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Abstract—Recommender systems in social platforms attract
attention in part because of their potential impact over political
phenomena, such as polarization or fragmentation of online
communities. These research topics are also important because
of the need for understanding systemic effects in view of
upcoming risk-oriented AI regulation in the EU and the US.
A common approach leverages outcomes of recommendations
to audit recommender systems. A different approach is that of
explainability, seeking to render recommendation mechanisms
intelligible to humans, potentially enabling both auditing and
actionable design tools. This second approach is particularly
challenging in the context of online systems of political opinions
because of the intrinsic unobservability of opinions. In this article
we leverage multi-dimensional political opinion estimation of
large online populations (along a left-right dimension but also
along other political dimensions) to investigate latent spaces in
representation learning computed by recommender systems. We
train a recommender based on ubiquitous collaborative filtering
principles using data on content sharing on Twitter by a large
population, evaluating accuracy and extracting a latent space
representation leveraged by the recommender. On the other
hand, we leverage multi-dimensional political opinion inference
to position users in political spaces representing their opinions.
We then show for the first time the relation between latent
representations leveraged by a recommender system and the
spatial representation of users. We show that some dimensions
learned by the recommender capture ideological positions of
users, bridging politics and algorithmics in our social and al-

gorithmic system, opening a path towards political explainability
of AI.

Index Terms—Recommender systems, political ideology, algo-
rithm audit, algorithm explainability

I. INTRODUCTION

Social platforms play an important role in political debate
in several countries, in information dissemination and con-
sumption, and in shaping individual perceptions and political
opinions [1]. Social platforms have also multiplied the sources
of information available, making recommender and informa-
tion retrieval systems indispensable to navigate the large and
growing set of contents [2], [3]. Recommender systems in
social media have also become central to platforms in their
efforts to deliver satisfactory user experiences, and in driving
metrics related to their underlying advertising business model
[4], [5]. These developments, together with the scope of the
massification of social media, have raised concerns about the
social and political impacts of recommender systems [6]–[8].
These concerns are diverse, including for example the spread
of misinformation, polarization and fragmentation of online
communities, or mass exposure to harmful algorithmic biases
[9].

To address these concerns, algorithm auditing and algorithm
explainability methods have emerged as two relevant tools for
evaluating, but also for understanding how algorithms might be
impacting online social systems. Algorithm auditing involves
the systematic assessment of outcomes of recommendations:
i.e., what was recommended to whom. Characterizing users
and items, auditing involves measuring properties of recom-
mendations such as biases [10], diversity [11], novelty [12],
or their ability to contribute to polarized states in these large
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online social systems [13]. Algorithm explainability, on the
other hand, focuses on producing human-understandable ex-
planations of processes deciding a recommendation, allowing
an examiner to understand the steps and the factors that
explain that an item is recommended over another to a given
user. By understanding the underlying mechanisms, undesired
outcomes can be identified and potentially avoided allowing
for platform designers to make informed decisions, address
concerns, and enhance the transparency and fairness of content
recommendations.

Several application cases have recently seen important ad-
vances regarding explainability (see [14] for a survey on
the state of the different techniques for explainability, and
[15] specifically for explainability of recommender systems).
However, algorithm explainability in the context of political
opinions is especially challenging because of their inherent
unobservability. Algorithm explainability in the context of
political opinions would allow for addressing questions, e.g.,
such as: To what degree is item i being recommended to
user u because of the political preferences p of user u?
(even if political preferences p were not used during training).
While several socio-demographic attributes are often inferred
or volunteered by users in platforms, political opinions are
hard to determine. More importantly, political opinions are
harder to conceptualize, to model, and to measure, let alone
to infer. While the US setting lend itself naturally to binary
classifications (e.g., Democrat- or Republican-leaning) or one-
dimensional continuous ideological scales ranging from lib-
erals to conservatives, it is known that, in general, differ-
ent national settings require additional ideological and issue
dimensions to explain political opinions [16] and observed
online behavior [17]. In national settings with comparatively
less issue alignment, more dimensions (such as dimensions
modeling attitudes immigration, religious principles, or in-
come redistribution) might be needed, and might even be more
important than traditional left-right political dimensions [18].

In this article we use newly developed methods for estimat-
ing multi-dimensional political opinions of online populations.
Doing so, we bridge for the first time 1) the configuration
of political opinions of users en the one hand, with 2) the
learned representations leveraged by recommender systems
on the other, allowing for algorithmic political explainability:
i.e., how do political opinions of users determine what is
recommended to them? We consider a large Twitter population
of nearly 360k users for which we obtain an embedding in
a two-dimensional political space spanned by the two most

significant dimensions for the population, as computed in [19]:
a Left-Right dimension, and a dimensions measuring attitudes
towards elites and institutions. Next, we collect URLs pointing
to web content shared by users of this population on tweets
posted by them, and we train and validate a widely used
recommendation principle: Non-Negative Matrix Factorization
(NMF). We retrieve the learned representation space of the
trained NMF recommender and compare the positions of
users in this latent space to their political positions in the
two-dimensional political space. We find that these political
dimensions are recovered by the representation space of the
recommender system. We show how to identify the relation
between these two spaces and how to measure it, and prove
that one of the dimensions of the recommender captures, for
example, left-leaning ideologies, while another one captures
right-leaning ideologies.

These results provide an actionable path towards treating
concerns related to recommender systems in social settings.
Algorithm political explainability (i.e., knowing which po-
litical attitude or ideology played what role in producing a
given recommendation) holds the promise of both, auditing
what algorithms do, but also opens relevant ways in which
algorithms could be modified. Once dimensions relating to
particular political attitudes are identified in the representation
space of a recommender system, the possibility exists for
implementing constrained learning methods to manage what
algorithms can leverage in terms of political preferences of
users. Future methods leveraging this principle offer new ways
for platforms to moderate undesired outcomes when needed,
particularly in the face of upcoming regulation regarding
systemic consequences of AI.

II. DATA

To propose our method for analyzing the degree to which
learned representations computed by a recommender system
relate to political dimensions underlying the training data, we
will use two datasets. The first dataset comes from previous
work [19] in which a large population of Twitter users were
positioned in a multi-dimensional political opinion space based
on how they followed political figures. The second dataset
contains URLs of web content shared by Twitter users on the
platform, and will be used to train and test a recommender
system.



A. Multi-mimensional political estimates for Twitter popula-
tion

To obtain a large Twitter population with known multi-
dimensional political estimates we leverage the dataset pro-
duced in [19]. This dataset contains a list of 368.831 Twitter
users in France with positions in a geometrical political
space, in which dimensions capture political positions towards
different issues or ideologies computed with data collected in
2019. We retain the two most important political dimensions,
described as those that have the most explicative power for
describing the social graph (i.e., follower network): 1) a Left-
Right dimensions, and 2) an Anti-elite salience dimension
measuring mistrust in elites and institutions. The reader is
referred to the acknowledgment section (acknowledgement
section hidden during double-blind review) for learning how
we obtained this dataset and for the legal deposit and ethics
board approval, and to [19] for more details and for bench-
marks validating these ideological and political positions.
These two political dimensions are endowed by construction
with reference points. For the Left-Right dimension, position
0 marks the leftmost position for political parties, 5 marks
the political center, and 10 marks the rightmost position for
political parties. Individual users can be to the left position 0
(i.e., be more leftist than the leftmost political party) or to the
right of position 10 (i.e., be more rightist than the rightmost
political party). For the Anti-elite salience dimension, position
0 indicates granting no importance to anti-establishment and
anti-elite rhetoric, while 10 indicates granting great importance
to this. These reference points are also conceived for parties,
with individual users being allowed positions outside the 0 to
10 segment. Spatial references are calibrated with respect to
party positions for the purpose or readability and calibration
of the political embedding [19, Section 5] (see [20] for
a description of the political survey used for calibration).
Fig. 1 show the spatial distribution of the 368.831 users of
the acquired dataset along the two political dimensions. The
distribution shows a clear bias of the sample, towards right-
wing ideologies and high negative attitudes towards elites and
institutions, which will be taken into account in our analysis.

B. Media sharing data

To train our recommender system we use user-item infor-
mation available from Twitter. We randomly select 40.000 of
the 368.831 users in the first dataset and collect their last
3.200 tweets leading to the time of collection of the first
dataset. The accounts of 50 users were no longer available for
collection. The need for selecting a random subsample stems
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Fig. 1. Spatial distribution of the 368.831 Twitter users of the acquired
dataset along the two political dimensions that are most explicative of political
follower network in the data: Left-Right and Anti-elite salience. Reference
positions of 0 and 10, available with the obtained data, are displayed as a
[0, 10]2 region.

from the cost of collection of tweets for all users in the first
dataset. We keep only tweets that contain an URL pointing to
a webpage, resulting in 23.534.803 tweets with URLs from
426.014 unique web domains (including, e.g., main media
outlets in France, e-commerce sites, and known blogs and
forum sites). We will use these web domains as a set of items
I chosen by users U (with known political coordinates) to train
and validate a web domain recommender. We further filter this
dataset by deleting tweets containing URLs pointing to social
platforms such as twitter.com, facebook.com, linkedin.com,
youtube.com, or instagram.com, after having disambiguated
shortened URLs. We argue that these domains do not provide
useful signals, as a link towards Twitter will point to content
of a specific user or media outlet, which our data does not
identify. Additionally, we remove from this dataset domains
that have been shared less than 10 times so as to ensure enough
implicit expressions of preference per item. This processing
results in a dataset of 29.373 users sharing URLs from 32.639
items (i.e., the domains) on 3.277.738 posts (i.e., tweets).

III. TRAINING A MEDIA RECOMMENDER SYSTEM ON

TWITTER DATA

Formally, we consider that a user u ∈ U can choose each
item i ∈ I a number of times rui. We cast our recommendation



problem as one of predicting future choices based on past
ones, i.e., K ⊂ (U × I × R+). We consider web domains
to be the items to be recommended to users. An ubiquitous
recommendation principle – collaborative filtering – relies
on collective choices to predict future behavior, by creating
a representation of past choices on which to evaluate and
leverage similarities between users and items. We take a
generalist recommender, the NMF algorithm [21] focused on
collaborative filtering – to the exclusion of content filtering
– that relies on spatial representations of users and items.
This choice presents the additional interest of generalizing our
explainability method potentially to many other recommender
systems [22].

Let R ∈ Rn×m
+ , with m = |I| and n = |U|, be our obser-

vation matrix, where, for all (u, i, rui) ∈ K and Rui = rui.
Let k ∈ N+ be the dimension of the learned representation
space (k < min(n,m)). The NMF recommendation problem
is prescribed as finding matrices P ∈ Rn×k

+ and Q ∈ Rm×k
+ of

positive values, that minimize ∥R − PQT ∥2. We employ the
following regularized implementation [23]: find P ∈ Rn×k

+

and Q ∈ Rm×k
+ such that they minimize the functional

expression :

llL(P,Q) = 1
2 ||R− PQT ||22

+αP l1k||P ||1 + αQl1k||Q||1
+ 1

2αP (1− l1)k||P ||22 + 1
2αQ(1− l1)k||Q||22,

where αP , αQ, l1 are parameters respectively controlling
regularization on P and Q. We further modified the problem
by log-scaling the observed data in R, considering instead a
modified observation matrix R̃ with values r̃ui = 1 + 0.98 ·
log(1 + 2rui), to account for the long-tailed distribution of
number shares per domain (value 0.98 allows for our empirical
observations r̃ui to be between 1 and 10). Abusing notation we
will retain the notation of log-scaled values as rui. We solve
the optimization problem with the Multiplicative Update solver
[24], a gradient descent with adaptive learning rate that forces
the non-negativity of the solution. We initialize our algorithm
with a Non-negative Double Singular Value Decomposition
method as proposed by [25], to improve time of convergence
and accuracy. We then optimize the hyper-parameters with
a Particle Swarm Optimization (PSO) [26] algorithm on the
Hits@10 accuracy metric, defined below. Once embeddings
P and Q have been computed, predictions are computed as
R̂ = PQT .

To train our recommender and to test its performance we

use the Hits@10 metrics [27]. We build from our dataset K
a train set Ktrain with 80% of tuples in K and a test set with
the rest Ktest = K \ Ktrain of (u, i, rui) observations. After
training with Ktrain, we compute one recommendation for
each user based on the K items with highest prediction score
that are also previously not chosen, and compare these with
(U × I × R+) \ Ktrain using the Hits@K metric.

Let us call T := (U × I × R+) \ Ktrain, with T =

T u ×T i ×T r. T is the set of possible tuples user, item, and
number of observations that are not in the train set. Let u ∈ T u

be a user, and K ∈ N∗
+ a positive integer. The set of the K

best predicted items for u among T is : Top@K(u, T ) ={
i ∈ T i s.t.

∣∣{j ∈ T is.t. r̂uj ≥ r̂ui}
∣∣ < K

}
. We also define

the set of the K most observed items by user u that
are not in the train set: Pref@K(u, T ) = {i ∈
T i s.t.

∣∣{j ∈ T i s.t. ruj ≥ rui}
∣∣ < K

}
. We define the metric

Hits@K as the proportion of best items guessed for u and
for all users:

Hits@K(u, T ) =
|Top@K(u, T ) ∩ Pref@K(u, T )|

K

and,

Hits@K(T ) =
∑
u∈T u

Hits@K(u, T )

|T u|
.

This metric is in fact the F1-score of the classification
problem of finding the top K best items for each users. We
assess the quality of our recommender by comparing it to
random guess and to accuracies reported in the literature.
For K = 10 the random guess performance of this task is
Hits@10((U × I ×R+) \ Ktrain) ≈ 10−4. After training our
NMF with optimized hyper-parameters using PSO we obtain
a value of Hits@10((U × I × R+) \ Ktrain) = 0.35 on our
dataset, with k = 12 latent dimensions of representation in our
embedding. This result compares positively to the estimated
random guess and is in line with reported performance of real-
world systems [28].

IV. EXPLAINING THE REPRESENTATION LEARNING SPACE

WITH POLITICAL DATA

We now use our knowledge of the positions of users in
the Left-Right and Anti-elite salience political dimensions to
compute explanations of dimensions of the space learned by
the NMF recommender. Each learned dimension represents a
feature of users and items, estimated and leveraged by the
recommender. Our explanation method seeks to relate these
features to political ideologies measured by our two political
dimensions. We call li the i-th learned dimensions, with i =

0, 1, ..., k − 1 (with k = 12). To identify learned dimensions



that might have a relation with political dimensions, we first
measure the correlation between user positions according to
these two types of dimensions. Among li for i = 0...k − 1,
we find that dimensions l3 and l4 hold statistically significant
correlations with our political dimensions (Pearson correlation
coefficient of respectively 0.24 for l3 and −0.46 for l4 with
Left-Right with p−value < 10−3 for both). We then measure
the mutual information of the positions of users on each
learned dimension with each of the two political dimensions.
We find that the two learned dimensions that have the highest
value of mutual information with political ones are the ones
with the highest correlation, l3 and l4. The mutual information
of positions of users on l3 and Left-Right is 0.09, and the
mutual information of positions of users on l4 and Left-Right
is 0.14. For reference, the next highest mutual information
value is 0.06. We will now seek to characterize users with
salience l3 and l4 values in the space subtended by our two
political dimensions. Fig. 2 shows how different populations
filtered by their values along these learned dimensions l3 and
l4 distribute spatially in our political space. For l3 and l4 we
consider a threshold l∗3 and l∗4 for which we will examine the
distributions of users with values above those thresholds. For a
given threshold, we select the population of users with values
above the threshold, compute a kernel density estimation in
our two-dimensional political space, and identify the level
curve for the probability being equal to 0.5. Fig. 2 shows that,
for raising values of thresholds l∗3 and l∗4 for l3 and l4, the
selected sub-populations are further specialized in particular
regions with precise political ideologies. Learned dimension
l3 increasingly identifies, with increasing values, left-leaning
anti-elite users, while learned dimension l4 increasingly iden-
tifies, with increasing values, right-leaning anti-elite users.

V. DISCUSSION AND CONCLUSIONS

In this article we have used knowledge on the political
opinions of users, represented in geometrical political space,
to inspect learned representations computed and leveraged by
a recommender system. These representations were computed
by the recommender without using political positions of users.
This has allowed us, for the first time, to show how and to
what degree a recommender system might be learning political
ideologies and attitudes, even when these are not variables
supplied during training. In other words, our results constitute
the first example of political algorithmic explainability. By
inspecting dimensions of the latent learned space of our NMF
recommender, we identified several dimensions that hold some
information contained in the political space representation of

users, as measured by mutual information. In particular for
the two latent dimensions of the recommender holding the
most political information, we were able to show that they
correspond to precise political niches in terms of ideologies.
The first of these two dimensions was found to be identifying
users holding far-left ideologies and high anti-elite sentiments,
while the second one was identifying users holding right-wing
ideologies and relatively high anti-elite sentiments. While
more analyses are needed to fully characterize how and if
other latent dimensions of the recommender hold political im-
portance, our results effectively trace a path bridging opinion
dynamics and recommender systems explainability, opening
the possibility to do political AI explainability and to modify
the design of recommenders via constraint learning.

These results also call for further modelization and testing
to improve our understanding of how political ideology might
translate to activity that the recommender might observe and
leverage. In particular, future results will focus on disentan-
gling to what other features these ideologies might be related
to, particularly in terms of classic socio-demographic and
socio-professional characterizations of users.

Our results are easily generalizable to any recommender that
relies on learned representations, making our method adapt-
able, for example, to encoder architectures. This new field of
research may in turn interest several different actors. On the
one hand, researchers interested in auditing may now inquire
about the degree to which algorithms are leveraging political
ideologies and attitudes when investigating the systemic con-
sequences of given recommenders on online social systems.
On the other hand, platforms interested in measuring and
limiting the political consequences of recommendations might
want to implement these methods, as they would allow to
posit new optimization problems, maximizing accuracy while
constraining the use of political information. While costly in
modelization efforts, these constrained problems might help
platforms to show compliance in minimizing systemic risks of
AI systems in the face of upcoming risk-oriented regulation
for algorithms.
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