄ k)T j−1 (1)− uT

∞ (t ⋆)

]
= 0

(19d)

Again, the coe�cients ãx
i j and ã y

i j are deduced explicitly from the recurrence relation of the

polynomials:

ãx
i j =

2

c i

N∑
p= i+1
p+ i odd

p a p j , i ∈
{
1 , 2 , . . . , N − 1

}
, (20a)

ãx
N j ≡ 0 , ∀ j ∈

{
1 , 2 , . . . , M

}
, (20b)

ã y
i j =

2

c j

M∑
p= j+1
p+ j odd

p a i p , j ∈
{
1 , 2 , . . . , M − 1

}
, (20c)

ã y
iM ≡ 0 , ∀ i ∈

{
1 , 2 , . . . , N

}
, (20d)
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Equation (19) has the following matrix compact form:

−
[
C(−1)⊗ C(ȳ l)

]
·
[(
D̃x ⊗ Id y

)
· A i j

]
+

BiL

2

[
C(−1)⊗ C(ȳ l) · A i j − uL

∞ (t ⋆)
]
− q ⋆

∞ (t ⋆)

2
= 0

(21a)[
C(1)⊗ C(ȳ l)

]
·
[(
D̃x ⊗ Id y

)
· A i j

]
+

BiR

2

[
C(1)⊗ C(ȳ l) · A i j − uR

∞ (t ⋆)
]

= 0 (21b)

−
[
C(x̄ k)⊗ C(−1)

]
·
[(
Idx ⊗ D̃ y

)
· A i j

]
+

BiB

2

[
C(x̄ k)⊗ C(−1) · A i j − uB

∞ (t ⋆)
]

= 0

(21c)[
C(x̄ k)⊗ C(1)

]
·
[(
Idx ⊗ D̃ y

)
· A i j

]
+

BiT

2

[
C(x̄ k)⊗ C(1) · A i j − uT

∞ (t ⋆)
]

= 0 (21d)

where D̃ y corresponds to the �rst order di�erentiation matrix with respect to y, such that

D̃ y ∈ Mat (M×M), which is deduced from the recurrence relation [17, Eq.3.23].

Initial values of the coe�cients {a ij (t = 0)} def
:= b ij are calculated by approximating the

initial condition u 0 (x̄, ȳ) as:

u 0 (x̄, ȳ) =
N∑

i=1

M∑
j=1

b ij T i−1 (x̄)T j−1 (ȳ) (22)

which is expanded and solved for b ij using the collocation points.

Therefore, the time-dependent coe�cients {a i j}N,M
i,j=1 are computed by solving the following

system of ordinary di�erential equations:


M · Ȧ i j = f (t, a i j)

a ij (0) = b ij

(23)

where, M ∈ Mat NM×NM(R) is the mass matrix and f (t, a i j) ∈ RNM is a vector. To solve

the System (23), the technique described in [18, Chap. 10] is employed. The matrix M and

the vector f (t, a i j) are composed by the lines of the grid. Algorithm in Table 1 describes the

process to compose f (t, a i j) which is similar toM . The integration in time is performed with
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the use of the solver ode15s as in the previous spectral applications.

Veri�cation of 2D-Spectral-ROM solution

Numerical solution are today veri�ed considering analytical solution according to ASME

[19] and following the method of exact solution [20]. For this reason the numerical solution

proposed in previous section will be veri�ed using an analytical solution for a two-dimensional

transient phenomenon discussed in [21]. Since it is always di�cult to obtain analytical solution

for complex and realistic cases, a comparison test is carried with another numerical method in

appendix.

Metrics

To analyze the accuracy of the method, the error between the simulated solution unum,

and the reference solution u ref , are computed as functions of x⋆ and y⋆ using the following

Euclidean norm:

ε 2 (x
⋆, y⋆)

def
:=

√√√√ 1

Nt

Nt∑
j=1

(
unum

j (x ⋆, y⋆, t ⋆j) − u ref
j (x ⋆, y⋆, t ⋆j)

) 2

(24)

where Nt is the number of temporal steps and u is the �eld of interest. Moreover, the uniform

norm error ε ▷◁ is given by the maximal values of ε 2 :

ε ▷◁
def
:= sup

x ⋆, y⋆ ∈
[
0 , 1

] ε 2 (x
⋆, y⋆) (25)

Description of the case study

The analytic solution used to the veri�cation is the one presented in [21]. The case study

concerns a problem of the Neumann and Dirichlet type. In fact, the left boundary of the body

is partially heated through a surface heat �ux, while the upper boundary is kept at a constant

temperature. All the other surfaces are insulated.

12



Since the model considers mixed-type boundary conditions, the following set-up is consid-

ered in the Spectral-ROM solver. For the insulated boundaries (right and bottom), the Biot

coe�cients are set to zero BiB = BiR = 0 . For the top boundary, the Biot coe�cient

is de�ned by a large value (BiT = 10 4 in our case) with a null ambient �eld uT
∞ = 0 .

In this way, the mixed-type conditions from the solver becomes equivalent to a homogeneous

Dirichlet) one. Also, the heat �ux on the left boundary is applied at 0 ⩽ y ⋆ ⩽ 0.5 and for

simulation times t ⋆ ⩽ 1; and the Biot coe�cient is set to zero BiL = 0.

The temperature is computed as a function of time t ⋆ and space (x ⋆, y ⋆). The geometry

of this case study is given in Figure 3. Note that the dimensionless group proposed in this

Section is di�erent from the one proposed in [21] for this analytical solution. However, the

veri�cation process is not a�ected since the same dimensionless equations are considered with

the same dimensionless parameters for the numerical solution and analytical solution.

Results and discussion

Simulations are performed with ν = 1 and a ratio of R = 1 for a time horizon of τ ⋆ = 2,

with a time discretization of ∆t ⋆ = 1.34 · 10−2 and spatial discretization parameters for each

direction of∆x ⋆ = 10−2 and∆y ⋆ = 5·10−3 . The Spectral-Collocation method is implemented

with the same number of modes for both spatial bases, N = 16 and M = 16, making a total of

N ·M = 256 modes and the �nal solution is composed for the given spatial grid. In addition,

the tolerance of the solver Matlab� ode15s is set to tol = 10−4 which integrates the spectral

coe�cients in the temporal grid.

This case study allows the heating/cooling process within the material to be analyzed.

For this end, Figure 4(a) presents the value of the �eld u in di�erent locations.The spectral

solution seem to be in accordance with the analytical solution at these locations. In addition,

Figure 4(b) presents some pro�les (also called the �bers of the tensor) of the �eld u as a function

of x ⋆, at y ⋆ = 0.4 and for di�erent instants t ⋆ = [ 0.5, 0.8, 1.1 ] . In fact, the di�usion process

goes from heating to cooling till it reaches the steady state. As observed in the graphics, the
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Spectral-Collocation has converged to the analytical solution.

To better evaluate the solutions, the distribution of the error ε 2 among the x ⋆ and y ⋆ axes

is presented in Figure 5. The Spectral approach provided a solution with a maximum error

of order of O(10−3). For building applications this error is acceptable. Therefore, it can be

concluded that the spectral method have converged to the appropriate solution.

Figure 6 presents the temperature as function of x ⋆ and y ⋆, for a given time instant. Each

one of the graphics represents a slice of the discrete tensor solution. It can be observed that

the solutions of temperature vary according to both directions x ⋆ and y ⋆ and not only in one

direction. If the heat �ux were not dependent on the coordinated y ⋆, the solution would be a

false two-dimensional, with variations only in the x ⋆ coordinate.

The main advantage of the Spectral-ROM approach is to reduce the computational resources

needed to obtain the solution of the governing equations. The number of degrees of freedom of

the Spectral solution is N ·M , while for a �nite-di�erence methods is Nx ·Ny. Thus, the degrees

of freedom of an Implicit method with central �nite-di�erences discretization would be 2.5 ·10 3

while for the Spectral collocation is only 81, representing a reduction of 2 orders of magnitude

at each time step. Such results imply a reduction of the computational time as presented in

Table 2. Even compared to the analytic solution, the computational cost is reduced to 10%.

Note that these results have been measured using the Matlab� environment with a computer

equipped with Intel i5 CPU (1.6 GHz) and 8 GB of RAM.

Optimal experiment design regarding sensor positioning

The issue is to solve an inverse problem [22, 23] regarding the thermal conductivity λ or

its equivalent ν in the dimensionless formulation. To obtain the temperature measurements, a

certain number of sensors can be placed in the domain. The issue is to determine the optimal

sensor locations. The methodology is described for dimensionless quantities. However, for the

sake of clarity, the super script ⋆ is omitted in this Section.
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Experiment Design

The total number of sensor locations in the wall isN . The set of all possible labels identifying

sensor positions is de�ned by:

J =
{
1 , . . . , N

}
(26)

The set of candidate locations is:

Ωχ =
{
χ j

}
j ∈ J

(27)

where χ j is a sensor location, so χ j ∈ [ 0, lx ] × [ 0, ly ] . The experimental design is illustrated

in Figure 7. It consists in positioning n sensors (n ⩽ N) in the wall at the position labels ξ.

So, the experimental design is formulated by:

D =
{
ξ
}
, ξ ⊂ J (28)

where n = card ξ is the total number of sensors, which is �xed by the user.

Optimal Experiment Design

The optimal experiment design D ◦ corresponds to the situation where the accuracy of the

estimates is maximal. Following the methodology described in [5, 24], the OED is de�ned by:

D ◦ = arg max
D

Φ (29)

with Φ being the D-optimum design criterion:

Φ = log det M (30)
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where M is the so-called Fisher information matrix. Since there is only one parameter, the

matrix has only a single element being:

M =
N∑

j = 1

w j

∫ 1

0

θ
(
(x , y ) = χ j , t

) 2
dt (31)

where
{
w j

}
j ∈J is the set of binary decision variables (also called design weights) indicating

whether or not sensor are placed at the locations labeled by the elements of J :

w j =


1 , j ∈ ξ ,

0 , j /∈ ξ ,

∀j ∈ J (32)

Last, the sensitivity coe�cients are:

θ =
∂u

∂ν
(33)

which are computed by complex step di�erentiation. It is important to note that the number

of sensors to place n is not a variable of the OED. Indeed, the more sensors are placed the

better for the precision. Here, n is �xed (by the experimenter) and only the location of the

sensors is investigated. Complementary works investigating the OED for parameter estimation

of transfer phenomena in building porous materials can be consulted in [8, 25, 26].

Searching for the OED

The exhaustive search to determine the OED requires to compute the D-optimum crite-

rion for the binomial possibilities
(
N
n

)
. This option is too heavy in terms of computational

cost for two-dimensional problems. The problem de�ned by Equation (29) can be seen as an
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optimization problem considering the N weighting elements w j :

D ≡
{
w j

}
j ∈ J

(34)

The following constraint must be imposed:

N∑
j = 1

w j = n (35)

and limiting each design weight to be binary:

w j ∈
{
0 , 1

}
, ∀ j ∈ J (36)

Such problem can be solved using the genetic algorithm with unknown parameters set as

integers. However, these constraints induce an important computational cost as observed

in [27] for a one-dimensional problem. Thus, two alternative strategies are investigated to

determine the OED.

Strategy 1: optimization of binary design weights using the exchange algorithm

The �rst strategy consists in solving the problem de�ned by Equation (29) as an optimization

one with binary decision elements. However, an exchange algorithm presented in Table 3 is

used [28]. It runs as follows over the iterations k .

Step 1. At k = 0 , an initial design ξ 0 is selected where n = card ξ 0 . For such design,

the D-optimum criterion Φ
(
M( ξ (0) )

)
is computed using Equations (30) and (31).

Step 2. The second step consists in exchanging the position labels of the current design

with ones that correspond to vacant sites so as to maximally improve the D-optimum criteria.

It is performed by determining the labels
(
i ∗ , j ∗ ) such that:

(
i ∗ , j ∗ ) = arg max

( i , j )∈S (k)
∆
(
i , j

)
(37)
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where

S (k) = ξ (k) ×
(
J \ ξ (k)

)
(38)

so that S (k) contains all possible exchanges of points, at which a sensor currently resides by

points which are currently vacant. The quantity ∆
(
i , j

)
evaluates the relative changes in the

D-optimum criterion:

∆
(
i , j

)
=

(
Φ
(
M

(
ξ i↔ j

) )
− Φ

(
M

(
ξ (k)

) ))
·
(
Φ
(
M

(
ξ (k)

) ))−1

(39)

where ξ i↔ j means the design in which label position i has been replaced by label j .

Step 3. If the relative increase in the D-optimum criterion is lower than a set tolerance

∆
(
i ∗ , j ∗ ) ⩽ η (40)

then the algorithm stops since ξ (k) is a locally optimal design. Otherwise, the iterations

continues by setting ξ (k+1) ← ξ (k) and k ← k + 1 and coming back to Step 2.

Strategy 2: optimization via convex relaxation

In the second strategy, the OED is determined using an optimization strategy via convex

relaxation. Instead of considering the each design weight as binary, they are relaxed to be any

real numbers in the unit interval [29]:

w j ∈
[
0 , 1

]
, ∀ j ∈ J (41)

As a result, a convenient convex optimization problem is obtained. Then, with determined

optimal relaxed weights, the discrete probability distribution of each position sensor can be
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assessed by:

P j = w j ·
( N∑

j=1

w j

)−1

(42)

Such problem is solved using the interior point algorithm in the Matlab�environment.

Case study

The problem involves heat transfer through the façade of a building located in the urban

area of Paris, where the studied building faces another one. The front building induces a time

varying shadow on the studied building. The heat �ux in the façade varies vertically according

with the position of the sun the wind velocity justifying the two dimensional simulation. Details

of the case study are given in [30].

Description of the case study

The geometry of this case study is given in Figure 7. The case study considers a south-

oriented façade of a building located in Paris, France. The wall is composed of a concrete

layer, whose material properties are given by the following values: λ = 1.4W .m−1 .K−1 for

the thermal conductivity, ρ = 2 · 103 kg .m−3 for the density, and, c p = 103 J . kg−1 .K−1 for

the speci�c heat capacity. The height and width of the wall are l y = 3m and lx = 30 cm.

The façade is located in an urban area so it is facing other buildings. The latter is located

at a distance of 5m and has a height of 3m, which induces a shadow on the studied façade.

The height of the shadow varies according to time. As a consequence, the outside incident

radiation �ux q∞, varies according to height and time. The radiate absorption coe�cient is set

as α = 0.6. The outside surface heat transfer coe�cient hL depends on height position y and

time varying climate wind velocity. The surface heat transfer coe�cient increases according to

the height.
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The outside temperature is also given by weather data �le and illustrated in Figure 8(a).

The inside temperature is controlled and set to 20◦C. The inside surface transfer coe�cient is

set as constant to hR = 10W .m−2 .K−1. The top and bottom boundaries of the façade are set

as adiabatic (hT = hB = 0). Indeed, the investigations focus on the in�uence of the space

and time variations of outside boundary conditions on the thermal e�ciency of the façade.

The simulation is performed for January, with a time horizon of τ = 31 days . During this

period, the in�uence of the urban scene is more noticeable. Figure 8(b) shows the variation

of the sunlit height for each days of the month. The shadow covers all the façade during the

night (h = 3 m). At midday the height is around 1.5 m and 1 m at the beginning and the

end of the month, respectively. This variation of the sunlit height induces spatial variation of

the incident �ux as presented in Figure 8(c). At the top of the façade, the magnitude of the

�ux is higher. Last, the surface transfer coe�cient also varies according to space and time as

shown in Figure 8(d).

For the experimental design, a total of N = 2086 candidate sensor positions are possible in

the whole façade. This value is obtained by constraining a minimum gap of 2 cm between two

neighboring sensors and avoiding sensors at the interfaces with inside/outside air. So, given the

height and wide to the façade, it corresponds to 14 possible locations along x axis and to 149

possible locations along y axis. The strategy via convex relaxation is employed to determine

the OED. Tolerances of optimization solvers are set to 10−8 .

Results and discussion

Simulations are performed for ν = 2.8 ·10−2 and R = 10−2, for a time horizon of τ ⋆ = 744,

with a spatial discretization parameters for each direction of ∆x ⋆ = 10−2 and ∆y ⋆ = 2 ·10−3 .

The Spectral-Collocation method is implemented with the same number of modes for both

spatial bases, N = 11 and M = 11, making a total of N · M = 121 modes and the �nal

solution is composed for the given spatial grid. In addition, the tolerance of the solver ode15s

is set to tol = 10−4 which integrates the spectral coe�cients in the temporal grid. The time
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discretization is ∆t ⋆ = 1 · 10−1 for projecting the solution. The reference values for the

dimensionless quantities are T ref = 293.15K, ∆T ref = 50K and t ref = 3600 s.

First, the number of sensor to place is set to n = 5 . Results of the OED are given in Table 4

for both strategies. The optimal location on x axis is the same for all sensors (x = 0.10 m).

On the y axis, the sensors should be placed in the same region around 2.52 m . Both strategies

give the exact same results. The convex strategy enables to assess complementary information

which is the probability of sensor placement as shown in Figure 9(a). The probability is very

sharp in the region around 2.52 m . Figure 10 presents the variation of the probability with the

number of sensor n . The probability remains very sharp in the region x = 0.1m and 2.52 m .

The optimal location does not change much according to the number of sensors.

This area corresponds to the top of the façade, where the incident radiation �ux has a higher

magnitude. The sensitivity coe�cients have a higher magnitude as presented in Figure 11.

Those results are due to the in�uence of the two-dimensional modeling of the façade boundary

conditions. Figure 12(a) presents the evolution of the temperature for two di�erent locations,

at (x = 0.1 m, y = 2.5 m) and at (x = 0.28 m, y = 0.24 m). The in�uence of the sun is

remarked during midday with the high peaks di�erences. In addition, Figure 12(b) presents

the slice of the solution for January 15, at 12:00. As a consequence of the shadow, the bottom

of the façade receives less �ux, which makes temperatures lower in this part. The optimal

sensors locations are indicated by the dots.

Figure 9(b) shows the experimental design determined using the �rst strategy with the

exchange algorithm according to the iteration number (with n = 5 sensors to place). Since

the algorithm may found a local optimal solution, several tests have been performed for di�erent

set of initial guess. For all the tests, the strategy converges to the same OED. At each iteration,

only one sensor position is changed as set in the algorithm. Very few iterations are required

for the algorithm to determine a local optimal solution.

Figure 13 presents the variation of the design criterion according to the number of sensors.

As expected from the theoretical results, it increases monotonously with n . Thus, the more
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sensors are placed, the better for the precision. The number of sensors can be chosen using

such �gure by analyzing the compromise between the precision of estimation and the exper-

imental constraints such as cost, design di�culties, etc. Regarding the accuracy, the domain

n ∈ [ 5 , 10 ] seems relevant since the slope of the curve starts to decrease. Note that in the

hypothetical situation where n → N , necessarily some sensors will be placed in some regions

of low sensitivity. It is due to the constrain in the experimental design that two sensors cannot

be placed in the same locations (no overlapping).

The exhaustive search for n = 5 scales with more than 300 · 10 12 possibilities (binomial

coe�cient
(
2086
5

)
exactly) which is unreliable in terms of computation cost. A comparison of the

cost function evaluation among the strategies is reported in Table 5. The exchange algorithm

strategy is the one with the smallest cost function evaluations. The latter is computed as

follows. At each iteration, the algorithm requires to evaluate the D-optimum criteria (30) for

the designs ξ k and ξ i↔ j . The total cost function evaluation is at each iteration:

1 + n ·
(
N − n

1

)
(43)

which gives for n = 5 , 10 406 evaluations of the criterion. At each iteration, the algorithm

computes the D-optimum criterion for the design ξ k (1 evaluation) and the designs ξ i↔ j .

For the latter, the possibilities are changing one sensor location among the N − n remaining

positions. So
(
N−n
1

)
evaluations of the criterion. Since each of the n sensors can move, it leads

to n ·
(
N−n
1

)
evaluations for the designs ξ i↔ j . In the end, the ratio compared to the exhaustive

search scales with O( 10−8 ). The optimization strategy with integer decision elements enables

to retrieve the OED with ten times more cost function evaluations. It corresponds to a ratio of

1.6 · 10−7 with the exhaustive approach. It shows a satisfying e�ciency of the approach noting

that an optimal relaxed weight is obtained.
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Conclusions

This article proposes the search for the OED in terms of sensor positioning in a wall façade

for a thermal conductivity inverse two-dimensional heat transfer problem. The direct problem

is solved using a reduced spectral method. It is veri�ed using an analytical solution, highlight-

ing a satisfactory accuracy and computational cost. Then, the OED is investigated by solving

an optimization problem of the D-optimum criterion considering two strategies. The �rst one

is based on an exchange algorithm. For the second strategy, a convex relaxation approach

is adopted. The decision elements to place the sensors are considered as real number in the

unit interval. A (discrete) probability distribution of the sensor position is obtained. The

�rst strategy is the most e�cient from a computational point of view. In a few iterations,

an local optimal solution is retrieved. The convex relaxation has a higher computational cost

but still very low compared to the exhaustive search. Furthermore, it provides complemen-

tary probabilistic information for the experimenter. Future works should focus on multi-layer

con�gurations with the thermal conductivity of each layer to retrieve.
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Nomenclature

a , b spectral coe�cient

A , C , D ,M spectral matrices

Bi Biot number

c constant

c p speci�c heat, J . kg−1 .K−1

CPU Central Processing Unit

D experimental design

DOF Degree of freedom

f generic function

GB GigaByte

h heat transfer coe�cient, W .m−2 .K−1

h shadow height, m

Id identity matrix

i , j label position

J set of label position

k iterations

lx , l y length of facade, m

M Fisher information matrix

N number of sensor position

N , M order of the Spectral decomposition

n number of sensors
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OED Optimal Experiment Design

O order of a scalar quantity

P discrete probability distribution of position sensor

q solar radiation �ux, W .m−2

R ratio

R residual

RAM Random Access Memory

ROM Reduced Order Model

S Set of all possible exchanges of points

t time, s

tol Tolerance

T , ∆T temperature, K

T Chebyshev polynomials

u dimensionless temperature

w binary decision variables for sensor position

x , y coordinates
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Greek symbols

α solar absorptivity

∆ improvement in the D�optimum criteria

∆x , ∆y , ∆t discretisation parameters

ε error

η tolerance parameter

θ dimensionless sensitivity coe�cient

λ thermal conductivity, W .m−1 .K−1

τ horizon of simulation, s

ν dimensionless di�usivity

ξ set of label position

ρ density, kg .m−3

Φ D�optimum design criterion

χ sensor location, m

Ω set of candidate locations for sensor position

26



Subscripts

cpu Central Processing Unit

ref reference condition

x according to x coordinate

y according to y coordinate

0 initial condition

2 Euclidean norm

∞ ambient air condition

▷◁ uniform norm

χ sensor position
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Superscripts

B bottom boundary

i ↔ j exchange of label i by label j

L left boundary

R right boundary

T top boundary

x according to x coordinate

y according to y coordinate

0 �rst iteration

◦ optimal

⋆ dimensionless quantity

∗ labels that improved the design

˜ �rst order derivative

˜̃ second order derivative

¯ canonical interval
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Appendix

Comparison test of the Spectral-ROM

The case considers adiabatic top and bottom boundaries (so BiT = BiB = 0). For the

right boundary condition, the ambient �eld varies according to time and space:

uR
∞( y ⋆ , t ⋆ ) = 1.3 sin

( π

24
t ⋆

)
− 1.8 ( y ⋆ − 1 ) y ⋆ ,

The Biot coe�cient is set to BiR = 1 . For the left boundary, an incident radiation �ux is

imposed varying also with time and space, as for real con�gurations:

q ⋆
∞( y ⋆ , t ⋆ ) = 1.3 y ⋆ sin

( π

12
t ⋆

) 2

.

The Biot coe�cient is set to BiL = 0 .

Simulations are performed with ν = 10−4 and a ratio of R = 1 for a time horizon of

τ ⋆ = 12, with a time discretization of ∆t ⋆ = ·10−1 and spatial discretization parameters for

each direction of ∆x ⋆ = 10−2 and ∆y ⋆ = 5 · 10−3 . The Spectral-Collocation method is

implemented with the same number of modes for both spatial bases, N = 9 and M = 9,

making a total of N · M = 81 modes and the �nal solution is composed for the given

spatial grid. In addition, the tolerance of the solver Matlab� ode15s is set to tol = 10−4

which integrates the spectral coe�cients in the temporal grid. The comparison is carried

out with the alternating-direction implicit method [30] for the same discretization parameters.

Figures 14(a), 14(b) and 15 shows a very good agreement among the solutions. The error scales

with O( 10−3 ) as presented in Figure 16. This additional comparison leads to a complementary

veri�cation of the accuracy of the Spectral-ROM solver.
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Table 1. Spectral-Collocation's algorithm for composing f (t, a i j) andM.

1 : f := zeros (N ·M, 1)

2 : M := zeros (N ·M,N ·M)

3 : for k = 0 ▷ Collocation point x̄ 0 = −1
4 : for l = 0 : M− 1

5 : f [l] :=
[
C(−1)⊗ C(ȳ l)

]
· A i j − uL

∞ (t) ▷ Equation (21a)

6 : end

7 : end

8 : for k = 1, 2, . . . ,N− 2 ▷ Internal x̄ k collocation points

9 : for l = 0

10 : f [(M− 1)k + 1] :=
[
C(x̄ k)⊗ C(−1)

]
·
[(
Idx ⊗ D̃ y

)
· A i j

]
▷ Equation (21c)

11 : end

12 : for l = 1, 2, . . . ,M− 2

13 : f [(M− 1)k + l] :=
[
C(x̄ k)⊗ C(ȳ l)

]
·
[(
α y · Idx ⊗ ˜̃D y + αx · ˜̃Dx ⊗ Id y

)
· A i j

]
▷ Right side of Equation (18)

14 : end

15 : for l = M− 1

16 : f [(M− 1)k + (M− 1)] :=
[
C(x̄ k)⊗ C(+1)

]
·
[(
Idx ⊗ D̃ y

)
· A i j

]
▷ Equation (21d)

17 : end

18 : end

19 : for k = N− 1 ▷ Collocation point x̄M−1 = 1

20 : for l = 0 : M− 1

21 : f [l + (M− 1) · (N− 2)] :=
[
C(+1)⊗ C(ȳ l)

]
· A i j − uR

∞ (t) ▷ Equation (21b)

22 : end

23 : end

24 : return f (t, a i j) andM.
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Table 2. Features of the Analytic and Spectral solution for the veri�cation case.

Method ∆t ⋆ ∆x ⋆ ∆y ⋆ tol ε ▷◁ DOF t cpu R cpu

Analytic 1.3 · 10−2 10−2 5 · 10−3 � � 10 4 117 s 100%

Spectral 1.3 · 10−2 10−2 5 · 10−3 10−4 ·10−3 10 2 12 s 10%
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Table 3. Exchange algorithm to determine the OED using Strategy 1.

1 : Sample candidate design ξ 0 ▷ Step 1

2 : Compute D-optimum criteria Φ
(
M( ξ (0) )

)
3 : k = 0

4 : While ∆
(
i ⋆ , j ⋆

)
⩾ η

5 : State S k ▷ Step 2

6 : Determine labels
(
i ⋆ , j ⋆

)
according to Equation (37)

7 : Compute ∆
(
i ⋆ , j ⋆

)
with Equation (39)

8 : k = k + 1

9 : End

10 : return OED D ◦ =
{
ξ k−1 , n

}
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Table 4. Optimal Experiment design for n = 5 sensor positions (given in m).

χ 1 χ 2 χ 3 χ 4 χ 5

Strategy x y x y x y x y x y

Exchange algorithm 0.10 2.5 0.10 2.52 0.10 2.54 0.10 2.56 0.10 2.58

Convex strategy 0.10 2.5 0.10 2.52 0.10 2.54 0.10 2.56 0.10 2.58
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Table 5. Function count to determine the Optimal Experiment design according to the
di�erent strategies.

Strategy Number Ratio %

Exhaustive search
(
2086
5

)
1

Exchange algorithm 52 030 O( 10−8 )

Convex strategy 477 939 O( 10−7 )
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Figure 2. Representation of the two-dimensional collocation points.
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Figure 9. Probability of the sensor placement considering real decision elements along the y
axis (x = 0.10 m) obtained with (Strategy 2) (a). Variation of the selected design of the
exchange algorithm (Strategy 1) according to the iterations (b).
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Figure 10. Variation of the probability of the sensor placement according to the number of
sensors
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location.
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Figure 12. Evolution of the dimensionless temperature �eld (a) and slice of the solution for
January 15 at 12:00, with the sensors locations indicated in red dots (b).
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Figure 14. Evolution of the dimensionless temperature �eld u (a) and some pro�les at
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Figure 15. Slices of the solution for the time instant t ⋆ = 6.
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Figure 16. Error ε 2 as function of x ⋆ and y ⋆ axes.
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