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Abstract

This paper introduces a method for pricing insurance policies using market data. The approach is designed

for scenarios in which the insurance company seeks to enter a new market lacking historical data. The

methodology involves an iterative two-step process. First, a suitable parameter is proposed to characterize the

underlying risk. Second, the resulting pure premium is linked to the observed commercial premium using

an isotonic regression model. To validate the method, comprehensive testing is conducted on synthetic data,

followed by its application to a dataset of actual pet insurance rates. To facilitate practical implementation,

we have developed an R package called IsoPriceR. By addressing the challenge of pricing insurance policies

in the absence of historical data, this method contributes to enhancing pricing strategies in emerging markets.

MSC 2010: 62P05, 91G70, 62F15.
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1 Introduction

Modern insurance pricing relies on predictive modeling methods to ensure that premiums reflect, as accurately

as possible, the average cost of claims. To achieve this, insurers rely on historical data to train statistical
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learning models and calculate what is called the pure premium. While the foundation of standard actuarial

practice often rests on generalized linear models (GLM), see Renshaw [14], the relentless evolution of data

science has ushered in a new era where more sophisticated machine learning algorithms are also coming

into play, see Blier-Wong et al. [4] and the reference therein. However, a challenge arises when an insurance

company enters a new market, lacking historical data on the risks it aims to cover. In this context, conventional

predictive modeling tools are failing, leaving insurers at a crossroads, looking for innovative solutions to

navigate uncharted territory.

Although an insurance company may lack historical data in a new market, there is an attractive alternative:

the ability to observe and analyze market data consisting of rates offered by competitors for similar insurance

policies. Our approach leverages this market data to provide insights into the underwritten risk leading to

the calculation of insurance premiums. Our objective is to develop a methodology that determines suitable

commercial premiums based on the observed commercial rates of competitors.

The data collection process involves obtaining insurance quotes. To gather these quotes, one typically visits

insurance company websites and answers several questions about the insured risk. The premiums quoted

depend on the responses provided by the customer. In this paper, we use pet insurance as a case study. Pet

insurance covers health expenses for pets. A pet owner is required to specify the pet’s specie, breed, age,

and gender. These characteristics are referred to as rating factors in actuarial science and are crucial for risk

classification. For an overview of this topic, we direct the reader to the work of Antonio and Valdez [1]. An

insurance company looking to enter a new market would naturally identify these risk factors when collecting

data on the premiums offered by competitors.

Within a specific risk class, the risk is represented by a positive random variable, denoted as X, which quantifies

the total claim amount over the insurance policy period. Insurance companies mitigate this risk by offering

coverage for a portion of X, denoted as g(X) < X, in exchange for a premium. The process involves calculating

the pure premium, defined as p = E[g(X)]. Customers are subsequently offered a commercial premium that

is related to the pure premium by the equation π = f (p) > p, where f represents the loading function. Our

problem is formulated as follows: given a collection of insurance quotes D = {π1, . . . ,πn} associated with a

specific risk and varying loading and insurance coverage functions, represented as

πi = fi{E[gi(X)]}, i = 1, . . . ,n,

we aim at studying the distribution of the underlying risk X as well as approximate the loading functions in

order to quote our own insurance policies.
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Our approach assumes that the distribution of the risk X is parameterized by θ ∈Rd . Ideally, if the loading

functions fi , were known for i = 1, . . . ,n, a procedure akin to the generalized method of moments could be

used, see Hansen [10]. Unfortunately, these functions are not known. We adopt a two steps procedure. We

sample θ from a prior distribution p(θ) which delimits our parameter space. We compute the pure premiums

pθi = Eθ[gi(X)], based on the known coverages gi provided by the insurance policy and the sampled parameter

value θ. One key challenge to address is the lack of tractable expressions for the pure premiums as we assume

that X is governed by a compound distribution (i.e. a random sum). We therefore use a crude Monte-Carlo

approach which entails an approximation error linked to the number of Monte-Carlo replications of X we

use. The loading functions fi : R+→R+ are approximated using an isotonic regression model, chosen for its

ability to maintain the monotonic relationship between pure and commercial premiums—a desirable feature.

Additionally, market data is inherently noisy, and isotonic regression provides robustness to outliers, superior

to that of simple linear regression, for example. The procedure may be summarized as follows:

1. Sample a parameter value θ

2. Compute the pure premiums pθ
∗

i for each of the insurance policies i = 1, . . . ,n

3. Fit an isotonic function f to learn the relationship between the commercial premia πi and the pure

premia pθi

4. Build the ’synthetic’ market data Dθ by applying the estimated loading f to the pure premium f (pθi ) for

i = 1, . . . ,n

5. If the observed and synthetic market data are close enough then we store the parameter value θ and the

associated loading function f .

After iterating the above steps, we get a sequence of parameter-loading function pairs: (θ1, f1), (θ2, f2), . . .. This

sequence allows us to price our own insurance policies. The problem we tackle is an inverse problem and our

solution is inspired from indirect inference methodologies pionneered by Gourieroux et al. [9]. The proposed

algorithm to search the parameter space resembles Approximate Bayesian Computation (ABC) algorithms

described in the book of Sisson et al. [16]. The parameter values sampled θ1,θ2, . . . by the algorithm yields an

approximate posterior distribution p(θ|D). This posterior distribution accounts for the uncertainty around

the estimated parameter value due to the use of Monte Carlo simulation to calculate the pure premium. ABC

algorithms have found successful applications in a range of actuarial science and risk management problems.
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We refer the readers to the works of Peters et al. [13], Dean et al. [5], Peters and Sisson [12] and Goffard and

Laub [8] for further insights. Isotonic regression, a well-established statistical methodology, see for instance

Barlow et al. [2], plays a central role in our approach. A recent application in actuarial science addresses the

autocalibration challenges that can arise when pricing insurance contracts using machine learning algorithms,

see the work of Wüthrich and Ziegel [17].

The rest of the paper is organized as follows. Section 2 describes the risk model used in this study and discusses

insurance pricing principles. Section 3 provides a detailed account of the algorithmic procedure. Our method

is presented as an Approximate Bayesian Computation (ABC)-type optimization algorithm, which incorporates

a simple isotonic regression model. Section 4 presents the results of a simulation study designed to showcase

the performance of our method in a controlled environment. Lastly, we apply our algorithm on a dataset made

of real-world pet insurance rates in Section 5.

2 Model set up and insurance premium computation

An individual seeks to hedge against a risk X modeled by a positive random variable, over a given period of

time, say one year. A common model used for X in property and casualty insurance is given by a compound

loss variable

X =
N∑
k=1

Uk , (1)

where N is a counting random variable and the Uk ’s are independent and identically distributed (iid) positive

random variables independent from N . The random variable N is the number of occurrences of an event over

a given time period (annually), each of these events is associated to a compensation Uk . We assume here that X

represents a risk that belongs a specific risk class determined by risk factors.

2.1 Pure premium computation

An insurance company offers to bear part of this risk g(X) ≤ X in exchange for a premium which should

compensate the average cost of claim given by p = E [g(X)] , referred to as the pure premium. We consider in

this work a function g defined as

g(x) = min(max(r · x − d, 0), l),

where r ∈ (0,1] is the coverage rate, d > 0 is the deductible and l > 0 is the limit. We illustrate the impact of the

parameters of the insurance coverage in Example 1.
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Example 1. Let us consider a scenario where the risk has a Poisson-lognormal distribution X ∼ Poisson(λ =

3)− LogNorm(µ = 0,σ = 1) and that n = 100 insurance coverages are proposed. These are characterized by a rate, a

deductible and a limit, set randomly as

ri ∼ Unif([0.5,1]), di ∼ Unif([0.5,6]), and l =∞, for i = 1, . . . ,100.

Figure 1 shows the pure premiums

pi = E(gi(X)) = E(min(max(ri · x − di , 0), li)), i = 1, . . . ,100. (2)

as a function of the rates and deductibles.
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Figure 1: Pure premiums as a function of the rate of coverage (r) and the deductible (d) for a Poisson(λ =

3)− LogNorm(µ = 0,σ = 1) risk.

The pure premium are increasing in the rates and decreasing in the deductible. Note that the pure premiums were

estimated via a Crude Monte Carlo simulation method to overcome the lack of explicit formula for the distribution

functions of X.

In practice, the rate offered to policyholders include a loading to compensate for the variability of the risk and

cover the management costs. We describe this loading in the next section.

2.2 From pure premiums to commercial premiums

Let f : R+ 7→R+ be a nondecreasing function, such that

π = f (p) ≥ p.
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The function f is referred to as the loading function. As the commercial premium is a function of the pure

premium then we are applying the expectation premium principle. Other premium principle are also possible

like the standard deviation principle discussed in Appendix B. A simple loading function is linear in the pure

premium as

f (x) = (1 + η)x,

where η > 0. The loading functions used by insurance companies are unknown to us and vary from one

insurance company to the other. We follow up on Example 1 in Example 2 where we randomize the linear link

between pure and commercial premium.

Example 2. Take the pure premiums of Example 1 and apply the following linear loadings

ηi ∼ Unif([0.5,2]), for i = 1, . . . ,n.

The commercial premium then relates to the pure premium as

πi = (1 + ηi)pi , for i = 1, . . . ,n. (3)

Figure 2 displays the commercial premium as a function of the pure premium.
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Figure 2: Pure premium as a function of the commercial premium offered by various insurance companies.

We only observe the commercial premium π1, . . . ,πn and we would like to learn from them about the risk X

and the loading functions f1, . . . , fn. We formulate our problem and describe our solution in the next section.

3 Market derived insurance ratemaking
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The data at hand is a collection of insurance ratesD = {π1, . . . ,πn} associated to insurance coverages g1, . . . , gn for

a given risk X within a particular risk class. We suppose that these insurance rates D were derived according

to the model described in Assumption 1.

Assumption 1. The commercial rate D = {π1, . . . ,πn} are given by

πi = fi(pi) = fi
{
Eθ0

[gi(X)]
}
, i = 1, . . . ,n,

where the risk X is a random variable defined in (1), and parametrized by an unknown parameter θ0 ∈Θ ⊂R
d . The

loading functions f1, . . . , fn are unknown. The insurance coverage functions g1, . . . , gn are known and of the form

gi(x) = min(max(ri · x − di , 0), li), for i = 1, . . . ,n.

We wish to identify the parameter θ that best explains our data based on a loading function f that attempts to

average out the loading functions f1, . . . , fn used by the competitors. We aim to solve the following optimization

problem.

Problem 1. Denote by

pθi = Eθ [gi(X)] , for i = 1, . . . ,n,

the pure premium associated to a risk X parametrized by θ ∈Θ ⊂R
d . Further denote by pθ1:n and π1:n the collections

of pure and commercial premiums.

We wish to find θ ∈Θ ⊂R
d and f : R+ 7→R+ to minimize

d
[
π1:n, f (pθi:n)

]
, (4)

where the function f is applied elementwise on pθi:n and d(·, ·) denotes a distance function over the observation space,

subject to

πi ≥ pθi (5)

and

f (pθi ) ≥ pθi , (6)

for i = 1, . . . ,n.

The link between pure and commercial premiums is approximated using an isotonic regression model described

in Section 3.1. Section 3.2 focuses on the distance (4) used to compare the observed and model-generated

commercial rates. Finally, Section 3.3 refines the accept-reject algorithm laid out in the introduction to search

the parameter space in a more efficient way.
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3.1 Isotonic regression

Isotonic regression is a statistical technique used for fitting a non-decreasing function to a set of data points.

Suppose that we hold a collection of candidate pure premiums pθi:n, associated to a candidate risk parameter

θ. Our datapoints are therefore pairs of pure and commercial premiums (pθi ,πi)i=1,...,n. Suppose the pure

premium have been ordered such that pθi ≤ pθj for i ≤ j, isotonic regression seeks a least square fit πθ
i for the

πi ’s such that πθ
i ≤ πθ

j for pi ≤ pj . It reduces to find πθ
1 , . . . ,π

θ
n that minimize

n∑
i=1

(πθ
i −πi)

2, subject to πθ
i ≤ πθ

j whenever pθi ≤ pθj .

Since the pi ’s fall in a totally ordered space, a simple iterative procedure called the Pool Adjacent Violators

Algorithm (PAVA) can be used. Here’s a high-level overview of how it works:

1. Initialize the sequence of values to be the same as the data points π∗i = πi .

2. Iterate through the sequence and identify "violations," which occur when the current value is greater

than the next value, that is

π∗i > π∗i+1 for some i = 1, . . . ,n.

When a violation is found, adjust the values in the associated segment of the sequence to be the average

of the values,

π∗i ← (π∗i +π∗i+1)/2,

ensuring monotonicity.

3. Repeat Step 2 until no violations are left.

We use the isoreg function from R to get the fitted values πθ
i , i = 1, . . . ,n. To complete the isotonic regression

task we shall find a function f such that f (pθi ) = πθ
i . A common choice is a piece-wise constant function that

interpolates the πθ
i ’s as illustrated in Example 3.

Example 3. The isotonic fit of the data of Example 1 and Example 2 is provided on Figure 3.

Remark 3.1. When looking at Figure 3, one may object that a simple linear regression model could do the job. This

impression is partly due to the (noisy) linear link between pure and commercial premium in (14). Isotonic regression

is a non-parametric approach, meaning it doesn’t make strong assumptions about the underlying distribution or

functional form of the relationship between variables. This can be advantageous when the true relationship is not well

represented by a linear model. Furthermore, Isotonic regression is generally more resistant to outliers compared to
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Figure 3: Isotonic link between the pure and commercial premiums.

linear regression due to its piecewise constant nature and the way it enforces monotonicity. We briefly illustrate this

fact in Appendix A by looking at the residuals of the linear and isotonic regression and considering a non-linear link

function between pure and commercial premium.

The choice of isotonic regression anticipates the necessity of satisfying the constraints (5) and (6) of Problem 1.

This issue, which is primarily handled through the definition of an appropriate distance between observed and

model-generated commercial premiums, is at the center of the next subsection.

3.2 Distance and regularization

Our starting point to measure the discrepancy between observed and model-generated commercial rates is the

root mean square error (RMSE) defined as

RMSE
[
π1:n, f (pθi:n)

]
=

√√
1
n

n∑
i=1

[πi − f (pθi )]2, (7)

for a candidate risk parameter θ and an isotonic fit f . The way isotonic regression works implies that if two

parameters θ1 and θ2 yield the same ordering of pure premiums, then these two parameters will lead to the

same RMSE. When multiple values of the parameters are equally good, the model is said to be non-identifiable.

If we had access to the pure premium p1:n instead of the commercial rates, then our problem would reduce to

finding θ ∈Θ that minimizes

RMSE(p1:n,p
θ
1:n) =

√√
1
n

n∑
i=1

(
pi − pθi

)2
. (8)
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In that case, the statistical framework would be that of minimum distance estimation. As we do not have access

to the full shape of the data distribution, we base our inference on specific moments, just as in the generalized

method of moments, a popular method among econometricians (see Hansen [10]). The consistency of the

estimators depends on the functional gi ’s and is not easy to verify from a theoretical standpoint. Given the

shape of our insurance coverage function, there is hope in narrowing it down to the right parameters if the

pure premiums were accessible, as illustrated in Example 4.

Example 4. We consider the same model as in Example 1. Recall that the risk has a Poisson-lognormal distribution

X ∼ Poisson(λ = 3) − LogNorm(µ = 0,σ = 1) and that n = 100 insurance coverages are proposed. The rates,

deductibles and limit, are set randomly as

ri ∼ Unif([0.5,1]), di ∼ Unif([0.5,6]), and l =∞, for i = 1, . . . ,100.

Let us assume that µ = 0 and compute the pure premium over a grid of values for λ and σ . Figure 4 shows the

RMSE[p1:n,p
θ
1:n] depending on the value of λ and σ for (λ,σ ) ∈ [0,5]× [0,2]. This contour plot shows minimal RMSE
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Figure 4: Contour plot of RMSE(p1:n,p
θ
1:n) for µ = 0 and (λ,σ ) ∈ [0,5]× [0,2].

values around the true parameter values (λ0,σ0) = (3,1).

When dealing instead with commercial premiums and approximating the safety loadings function via an

isotonic regression model, many sets of parameters could exactly reproduce the ordering of the pure premiums

of the true parameter. Our problem is an ill-posed inverse problem. Ill-posedness is usually dealt with by

adding a regularization to the objective function that one wants to minimize. Our solution is based on targeting

a given loss ratio. The ratio of p/π corresponds to what practitioners would call the expected Loss Ratio (LR).

The loss ratio is a standard measure to assess the profitability of insurance lines of business. An insurance

company that enters a new market is likely to have insights on the loss ratio relative to this market , for example
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by having informal discussions with reinsurers, brokers or competitors. These insights may translate into the

definition of a lower and upper bound denoted by LRlow and LRhigh, respectively. We can then assume that the

loss ratios LRi = pi /πi , for i = 1, . . . ,n, should fall in the range [LRlow,LRhigh], which we refer to as the loss ratio

corridor. Assuming that LRhigh < 1, we may ensure both constraint (5) and LRi ∈ [LRlow,LRhigh] by adding to

our distance (7) two regularization terms defined as

Reglow

(
π1:n,p

θ
1:n

)
=

√√
1
n

n∑
i=1

(
πi − pθi ·LR−1

low

)2

+
,

and

Reghigh

(
π1:n,p

θ
1:n

)
=

√√
1
n

n∑
i=1

(
pθi ·LR−1

high −πi

)2

+
,

where (x)+ = max(x,0) denotes the positive part of x. The distance we consider within Problem 1 is now given

by

d
[
π1:n, f (pθ1:n)

]
= RMSE

[
π1:n, f (pθ1:n)

]
+ Reglow

(
π1:n,p

θ
1:n

)
+ Reghigh

(
π1:n,p

θ
1:n

)
.

We illustrate the impact of adding the regularization terms in Example 5.

Example 5. We consider the commercial rates of Example 2. Recall that the commercial premiums are given by

πi = (1 + ηi)pi , for i = 1, . . . ,n, (9)

where the pure premiums are those of Example 4 and

ηi ∼ Unif([0.5,2]), for i = 1, . . . ,n.

Figure 5 displays the contour plot of the discrepancy between observed and model-generated commercial rates. When

comparing Figure 5a and Figure 5b, we note how beneficial including regularization terms is to identify the true

parameter values.

Now that we have defined a distance function to compare observed and model-generated commercial premiums,

we can describe the procedure to search the parameter space.

3.3 Population Monte Carlo Approximate Bayesian Computation algorithm

Our solution alternates between proposing parameter values for the risk to compute the pure premiums and

approximating the fi ’s using isotonic regression. We must accommodate the lack of tractable expressions for

the pure premium

pθi = Eθ [gi(X)] , for i = 1, . . . ,n.

11



0.5

1.0

1.5

2.0

1 2 3 4 5

λ

σ

ε
(0.78, 0.80]
(0.80, 0.83]
(0.83, 0.85]
(0.85, 0.88]
(0.88, 0.90]
(0.90, 0.93]
(0.93, 0.95]
(0.95, 0.98]
(0.98, 1.00]
(1.00, 1.00]
(1.00, 1.76]

(a) Distance function without regularization

0.5

1.0

1.5

2.0

1 2 3 4 5

λ

σ

ε
(0.84, 1.14]
(1.14, 1.43]
(1.43, 1.73]
(1.73, 2.02]
(2.02, 2.32]
(2.32, 2.61]
(2.61, 2.91]
(2.91, 3.20]
(3.20, 3.50]
(3.50, 3.50]
(3.50, 37.53]

(b) Distance function with regularization

Figure 5: Contour plot of RMSE
[
π1:n, f (pθi:n)

]
and d

[
π1:n, f (pθi:n)

]
for µ = 0 and (λ,σ ) ∈ [0,5]× [0,2].

The use of numerical methods makes a grid search procedure prohibitive from a computing time point of view.

It also prevents us from using gradient-based optimization procedures. In such cases, one can turn towards

particle swarm optimization algorithms or genetic algorithms to search the parameter space. Since we have

decided to take a Crude Monte Carlo estimator for the pure premiums, the accuracy depends on the number

of replications R of X being used. We adopt a Bayesian strategy in order to reflect the uncertainty around

the pure premium calculation onto the parameters’ final estimates. Our algorithm is similar to Approximate

Bayesian Computation algorithms and we simply refine the procedure laid out in the introduction to get an

approximation of the posterior distribution p(θ|D).

We start by setting a prior distribution p(θ) over the parameter space that we sequentially improve through

intermediate distributions characterized by a sequence of tolerance levels (ϵg )g≥0 that decrease gradually as

∞ = ϵ0 > ϵ1 > ϵ2 > . . . > 0. Each intermediate distribution (called a generation) is represented by a cloud of

weighted particles (θj ,wj )j=1,...,J . We approximate each intermediate posterior distribution using a multivariate

kernel density estimator (kde) denoted by pϵg (θ|D). The parameters of the algorithm are the number of

generations G and the population size J (the number of particles in the cloud).

The algorithm is initialized by setting ϵ0 =∞ and pϵ0
(θ|D) = p(θ). For generation g ≥ 1, we hold an intermediate

distribution pϵg−1
(θ|D) from which we can sample particles θ∗ ∼ pϵg−1

(θ|D). We compute the associated pure

premium

pθ
∗

i = Eθ∗ [gi(X)] , for i = 1, . . . ,n.

The pure premiums are computed via Monte Carlo simulation. The accuracy depends on the number R of
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copies of X involved in the Monte Carlo estimations. We then fit the isotonic regression model

πi = f
(
pθ
∗

i

)
+ ei , for i = 1, . . . ,n,

where ei is an error term that captures the mismatch between the true value of the pure premium and

its empirical counterpart estimated by the competitor insurance company using its historical data and the

company-specific loading function. We further compare the observed commercial premiums to the model-

generated ones via the distance defined in Section 3.2 with

d
[
π1:n, f

(
pθ
∗

1:n

)]
= RMSE

[
π1:n, f

(
pθ
∗

1:n

)]
+ Reg1

(
π1:n,p

θ∗
1:n

)
+ Reg2

(
π1:n,p

θ∗
1:n

)
.

If the distance satisfies d
[
π1:n, f

(
pθ
∗

1:n

)]
< ϵg−1, then we keep the associated particle θ∗. New particles are

proposed until we reach J accepted particles denoted by θ
g
1 , . . . ,θ

g
J . We also store the distances dg1 , . . . ,d

g
J . We

need to set the next tolerance threshold ϵg , which is used to calculate the particle weights

w
g
j ∝

p(θg
j )

pϵg−1
(θ)

Id
g
j <ϵg−1

, j = 1, . . . , J.

The tolerance threshold is chosen so as to maintain a specified effective sample size (ess) of J/2 as in Del Moral

et al. [6]. Following Kong et al. [11], the ess is estimated by 1/
∑J

j=1(wg
j )2. This weighted sample then allows us

to update the intermediate distribution as

pϵg (θ|D) =
J∑

j=1

w
g
j KH (θ −θg

j ),

where KH is a multivariate kde with smoothing matrix H . A common choice for the kde is the multivariate

Gaussian kernel with a smoothing matrix set to twice the empirical covariance matrix of the cloud of particles

{θg
j ,w

g
j } as in Beaumont et al. [3]. The procedure is summarized in Algorithm 1.

The user must configure several aspects of the algorithm. The prior assumptions p(θ) determine the parameter

space that will be searched. The loss ratio corridor [LRlow,LRhigh] sets up the two regularization terms,

ensuring that parameters associated with unreasonable pure premiums are excluded. Prior settings and the

loss ratio corridor can be guided by expert opinions. The population size J drives the quality of the posterior

distributions approximations through the cloud of particles. A large J also enhances the chances of finding

the global optimum, as more particles improve the coverage of the parameter space. A greater number R of

Monte Carlo simulations ensures the accuracy of the pure premium evaluation. Both R and J contribute to

the stability of the algorithm’s results over several runs. The number of generations G relates to the tolerance

level ϵ, which in turn drives the narrowness of the posterior distribution output by the ABC algorithm. As one
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Algorithm 1 Population Monte Carlo Approximate Bayesian Computation

1: set ϵ0 =∞ and pϵ0
(θ | D) = π(θ)

2: for g = 1→ G do

3: for j = 1→ J do

4: repeat

5: generate θ∗ ∼ pϵg−1
(θ | x)

6: compute pθ
∗

i = Eθ∗ [gi(X)] , for i = 1, . . . ,n

7: fit the isotonic regression model πi = f (pθ
∗

i ) + ei , for i = 1, . . . ,n

8: compute d
[
π1:n, f

(
pθ
∗

1:n

)]
= RMSE

[
π1:n, f

(
pθ
∗

1:n

)]
+ Reg1

(
π1:n,p

θ∗
1:n

)
+ Reg2

(
π1:n,p

θ∗
1:n

)
.

9: until d
[
π1:n, f

(
pθ
∗

1:n

)]
< ϵg

10: set θg
j = θ∗ and d

g
j = d∗

11: end for

12: find ϵg ≤ ϵg−1 so that êss =
[∑J

j=1(wg
j )2

]−1
≈ J/2, where

w
g
j ∝

p(θg
j )

pϵg−1
(θg

j | D)
Idj<ϵg , j = 1, . . . , J

13: compute pϵg (θ | D) =
∑J

j=1w
g
j KH (θ −θg

j )

14: end for
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would expect, the computational time for the algorithm increases with higher values of R,J and G. Therefore,

the choice of suitable values for G, J , and R can be made in consideration of a predetermined computational

time budget. A practical solution to set G on the fly is to stop the algorithm whenever the difference between

two consecutive tolerance levels is lower than some threshold ∆ϵ. We illustrate the posterior distribution

evolution along the algorithm iterations in Example 6.

Example 6. We follow up on Example 4 and Example 5. We aim to fit the model

X ∼ Poisson(λ)− LogNorm(µ = 0,σ ).

The prior asumptions are as follows

λ ∼ Unif([0,10]), and σ ∼ Unif([0,5]).

The algorithm parameters are set to

J = 1000, R = 1000, ∆ϵ = 0.1, and LR ∈ [0.3,0.66].

The algorithm halts at the 9th generation reaching a tolerance level of ϵ = 0.87. Figure 6 shows the sequence

intermediate posterior distributions for λ and σ .
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Figure 6: Intermediate posterior distributions of λ and σ .
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After the algorithm terminates, it is customary to focus on the last generations of particles for inference.

Pointwise estimators are derived from this final set of particles. Two commonly used estimators include the

Mean A Posteriori (map) obtained by averaging the particles in the last cloud and the Mode A Posteriori (mode),

which is the mode of the empirical distribution within the final cloud of particles. The simulation study,

conducted in the following section, is designed to investigate the convergence behavior and to compare the

characteristics of the map and mode estimators.

4 Methodology Assessment via Simulation

In this section, we embark on an empirical exploration, seeking to understand how the posterior distribution

of the parameters behaves as the sample size n increases. This experimentation has been designed to resemble

as much as possible the real data situation considered in Section 5.3. We consider the risk, within a particular

risk class, to be distributed as the random variable

X =
N∑
k=1

Uk ,

where

N ∼ Poisson(λ = 0.3), (10)

and

Uk ∼ LogNorm(µ = 6,σ = 1), k = 1, . . . ,N . (11)

The Ui ’s are iid and independent from N . We suppose that we know the variance parameter σ and we try

to draw inference on λ and µ. The parameter values of the claim frequency and severity in (10) and (11)

respectively are those infered in Section 5.3 for the Poisson− LogNorm model using the mode estimator. The

prior distributions are set to independent uniforms for λ and µ as

λ ∼ Unif([0,10]), and µ ∼ Unif([−10,10]).

We generate artificial synthetic commercial premiums for this case study according to

πi = (1 + ηi)E[gi(X)] = (1 + ηi)E{min[max(ri ·X − di ,0), li]}, i = 1, . . . ,n,

where the premium parameters r, d and l are sampled from that of the real data considered in Section 5, so

that the simulated data is as close as possible to the real data. The ηi ’s are iid from ηi ∼ Unif([1.43,2.5]), which

corresponds to loss ratios between 40% and 70%. We further set LRlow = 40% and LRhigh = 70%. We consider

sample of sizes 25,50,100, and 200. We configure the algorithm with a population size of J = 1,000 and use
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R = 2,000 Monte Carlo replications. To ensure the algorithm’s efficiency, we set a stopping threshold, requiring

that the difference between two consecutive tolerance levels is smaller than ∆ϵ = 1 for the algorithm to halt.

These settings are kept for the analysis of real-world data, as they strike a balanced compromise between

accuracy and computing time. We generate 100 samples of fake data and apply our procedure. Our goal is to

compare the result obtained using our two pointwise estimators: the mean a posteriori map and the mode a

posteriori mode. The estimators of the parameters λ and µ are given on Figure 7.
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Figure 7: map and mode estimators of the parameter of the model Poisson(λ = 0.58)− LogNorm(µ = 5.75,σ = 1)

based on synthetic market data of sizes 50,100,250, and 500.

Both of the point-wise estimators seem to converge toward the parameter values that generated the data. The

map exhibits a better behavior than the mode as its variability decreases in a notable way as the sample size

increases.

In Figure 8, we present a comparison of key metrics, including the average claim amount, the average claim

frequency, the probability of no reported claims, the average total claim amount, and the average loss ratio ,

defined as

LR =
1
n

n∑
i=1

pi
πi

,

.
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Figure 8: map and mode estimator of the features of the Poisson(λ = 0.3)− LogNorm(µ = 6,σ = 1) loss model

based on synthetic market data of sizes 25,50,100, and 200.

Both estimation methods yield satisfactory results in recovering the characteristics of the loss distribution but

the use of the map yields more reliable estimations.

5 Application to the pet insurance market

5.1 Evolution and growth of the pet insurance market

Pet insurance is a product designed to cover the costs of veterinary care for pets. It operates on a similar

principle to human health insurance, providing a way for pet owners to manage the financial risks associated

with unexpected medical expenses for their animals. Usually the expenses are covered in case of an accident
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or a disease. Pet owners can choose from different policy options based on their budget and coverage needs.

Policies may vary in terms of deductibles (d), coverage limits (l), and coverage rates (r). The cost of premiums

can depend on various factors, including the pet’s age, breed, health condition, and the level of coverage

selected.

The pet insurance market has been witnessing significant growth globally, driven by increasing pet ownership

(especially with so-called pandemic pets, i.e. animals adopted during 2020 lockdowns), rising veterinary costs

and the changing role that a pet plays in a families social structure. This latter factor is also influenced by

changing societal views and the increased awareness of the importance of health and welfare of pets, which

in turn comes with increased consideration of regular veterinary health checks . In order to offset the cost

associated with such expenditures, there has begun to be a broader interest in households purchasing pet

insurance.

To date, the adoption and acceptance of pet insurance still varies significantly across regions of the world.

Nordic countries, such as Sweden, have historically had a very high penetration rate with around 70% of

pets insured. Some Anglo-Saxon countries (UK and Germany mostly) have seen significant growth in the pet

insurance market during the last decades, leading to 30% of penetration rate. Other developed countries, like

France, have significantly lower market sizes, with less than 10% of pets that are insured, which suggests high

growth potential. The market place for pet insurance in the USA is currently also experiencing sustained

growth. According to, MarketWatch guides annual insurance surveys1, about 44.6% of pet owners stated they

currently have pet insurance in the nationwide survey. Furthermore, the North American Pet Health Insurance

Association (NAPHIA) undertook a survey in 2022 on the "State of the Industry Report" and found that more

than 4.41 million pets were insured in North America in 2021, up from 3.45 million in 2020. The report also

found that $2.84 billion of pet insurance premiums were in force in 2021, a 30.5% increase from 2020.

This growth continues to spur increases in the capital investments associated with such an insurance line of

business:

• in Sweden, Lassie has raised 11m euros in 2022 and 23m euros in 2023 ;

• in the UK, ManyPets has raised $350m at a valuation higher than $2bn in 2021;

• in France, Dalma has raised 15m euros in 2022.

• JAB Holding Company has invested around 2 billion dollars in 2021 to create the Pinnacle Pet Group

1https://www.marketwatch.com/guides/pet-insurance/pet-insurance-facts-and-statistics/
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and the Independence Pet Holdings. Their purpose is to become the pet insurance leaders respectively in

Europe and North America through multiple acquisitions of historic players.

Hence, the pet insurance market is becoming more competitive with an increasing number of insurance

companies or brokers offering pet insurance policies. To gain new market shares as a new agent, there is a need

to propose differentiated products such as new cover mixes without deductible and higher limits.

5.2 Data description

During the week of the 18th of May 2024, we have collected 1,080 quotes from 5 insurance companies. Each row

of our datasets corresponds to a yearly premium collected from some insurance company website associated

to a specific insurance coverage and a specific dog. We therefore find the coverage parameters which are the

coverage rate r, the deductible d and the limit l. Recall that the compensation for an annual expense of amount

X is calculated as min[max(r ·X − d,0), l]. We also have the rating factors which reduces for pet insurance in

France to specie, breed, age and gender. Table 1 provides a list of the variables in the datasets.

Variable Type Description Example

specie character Specie of the pet dog

breed character Breed of the pet australian sheperd

gender character Gender of the pet female

insurance_carrier character identification number of the insurance company 1

age numeric Age of the pet (in years) 4 years

r numeric Value of the coverage rate 0.6

l numeric Value of the limit of the insurance coverage 1100

d numeric Value of the deductible of the insurance coverage 0

x numeric Yearly commercial premium 234.33

Table 1: List of the variables of our datasets

The first five rows are given in Table 2.

specie breed gender insurance_carrier r l d age x

dog australian sheperd female 1 0.60 1100.00 0.00 2 years 221.34

dog australian sheperd female 1 0.70 1500.00 20.00 2 years 290.62

dog australian sheperd female 1 0.80 1800.00 30.00 2 years 361.53

dog australian sheperd female 1 1.00 2500.00 75.00 2 years 739.27

dog australian sheperd female 1 0.90 2200.00 50.00 2 years 594.28

Table 2: First five rows of our datasets
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We have collected rates associated to 12 risk classes given in Table 3.

Risk class # specie breed gender age

1 dog australian sheperd female 4 months

2 dog australian sheperd female 2 years

3 dog australian sheperd female 4 years

4 dog french bulldog female 4 months

5 dog french bulldog female 2 years

6 dog french bulldog female 4 years

7 dog german sheperd female 4 months

8 dog german sheperd female 2 years

9 dog german sheperd female 4 years

10 dog golden-retriever female 4 months

11 dog golden-retriever female 2 years

12 dog golden-retriever female 4 years

Table 3: The 12 risk classes under study

It means that we have 90 quotes to study each risk class. Figure 9 provides a visual overview of the range of

insurance coverage options available in the pet insurance market.
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Figure 9: Overview of the insurance coverages offered by the five insurance companies operating in the French

market under study.

We conduct two separate studies. In Section 5.3, we focus on a specific risk class associated to a female, 4 years

old, australian sheperd. Several claim models are compared. One is selected to look into the pricing strategies

of the actors. In Section 5.4, we look into the quotes of various risk classes that we investigate using a single

model.
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5.3 Analysis of one risk class using several models

We study 90 quotes from 5 insurers operating in the pet insurance market for a specific risk class associated

to a 4-year-old female Australian Shepherd. We need to make some parametric assumptions to model claim

frequency and severity. Classical claim frequency distributions include the Poisson, Binomial, and Negative

Binomial distributions, which allow us to accommodate equidispersion, underdispersion, and overdispersion,

respectively. For claim severity, we have chosen the Gamma and Lognormal distributions. The Gamma

distribution is a common choice for modeling claim severity when using generalized linear models, but it

is characterized by a light left tail. The Lognormal distribution has thicker tails, making larger claim sizes

more likely to occur. We limit ourselves to two-parameter models: one parameter for claim frequency and

another for claim severity. We consider three claim frequency distributions including Poisson(λ), Bin(12,p)

and Geom(p). The choice of setting the number of trials in the Binomial distribution to 12 aligns with our

focus on annual expenses, making it a suitable choice to capture the monthly probability of a claim occurrence.

The prior settings for the parameters are as follows:

λ ∼ Unif([0,10]), p ∼ Unif([0,1]). (12)

We consider three claim severity distributions including LogNorm(µ = 0,σ ), LogNorm(µ,σ = 1), and Gamma(α,β =

1). The prior settings over the parameters of the claim size distributions are as follows:

µ ∼ Unif([−10,10]), σ ∼ Unif([0,10]), and α ∼ Unif([0,105]). (13)

Combining the distributions for the claim frequency and severities results in a total of 9 loss models. The

population size in the abc algorithm is set to J = 1,000. The pure premiums are computed using R = 2,000

Monte Carlo replications. The algorithm stops whenever the difference between two consecutive tolerance

levels is lower than ∆ϵ = 1. The bounds for the loss ratio corridor are set to LRlow = 40% and LRhigh = 70%.

The posterior distributions of the parameters for each model are provided in Figure 10.
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Figure 10: Posterior distribution of the parameters of the loss models when fitted to the pet insurance dataset.
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For all the models, the algorithm updates the prior distribution in an informative way. Table 4 provides the

tolerance levels (ranked in increasing order) during the last iteration of the abc algorithm for the loss models.

Model ϵ

NegBin(b = 1,p)−Gamma(α,β = 1) 87.50

Poisson(λ)−Gamma(α,β = 1) 93.72

Bin(a = 12,p)−Gamma(α,β = 1) 94.69

NegBin(b = 1,p)− LogNorm(µ,σ = 1) 95.85

Poisson(λ)− LogNorm(µ,σ = 1) 96.20

Bin(a = 12,p)− LogNorm(µ,σ = 1) 96.24

NegBin(b = 1,p)− LogNorm(µ = 0,σ ) 108.64

Bin(a = 12,p)− LogNorm(µ = 0,σ ) 112.99

Poisson(λ)− LogNorm(µ = 0,σ ) 113.15

Table 4: Tolerance level during the last iteration of the abc algorithm fo each loss model

The final tolerance level for almost all the models lies between 87.5 and 113.15 which is higher than the

tolerance obtained in the simulation study which was around 33 for 50 data points and 50 for 200 data points.

This discrepancy indicates misspecifications which stem from our assumptions about insurance companies

adhering to the expectation principle for premium calculation and the models employed for claim frequency

and claim amounts. Table 5 reports the estimations of the parameters of all the model using the map and the

mode.

Table 6 reports the estimations of the average total claim amounts and the average loss ratio for all the models

for all models when fitted using the map and the mode.

We note that the risk level characterized here by the expected total claim amount is similar for all the models,

maybe a bit higher for the models having the LogNorm(µ = 0,σ ) as claim sizes distribution. We further look

the loading function approximated via the isotonic regression. We estimate the pure premium for each model

using the map as an estimator of the model parameters and we plot the isotonic regression function to explain

the commercial premium on Figure 11.

The isotonic fits of the loading function accross all the models are similar which means that the models all

agree on a common ordering of the pure premiums of the various insurance coverages. To highlight the

explanatory power of our methodology, let’s focus on the Poisson(λ)− LogNorm(µ,σ = 1) loss model. Note that

the choice of the loss model is somewhat arbitrary because the information extracted from the data in Figure 11
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Model map mode

Poisson(λ)− LogNorm(µ,σ = 1) λ 0.31 0.30

µ 6.14 6.19

Bin(a = 12,p)− LogNorm(µ,σ = 1) p 0.03 0.02

µ 6.15 6.24

NegBin(b = 1,p)− LogNorm(µ,σ = 1) p 0.73 0.73

µ 5.97 5.92

Poisson(λ)−Gamma(α,β = 1) λ 0.16 0.14

α 1365.53 1491.75

Bin(a = 12,p)−Gamma(α,β = 1) p 0.01 0.02

α 1367.31 1191.38

NegBin(b = 1,p)−Gamma(α,β = 1) p 0.85 0.86

α 1274.47 1260.02

Poisson(λ)− LogNorm(µ = 0,σ ) λ 5.30 4.24

σ 2.97 3.11

Bin(a = 12,p)− LogNorm(µ = 0,σ ) p 0.42 0.40

σ 3.00 3.03

NegBin(b = 1,p)− LogNorm(µ = 0,σ ) p 0.13 0.13

σ 2.82 2.78

Table 5: map and mode estimator for the parameters of the loss models.

Loss ratio E(X)

Model map mode map mode

Poisson(λ)− LogNorm(µ,σ = 1) 0.62 0.62 239.34 245.04

Bin(a = 12,p)− LogNorm(µ,σ = 1) 0.62 0.60 234.68 238.20

NegBin(b = 1,p)− LogNorm(µ,σ = 1) 0.61 0.60 232.89 224.96

Poisson(λ)−Gamma(α,β = 1) 0.66 0.60 225.36 208.23

Bin(a = 12,p)−Gamma(α,β = 1) 0.60 0.65 204.51 219.76

NegBin(b = 1,p)−Gamma(α,β = 1) 0.63 0.64 220.44 221.00

Poisson(λ)− LogNorm(µ = 0,σ ) 0.62 0.61 422.78 730.47

Bin(a = 12,p)− LogNorm(µ = 0,σ ) 0.64 0.64 510.01 564.42

NegBin(b = 1,p)− LogNorm(µ = 0,σ ) 0.60 0.60 322.39 299.85

Table 6: map and mode estimators of the average loss ratio and average total claim amounts.

is relatively consistent across most of the considered models. In Figure 12, we present a plot that illustrates the

relationship between the commercial premium and the pure premium for the Poisson(λ)− LogNorm(µ,σ = 1)

model. Different insurance companies are indicated by distinct colors, providing a visual representation of
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Figure 11: Isotonic link between pure and commercial premium for the different loss models.

each company’s respective rates.
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Figure 12: Commercial premium as a function of the pure premium for the Poisson(λ)− LogNorm(µ,σ = 1)

depending on the insurance carrier.

Fitting loss models enables us to condense the three-dimensional information of the rate of coverage, deductible,

and limit into a single metric: the pure premium. Subsequently, isotonic regression unveils the relationship

between commercial and pure premiums, providing a link between the two. The distinctions among various

players in the pet insurance market come to light through the color-coded points, offering insights into the

pricing strategies adopted by industry participants.
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5.4 Analysis of several risk classes with one model

The Poisson(λ)− LogNorm(µ,σ = 1) model is fitted to the data within each risk classes (90 quotes) of Table 3.

The prior settings are given by

λ ∼ Unif([0,10]), and µ ∼ Unif([−10,10]).

The algorithm’s hyperparameters are similar to that of the previous subsection with

J = 1000, R = 2000, and ∆ϵ = 1.

Figure 13 shows the posterior predictive distribution of the expected total claim amounts and the averaged

loss ratio within each risk class.
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Figure 13: Posterior predictive distribution of E(X) and average loss ratio within each risk class.

Figure 13a allows us to compare the different risk classes. We note that an older dog is more expensive on

average and that the breeds may be ordered as Australian Sheperd, Golden-Retriever, German sheperd and

french bulldog in terms of riskiness. Figure 13b indicates that the loss ratios are around 62− 65% for all the

risk classes.
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6 Conclusion

We have developed a robust methodology for risk assessment based on market data. We employ a one-

parameter model for the claim frequency and claim size distribution, connecting the pure premium to the

commercial premium through an isotonic regression model. This approach optimizes the alignment between

commercial and pure premiums while providing a framework for quantifying the associated parameter

uncertainty through an Approximate Bayesian Computation algorithm.

The methodology’s effectiveness and reliability have been validated within a simulation study and a practical

application to an actual pet insurance dataset. This methodology is made accessible to the community through

our R package, IsoPriceR2.

While the results are promising, there remain avenues for further research. Future investigations can explore

the selection of the most suitable model and consider the integration of historical data when it becomes

available. One direction is the development of a credibility framework that combines historical and market

data, providing a comprehensive perspective on risk assessment and pricing in emerging markets.
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A Comparison of linear and isotonic regression to predict commercial

premiums

Instead of the linear link of (14) between pure and commercial premium, we consider

πi = ai exp(−bi exp(cpi), for i = 1, . . . ,n. (14)

where

ai ∼ Unif(5,10]), bi ∼ Unif(2,6]), and c = 2 for i = 1, . . . ,n.

This is a Gompertz growth curve type of link. The commercial premiums as a function of the pure premium is

shown on Figure 14.
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Figure 14: Isotonic link between the pure and commercial premiums.

We further compare the residuals of the isotonic regression model fitted to the data of Figures 3 and 14 to that

of a linear regression model fitted to the same data on Figure 15 We note the proximity of the two models

when the link between the pure and commercial premium is linear. When the link is not linear then isotonic

regression model outperforms linear regression.

B Other premium principle

This paper focuses on the expectation premium principle as we try to inform the link f between the commercial

premium π and the pure premium p = E[g(X)]. Other premium principles such as the standard deviation
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Figure 15: Boxplot of the residuals of the linear and isotonic regression models fo a linear and a Gompertz

type link between pure and commercial premiums.

principle can be considered by slightly adapting the method. Under such principle we have

π = f
(
E[g(X)],

√
V [g(X)]

)
. (15)

where f : R+ ×R+ 7→ R+. The same methodology applies, we simply need a bivariate modle for f . The

commercial premium should be increasing whenever the pure premum or the variance of the risk increases

which leads to consider generalization of the univariate isotonic regression models which are readily available

in the litterature see the work of SASABUCHI et al. [15]. More sophisticated premium principles such as the

Escher principle or the utility indifference principle are also possible. Premium principles are described at

length in actuarial science textbooks such as Dickson [7]. Considering a premium principle instead of another

leads to model misspecification and will impact the final estimates of the underlying risk.
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