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Abstract 

Topographical factors of scaffolds play an important role in regulating cell functions. 

Although the effects of alignment topography and 3D configuration of nanofibers as well 

as surface stiffness on cell behavior have been investigated, there are relatively few 

reports that attempt to understand the relationship between synergistic effects of these 

parameters and cell responses. Herein, the influence of biophysical and biomechanical 

cues of electrospun polyurethane scaffolds on mesenchymal stem cells (MSCs) activities 

was evaluated. To this aim, multiscale bundles were developed by rolling up the aligned 

electrospun mats mimicking the fascicles of tendons/ligaments and other similar 

tissues. Compared to mats, the 3D bundles not only maintained the desirable 

topographical features (i.e., fiber diameter, fiber orientation, and pore size), but also 

boosted tensile strength (~40 MPa), tensile strain (~260%), and surface stiffness 

(~1.75 MPa). Alignment topography of nanofibers noticeably dictated cell elongation 
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and a uniaxial orientation, resulting in tenogenic commitment of MSCs. MSCs seeded on 

the bundles expressed higher levels of tenogenic markers compared to mats. Moreover, 

the biomimetic bundle scaffolds improved synthesis of extracellular matrix components 

compared to mats. These results suggest that biophysical and biomechanical cues 

modulate cell-scaffold interactions, providing new insights into hierarchical scaffold 

design for further studies. 

KEYWORDS: biophysical cue, biomechanical cue, alignment topography of nanofibers, 

3D configuration of nanofibers, surface stiffness, electrospun multiscale polyurethane 

scaffold 

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; DNA, deoxyribonucleic 

acid; ECM, extracellular matrix; EPU, electrospun polyurethane; GAG, 

glycosaminoglycan; MSCs, mesenchymal stem cells; PU, polyurethane; SEM, scanning 

electron microscopy; TCP, tissue culture plate.  

1. INTRODUCTION 

Partial or complete damage of tendon and ligament tissues can be treated via the repair, 

replacement, or regeneration of the tissue [1]. Most commonly, autografts, allografts, 

and xenografts are used in clinical but do not offer satisfactory long-term clinical 

outcomes owing to limitations such as re-rupture, an inadequate number of donors, 

inflammatory response, donor site morbidity, adhesion formation, mechanical 

mismatch, and infection risk [2,3]. 

Tissue engineering has contributed alternative strategies to develop regeneration of 

damaged tissues, with the most promising ones being those mimicking the native 

tissues as closely as possible [4]. One critical aspect in this context is the appropriate 

design of fibrous scaffolds that mimic the fibrillary architecture, mechanical and 

functional characteristics of the extracellular matrix (ECM) of native tissues [2]. Many 

native tissues such as tendons, ligaments, nerve, cardiac, and skeletal muscles are 

composed of a hierarchical construct of aligned nanoscale fibrils that are organized into 

microscale bundles containing both ECM and cellular components [5,6]. It is well known 

that the microstructure of the scaffold is fundamental to direct cell behavior [7]. 
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Another important aspect in this context is to fabricate a tissue construct with 

comparable mechanical properties to native tissues.  

Several manufacturing approaches have been employed, such as braiding, weaving, and 

knitting, to produce fibrous scaffolds inspired to native tissues [8]. Although such 

textile-based scaffolds could successfully combine controlled morphological (e.g., size 

and shape) and mechanical properties, they are in form of microfibrous bundles, which 

differ from the inherent nanoscale organization of collagen fibrils in native tissues [2]. 

Therefore, these microfibrous structures inevitably lead to reduced cellular activity and 

poor tissue healing [9]. With the introduction of nanoscale fibers, a new generation of 

scaffolds with superior properties has been emerged [10].  

Among the technologies producing nanofibers, electrospinning is the most promising. 

Besides the several advantages of electrospun mats, which are defined and specified in 

the literature (e.g., similarity to the native ECM, high surface area to volume ratio, cost-

efficient, simplicity, and ability to use various materials), developing the hierarchical 

scaffolds render this technique very attractive [11–13]. Furthermore, there is evidence 

that the alignment topography of electrospun nanofibers directs cells to specific 

phenotypes [14].  

Fabricating fibrous bundles has attracted noticeable attention as they can be processed 

into different structures including woven, knitted, or braided constructs representing 

their potential to create a wide variety of highly biocompatible scaffolds with tailorable 

mechanical properties and architecture [10]. Although electrospun mats mimic the ECM 

matrix, these structures are considered as a single two-dimensional (2D) membrane 

and are not comparable to the native tissue bulk, which is a hierarchical three-

dimensional (3D) construct [15]. Moreover, it has been well established that a fibrous 

bundle exhibit greater mechanical strength than single nanofibers or nanofibrous mats 

[9]. It has also reported that the 3D electrospun bundles support cell activities [1,16]. 

So far, different approaches have been applied to collect the electrospun bundles. 

Bosworth and colleagues have performed a series of studies on 3D bundles obtained by 

electrospun mats [15,17,18]. They evaluated the effect of different resorbable materials 

and cell culture conditions to provide the required mechanical properties and direct cell 

behavior [15,17,18]. In another attempt, researchers studied the multiscale bundles 
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obtained by rolling up portions of electrospun mats on a drum collector. For instance, 

Pauly et al. evaluated the impact of fiber orientation and geometry of 

poly(caprolactone) scaffolds for ligament tissue engineering [19]. Similarly, Sensini and 

coworkers reported the novel bundle scaffolds based on different materials to mimic 

human tendon fascicles in terms of morphological, mechanical, and biological 

properties [20–22]. They proposed a platform based on grouping the bundles to 

develop multiscale hierarchical structures, which mimic the tendon and ligament 

tissues [5,7,23]. Similarly, a tri-phasic fibrous scaffolds were developed, presenting a 

wavy intermediate zone and two aligned uncurled extremes [24]. In vivo studies proved 

a superior response of such triphasic scaffolds with a higher cell infiltration and a rich 

ECM deposition that presented also the characteristic alignment observed on the native 

tissues [24]. Another attempt corresponds to the work carried out by Laranjeira et al., 

who fabricated the bundles using wet electrospinning and employed textile 

technologies to enable the scalable production of the nanofibrous 3D hierarchical 

scaffolds with tailored dimensions [25]. 

To fabricate a biomimetic scaffold with desirable mechanical properties, polyurethanes 

(PUs) are promising materials [26]. PU-based constructs including electrospun PU 

(EPU) nanofibers, as  biocompatible scaffolds, have extensively studied as scaffold for 

various biomedical applications [27]. A composite of EPU nanofibers incorporated with 

graphene was previously developed for cardiovascular applications [28]. Gotti and 

coworkers reported a novel approach to obtain artificial muscles based on EPU bundles 

[6]. 

It has been well established that the way cells modulate their behavior represents their 

interplay with the underlying substrate, not only by means of surface topography but 

also through surface stiffness and chemistry [4]. Hence, strategies employing the 

combination of all these factors are likely to promote a more desirable response toward 

tissue regeneration when the cell niche is mimicked as closely as possible [4]. Although 

efforts toward developing nanofibrous bundles through an electrospinning process 

have been conducted recently, there have been relatively few studies on the synergistic 

effects of such scaffolds on cell activities. To date, the relative roles of biophysical (i.e., 

alignment topography and 3D configuration of nanofibers) and biomechanical cues (i.e., 

surface stiffness) in the interactions between mesenchymal stem cells (MSCs) and 
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scaffolds are not well studied. The present study reports an approach to develop an 

innovative EPU-based multiscale nanofibrous structure aimed at mimicking the 

architecture and mechanical properties of fascicle of tendons and ligaments. 

Electrospun scaffolds based on polyurethane, namely EPU mats and EPU bundles with 

alignment topography of nanofibers, were fabricated and the effect of manipulating the 

biophysical and biomechanical cues on material properties and cell-scaffold interactions 

was evaluated. The proposed biomimetic structure might pave the way for future 

research in the context of tissue engineering. 

2. MATERIALS AND METHODS 

2.1. Materials 

MDI-polyester/polyether polyurethane (CAS number: 68084-39-9), tetrahydrofuran 

(THF), and dimethylacetamide (DMAC) were purchased from Sigma-Aldrich (Germany). 

Dulbecco’s modified Eagle’s medium (DMEM), trypsin-EDTA, antibiotics 

(penicillin/streptomycin), fetal bovine serum (FBS), phosphate buffered saline (PBS), 

Dulbecco’s phosphate buffered saline (DPBS), and glutaraldehyde (GTA) were 

purchased from Gibco (USA). Deionized water was used throughout. 

2.2. Sample preparation 

To make the aligned PU nanofibers, electrospinning was performed using a 

conventional setup (SBS, NanoAzma Co., Iran), as previously reported [29]. Briefly, the 

solution was prepared by dissolving PU at a concentration of 9% (w v-1) in a mixed 

solvent of THF:DMAC = 3:2 (v v-1). The solution was loaded into a syringe with a 21-

gauge (21-G) needle, charged with a voltage of 15 kV, and fed at a rate of 1.0 mL h-1, 

using a syringe pump. A rotating mandrel, which had a 10 cm diameter and was located 

at a distance of 10 cm from the needle, was utilized to collect the nanofibers. A rotating 

speed of 1500 rpm (peripheral speed = 7.9 m s-1) was used to fabricate aligned 

nanofibers. The process was performed at room temperature. 

To fabricate a multiscale bundle structures, the EPU mats were cut circumferentially 

into strips, and then manually rolled up to produce the 3D bundles. Therefore, the 

length of the final bundle was the same as the circumference of the rotating collector (~ 

32 cm) and was made of nanofibers predominantly aligned in the direction of collector 
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rotation. A desirable diameter of bundles could be obtained by adjusting the time of 

electrospinning and the width of the strips to be rolled up. 

The aforementioned experimental steps for the preparation of EPU mats and EPU 

bundles were schematically illustrated in Figure 1A. Digital images of the final scaffolds 

were also shown in Figure 1B,C. 

2.3. Structural characterization 

2.3.1. Morphology 

The morphology of EPU mats and EPU bundles were examined via a high-resolution 

field emission scanning electron microscopy (FE-SEM; GeminiSEM500, Zeiss, Germany) 

at an accelerating voltage of 3 kV. Before imaging, the dried samples were mounted on 

the aluminium stubs with double-sided carbon tape and a thin layer of platinum coated 

on them using Leica ACE600 cryo-sputter coater. 

Image J software (National Institutes of Health, USA) was used to measure the fiber 

diameter, bundle diameter, fiber orientation (relative to the horizontal axis), and pore 

size of the specimens using the SEM images. To this aim, at least 100 fibers or pores and 

20 bundles were randomly selected in SEM. The porosity of the scaffolds was measured 

by determining the volume (V) and mass (m) of the scaffolds. Porosity of scaffolds was 

calculated as: 

Porosity (%) = (1- (  /   )) × 100 

where    and     are the density of the scaffold and polyurethan (1.18 g cm-3), 

respectively [6]. 

2.3.2. Macroscopic mechanical properties 

The mechanical properties of the EPU mats and EPU bundles were performed using a 

uniaxial tensile tester (Instron 5566, USA). To prevent slipping during testing, the 

sample ends were securely placed inside a paper frame. The tests were performed with 

a load cell of 50 N (Instron, USA) capacity at a constant rate of 10 mm min-1 (resulting in 

a strain rate of 1% s-1 to simulate the physiological loading speed on the native tendon 

and ligament tissues [19]) until failure occurred. Cross-sectional area of different 

scaffolds was estimated from measurements made using a digital caliper. A number of 3 
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replicates were considered for each condition and mechanical properties were obtained 

from stress-strain curves. More details of mechanical testing protocol have been 

explained in the Supporting Information. 

2.3.3. Surface stiffness 

The surface stiffness of scaffolds was determined in the wet state using a Chiaro 

nanoindenter system (Optics 11, Amsterdam, The Netherlands). A spherical indentation 

tip with a tip radius of 8.0 µm and a spring constant of 204.3 N m-1 was used to probe 

samples immersed in PBS at 37 °C for 24 h up to an indentation depth of 10 μm. The 

scaffolds was fixed on a glass slide and measurement was carried out at several 

different locations on surface of samples. Using the Hertzian model, the surface 

stiffness/elastic modulus value was calculated from the slope of the force-displacement 

curves in the region 15%–20% of maximum load using DataViewer 2.2 Software (Optics 

11, Amsterdam, The Netherlands). Before testing, the optical sensitivity and geometrical 

factors were calibrated by indenting a hard surface (e.g., a glass slide). Before doing 

indentation on the scaffold, the calibration of the optical sensitivity and geometrical 

factors was done using a glass slide to locate the indentation site properly. 

2.4. Biological evaluation 

2.4.1. Serum protein adsorption 

Samples were sterilized and transferred to microtubes containing 3 mL DMEM 

supplemented with 10% FBS and 100 units mL-1 penicillin-streptomycin followed by 

incubation at 37 °C with 5% CO2. After 24 h, the scaffolds were retrieved, washed mildly 

in PBS (pH 7.4) thrice. 500 µL of 1% (w v-1) SDS as elution buffer was used to solubilize 

adsorbed serum proteins on EPU scaffolds. Total amount of adsorbed protein was 

quantified using Bicinchoninic acid (BCA) assay (PierceTM, Thermo Scientific) according 

to the manufacturer’s protocol. Briefly, 25 µL of extraction buffer with 200 µL of BCA 

working reagent (Reagent A:Reagent B in 50:1 ratio, respectively) were added into 96 

well plate and incubated at 37 °C for 30 min. Absorbance was measured using a 

microplate reader (Varioskan LUX, Thermo Fisher Scientific, Waltham, MA, USA) at 562 

nm. The optical density readings obtained were compared against a BSA standard graph 

corresponding to the amount of adsorbed protein.  
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2.4.2. Cell culture 

For biological studies, the samples were prepared following several steps. First, the 

electrospun scaffolds were cut into 1×1 cm2 (mats) and 1.5 cm (bundles), respectively. 

Second, the bundles were fixed on 6-well plate using the glue. Third, scaffolds were 

sterilized with 70% ethanol for 1 h, followed by repeatedly washing with DPBS. Finally, 

C3H10T½ cells, mouse cell line of mesenchymal stem cells (MSCs) [30], were seeded on 

the electrospun samples at a density of 5×104 cells/sample and allowed to adhere at 37 

°C for 4 h. When the majority of cells adhered on the surface of samples, the culture 

medium containing DMEM, 10% FBS, and 1% penicillin/streptomycin was added into 

each well, and samples were further cultured for 7 days at 37 °C, 5% CO2 in a humidified 

incubator. The culture medium was changed twice a week. Moreover, cells cultured on 

tissue culture plate (TCP) were considered to be the control group. 

2.4.3. Cell morphology 

The morphological and organization of MSCs on electrospun scaffolds were performed 

and analyzed using immunofluorescence images after 7 days of culture. Samples were 

rinsed twice gently with DPBS and then fixed with 4% paraformaldehyde overnight at 4 

°C. After fixation, samples were rinsed gently with DPBS three times and then stained 

using Alexa Fluor 488 phalloidin (Life Technologies, USA) and 4’,6’-diamidino-2-

phenylindole hydrochloride (DAPI; Life Technologies, USA) at room temperature. The 

fluorescence images were taken by using a confocal laser scanning microscope (CLSM; 

LSM 980, Zeiss, Germany). 

2.4.4. Cell infiltration 

To investigate cell infiltration, MSCs seeded scaffolds were cultured for 7 days followed 

by the process explained in section 2.4.3. 

2.4.5. Cell viability and proliferation 

Metabolic activity of both electrospn acsffolds were evaluated for cell viability and 

proliferation using Alamar Blue® assay after 4 and 7 days of culture. At selected time 

points, the samples were transferred into fresh well plates containing complete medium 

with 10% Alamar Blue® and incubated for 4h. About 300 mL of the medium was then 

extracted from each sample and measured at 570/600 nm excitation/emission 
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wavelength in a fluorescent microplate reader (Varioskan LUX, Thermo Fisher 

Scientific, Waltham, MA, USA). More details have been explained in Supporting 

Information. 

2.4.6. Biochemical assays 

Samples from each treatment group (EPU mat, EPU bundle, and TCP) were washed in 

PBS and digested overnight in a papain digestion buffer (125 μg mL-1 of papain in DPBS 

with 2 mM of Na2-EDTA and 2 mM of cysteine-HCl at pH 6.5) at 60 °C. 

2.4.6.1. DNA content 

The double-stranded DNA (dsDNA) content was quantified using Quant-iT PicoGreen 

dsDNA assay kit (Invitrogen, Cat. No. p11496) according to the manufacturer’s 

instructions. Fluorescence was measured using a microplate reader (Varioskan LUX, 

Thermo Fisher Scientific, Waltham, MA, USA) at the excitation and emission 

wavelengths of 485 and 535 nm, respectively. A standard curve was generated to 

correlate the DNA content with fluorescence intensity. 

2.4.6.2. Glycosaminoglycan content 

Sulfated glycosaminoglycan (GAG) content were quantified spectrophotometrically 

using the Blyscan kit, according to manufacturer’s instructions (Biocolor, Carrickfergus, 

United Kingdom). This assay is based on the specific binding of the cationic dye 1,9-

DMMB to the sulfated GAG chains of proteoglycans and protein-free sulfated GAG 

chains. Briefly, standard solutions (0, 1.0, 2.0, 3.0, and 5.0 µg of chondroitin-4-sulfate in 

100 µL) and test samples (300 µL) were mixed with 300 µL of Blyscan dye reagent for 

30 min at room temperature resulting in GAG-dye complex formation, which was 

recovered by centrifugation for 10 min at 12000 rpm. Then, the pellets were 

resuspended in 300 µL of dissociation buffer. Absorbance was measured at 656 nm in a 

microplate reader (Varioskan LUX, Thermo Fisher Scientific, Waltham, MA, USA). The 

measurement was carried out through comparison with a standard curve generated 

with bovine tracheal chondroitin 4-sulfate dissolved at a series of known concentrations 

that mentioned above. 

2.4.6.3. Collagen content 
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Total collagen was determined using a modified hydroxyproline assay. Briefly, 100 μL of 

each sample was hydrolyzed overnight using an equal volume of concentrated 

hydrochloric acid (6 N HCl) at 120 °C. A specific volume of sample and standard was 

transferred to 96-well plate and incubated in 60 °C to dry. Then, 100 μL chloramine 

T/oxidation buffer was added to each well and allowed to stand at room temperature 

for 5 minutes. The solution was combined with 100 μL diluted DMAB reagent and 

placed in a 60 °C for 90 minutes. Absorbance was read at 560 nm a microplate reader 

(Varioskan LUX, Thermo Fisher Scientific, Waltham, MA, USA). The hydroxyproline 

content was calculated from a calibration curve based on standard solutions and 

converted to collagen using a conversion factor of 1:7.46 (hydroxyproline:collagen) 

[31]. 

2.4.7. Gene expression 

QIA-Shredder and RNeasy mini-kits (QIAgen, USA) were used to extract total cellular 

RNA from cell-seeded samples, according to the manufacturer’s instructions. Equal 

amounts of total RNA, approximately 500 ng, were then reverse transcribed to cDNA, 

using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems, California, 

USA) according to the manufacturer’s protocol. RT-qPCR analysis was performed in a 

StepOnePlus™ Real-Time PCR System (Thermo Scientific) using SYBR Green PCR Master 

Mix (Applied Biosystems). Expression of collagen types 1 (Col1a1) and 2 (Col2a1), 

scleraxis (Scx), tenascin C (Tnc), tenomodulin (Tnmd), osteocalcin (Bglap), osterix (Sp7), 

and SRY-Box 9 (Sox9) was evaluated. Threshold cycle (CT) values were corrected for 

efficiency and normalized to expression of 18s rRNA (Rn18S) as the internal control. 

Relative gene expression was normalized to TCP (control) and measured using 

comparative Ct (2–ΔΔCt) method [32]. More details including the targets and sequences of 

primers have been explained in Supporting Information. 

2.5. Statistical analysis 

All measurements were performed at least in triplicates and data are presented as the 

mean ± SD (standard deviation). Statistical analysis was carried out with GraphPad 

Prism version 9 software (California, USA). Results were analyzed for significant 

differences using Student’s t-test and one-way ANOVA. The p-value < 0.05 was 
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considered to be statistically significant. Statistically significant values are presented as 

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

3. RESULTS 

3.1. Structural characterization 

3.1.1. Morphology 

In order to mimic the multiscale structure of the fascicle of tendons and ligaments, 

firstly aligned EPU mats were fabricated and then, single bundle structure were 

constructed by rolling up the EPU mats (Figure 1). To obtain the aligned nanofibers, a 

high rotating speed of the collector (i.e., 1500 rpm) was used according to methods 

published elsewhere [29]. After 5 h of electrospinning, the thickness of EPU mat was 

~100 µm. By fixing the time of electrospinning and the width of the strips to be rolled 

up, bundles with a diameter of ~500–600 μm were obtained. 

The microstructure of the scaffolds was studied using SEM (Figure 2A,B). The aligned 

nanofibers in both EPU mats and EPU bundles were homogeneous, smooth, continuous, 

and with no defects such as beads. The alignment of nanofibers was analyzed on both 

EPU mats and EPU bundles using the SEM images (Figure 2A,B). As expected, a 

preferential orientation of the nanofibers in one specific direction was observed in both 

constructs. In electrospun mats, about 72% of nanofibers were oriented in the range of 

70-100°, and similar observation was found in the range of 140-170° for the bundles. 

The mean diameter of aligned nanofibers was 547.30±101.57 nm and 558.85±164.55 

nm for mats and bundles, respectively. Moreover, the diameter of bundles was 

558.27±44.55 µm (Figure 2C). 

The mean pore size was measured using the SEM images (Figure 2D). The EPU mats 

possessed a mean pore size of 16.94±5.33 µm, which was not significantly different 

compared to that of EPU bundles (16.34±6.50 µm). In addition, the results indicated a 

higher value of density of EPU bundles (0.89±0.10 g cm-3) compared to the EPU mats 

(0.64±0.13 g cm-3) (Figure 2E). Inversely, the porosity of EPU bundles (~25%) was 

significantly lower than that of EPU mats (~45%).  

3.1.2. Macroscopic mechanical properties 
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Mechanical performance is one of the essential requirements to ensure that an 

engineered scaffold would be successful for clinical applications [33]. Uniaxial tensile 

testing was performed on both EPU mats and EPU bundles, along the nanofibers 

direction (Figure 3A). 

The typical stress-strain curves of both constructs demonstrated a slight toe region 

before the linear elastic region. Nanofibers configuration, whether the construct was a 

mat or a bundle, demonstrated a statistical effect on mechanical properties; EPU 

bundles had higher failure stress, failure strain, and work to failure than EPU mats (p < 

0.05). In particular, the failure stress of EPU mats was 28.83±6.07 MPa, which increased 

meaningfully to 39.62±1.16 MPa in EPU bundles. Similarly, failure strain increased 

notably from 122.72±27.50% (mats) to 230.50±13.53% (bundles). The EPU bundles 

showed an increase in work to failure compared to the EPU mats (5.70±0.35 J mm-3 

versus 2.07±0.83 J mm-3). Meanwhile, no significant difference was observed between 

EPU mats and EPU bundles in tensile modulus (30.71±3.68 MPa versus 30.00±0.98 

MPa), yield stress (19.21±1.67 MPa versus 18.51±1.98 MPa), yield strain (70.01±7.65% 

versus 68.61±6.69%), and work to yield (0.65±0.16 J mm-3 versus 0.62±0.12 J mm-3). 

3.1.3. Surface stiffness 

The surface stiffness of scaffold is known as a biomechanical cue affecting cell functions 

[34]. The microindentation was performed to evaluate the micromechanical behavior of 

the electrospun EPU mats and EPU bundles incubated for 24 h at 37 °C. As shown in 

Figure 3B, the 3D bundle constructs demonstrated a stiffer substrate compared to 2D 

electrospun mats representing their potential to induce different cell responses [35]. 

More in details, the surface stiffness of bundles was approximately 1.75 MPa, which was 

75% higher than that of electrospun mats (~1 MPa). 

3.2. Biological evaluation 

3.2.1. Protein adsorption 

The cell-scaffold interactions are mediated by the proteins that adsorbed on the surface 

of scaffold; therefore, the protein adsorption behavior is a critical factor to evaluate the 

scaffolds for the tissue engineering applications [36]. In this direction, the serum 

protein adsorption on the electrospun constructs was investigated after 24 h incubation 
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at 37 °C using the BCA assay kit. Figure 4A shows the protein adsorption pattern 

obtained in both EPU mats and EPU bundles. Significant improvement in protein 

adsorption was observed in the bundle constructs. In particular, the protein adsorption 

ability of EPU bundles was 66.64±29.55 µg cm-2 representing over six-fold as that of 

9.64±1.03 µg cm-2 for EPU mats.  

3.2.2. Cell morphology 

It is commonly accepted that manipulating the topographical factors of matrices could 

regulate cell behavior including cell morphology and orientation [37]. To determine the 

influence of alignment topography and 3D configuration of nanofibers on cell 

morphology, both seeded-scaffolds were stained after 7 days of culture. The 

cytoskeleton was stained red with FITC-conjugated phalloidin, and the nucleus was 

stained blue with DAPI. 

As shown in fluorescent images (Figure 4B), MSCs were well attached to all samples but 

there was a meaningful difference in cell morphology depending on which substrate 

structure the cells were in contact with. Moreover, cells exhibited a stellate-patterned 

morphology and spread in random orientation on TCP (control), whereas for 2D and 3D 

aligned EPU nanofibers (i.e., mats and bundles scaffolds, respectively), cells displayed a 

spindle-patterned morphology with elongation and were oriented along the underlying 

fiber direction. 

3.2.3. Cell infiltration 

To evaluate the extent of cell infiltration into the scaffolds, MSCs grown on the samples 

were stained with phalloidin and DAPI. A series of confocal sections were acquired from 

the top surface along the z-axis with a CLSM (Figure 4C). Scanning the EPU mats and 

bundles with cells after 7 days revealed clear differences. The cells infiltrated into the 

initial layers of bundles and possessed a thick layer of cells around the outer 

circumference of the bundle, whereas the entire EPU mats were occupied by the cells.  

3.2.4. Cell viability and proliferation 

Cell viability is crucial to evaluate biocompatibility of scaffolds [38]. To this aim, the 

metabolic activity of MSCs was investigated on both scaffolds using Alamar Blue assay 

after 4 and 7 days of culture. As shown in Figure 4D, cell proliferation and cell number 
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increased over time in both samples. The results revealed a significant increase (p < 

0.0001) in the metabolic activity for both types of scaffolds from day 4 to day 7. In 

addition, no significant differences were observed between conditions at each time 

point. 

3.2.5. Biochemical assays 

3.2.5.1. DNA content 

The DNA content in each sample is recognized as an indicator of cell proliferation [39]. 

The DNA content of each sample was measured using PicoGreen assay after 7 days of 

culture (Figure 4E). The DNA of cells seeded on the TCP was used as control. The results 

demonstrated that there was no statistical differences in DNA content between different 

samples. 

3.2.5.2. Glycosaminoglycan and collagen content 

Synthesis and deposition of ECM components including proteins and proteoglycans by 

cells are important for tissue regeneration and remodeling [40]. In this regard, the total 

GAG and collagen content was detected on the three samples after 7 days of culture 

(Figure 4F,G). The matrix components synthesized by the cells seeded on the TCP was 

used as control. 

MSCs seeded on different groups continuously accumulated ECM during the culture 

time. In addition, GAG and collagen synthesis were significantly higher in the case of 

bundle scaffolds than others. The total amount of GAG synthesis was ~1.75 ng ng-1 cm-2, 

~28.45 ng ng-1 cm-2, and ~2.21 ng ng-1 cm-2 for EPU mats, EPU bundles, and TCP 

(control), respectively. Similarly, the level of collagen content was ~1.42 ng ng-1 cm-2, 

~25.96 ng ng-1 cm-2, and ~2.60 ng ng-1 cm-2 for EPU mats, EPU bundles, and TCP 

(control), respectively. 

3.2.6. Gene expression 

The present electrospun scaffolds showed distinct nanofibrous configurations that 

might confer a specific cell phenotype. To this aim, the MSCs were seeded on the 

scaffolds and TCP (control) for 7 days and then RT-qPCR was performed to quantify the 
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expression of markers, including tendon/ligament-, cartilage- and bone-related markers 

(Figure 4H).  

As shown in Figure 4H, one can notice an enhanced expression of tendon-related 

markers (i.e., Col1a1, Scx, Tnc, and Tnmd) in the aligned nanofibrous architecture versus 

TCP, while no significant difference was observed in the expression of cartilage-related 

marker (i.e., Sox9) and bone-related markers (i.e., Bglap and Sp7). Among the scaffolds, 

the multiscale EPU bundles induced tendon differentiation by promoting the expression 

of Col1a1 and Scx. 

4. DISCUSSION 

Native tendon and ligament tissues exhibit a hierarchical structure from nano to macro 

scale based on collagen fibers arranged along their longitudinal axes [16]. This 

hierarchical structure plays a vital role in the structural and biological properties of 

native tissues [16]. Given that, in this study, multiscale fascicle-bioinspired bundles of 

axially aligned EPU nanofibers were developed by rolling up EPU mats (Figure 1). This 

approach resulted in production of aligned EPU bundles of several centimeters in length 

meaning that the process required no special tools and was similar to rolling up a 

membrane into a tube [19]. A comparison of EPU mats and EPU bundles in terms of 

fiber diameter, fiber orientation, and pore size suggested that the architecture of 

scaffolds remained intact after bundle fabrication (Figure 2). 

The dimensions of both scaffolds, in terms of fiber and bundle diameter, are comparable 

to those found in the hierarchical organization of the fibrils and fascicles in the native 

tendons and ligament tissues [23]. Such tissues are comprised of collagen fibrils, which 

range from 50–500 nm in diameter [19]. Collagen fibrils are organized into fibers with 

diameters in the range of 10–50 μm [19]. Groups of fibers are then organized into 

fascicles with a size of 50–500 μm, which are combined to compose the whole tendon or 

ligament [19]. However, the diameters of subfascicles and fascicles vary significantly in 

different tendon and ligament types [41]. 

The pore size of scaffold is the fundamental characteristic to provide enough space for 

cell activities and the exchange of oxygen, nutrients, and metabolic waste [42]. The 

results of pore size for both EPU mats and EPU bundles are in the suitable range for 
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tissue engineering applications (Figure 2D) [43,44]. Additionally, the higher density of 

EPU bundles could be explained by the multilayer structure of such scaffolds, which 

resulted in fiber packing (i.e., fiber density) (Figure 2B and Figure 2E)[45]. The center of 

the nanofibrous bundles was not hollow, which could be accounted for the low 

thickness of electrospun mats that recognize as a 2D structure [46]. 

The mechanical testing confirmed that, in general, all samples demonstrated an initial 

highly-compliant toe region, which is similar to that of native tendon fascicles [20]. The 

results indicated that the EPU bundles showed a ductile behavior with higher values of 

failure stress, failure strain, and work to failure compared to the EPU mats (Figure 3A). 

The ductile behavior of the EPU bundles represents a safety factor in case of overload, 

which is a crucial requirement for orthopedic implants in strenuously loaded conditions 

[21]. This behavior can be attributed to the multilayer structure of constructs (i.e., 

denser fiber packing), which is shown in Figure 2B and Figure 2E. It suggests that a 

higher amount of nanofibers are oriented in parallel to the applied force and distribute 

the force, hence more loads are required to cause elastic deformation [19]. As 

previously explained, PU polymer was selected in the present study to fabricate the 

electrospun scaffolds as it can provides desirable mechanical properties [47]. The 

results confirmed that the structure of EPU bundle scaffolds with alignment topography 

of nanofibers contributes to the improvement in the mechanical properties, in 

consistent with previous studies [6,15,19]. Moreover, the aligned nanofibrous EPU mats 

demonstrated mechanical properties similar to those measured elsewhere [29]. It 

should be noted that standard clamps were used in this testing, which might have led to 

a slight under-estimate of the failure properties. But considering that the specimens did 

not fail in the clamp, it seems that such effects, if any, must have been negligible.  

The mechanical properties of both constructs were promising and comparable to those 

of other PU-based grafts (e.g., Artelon® (SportMesh™)) or native tendon and ligament 

tissues (Table 1). For instance, the tensile strength of native tendons (e.g., human 

patellar, rotator, and Achilles) is in the range of few to several tens MPa [48], which 

corresponds to the range obtained for our samples. This finding could account for 

alignment topography and fiber diameter in nanoscale [19,49]. As mentioned above, 

when most nanofibers are oriented along to the applied force, they can distribute the 

force, meaning more loads requiring for elastic deformation [19]. It is also well 
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documented that there is generally an inverse relationship between fiber diameter and 

mechanical properties when it changes from micrometer to nanometer [49]. This 

change is probably due to the entanglement of nanofiber diameter in molecular levels, 

which results in fewer defects in the structure (i.e., more structural uniformity), and 

thus higher durability [50]. Although the yield and failure strain of scaffolds are higher 

than those of natural tendon and ligament tissues, which can be useful as a safety factor 

in case of an overload of the scaffold, it caused a relevant decrement in the tensile 

modulus of bundles compared to native tissues. This needs to be addressed in future 

works. 

Sufficient mechanical properties are required for engineered scaffolds [51]. It becomes 

more important when the scaffolds are used to accelerate the healing of tissues such as 

tendons and ligaments, which are subjected to a high levels of force [52]. From a 

regeneration point of view, strength is a critical factor to maintain the structural 

integrity and mechanical properties of scaffolds during implantation and experiencing 

loads until sufficient regeneration of damaged tissue [53]. Furthermore, providing 

desirable mechanical support is critical for the newly deposition of ECM components at 

the injury site during tissue regeneration [16]. 

Increasing the surface stiffness of bundles in comparison to mats (Figure 3B) could be 

attributed to the possibility of intramolecular interactions between PU chains (i.e., 

hydrogen bonding and van der Waals) and more packing density (i.e., multilayer 

structure), which are shown in Figure 3C and Figure 2E, respectively [54,55]. It is well 

established that the crosslinking and hydrogen bonds restrain the polymer chain 

mobility, which is translated to the more rigidity and high surface stiffness [54]. As 

described in the literature, hydrogen bond in polyurethane can be identified as a hard-

hard segment hydrogen bond (NH- - -O=C bond) and a hard-soft segment hydrogen 

bond (NH- - -O– bond) [56]. In addition, Doyle et al. showed that bundling of aligned 

collagen fibers led to more packing density of fibers and hence, increased surface 

stiffness [55]. However, further studies are required to understand this observation. 

An artificial ECM not only affects cell shape but also the physical and mechanical 

properties of the ECM including surface stiffness contribute to cell behavior [57]. Cell 

adhesions are correlated to the adhesive force at the cell-matrix interface and regulated 
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by integrins associated with the assembly of focal adhesions [58]. It was found that the 

focal adhesion sizes increase with the stiffness of substrates meaning focal adhesions 

become more spread on stiff substrates compared to the soft substrate [59]. 

Furthermore, the cells that are attached to the underlying substrate, exert contractile 

forces, leading to tensile stresses in the cytoskeleton [34]. The relationship between 

these forces and the surface stiffness of the ECM can have a major impact on cell 

activities [57]. 

Higher protein adsorption on bundles than on mats (Figure 4A) could be ascribed to the 

higher surface stiffness of EPU bundles [60]. Cell adhesion onto the scaffolds is 

facilitated through a favored interplay between cells and scaffold, triggered mainly by 

cell receptors and ECM proteins [61]. In other words, the cell adhesion process is 

directly associated with protein adsorption on a scaffold, and therefore, any 

improvement in terms of protein adsorption pattern can be translated to increasing cell 

attachment [62]. Therefore, various surface modification approaches using peptides, 

proteins, and polymers have been investigated to improve protein adsorption, i.e., cell 

adhesion to substrates [63]. However, the effect of topographical architecture of 

scaffold on cell adhesion has not been well investigated [63]. Overall, given the fact that 

the cell adhesion process is directly associated with protein adsorption on a scaffold, it 

seems that the EPU bundle scaffold is likely to provide a better cell environment than 

EPU mats. 

It was observed that EPU bundles benefited from the biophysical cues (i.e., alignment 

topography and 3D configuration of nanofibers) (Figure 2) similar to the native tissues. 

The importance of this observation becomes even more pronounced in cell-scaffold 

interactions [64]. A combination of these same features and synergistically applying 

them to the hierarchical structure can direct the cells to commit to the specific 

phenotype and/or avoid drift to non-desirable phenotypes [25]. Given that, MSCs 

displayed elongated morphology and aligned orientation on both mats and bundles 

(Figure 4B), which is in accordance with previous reports confirming that the cells 

recognize and respond to the topographical cues [65]. Regardless of different 

configurations and compositions of fibers, it has been well documented that fibrous 

scaffolds with anisotropic micro- and nanotopographies induce cytoskeletal 

reorganization and dictated cell elongation with high degrees of orientation [66]. The 
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results regarding cell orientation on scaffolds studied in this work were influenced by 

the structure-function relationship of such scaffolds and represent the importance of 

design strategy for developing a suitable scaffold to mimic the hierarchical structure of 

native tissues [34]. 

According to the results, the cells infiltrated through the whole depth of EPU mats and 

initial layers of EPU bundles (Figure 4C), which may be due to the lower thickness of the 

mats compared to the bundles. This finding highlighted the cell adhesion around the 

entire outer surface of scaffolds. In addition, this observation implies that after a certain 

period of cell culture, MSCs could infiltrate the entire scaffolds. 

Alamar Blue assay showed that the scaffolds not only were cytocompatible but also 

supported cell proliferation (Figure 4D), which is a key requirement during the tissue 

regeneration process. This finding is consistent with our previous reports, which 

showed the biocompatibility of EPU nanofibers with different cell types (e.g., fibroblast 

and endothelial, and MSCs) [28,29]. 

A survey of the literature indicates that cell functions in the various matrices is affected 

by several factors: 1) biophysical cues like pore size and porosity, 2) biomechanical cues 

like surface stiffness, and 3)  biochemical cues like surface chemistry and functional 

group of the substrate exposed to the cells [67,68]. Therefore, the higher amounts of 

collagen and GAG synthesis on EPU bundle (Figure 4F,G) could be ascribed to the 

biophysical, biomechanical, and biochemical cues of such scaffolds, i.e., 3D configuration 

of nanofibers, surface stiffness, and protein adsorption, respectively. 

In the work carried out by Li et al., who investigated the effect of nanofiber 

configuration of electrospun scaffolds on phenotype and matrix synthesis of cells, the 

bundle scaffolds induced significantly more ECM deposition than mats, which highlights 

the critical roles of the biomimetic structure of bundles in promoting the maturation of 

engineered tissue constructs [69]. Similar results were reported by Rinoldi and 

coworkers, who fabricated the electrospun mats composites containing silica 

nanoparticles wherein a significant improvement of matrix deposition was attributed to 

the structure and surface stiffness of the constructs [70]. 

The proteins, like collagen, and proteoglycans are the main components of the ECM, 

which provide structural and mechanical integrity of native tissues [71]. Moreover, the 
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secretion of collagen and GAG during the cell-scaffold interactions are the major interest 

in regulating the biological function of native tissues [33]. The nanoscale fibers of both 

scaffolds positively affect the cell-scaffold interactions [72]. As such, the nanofibers 

imitate a matrix in the state of injury and the cells, hence, initiated a healing response by 

synthesis more matrix components, such as proteoglycans [64]. On the other hand, the 

scaffolds with larger fibers probably mimic the fibers of a healthy tissue matrix, and 

thus the cells reduce excess matrix deposition [64]. 

Although soluble factors are recognized to control cell fate, biophysical and 

biomechanical cues provide equally important instructions for guiding cell fate [64,69]. 

In this direction, the effect of such cues on gene expression was evaluated in the present 

work (Figure 4H). RT-qPCR results showed that both EPU mats and EPU bundles 

significantly improved the tenogenic differentiation of MSCs compared to the TCP. 

However, EPU bundles resulted in a higher expression of tendon-related markers in 

comparison with mats.   

Several parameters affect gene expression by different cell types. Cells recognize and 

respond to contact guidance cues, which extend to nanoscale topographical features 

[37,57]. Such alignment topography of nanofibers is deemed to be an ideal substrate for 

facilitating the regeneration of tissues with similar structures, like tendons, ligaments, 

nerve, cardiac, and skeletal muscles, since they can convey topographical cues to cells 

and consequently promote higher expression of the corresponding markers, as reported 

by several researchers [2,73]. Thus, the promotion of MSCs toward tendon lineage on 

EPU mats and EPU bundles compared to TCP could be attributed to the alignment 

topography of nanofibers. In our previous research, the cell-scaffold interactions 

showed that MSCs expressed higher level of tendon-related markers, including Col1a1, 

Col1a2, Scx, and Tnmd, on aligned nanofibers compared to random ones or TCP [29]. 

According to the literature, two major factors play a profound role in the upregulation 

of tendon-related markers expression (i.e., Col1a1 and Scx) on bundles versus mats. 

There is meaningful evidence endorsing the contribution of physical and mechanical 

properties of the matrix to stem cell fate, as described previously in the discussion of 

results corresponding to the surface stiffness [57]. Therefore, the significant difference 

in the expression of tendon-related markers on bundles versus mats may be linked to 
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their surface stiffness, which is in line with other reports [74,75]. For instance, in a work 

carried out by Islam et al., the effect of substrate stiffness on tenoinduction of human 

MSCs was reported [74]. The results showed higher expression of collagen type 1 on the 

stiffer substrate after 14 days of culture [74]. In another attempt, stiffer substrates 

induced higher expression of Tnmd compared to soft ones [75]. 

Moreover, the literature highlighted the influence of scaffold architecture on the 

direction of cellular commitment. In particular, the 3D configuration of bundles 

improved the expression of tendon/ligament-related markers and other native tissues 

with similar structures [16]. The combination of nanoscale and macroscale cues, which 

mimic the ultrastructure of native tissues (e.g., collagen fibrils and fibers/fascicles of 

tendons and ligaments) can synergistically induce the cells to specific phenotype related 

to anisotropic tissues [76]. For example, Xu and coworkers demonstrated that 

topographical and architectural cues of bundle scaffold act as strong inducers in the 

phenotypic expression levels of tendon-related genes [77]. Similar results was found in 

a study performed by Li et al. who seeded the cells on different constructs, including 

random and aligned electrospun mats and aligned electrospun bundles, and results 

proved the upregulation of meniscus-related genes on bundles [69]. 

Taken together, this work confirmed that fascicle-bioinspired EPU bundles possess 

suitable structural and biological properties for tendon/ligament tissue engineering. 

Such biophysical (alignment topography and 3D configuration of nanofibers) and 

biomechanical (surface stiffness) cues can facilitate tendon/ligament regeneration 

(Figure 5). There is high potential for the usage of EPU bundles in the development of 

hierarchical 3D aligned scaffolds for the construction of tissue-specific functional 

architecture and subsequently, advancing regenerative therapies for tissue repair. 

Although this study has targeted such structures for tendon/ligament fascicles, the 

results represent a platform for other tissues with similar structure (skeletal muscles, 

nerves, etc.). 

5. CONCLUSION 

The present study contributes to developing an innovative electrospun scaffold able to 

closely mimic the native architecture of anisotropic tissues such as tendon/ligament 

fascicles. The 3D bundles were prepared by rolling up the aligned EPU mats. The 
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synergistic effects of biophysical (alignment topography and 3D configuration of 

nanofibers) and biomechanical (surface stiffness) cues on the material and biological 

performance of both EPU mats and EPU bundles were evaluated. This approach allowed 

the fabrication of bundle constructs representing the structure with multiscale 

arrangement from nano to microscale. The material characterization proved the 

similarity of topographical cues (i.e., fiber diameter, fiber orientation, and pore size) in 

both constructs. The mechanical analysis revealed the higher failure stress, failure 

strain, and work to failure of multiscale bundles compared to mats. Moreover, the 

surface stiffness of bundles was notably higher than mats. The alignment topography of 

nanofibers in both scaffolds dictated a uniaxial orientation and elongated cell 

morphology. Both electrospun scaffolds supported cell proliferation over time with no 

cytotoxicity. Furthermore, the 3D configuration and surface stiffness of bundles 

meaningfully orchestrates cell-secreted ECM components, including collagen and GAGs. 

Although the alignment topography of nanofibers guided the MSCs to commit to tendon 

lineage, the structural feature of bundles boosted significantly more the expression of 

tendon-related markers. This study provides new insights into designing hierarchical 

scaffolds, which should further be investigated with complementary studies in an 

animal model to determine the suitability of such scaffolds for tissue engineering 

applications. 
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FIGURE 1 Fabrication process of scaffolds. A) Schematic illustration of the stepwise 

strategy for fabrication of EPU mats and bundles. B) Gross view of the EPU mats. C) 

Gross view of the EPU bundles. 
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FIGURE 2 Structural characterization of scaffolds. SEM images of A) EPU mat and B) 

EPU bundle and the corresponding cross-section, distribution of fiber diameter and 

fiber orientation. C) Distribution of bundle diameter. D) Pore size and E) density of EPU 

mats and EPU bundles. n = 4-6. *p < 0.05. 
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FIGURE 3 Mechanical characterization of scaffolds. A) Typical stress–strain curve of 

scaffolds and corresponding macroscopic mechanical properties. B) Surface stiffness of 

scaffolds. At least fifteen different indentations were conducted at different locations on 

scaffolds surface for each condition. C) Hydrogen bonding and van der Waals forces 

between polyurethane chains. n = 3-4. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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FIGURE 4 Biological evaluation of scaffolds. A) Protein adsorption on the surface of 

scaffolds. B) Fluorescence images of stained MSCs on the (I) EPU mats, (II) EPU bundles, 

and (III) TCP (control) after 7 days of culture. Actin fibers and nuclei were stained with 

phalloidin (red) and DAPI (blue), respectively. C) Distribution of cell infiltration into the 

(I) EPU mats and (II) EPU bundles after 7 days of culture. Actin fibers and nuclei were 

stained with phalloidin (red) and DAPI (blue), respectively. The scale of the x-, y-, and z-

axis is the micrometer. D) Metabolic activity of MSCs on scaffolds after 7 days of culture 

using Alamar Blue assay. (E-G) Biochemical composition of cell-seeded samples after 7 

days of culture. H) Relative expression of mRNA levels for Col1a1, Scx, Tnc, Tnmd, 

Col2a1, Sox9, Bglap and Sp7 genes by MSCs after 7 days of culture on different samples. 

For each gene, the delta threshold cycle (ΔCt) was calculated using Rn18S as a reference 

gene and the expression levels were compared to TCP. For each gene, the mRNA levels 

of control conditions (TCP) were normalized to 1. The means of the initial threshold 

cycles (Cts) of TCP (obtained from 500 ng of mRNA) were indicated in brackets. n = 3-4. 

*p < 0.05 and ****p < 0.0001. 
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FIGURE 5 Summary of this study. 
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Table 1. Mechanical properties of samples, native tissues, and commercial graft. 

Sample Tensile Strength (MPa) Tensile Strain (%) Reference 

EPU mat 29.40±6.14 141.09±37.41 - 

EPU bundle 40.38±0.99 259.58±8.81 - 

Patellar tendon 54–65 12–15 [78] 

Anterior cruciate 

ligament 

13–46 15–44 [78] 

Artelon® (SportMesh™) 11.9±4.6 82.0±10.0 [79] 
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Graphical Abstract and Lay Summary 

Hierarchical anisotropy structure directing 3D cellular activities plays a vital role in 

designing scaffolds for tendon/ligament tissue engineering. To this aim, Polyurethane 

bundle scaffolds with hierarchically nanofibrous arrangement were developed. The 

electrospun bundles improved the mechanical properties. They also provided favorable 

biophysical (alignment topography and 3D configuration of nanofibers) and 

biomechanical (surface stiffness) cues for tendon/ligament tissue engineering reflected 

by the promotion of MCS functions including alignment and elongated morphology, ECM 

components synthesis, and tenogenic differentiation. 

 

 


