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Abstract

Designing online algorithms with machine learning predictions is a recent technique beyond
the worst-case paradigm for various practically relevant online problems (scheduling, caching,
clustering, ski rental, etc.). While most previous learning-augmented algorithm approaches focus
on integrating the predictions of a single oracle, we study the design of online algorithms with
multiple experts. To go beyond the popular benchmark of a static best expert in hindsight,
we propose a new dynamic benchmark (linear combinations of predictions that change over
time). We present a competitive algorithm in the new dynamic benchmark with a performance
guarantee of O(logK), where K is the number of experts, for 0−1 online optimization problems.
Furthermore, our multiple-expert approach provides a new perspective on how to combine in an
online manner several online algorithms - a long-standing central subject in the online algorithm
research community.

1 Introduction

The domain of algorithms with predictions [24] - or learning augmented algorithms - emerged re-
cently and grown immensely at the intersection of (discrete) algorithm design and machine learning
(ML). Combining ML techniques with traditional algorithm design methods enables online algo-
rithms to benefit from predictions that can infer future information from patterns in past data. On-
line algorithms with predictions can obtain performance guarantees beyond the worst-case analysis
and provide fine-tuned solutions to various problems. In the literature, many significant problems
have new learning-augmented results, for example, scheduling [20, 23], caching (paging) [21, 25, 4],
ski rental [14, 19, 3], counting sketches [16], bloom filters [18, 22], and metric task systems [5].

Even though predictions provide a glimpse of the future, there is no mathematical guarantee
of their accuracy. Adjusting the algorithm’s trust in the predictions is a significant challenge since
online algorithms must make irrevocable decisions at each time step. Ideally, if the predictions are
accurate, the algorithm should perform well compared to the offline setting. In contrast, if the
predictions are misleading, the algorithm should maintain a competitive solution, similar to the
online setting where no predictive information is available. In other words, online algorithms with
predictions are expected to bring the best of both worlds: mathematical performance guarantees
of classical algorithms and good future prediction capabilities of machine learning methods.

Predictions can come from multiple sources (heuristics, oracles, randomized methods, etc.), but
we ignore their nature and call all of them experts. An algorithm’s consistency with the experts’
suggestions is typically measured by comparing the algorithm’s result with the solution of the best
expert. A representative example is the popular notion of regret in online learning, which fueled
the development of many powerful algorithms and techniques.
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A natural research question is whether it is possible to design competitive algorithms with
mathematical performance guarantees with a stronger benchmark than the best expert. Comparing
an algorithm with a stronger benchmark could provide deeper insights into the learning process
and give better ways of exploiting the experts’ predictions.

Taking a broader view, we can study whether combining predictions of several experts is similar
to combining multiple online algorithms and whether we can expect to achieve better solutions with
the combination. Assuming that we do not know in advance which of the given algorithms would
perform best on the upcoming requests, can we combine the algorithms in some generic way to
obtain a competitive online strategy? This has been a long-standing question in the community of
online algorithms [6, 8]. To find an answer, it is a crucial to understand to what extent such an
online strategy can benefit from the input of multiple algorithms and what is a suitable benchmark
to evaluate its performance.

While in a completely general setting such an online strategy and a corresponding benchmark
may not exist, in our paper we propose an algorithm for online linear problems with covering
constraints that is competitive with a new benchmark (informally the best linear combination of
the experts). Therefore, our paper partially addresses the question we raised in the previous
paragraph.

1.1 Model and Problem

Covering problem with experts. We have n resources and each resource i has a cost per unit
ci that we know in advance (1 ≤ i ≤ n). Let xi be a non-negative variable representing the amount
chosen from resource i. The total cost of a solution (xi)

n
i=1 is

∑n
i=1 cixi. The problem includes K

experts and the problem’s (covering type) constraints are revealed online (one by one). At each
time t ≥ 1, we receive a covering constraint

∑n
i=1 a

t
ixi ≥ 1 (where ati ≥ 0) and each expert k

(where 1 ≤ k ≤ K) provides a solution (sti,k)
n
i=1. An algorithm can observe the experts’ solutions

and afterwards it must update its own solution (denoted as (xti)
n
i=1) to satisfy the new constraint,

while maintaining the satisfaction of the previous ones. This algorithm must update its solution
in the sense of online algorithms, so it cannot modify the previously made decisions. Formally,
xti ≥ xt−1i ∀ i, t. Our goal is to design such an algorithm and minimize

∑n
i=1 cix

T
i subject to all

online covering constraints t, where 1 ≤ t ≤ T . The value T is the last time a constraint is released,
and it is not known by the algorithm.

Experts. In our model, the experts’ predictions are also online solutions. In other words, the
experts’ solutions fulfill the following properties:

1. for every expert k and for every time t the solution (sti,k)
n
i=1 is feasible, therefore, every

constraint t′ where 1 ≤ t′ ≤ t is satisfied;

2. for every expert k and for every time t and for every resource i, the previous expert solutions
are irrevocable, therefore sti,k ≥ st

′
i,k for all t′ ≤ t.

These properties can be verified online. If some experts do not satisfy them, we simply ignore those
experts both in the decision-making and in the benchmark. A crucial remark: we do not assume
that the experts’ solutions must be tight at each constraint t, meaning that

∑n
i=1 a

t
is

t
i,k = 1 ∀t, k.

This assumption is unrealistic and cannot be maintained in an online manner (see the discussion
in Appendix A). Besides, assuming tight constraint satisfaction would simplify the problem, while
intuitively, the difficulty of designing competitive algorithms comes from the lack of obvious ways
to distinguish good expert solutions from (probably many) non-efficient/misleading ones.
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min

n∑
i=1

cix
T
i = min

n∑
i=1

ci

T∑
t=1

(
xti − xt−1i

)
subject to

K∑
k=1

wt
k = 1 ∀ t

xti ≥
K∑
k=1

wt
ks

t
i,k ∀ i, t

xti ≥ xt−1i ∀ i, t
wt
k ≥ 0 ∀ t, k

where 1 ≤ t ≤ T and 1 ≤ i ≤ n.

Figure 1: Formulation of the LIN-COMB benchmark

Benchmark. We consider a dynamic benchmark that intuitively captures the best linear combi-
nation of all experts’ solutions over time. Informally, at any online time step, the benchmark can
take a linear combination of the experts’ solutions. The linear combination can be changed over
time, and it can be different from previous combinations. However, the benchmark’s decisions are
also online, so it cannot decrease the value of the decision variables (xi). We refer to our benchmark
with the name LIN-COMB from now on.

The LIN-COMB benchmark’s formal description is a linear program, visible on Figure 1. Let
wt
k ≥ 0 be the weight assigned by the LIN-COMB benchmark to expert k (where 1 ≤ k ≤ K) at

time t. Since we consider a linear combination, the constraint
∑K

k=1w
t
k = 1 must hold. The

solution of LIN-COMB at time t is ideally xti =
∑K

k=1w
t
ks

t
i,k, however, x

t
i must be larger than xt−1i .

Therefore, we set xti = max
{∑K

k=1w
t
ks

t
i,k, x

t−1
i

}
. In other words, given the chosen weights, if∑K

k=1w
t
ks

t
i,k < xt−1i then xti ← xt−1i , otherwise xti ←

∑K
k=1w

t
ks

t
i,k.

Since every expert’s solution is feasible by our assumptions, at each time t and for all resource i
(where 1 ≤ i ≤ n), the constructed solution xti ≥

∑K
k=1w

t
ks

t
i,k constitutes a feasible solution to the

covering constraints of the original covering problem. Formally, for every constraint t′ with t′ ≤ t,

n∑
i=1

at
′
i x

t
i ≥

n∑
i=1

at
′
i

( K∑
k=1

wt
ks

t
i,k

)
=

K∑
k=1

wt
k

( n∑
i=1

at
′
i s

t
i,k

)
≥

K∑
k=1

wt
k ≥ 1

where the second inequality holds due to the feasibility of the experts’ solutions. We highlight that
the best-expert benchmark is included in LIN-COMB. By setting wt

k∗ = 1 for all t, where 1 ≤ t ≤ T ,
and wt

k = 0 for all k 6= k∗ where k∗ we get the best expert in hindsight (so xti = sti,k∗ for all i, t).

1.2 Our approach and contribution

To design competitive algorithms with the new benchmark, we consider a primal-dual approach.
First, we relax the linear program formulation of LIN-COMB (visible on Figure 1), which serves as a
lower bound. Then, we take the dual of the relaxation, which is a lower bound on the relaxation.
Therefore, following the chain of lower bounds, the dual problem is a lower bound on the LIN-COMB
benchmark.
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At every time step during the execution, our algorithm constructs decisions based on the solu-
tion of a convex program. Our approach is inspired by the convex regularization method of [11].
The objective of the convex program is a shifted entropy function. These functions have been
widely used, in particular in the recent breakthrough related to k-server [10, 12] and metrical tasks
problems [9], in which the entropy functions are shifted by constant parameters. A novel point
in our approach is that the entropy function is shifted by the average of the experts’ solutions.
Moreover, regarding the constraints of the convex program, instead of using the experts’ solutions
directly, we define auxiliary solutions that guarantee tight constraint satisfaction and use them in
the constraints. Intuitively, this eliminates/modifies the malicious experts’ solutions.

Let ρ be the maximum ratio between the experts’ solutions on the resources. Formally,

ρ := max
i

max
t′,t′′

{∑K
k=1 s

t′
i,k∑K

k=1 s
t′′
i,k

}
s.t.

K∑
k=1

st
′′
i,k > 0.

Informally, ρ represents the discrepancy across the experts’ predictions. Our main result is an
algorithm that has an objective cost at most O(ln(Kρ)) times the cost of the LIN-COMB benchmark.
In particular, for 0-1 optimization problems, where the experts provide integer (deterministic or
randomized) solutions, our algorithm is O(lnK)-competitive with LIN-COMB. An interesting feature
of our algorithm is its resilience to the fluctuation of the quality of predictions (as discussed in the
section below and illustrated in the experiments).

1.3 Related work and discussions

Figure 2: Robustness-Consistency

Much of the research focusing on surpassing worst-case
performance guarantees is motivated by the spectacu-
lar advances of machine learning (ML). Specifically, ML
methods can detect patterns among the arriving input
requests and provide valuable insights for the online algo-
rithms regarding future requests. [21] introduced a gen-
eral framework to integrate ML predictions into classi-
cal algorithm designs to surpass the worst-case perfor-
mance limit. As a result, many practically relevant on-
line problems were revisited to enhance existing classical
algorithms with ML predictions (see the aforementioned
[20, 23, 21, 25, 4, 14, 19, 3, 16, 18, 22, 5]).

On a high-level view, we aim to design algorithms that
are robust (competitive) to the offline optimal solution
and also consistent with the expert’s predictions. Ideally,
the performance of the designed algorithm should surpass previous bounds whenever the predictions
are reliable (low errors). However, most learning-augmented algorithms suffer when the error rates
are neither very low nor very high, resulting in prediction confidence that is neither very low nor very
high. Figure 2 provides a general picture of the performance of an algorithm with predictions, which
is representative for many problems (for example, [7, 17]). In the figure, η indicates the confidence in
the predictions (or equivalently the error rate of predictions). The learning-augmented algorithm’s
performance bound is the maximum value of the green and orange curves (gray shaded area on the
figure). We can observe that when 0.4 ≤ η ≤ 0.9, the algorithm’s performance guarantee is worse
than the classical worst-case guarantee (that can be achieved by simply ignoring all predictions).
Intuitively, in the case of neither very low nor very high confidence in the predictions, the algorithm
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has a hard time deciding if it should follow the predictions or the best-known standard algorithm
in the worst-case paradigm. It naturally raises the question of whether one can surely guarantee
to achieve at least a constant factor of the worst-case guarantee (where the constant is as close to
1 as possible), assuring the resilience of the output solutions despite the quality of the predictions.
Our algorithm, together with the new benchmark, provides an answer to this question.

The paper of [2] is closely related to ours and studies the design of algorithms with multiple
experts. They consider a DYNAMIC benchmark that is intuitively the minimum cost solution that is
supported by at least one expert solution at each step. Formally:

DYNAMIC = min
x̂∈X̂

n∑
i=1

cix̂i, where

X̂ = {x̂ : ∀ i ∈ [n], ∀ t ∈ [T ], ∃ k ∈ [K] such that sti,k ≤ x̂i}
Our benchmark, LIN-COMB, is included in DYNAMIC, since every solution xti in LIN-COMB satisfies:

xti ≥
∑
k

sti,kw
t
k ≥ min

k
{sti,k}

therefore, for any i and t, there exists k such that xti ≥ sti,k. However, the inverse is not true:
a solution x̂t ∈ X̂ in DYNAMIC is not necessarily a linear combination of the experts’ solutions.
The DYNAMIC benchmark in [2] relied on the assumption that at every time step the experts’ solu-
tions are tight. This assumption is unrealistic and impossible to maintain in online solutions (see
Appendix A). [2] claimed an O(logK)-competitive algorithm in the DYNAMIC benchmark. Unfortu-
nately, this is incorrect ; we show an example in Appendix B in which their algorithm’s performance
guarantee is unbounded in the DYNAMIC benchmark.

Integrating multiple predictions into the online algorithm design was a topic of other papers as
well. As an example, [15] studied the ski rental problem with multiple predictions. The authors
defined a consistency metric, which compares the performance of their algorithm to the optimal
solution, given that at least one prediction (among the k predictions) is optimal. [1] also considered
multiple predictions in the online facility location problem. They compared the performance of their
algorithm to the best possible solution obtained on the union of the suggestions. Recently, [13]
studied the use of multiple predictors for several problems such as matching, load balancing, and
non-clairvoyant scheduling. They provided algorithms competitive to the best predictor for such
problems. An important remark: all the above benchmarks are captured within LIN-COMB.

Furthermore, [5] proposed an algorithm with multiple experts for the metrical task system
problem. Their benchmark allows switching from one expert to another at each time step, but it
does not allow combinations of experts or any solution not suggested by one of the experts. In our
LIN-COMB benchmark, the linear combinations that evolve over time could result in a solution that
is not suggested by one of the experts and potentially they can be much more efficient. In [5] there
is a cost for state transitions, which is appropriate for their problems, but in many other problems,
the smooth transition with additional costs from previous decisions to new ones is not allowed (past
decisions are immutable). Therefore, the results of [5] are not applicable to our setting.

Combining online algorithms into a new algorithm to achieve better results than the individual
input algorithms has been a long-standing online algorithm design question [6, 8]. Its intrinsic
difficulty is similar to the issue we mentioned earlier: when the performance of the given input
algorithms (or heuristics) is unclear (especially in the online setting), it is challenging to create a
combination that can surpass the performance of the included algorithms. Following the current
development of online algorithm design techniques with multiple predictions, this subject has been
renewed with different machine learning approaches. Our paper contributes to this line of research.
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2 Online covering with multiple experts

Our proposed algorithm solves online covering problems by creating linear combinations of the
solutions proposed by K experts in an online manner. Recall that we evaluate the performance of
our algorithm with the LIN-COMB benchmark (formalized on Figure 1), which consists of the best
linear combination of the experts’ solution at each step.

Since our LIN-COMB benchmark is a linear combination of the experts’ solutions, the equality∑K
k=1w

t
k = 1 must hold, where wt

k ≥ 0 is the weight assigned to expert k (where 1 ≤ k ≤ K) at time
t. In the following, we formulate a relaxed version of the LIN-COMB formulation, where

∑K
k=1w

t
k ≥ 1.

Additionally, the relaxed formulation enables us to avoid the (online) hard constraint requiring
wt
ks

t
i,k ≥ wt−1

k st−1i,k to hold, and instead, we introduce a new variable, yti , to represent the increase
of xti compared to xt−1i . When wt

ks
t
i,k < wt−1

k st−1i,k during the execution, we set the contribution of
i at time t to be 0, and therefore, yti = 0. The relaxed formulation is visible on Figure 3.

Due to the relaxed constraint, the optimal solution of the relaxed linear program is a lower
bound of our LIN-COMB benchmark. The dual of the relaxation is displayed on Figure 4.

min
T∑
t=1

n∑
i=1

ciy
t
i

(αt)
K∑
k=1

wt
k ≥ 1 ∀ t

(βti)

K∑
k=1

(
wt
ks

t
i,k − wt−1

k st−1i,k

)
≤ yti ∀ i, t

wt
k, y

t
i ≥ 0 ∀ i, t, k

Figure 3: Formulation of the relaxation of the LIN-COMB benchmark

max

T∑
t=1

αt

(xtk) αt +
n∑

i=1

sti,k(β
t+1
i − βti) ≤ 0 ∀ k, t

(yti) βti ≤ ci ∀ i, t
αt
i, β

t
i ≥ 0 ∀ i, t

Figure 4: Dual formulation of the relaxation of the LIN-COMB benchmark

According to the theorem of weak duality, any feasible solution of the dual program lower
bounds any feasible solution of the primal program, and therefore, any feasible dual solution also
lower bounds our LIN-COMB benchmark. Following the chain of lower bounds, our approach to
design a competitive algorithm is as follows. At every time step t, we build solutions for all xti
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together with the solutions for the dual problem (αt, βti). Then, we bound the cost of the algorithm
to that of the dual. It is important to emphasize that the designed solution for every xti must
be feasible to the covering constraints, but it may not necessarily be a linear combination of the
experts’ solutions.

2.1 Competitive Algorithm

Preprocessing. Recall that by our assumptions, the experts’ solutions are always feasible and
non-decreasing. At the arrival of the tth constraint, expert k (where 1 ≤ k ≤ K) provides a feasible
solution stk = (sti,k)

n
i=1, such that sti,k ≥ st

′
i,k for all t′ ≤ t and all i where 1 ≤ i ≤ n. These

assumptions do not exclude the possibility for the experts to provide malicious solutions that
instruct the algorithm to use an unnecessarily large amount of resources. Note that contrary to the
assumption in [2], we can not expect the experts’ solutions to be always tight. (In Appendix A we
show an example that tight solutions cannot be maintained in an online manner.)

To circumvent this issue, we preprocess the experts’ solutions at each iteration. During the
preprocessing, every solution stk is scaled down to make it as tight as possible on the tth constraint,
while always maintaining sti,k ≥ st−1i,k for all i. Additionally, after the down-scaling, we create an
auxiliary solution ŝtk that is tight for the tth constraint. This solution is useful for our algorithm,
and we create it with the following procedure.

After the down-scaling, do the following for each expert k.
1. If (sti,k)

n
i=1 is tight on the tth constraint, then set ŝti,k ← sti,k for every i.

2. Let ŝt−1i,k be the auxiliary solution of expert k at time t− 1, meaning that,
∑n

i=1 a
t−1
i ŝt−1i,k = 1.

Given I := {i : sti,k > ŝt−1i,k ·
at−1
i

ati
}, we set ŝti,k ← sti,k if i /∈ I and set ŝti,k to be some value in

[ŝt−1i,k ·
at−1
i

ati
, sti,k] if i ∈ I, s.t. the solution ŝti,k becomes tight on the tth constraint.

Lemma 1 Following the preprocessing procedure, we can always obtain the solutions ŝti,k such that
ŝti,k ≤ sti,k and

∑n
i=1 a

t
iŝ

t
i,k = 1.

Proof Let us fix an expert k. We prove the lemma by induction. At time step t = 1, one can
always scale down the solution s1i,k ≥ 0 such that the first constraint becomes tight. Assume
that the lemma holds until t − 1,

∑n
i=1 a

t−1
i ŝt−1i,k = 1 and ŝt−1i,k ≤ st−1i,k . Consider time t. If after

scaling down (at the first step in the procedure) the tth constraint becomes tight, then we are done.
Otherwise, we have

1 <

n∑
i=1

atis
t
i,k =

∑
i∈I

atis
t
i,k +

∑
i/∈I

atis
t
i,k,

1 =
n∑

i=1

at−1i ŝt−1i,k =
n∑

i=1

ati

(
ŝt−1i,k ·

at−1i

ati

)
≥
∑
i∈I

ati

(
ŝt−1i,k ·

at−1i

ati

)
+
∑
i/∈I

atis
t
i,k

Hence, there exists ŝti,k ∈
[
ŝt−1i,k ·

at−1
i

ati
, sti,k

]
for every i, where 1 ≤ i ≤ n, such that

∑n
i=1 a

t
iŝ

t
i,k = 1.

�
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Algorithm. At the arrival of the tth constraint,
1. solve the following convex program and set wt to be the obtained optimal solution

min
w

{ n∑
i=1

ci

[( K∑
k=1

sti,kwi,k + δti

)
ln

( ∑K
k=1 s

t
i,kwi,k + δti∑K

k=1 s
t−1
ik wt−1

i,k + δt−1i

)
−

K∑
k=1

sti,kwi,k

]}

(γt)

n∑
i=1

ati

( K∑
k=1

ŝti,kwi,k

)
≥ 1 ∀ t

(λti)
K∑
k=1

wi,k ≥ 1 ∀ i

(µti)

K∑
k=1

sti,kwi,k ≥ 0 ∀ i, t

where δti = 1
K

∑
k s

t
i,k. Note that in this program, we use the auxiliary solution ŝti,k in the

first constraint. For every i where sti,k = 0 for all k, the term related to i is not included in
the objective function of the convex program. (We can set wi,k = 0 for all k beforehand.)

2. For all i if
∑K

k=1w
t
i,ks

t
i,k > xt−1i then set xti ←

∑K
k=1w

t
i,ks

t
i,k; otherwise set xti ← xt−1i .

Note: To avoid the possible division by 0 in the denominator of the objective function’s logarithm,
we can use a dummy expert, who sets each variable to some small value and then follows the greedy
heuristic to solve the problem at each arriving constraint. The presence of this expert only changes
the competitive ratio to O(logK+1). Additionally, upon the arrival of the first constraint, we treat
the denominator as 1.

2.2 Analysis

As wt is the optimal solution of the convex program and (γt, λti, µ
t
i) is the optimal solution of its

dual, the following Karush-Kuhn-Tucker (KKT) and complementary slackness conditions hold.

[ n∑
i=1

ati

(∑
k

ŝti,kw
t
i,k

)
− 1

]
γt = 0 ∀t

[ K∑
k=1

wt
i,k − 1

]
λti = 0 ∀i, t

[ K∑
k=1

sti,kw
t
i,k

]
µti = 0 ∀i, t

cis
t
ik ln

( ∑K
k=1 s

t
i,kw

t
i,k + δti∑K

k=1 s
t−1
ik wt−1

i,k + δt−1i

)
− atiŝti,kγt − λti − sti,kµti = 0 ∀i, k, t

γt, λti, µ
t
i ≥ 0 ∀i, t

Moreover, if
∑K

k=1w
t
i,ks

t
i,k > 0, meaning that µti = 0, then

cis
t
ik ln

( ∑K
k=1 s

t
i,kw

t
i,k + δti∑K

k=1 s
t−1
ik wt−1

i,k + δt−1i

)
− atiŝti,kγt − λti = 0 (1)
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Dual variables and feasibility. We set the dual variables of the linear program relaxation of our
LIN-COMB benchmark based on the dual variables of the convex program used inside the algorithm.

αt =
1

ln(Kρ)

(
γt +

∑
i

λti

)
,

βti =
1

ln(Kρ)
ci ln

(
(1 + 1/K) ·maxt′

∑K
k=1 s

t′
i,k∑K

k=1 s
t−1
i,k w

t−1
i,k + δt−1i

)

where recall that ρ = maxi,t′,t′′

{∑K
k=1 s

t′
i,k∑K

k=1 s
t′′
i,k

:
∑K

k=1 s
t′′
i,k > 0

}
.

Lemma 2 The xti solutions set by the algorithm for the original covering problem and the dual
variables (αt, βti) of the LIN-COMB benchmark’s linear program relaxation are feasible.

Proof We first prove that the xti variables satisfy the covering constraints by induction. At time
0, no constraint has been released yet, and every variable is set to 0. This all-zero solution is
feasible. Let us assume that the algorithm provides feasible solutions up to time t − 1. At time
t, the algorithm maintains the inequality xti ≥ xt−1i , so all constraints t′ where t′ < t are satisfied.
Besides, xti is always at least

∑
k w

t
i,ks

t
i,k, which is larger than

∑
k w

t
i,kŝ

t
i,k since sti,k ≥ ŝti,k for all

i, k by the preprocessing step. Hence, the constraint t is also satisfied, formally,

n∑
i=1

atix
t
i ≥

n∑
i=1

ati

(∑
k

ŝti,kw
t
i,k

)
≥ 1.

In the remaining part of the proof, we show the feasibility of αt and every βti . Since γ
t ≥ 0 and

λti ≥ 0 for all i and t, we get that αt ≥ 0. In the definition of βti , the nominator of the logarithm
term is always larger than the denominator, and it is smaller than Kρ times the denominator.
Consequently, 0 ≤ βti ≤ ci. Furthermore,

βt+1
i − βti = −

1

ln(Kρ)
ci ln

( ∑K
k=1 s

t
i,kw

t
i,k + δti∑K

k=1 s
t−1
i,k w

t−1
i,k + δt−1i

)
.

Since
∑

i a
t
iŝ

t
i,k = 1, using the KKT conditions, we get:

αt +

n∑
i=1

stik
(
βt+1
i − βti

)
=

1

ln(Kρ)

(
γt +

∑
i

λti

)
− 1

ln(Kρ)

n∑
i=1

sti,kci ln

( ∑K
k=1 s

t
ikw

t
i,k + δti∑K

k=1 s
t−1
ik wt−1

i,k + δt−1i

)

=
1

ln(Kρ)

[
γt +

n∑
i=1

λti −
n∑

i=1

(
atiŝ

t
i,kγ

t + λti + sti,kµ
t
i

)]
≤ 0

�
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Theorem 1 The algorithm’s cost is at most O(ln(Kρ))-competitive in the LIN-COMB benchmark.

Proof Lemma 2 proved that our algorithm creates feasible solutions for the dual problem of
the LIN-COMB benchmark relaxation and for the original covering problem. We show that the
algorithm’s solution increases the primal objective value of the original covering problem by at
most O(ln(Kρ)) times the value of the dual solution, which serves as the lower bound on the
LIN-COMB benchmark - the best linear combination of the experts’ solutions.

n∑
i=1

ci(x
t
i − xt−1i ) =

∑
i:xt

i>xt−1
i

ci(x
t
i − xt−1i )

≤
∑

i:xt
i>xt−1

i

ci(x
t
i + δti) ln

xt−1i + δti
xt−1i + δti

(2)

≤
∑

i:xt
i>xt−1

i

ci(x
t
i + δti) ln

xt−1i + δti
xt−1i + δt−1i

(3)

=
∑

i:xt
i>xt−1

i

ci

[(
K∑
k=1

sti,kw
t
i,k +

1

K

K∑
k=1

sti,k

)
ln

(∑K
k=1 s

t
i,kw

t
i,k + δti

xt−1i + δt−1i

)]
(4)

≤
∑

i:xt
i>xt−1

i

ci

[(
K∑
k=1

sti,kw
t
i,k +

1

K

K∑
k=1

sti,k

)
ln

( ∑K
k=1 s

t
i,kw

t
i,k + δti∑K

k=1 s
t−1
i,k w

t−1
i,k + δt−1i

)]
(5)

=
∑

i:xt
i>xt−1

i

K∑
k=1

(wt
i,k + 1/K)cis

t
i,k ln

( ∑K
k=1 s

t
i,kw

t
i,k + δti∑K

k=1 s
t−1
i,k w

t−1
i,k + δt−1i

)

=
∑

i:xt
i>xt−1

i

K∑
k=1

(wt
i,k + 1/K)

(
atiŝ

t
i,kγ

t + λti

)
(6)

≤
n∑

i=1

K∑
k=1

(wt
i,k + 1/K)

(
atiŝ

t
i,kγ

t + λti

)

=

n∑
i=1

ati

( K∑
k=1

wt
i,kŝ

t
i,k

)
γt +

n∑
i=1

( K∑
k=1

wt
i,k

)
λti +

1

K

K∑
k=1

( n∑
i=1

atiŝ
t
i,k

)
γt +

1

K

K∑
k=1

n∑
i=1

λti

= 2γt + 2
n∑

i=1

λti = ln(Kρ)αt (7)

The above corresponding transformations hold since:
(2) follows from the inequality a− b ≤ a ln(a/b) for all 0 < b ≤ a;
(3) holds since δti ≥ δ

t−1
i (because sti,k ≥ s

t−1
i,k for all i, k, t);

(4) is valid because xti > xt−1i , so xti =
∑K

k=1 s
t
i,kw

t
i,k;

(5) is by the design of the algorithm: xt−1i ≥
∑K

k=1 s
t−1
i,k w

t−1
i,k ;

(6) since given that xti > xt−1i ≥ 0 (so
∑K

k=1 s
t
i,kw

t
i,k = xti > 0), the KKT condition (1) applies;

(7) is true due to the complementary slackness conditions and that
∑n

i=1 a
t
iŝ

t
i,k = 1.

�
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Corollary 1 For 0-1 optimization problems in which experts provide integer (deterministic or ran-
domized) solutions, the algorithm is O(lnK)-competitive in the LIN-COMB benchmark. Subsequently,
there exists an algorithm such that its performance is O(lnK)-competitive in the LIN-COMB bench-
mark and is up to a constant factor to the best guarantee in the worst-case benchmark

Proof

Our Algorithm
with K experts

Best worst-case
guarantee algortihm

E1 E2 EK

Our Algorithm

with 2 experts


Figure 5: Structural overview of the al-
gorithm’s components. E1, E2, . . . EK

correspond to the experts of the online
problem. On the second layer, we in-
tegrate the best standard online algo-
rithm with our algorithm.

If the value of sti,k is in {0, 1} for every i, k, t, then

ρ = max
i

max
t′,t′′

{∑K
k=1 s

t′
i,k∑K

k=1 s
t′′
i,k

:
K∑
k=1

st
′′
i,k > 0

}
≤ K

1

Therefore, the competitive ratio of the main algorithm in
the LIN-COMB benchmark is O(logKρ) = O(logK2).

To obtain an algorithm that is competitive in both the
LIN-COMB and the worst-case benchmarks, we proceed as
follows (an illustration in Figure 5). We first apply the
main algorithm on the K experts’ predictions to obtain
an online algorithm, named A. Algorithm A is O(lnK)-
competitive in the LIN-COMB benchmark. Let B be the
algorithm with the best worst-case guarantee. One ap-
plies the main algorithm one more on two algorithms, A
and B. The final algorithm is O(ln 2)-competitive to both
A and B. In other words, its performance is O(lnK)-
competitive in the LIN-COMB benchmark and is up to a
constant factor worse than the best guarantee in the worst-case benchmark.

�

By Corollary 1, given a 0-1 optimization problem, if there are K deterministic online algo-
rithms, then we can design an algorithm that has a cost at most O(logK) times that of the best
linear combination of those algorithms at any time. Similarly, if K given online algorithms are
randomized (they output 0-1 solutions with probabilities), then our algorithm has an expected cost
(randomization over the product of the distributions of those solutions) at most O(logK) times
that of the best linear combination of those algorithms at any time. Many practical problems admit
0-1 solutions, for which our algorithm is of interest. Consider problems like network design, ski
rental, TCP acknowledgement, facility location, etc. Given the fractional solutions constructed by
our algorithm, we can apply existing online rounding schemes to obtain integral solutions for such
problems.

3 Experiments

Implementation. The first step of our proposed algorithm is to solve a convex program. In
the experiments, we approximate the optimal solution of this program using a vanilla Frank-Wolfe
implementation. The linear minimization step within Frank-Wolfe is solved with the Gurobi opti-
mizer.

Comparison. The best standard online algorithm for general covering problems without ex-
perts is the online multiplicative weight update (MWA) algorithm. In the experiments we compare
our algorithm with the MWA algorithm. When a new constraint arrives in the online problem, the
MWA algorithm increases each variable xi in the constraint with a rate of ati

ci
(xi +1/n), where n is

11



the total number of variables. We also compare our results with the optimum offline solution (that
knows the whole instance in advance) and the average solution of the experts.

Input. First, we evaluated the result of our algorithm on the pathological input of the MWA
algorithm. This instance includes n variables and n constraints with uniform costs and coefficients.
Each arriving constraint in this pathological example includes one less variable. While the optimal
solution is 1, the worst-case guarantee of MWA is O(log n). For our algorithm we provided n
experts, where (n− 1) experts suggest an adversarial trivial solution to set all variables to 1, while
1 expert suggests the optimal offline solution. The result of this experiment is visible on Figure 6.
An important highlight: our algorithm managed to identify the good expert among the majority
of adversaries, obtaining a better objective value, than MWA. Second, we experimented with the
counter example (in Appendix B) to show that the algorithm proposed by [2] has an incorrect
performance proof. The result is visible on Figure 6. Finally, we generated some instances to
observe the performance of our algorithm on non-specific inputs. The specification for the instance
generation includes several parameters, which we detail on Figure 7.

Result. Multiplicative weight update is a simple and well-performing algorithm in practice.
On its pathological worst-case example, our algorithm performs better, however on most instances
the expert suggestions were significantly worse than MWA, which impacted the performance of
our algorithm. To some extent, our algorithm can detect the good experts and is robust against
even many adversaries. We think that given a real-life problem, it is possible to construct well-
performing experts (for example using past data) and with a fine-tuned convex program solver our
algorithm can be of interest for various use-cases.

Worst-case Counter-ex.
Algo name for MWA for [2] Inst. 1 Inst. 2 Inst. 3 Inst. 4

OPT Offline 1.0 1.0 1.3 1.5 10.6 31.3
MWA Online 2.9 2.3 2.0 1.7 28.1 63.7

Our Algo 2.2 4.4 2.0 1.7 26.7 61.7
Avg of experts 9.1 3.5 16.4 23.3 1897.47 96.9

Figure 6: Objective value of the experiment instances

Input Generation Parameters Instance 1 Instance 2 Instance 3 Instance 4

Number of variables 10 10 44 30
Number of constraints 10 25 2 15
Min objective coefficient 1 10 1 1
Max objective coefficient 10 25 100 100
Min constraint coefficient 1 10 1 1
Max constraint coefficient 10 25 1 1
Min number of zero coefficient 0 1 11 5
Max number of zero coefficient 5 5 22 20
Number of perfect experts 1 0 0 2
Number of online experts 2 1 1 2
Number of random experts 1 1 11 0
Number of adversaries 1 1 0 0

Figure 7: Parameters of the generated experiment instances

12



4 Conclusion

We introduce a dynamic LIN-COMB benchmark in the setting of multiple expert predictions beyond
the traditional static benchmark of the best expert in hindsight and give a competitive algorithm for
the online covering problem in this benchmark. Our approach can provide valuable insights into the
learning processes related to predictions, in particular, in aggregating information from predictions
to improve the performance of existing algorithms, and how to combine online algorithms, an
important subject in the online algorithm design community [6, 8]. The experiments support the
fact that our algorithm can differentiate between good and adversarial experts to some extent.

An interesting open question is to design competitive algorithms in the LIN-COMB benchmark for
different classes of problems, such as packing problems and problems with non-linear objectives.
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Appendix

A Counter example for tight online expert solutions

The following example shows that we cannot expect online expert solutions (in the sense of online
algorithms) to be tight on the arriving constraints. In the example below, we display the experts’
solutions after each constraint.

min x1 + x2

x1 +
1

2
x2 ≥ 1

Expert1 : 1 0

Expert2 : 0 2

x2 ≥ 1

Expert1 : 1 1

Expert2 : 0 2

To have tight a suggestion from Expert2 on the second constraint, Expert2 not only has to decrease
its value of x2 (which is not allowed), but even increase the value of x1 for the first constraint. In
other words, Expert2 has to completely modify its past decisions.

B Counter example for the performance of the algorithm of [2]

Anand, Ge, Kumar and Panigrahi [2] recently proposed online algorithms for online covering prob-
lems with multiple expert solutions. We show here a counter example that contradicts Theorem 2.1
presented in Section 3 of their paper. In the proof of Theorem 2.1 the authors state that the total
cost of the algorithm is at most 3 times the potential φ at the beginning, i.e., at most O(log K)
times the DYNAMIC benchmark. However, in our counter example the total cost of their algorithm
is O(L log(K)) times the DYNAMIC benchmark, where L is an arbitrary large number.

B.1 Setting

Algorithm 1 (from [2]) receives solutions from K experts. The authors denote with xi(j, s) the
solution from expert s for variable i on constraint j. They assume that the expert solutions are
tight, formally:

n∑
i=1

aij xi(j, s) = 1 ∀ s ∈ [K]

The algorithm’s performance is compared to the DYNAMIC benchmark, which is the minimum cost
solution that is supported by at least one expert at each step, formally:

DYNAMIC = min
x̂∈X̂

n∑
i=1

cix̂i, where

X̂ = {x̂ : ∀ i ∈ [n], ∀ j ∈ [m], ∃ s ∈ [K] where the solution xi(j, s) ≤ x̂i}
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While a constraint is not satisfied, their algorithm updates each variable with an increasing rate of

dxi
dt

=
aij
ci

(xi + δij)

where δij = 1
K

∑K
s=1 xi(j, s) is the average of the experts’ solutions for xi at the arrival of constraint

j. Algorithm 1 of [2] scales down the problem with 0.5, so it does not increase any variable above
0.5 and satisfies each constraint with value 0.5. The exact solution is obtained by doubling the
variables at the end of the execution. (This descaling is an important aspect in the authors’ proof.)

B.2 Counter example

In the following example we reveal in an online manner a linear program parametrized by L with
K experts and observe the behavior of Algorithm 1 (from [2]).

Objective. The example has (L ·K + 1) variables with uniform cost:

min x1 + x2 + · · ·+ xK + · · ·+ x2K + · · ·+ xLK + xLK+1

Constraints. There are L batches of (K − 1) constraints. The first constraint of each batch has
(K+1) variables. The last variable (xLK+1) is present in every constraint in every batch, but none
of the experts suggests to use this variable. Within a batch, each consecutive constraint has one
less variable. The experts set each variable that appears in later batches to 0. The first batch:

x1 + x2 + · · ·+ x(K−1) + xK + xLK+1 ≥ 1

Expert1 : 1 0 . . . 0 0 0

Expert2 : 0 1 . . . 0 0 0

...
ExpertK−1 : 0 0 . . . 1 0 0

ExpertK : 0 0 . . . 0 1 0

x2 + · · ·+ x(K−1) + xK + xLK+1 ≥ 1

Expert1 : 1 1 . . . 0 0 0

Expert2 : 0 1 . . . 0 0 0

...
ExpertK−1 : 0 0 . . . 1 0 0

ExpertK : 0 0 . . . 0 1 0

...
x(K−1) + xK + xLK+1 ≥ 1

Expert1 : 1 1 . . . 1 0 0

Expert2 : 0 1 . . . 1 0 0

...
ExpertK−1 : 0 0 . . . 1 0 0

ExpertK : 0 0 . . . 0 1 0

17



During the first constraint of every batch, the experts’ solutions form an identity matrix. With
each disappearing variable in the consecutive constraints, experts who suggested to use variables
which are no longer available, choose to set the variable with the smallest index. Consequently,
(K − 1) experts suggest to use variable x(K−1) and one expert suggests to use xK during the last
constraint in the first batch. The pattern of the experts’ solutions are identical for each batch. The
constraints of the lth batch (1 ≤ l ≤ L) are:

x(l−1)K+1 + x(l−1)K+2 + · · ·+ x(l−1)K+(K−1) + xlK + xLK+1 ≥ 1

x(l−1)K+2 + · · ·+ x(l−1)K+(K−1) + xlK + xLK+1 ≥ 1

...
x(l−1)K+(K−1) + xlK + xLK+1 ≥ 1

Claim 1 The objective value of Algorithm 1 (from [2]) on our example is O(L log(K)) times the
DYNAMIC benchmark.

Proof The optimal solution x∗ of the DYNAMIC benchmark is the solution in which x∗LK+1 = 1

and x∗i = 0 for i 6= LK + 1. We verify that x∗ ∈ X̂. For each i 6= lK where 1 ≤ l ≤ L, for
each constraint m, x∗i ≥ 0 = xi(m,K). For i = lK where 1 ≤ l ≤ L, for each constraint m,
x∗i ≥ 0 = xi(m, 1) = xi(m, 2) = . . . = xi(m,K − 1). Moreover, x∗ satisfies all constraints (since
variable xLK+1 appears in all constraints). Hence, x∗ ∈ X̂. Subsequently, the objective value of
the DYNAMIC benchmark is 1.

By the design of Algorithm 1, the increasing rate of xLK+1 is zero throughout the execution,
and the variables which are not part of the current constraint are not increased. During the first
constraint of each batch, the increasing rate of the first K variables in the batch is 1/K, since the
increasing rate of variable xi is (xi + 1

K

∑K
s=1 xi(j, s)) and initially every variable is set to zero. At

the second constraint, the increasing rate of the second variable in the batch is higher than the other
variables’ increasing rate, because the first expert also uses this variable in its solution. Therefore,
the increasing rate of the second variable is (x(l−1)K+2 + 2/K), while the other remaining expert
variables in the constraint have an increasing rate of (xi + 1/K). Following the same reasoning
(apart from the first constraint in the batch), the variable with the smallest index in the constraint
has a higher increasing rate, than the other variables. During the last constraint of each batch,
the increasing rate of the last two remaining expert variables are (x(l−1)K+(K−1)+(K− 1)/K) and
(xlK + 1/K). Keeping the increasing rates and the constraint satisfaction in mind, we can lower
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bound the value of each variable:

1

K
≤ x(l−1)K+1

1

K − 1
≤ x(l−1)K+2

1

K − 2
≤ x(l−1)K+3

...
1

3
≤ x(l−1)K+(K−2)

1

2
≤ x(l−1)K+(K−1)

1

K
≤ xlK

Summing the terms together, we get that the objective value increases at least with O(logK)
during each batch. There are L batches, so the total cost of Algorithm 1 is at least O(L log(K)),
while the total cost of the DYNAMIC benchmark is 1, which concludes the proof. �

B.3 Comparison

In this specific counter-example, the LIN-COMB benchmark is equivalent to the static best-expert
benchmark, i.e., the solution of ExpertK . The objective value of LIN-COMB is L (since the optimal
solution sets xlK variables for 1 ≤ l ≤ L to one and other variables to 0). In this counter-
example, the objective value of our algorithm is O(L logK). Consequently, our proposed algorithm
is O(logK) competitive in the LIN-COMB benchmark.
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