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SEMI-ORTHOGONAL FUNCTIONS FOR THE INTERNAL

APPROXIMATION OF NULL-CONTROLS AND A HEAT

SOURCE INVERSE PROBLEM

FELIPE URRUTIA(1) AND AXEL OSSES(1,2)

Abstract. We optimized the construction and computation of null
controls for the heat equation using a suitable basis, which we call the
semi-orthogonal functions for internal approximation or SOFIA basis.
These functions are locally orthogonal to the standard spectral basis of
the corresponding elliptic operator in the observation region. We then
consider the application of these null controls to the inverse problem of
recovering the spatial part f(x) of a source term f(x)σ(t) with sepa-
rated variables in the heat equation from internal observations of the
solution and its time derivative in an observatory O. By incorporating
the SOFIA basis to a duality method that uses a family of null controls
to compute the Fourier coefficients of the source f(x), we achieve noise
robustness, good accuracy and numerical efficiency.

1. Introduction

Given a final time T > 0 and a regular and bounded domain Ω in Rn with
boundary ∂Ω, we consider the heat equation:

(1)


∂tu(x, t)− div (γ∇u(x, t)) = f(x)σ(t), in Ω× (0, T ),

u(x, t) = 0, on ∂Ω× (0, T ),

u(x, 0) = 0, in Ω,

where γ ∈ L∞(Ω) with γ ≥ γ0 > 0 a.e. in Ω is the heat conductivity (that
we assume independent of time). The term f(x)σ(t) represents a source
term with separated variables with σ ∈ W 1,∞(Ω) and f ∈ L2(Ω). The
inverse problem consists in recovering f , assuming that σ is known, from
observations of the solution u and its time derivative ut in an open and non
empty observatory O ⊂ Ω and during a time interval (0, T ), T > 0.

The problem of identifying the spatial part of the source for the heat
equation, which is closely linked to the problem of recovering the initial
condition for the heat equation, is a severely ill posed problem. In fact,
it is well known that this problem has logarithmic stability even if f has
some extra regularity than the original L2 regularity, see for instance [12].
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2 SOFIA BASIS AND HEAT SOURCE INVERSE PROBLEM

This is one of the reasons why this problem has attracted a large interest in
the control and inverse problem communities for decades. Let us mention
a non exhaustive list of some previous studies to give an idea of similar or
complementary inverse source problems related to the one of this paper:
i) the recovery of sources of the form f = χD, where χD is the indicatrix
function of an unknown subset D of Ω, see for instance [15] where domain
derivative techniques are used, ii) the identification of point sources of type

f =
∑N

j=1 pjδxj ,tj with weights pj and located at some points (xj , tj) ∈ Ω×
(0, T ) as in [21], [31] or [8], where the backwards heat equation is used, iii) the
determination of when and where the source appears in the equation, that is,
to know x0 and T0 such that f(x0, T0) 6= 0 for the first time, as was studied
in [17] where indicatrix functionals are introduced, iv) the reconstruction
of initial temperature backward heat equation, see for instance [20] and
the references therein and v) the structural identification of sources of the
form f(x)R(x, t) where R is known, as appears when using the Buckheim-
Klibanov approaches and Global Carleman iniqualities or more generally of
the form f(x, u)R(x, t) in nonlinear equations [2], [1] or [5], [4].

Among the applications of these types of inverse source problems, let us
mention the following: a) the identification of pollutant, radioactive, or odor
emissions in atmospheric chemistry on a global, regional, or city scale [6],
[29], [14], b) the identification of water pollution in coastal areas, lakes,
rivers, [7], [25], c) the optimal design of monitoring networks [28], [14], d)
the detection and attribution of climate change [27], [11], e) the detection of
phase transition (coupled heat equations) [16], f) the identification of three
dimensional images in laser microscopy which is related to some backwards
heat equation [26], etc.
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Let us now return to the inverse problem. This was previously considered
in [10] where the key finding was a reconstruction formula for f(x) (see
Theorem 8 later). This formula was obtained by extending a duality method
originally proposed in [30] for hyperbolic equations. A common feature of
these methods is that they both use exact null-controls. In the hyperbolic
case of [30], a single null-control is needed, whereas in the parabolic case
of [10], a continuous family of exact controls is required. Nevertheless, the
main drawback of the proposed algorithm in [10] is that the calculation of
the family of null controls is computationally expensive and inaccurate.

Our main result is the introduction of a special basis that we will call the
SOFIA basis, which allows us to easily compute null-controls and identify
sources for the heat-equation using the method introduced in [10]. The
existence of the SOFIA basis is equivalent to the Lebeau–Jerison property of
the quantitative unique continuation for finite linear combinations of eigen-
frequencies for an elliptic operator [19]. Therefore, the method can be easily
extended to similar null-control and source inverse problem for the Stokes
equation as we did in [13] for example, using the corresponding quantitative
unique continuation for finite linear combinations of eigen-frequencies for
the Stokes operator[3]. The method of null controls based on the SOFIA
basis we present here can be also extended to hyperbolic equations as it was
originally published by [30].

The explicit computation of null-controls for the heat equation using the
SOFIA basis let us to have a more explicit reconstruction formula for the
Fourier coefficients of the source term f(x) with respect to that have been
previously done in [10] and to obtain significantly better numerical accuracy
and shorter running. In particular, the proposed method of this article does
not need to solve optimization problems for computing the null-controls nor
to solve Volterra equations for the source term, and these facts dramati-
cally diminish the computer time and improve accuracy. This also renders
the source recovery method originally proposed by [10] more attractive and
useful for practical applications. At the same time, the proposed method
allow for efficiently compute null controls for parabolic equations in general
(see Figure 3), problem that has strong interest by itself. Indeed, there has
been important effort to develop efficient and accurate numerical algorithms
and/or analytical approximations to compute null controls for parabolic
equations and systems in practice [22], [23], [24]

The rest of the article is organized as follows. In Section 2 we present
the SOFIA basis and the application to the computation of null-controls for
the heat equation. In Section 3 we give the application of the SOFIA basis
to the reconstruction of sources for the heat equation and in Section 4 we
show some numerical experiments that shows the practical performance of
the method.
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2. SOFIA basis and null controllability results

Let Ω be a non-empty and open domain subset of Rn with a smooth
boundary ∂Ω, and let O ⊆ Ω be an observatory region where the measure-
ments of the solution will be available. Since we will link by duality the
observation region for the inverse problem with the support of the controls,
we will consider first the null controllability problem for the heat equation
for a given final time τ ∈ (0, T ], as follows:

(2)


ut − div (γ∇u) = v(τ)1O, in Ω× (0, τ),

u(x, t) = 0, on ∂Ω× (0, τ),

u(x, 0) = u0(x), in Ω,

with u0 ∈ L2(Ω). The problem of internal null controllability in time τ > 0

consists in finding a control v(τ) ∈ L2(O×(0, τ)) applied in the indicatrix 1O
of the observatory, such that the solution u of the controlled heat equation
(2) satisfies the final condition:

u(x, τ) = 0 a.e. in Ω.(3)

The existence of internal null controls can be directly obtained using
global Carleman inequalities [9].

In this work we investigate how to approximate null controls for the heat
equation using the spectral decomposition of the solution u by the eigen-
functions of the Laplace operator in combination with a family of functions
that we will call the Semi-Orthogonal Functions for the Internal Approxi-
mation (SOFIA). Figure 1 gives a first graphical idea of the functions of the
SOFIA basis that are supported into the observation/control region O.

We introduce the eigen-values and eigen-functions {(λk, ϕk)}k≥1 of the
underlying elliptic operator associated to problem (1) as follows:

(4)

{
−div (γ∇ϕk) = λkϕk, in Ω,

ϕk = 0, on ∂Ω,

where ϕk ∈ H1
0 (Ω) form an orthonormal basis in L2(Ω) with an non decreas-

ing sequence

0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . .
From the practical point of view, we will consider for the approximation

of the null controls only a finite number of eigen-functions, say (ϕk)k=1,...,K ,
where K is the number of the first selected eigen-functions.

Definition 1. Given the first K (orthonormal) eigen-functions (ϕk)k=1,...,K

of (4) and a open and nonempty observatory O ⊂ Ω, we define the first
K semi-orthogonal functions for internal approximation (that we call the
SOFIA family) (ψp)p=1,...,K by the equations:

(5) 〈ϕk, ψp〉L2(O) = δk,p, 1 ≤ k, p ≤ K,
and extended by zero outside O.
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The following result states that the SOFIA family is well defined.

Lemma 2. The SOFIA family in the observatory O defined by (5) always
exists for any K ≥ 1 and can be computed from a linear system with a K×K
positive definite matrix AK = (AK)k,k′ = (ϕk, ϕk′)L2(O) such that there exist
two constants C1 and C2 such that

AKξ · ξ ≥ C1e
−C2

√
K , ∀ξ ∈ Rn.

Moreover, there exists a sequence ξ̂K in Rn with |ξ̂K | = 1 and constants C3

and C4 such that

AK ξ̂K · ξ̂K = C3e
−C4

√
K → 0, as K →∞.

Remark 3. Notice that the matrix AK is the same for the computation of
the whole SOFIA basis (ψp)p=1,...,K and when K →∞ the matrix A become
singular. See the behaviour of the condition number of the matrix AK as a
function of K in an example in Figure 2.

Proof. Given p with 1 ≤ p ≤ K, we can reduce the problem (5) of finding
each function ψp to a linear problem. For doing this, we consider a solution of

the form ψp =
∑K

k′=1 α
(p)
k′ ϕk′ . Therefore, for each 1 ≤ k ≤ K if we multiply

ψp by ϕk and we integrate in O, by using the orthogonality condition (5)
we obtain: ∑

k′

α
(p)
k′ 〈ϕk, ϕk′〉L2(O) = δp,k.(6)

If we define the K×K matrix AK = (〈ϕk, ϕk′〉L2(O) : 1 ≤ k, k′ ≤ K) then

α(p) will be the unique solution of the linear system AKα
(p) = ep, where

ep is the p-th vector of the canonical basis. Therefore, it suffices to prove
that AK is a non-singular matrix and moreover a positive definite matrix.
Indeed

AKξ · ξ =
K∑
k=1

K∑
k′=1

〈ϕk, ϕk′〉L2(O)ξkξk′ =

〈
K∑
k=1

ϕkξk,

K∑
k′=1

ϕk′ξk′

〉
L2(O)

.

If we define v =
∑K

k′=1 ϕk′ξk′ , since v is a linear combination of eigen-
functions of an elliptic operator, therefore by quantified unique continuation
[19] we have that there exist positive constants C1 and C2 such that

AKξ · ξ = ||v||2L2(O) ≥ C1e
−C2

√
K ||v||2L2(Ω) = C1e

−C2

√
K |ξ|2.

On the other hand we know from [19] that the above estimate is optimal, i.e.,
for eachK there exist a vector ξK (that contains the coefficients of the “worst
case” linear combination of the eigen-functions) and positive constants C3

and C4 such that for vK =
∑K

k′=1 ϕk′ξK,k′ we have

AKξK · ξK = ||vK ||2L2(O) = C3e
−C4

√
K ||vK ||2L2(Ω) = C3e

−C4

√
K |ξK |2

and we obtain the result after normalizing ξ̂K = ξK/|ξK |. �
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Figure 1. The first eight eigen-functions of the Laplace op-
erator in a square domain (upper row) together with their
associated semi-orthogonal functions for the internal approx-
imation (SOFIA) (last three rows) for a rectangular, circu-
lar and complement of an circular observation/control re-
gion. (a) Classical eigen-functions in the whole domain, (b)
SOFIA in a rectangular observation region, (c) in a circular
observation region, and (d) in the complement of an circular
observation region.
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Figure 2. Condition number of the matrix AK , with K =
1, ..., 45, for rectangular, circular and complement of an cir-
cular observation/control region.

The introduction of SOFIA family serves to approximately compute null
controls for the heat equation. In fact, we have the following result.
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Definition 4. We say that v(τ,K) is an approximate internal null control
for (2) if, given an approximate solution of problem (2) in Ω× (0, τ) of the
form

uK(x, t) =
K∑
k=1

αk(t)ϕk(x),

it satisfies uK(τ, x) = 0 a.e. in Ω.

Theorem 5. Let {ψk}Kk=1 be the SOFIA basis. For all ρ ∈ L1(0, τ) such
that

(7)

∫ τ

0
eλksρ(s)ds 6= 0, ∀k = 1, . . . ,K

then

(8) v(τ,K)(x, t) =
K∑
k=1

ck(τ ; ρ)ψk(x)ρ(t)

with

(9) ck(τ ; ρ) = −
〈u0, ϕk〉L2(Ω)∫ τ
0 e

λksρ(s)ds
, k = 1 . . . ,K,

is an approximate internal null control for problem (2).

Remark 6. Find functions ρ such that (7) holds is not difficult, for instance,

take ρ = ρ0 a non zero constant, in which case ck = −
λk〈u0,ϕk〉L2(Ω)

ρ0(eλkτ−1)
, or more

generally, if ρ has constant sign a.e. in [0, τ ]. See Figure 3 to see the
behavior of the approximate null-controls for different choices of ρ.

Remark 7. One interesting choice to have (7) is taking ρ(t) = eβt − 1
with β > 0 that works from the previous remark, or β = λk in whose case

the coefficients are explicitly given by ck = −
2λk〈u0,ϕk〉L2(Ω)

1+(eλkτ−1)2 . Conversely, if

β = −λk, it is not difficult to see that (7) does not hold for a sequence

τk = eλkτ−1
λk

.

Proof. By replacing

(10) uK(t, x) =

K∑
k=1

αk(t)ϕk(x)

in equation (2) and using the L2-orthogonality of the eigen-functions and
the SOFIA basis property (5) we obtain that αk satisfies

(11)

{
α′k + λkαk =

∫
O v

(τ)(x, t)ϕk(x) = ck(τ ; ρ)ρ(t), in (0, τ),

αk(0) = 〈u0, ϕk〉L2(Ω)

with explicit solution given by

(12) αk(t) = e−λkt
(
〈u0, ϕk〉L2(Ω) + ck(τ ; ρ)

∫ t

0
eλksρ(s)ds

)
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and after imposing uK(t, τ) = 0, i.e. αk(τ) = 0 for all k = 1, . . . ,K, we
obtain

(13) ck(τ ; ρ) =
−〈u0, ϕk〉L2(Ω)∫ τ

0 e
λksρ(s)ds

, k = 1, . . . ,K.

�

The behavior of some of these null-controls are depicted in Figure 3 for
three different functions ρ and compared with the classical L2-optimal con-
trol that minimize ‖u(τ, ·)‖L2(Ω).
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Figure 3. Norm of the controlled solution (γ = 1) with
initial condition u0 = ϕ1 in the domain Ω = (0, 1)2 and in
the interval (0, τ ], τ = 0.01 for different approximate internal
null-controls given by (8) in a region O = {1/3 < y < 2/3}
for different choices of ρ: (wo) uncontrolled solution, (opt)
L2-optimal control, (ρ1) constant, (ρ2) increasing of the form
1 + 0.075t − 0.0014t2 and (ρ3) oscillating of the form 2 +
sin(0.314t).

We show now how to use the SOFIA basis can be used to solve the heat
source inverse problem.

3. SOFIA basis and source reconstruction formulas

Let τ be an intermediate time in (0, T ], and let ϕk be an eigen-function in

L2(Ω) of (4). We know that [9, 18] there exists a control v
(τ)
k ∈ L2(O×(0, τ))
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such that the solution φ of the problem

(14)


−φt − div (γ∇φ) = v

(τ)
k 1O, in Ω× (0, τ),

φ(x, t) = 0, on ∂Ω× (0, τ),

φ(x, τ) = ϕk, in Ω,

satisfies

φ(x, 0) = 0, a.e. in Ω.(15)

While in [10] we computed null controls by minimizing a sequence of
optimal control problems, in our work, we will use the SOFIA basis. For
this we introduce the Volterra operator.

For σ ∈ C1([0, τ ]) and τ ∈ (0, T ], we will denote by V (τ) the Volterra
operator given by

(16)
(
V (τ)θ

)
(t) = σ(0)θ′(t) +

∫ τ

t
(σ(s− t)θ(s) + σ′(s− t)θ′(s))ds

where θ is any function in C1([0, τ ]) such that θ(τ) = 0. It is worth noting

that V (τ) is a linear operator.
Let f ∈ L2(Ω) be the unknown source in (1) with the known time depen-

dency σ ∈ C1([0, T ]) and σ(T ) 6= 0. According to Theorem 1.6 in [10], we
have the following result:

Theorem 8 ([10]). The Fourier coefficients fk = 〈f, ϕk〉L2(Ω) of the source
f are given by the formula

(17) fk = a−1
k (C1

k + C2
k),

provided that σ is such that the coefficients ak defined by

(18) ak = 1− λk
σ(T )

∫ T

0
e−λk(T−s)σ(s)ds

does not vanish. Furthermore, C1
k and C2

k are given by

C1
k = − σ(0)

σ(T )〈u, θ
(T )
k 〉H1(0,T ;L2(O)),(19)

C2
k = − 1

σ(T )

∫ T
0 σ′(T − τ)〈u, θ(τ)

k 〉H1(0,T ;L2(O))dτ,(20)

where θ
(τ)
k is the solution to the Volterra equation, i.e.

(21) V (τ)θ
(τ)
k = v

(τ)
k

and the H1(0, τ ;L2(O)) product is given by

(22) 〈u, θ(τ)
k 〉H1(0,τ ;L2(O)) =

∫ τ

0

(
〈u, θ(τ)

k 〉L2(O) + 〈ut, ∂tθ(τ)
k 〉L2(O)

)
dt.

Proof. In order to be self-contained, we give here a brief proof of the result
following [10]. If w is the solution of wt − div (γ∇w) = 0 in Ω × (0, T )
with w(0) = f(x) in Ω and w = 0 on the boundary, then for each x, the
convolution operator u(x, ·) = σ ∗ w(x, ·) = Kw which is in fact the dual
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operator in H1(0, τ) of V (τ) defined in (16), satisfies the problem (1). By
differentiating u with respect to time and after evaluating in t = T :

σ(0)w(T ) +

∫ T

0
σ′(T − τ)w(τ)dτ = div (γ∇u(T )) + σ(T )f(x).

Multiplying the previous expression by ϕk and integrating over Ω gives

σ(T )fk = −
∫

Ω
div (γ∇u(T ))ϕk+σ(0)

∫
Ω
w(T )ϕk+

∫ T

0
σ′(T−τ)

∫
Ω
w(τ)ϕk dτ.

From the definition of null controls vτ given by (14)-(15) and extended by
zero in [τ, T ], after integrating by parts, we have that for all τ ∈ (0, T ]∫ τ

0

∫
O
wv(τ) =

∫ τ

0

∫
Ω
w(−φt − div (γ∇φ))dt = −

∫ τ

0
w(τ)ϕk.

Therefore using the definition of θ
(τ)
k of (21), also extended by zero in [τ, T ],

we obtain

σ(T )fk = −
∫

Ω
div (γ∇u(T ))ϕk − σ(0)

∫ T

0

∫
O
wv(T )︸ ︷︷ ︸

(w,V (T )θ(T ))

−
∫ T

0
σ′(T − τ)

∫ T

0

∫
O
wv(τ)︸ ︷︷ ︸

(w,V (τ)θ(τ))

dτ

and by duality

σ(T )fk = λk

∫
Ω
u(T )ϕk − σ(0)(u, θT )H1(0,T,L2(O))

−
∫ T

0
σ(T − τ)(u, θτ )H1(0,τ),L2(O).

Now using that u(T ) =
∫ T

0 e−λk(T−s)f(x)σ(s)ds we have

σ(T )fk = λkfk

∫ T

0
e−λk(T−s)σ(s)ds− σ(0)(u, θT )H1(0,T,L2(O))

−
∫ T

0
σ(T − τ)(u, θτ )H1(0,τ),L2(O)

that is

σ(T )fk

(
1− λk

∫ T

0
e−λk(T−s)σ(s)ds

)
= −σ(0)(u, θT )H1(0,T,L2(O))

−
∫ T

0
σ(T − τ)(u, θτ )H1(0,τ),L2(O).

Finally, by defining (18) we obtain the coefficients (19) of the formula. �
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In [10], the coefficients C1
k and C2

k are recovered from numerical approx-

imations of θ
(τ)
k , the solutions of the Volterra equation for any k−th fre-

quency and a discrete set of intermediate times τ in (0, T ]. However, we can
explicitly find the coefficients here.

Indeed, using the SOFIA basis, we have the following representation for-
mula for recovering the source term in the heat equation.

Theorem 9. If σ ∈ C1([0, T ]) with σ(T ) 6= 0 and {ψk}Kk=1 is the SOFIA ba-
sis, then the Fourier coefficients of the source term f in (1) are given by fk =

a−1
k (C1

k+C2
k), k = 1, . . . ,K, provided that ak = 1− λk

σ(T )

∫ T
0 e−λk(T−s)σ(s)ds 6=

0 where

C1
k = −ck(T ;V (T )ρT ) σ(0)

σ(T )

∫ T
0 〈ρTu+ ρ′Tut, ψk〉L2(O)dt,(23)

C2
k = −ck(τ ;V (τ)ρτ ) 1

σ(T )

∫ τ
0 〈ρτu+ ρ′τut, ψk〉L2(O)dt(24)

where ck are given by (27) for any ρτ ∈ C1([0, τ ]), τ ∈ (0, T ] such that
ρτ (τ) = 0 and satisfying

(25) (eλkt ∗ V (τ)ρτ )(τ) 6= 0

for all k = 1, . . . ,K.

Proof. Indeed, if for any ρτ ∈ C1([0, τ ]) with ρτ (τ) = 0 we define

(26) θ
(τ)
k (x, t) = ck(τ ;V (τ)ρτ )ψk(x)ρτ (t)

where

(27) ck(τ ; ρτ ) = − 1∫ τ
0 e

λks(V (τ)ρτ )(τ − s)ds
= − 1

(eλkt ∗ V (τ)ρτ )(τ)
,

then

(28) v
(τ)
k (x, t) = (V (τ)θ

(τ)
k (x, ·))(t) = ck(τ, V

(τ)ρτ )ψk(x)(V (τ)ρτ )(t)

is an internal null-control for (14) thanks to Theorem 5 and therefore

(29) 〈u, θ(τ)
k 〉H1(0,τ ;L2(O)) = ck(τ ;V (τ)ρτ )Uk(τ ; ρτ )

where

(30) Uk(τ ; ρ) =

∫ τ

0

(
ρτ (t)〈u(·, t), ψk〉L2(O) + ρ′τ (t)〈ut(·, t), ψk〉L2(O)

)
dt

and after replacing this in the coefficients C1
k and C2

k of Theorem 8 we finish
the proof. �

Remark 10. Notice that it is not necessary to compute null-controls nor to
solve any Volterra equation using the above representation. The only com-
putation is the calculation of the SOFIA basis {ψk}k and the corresponding
integrals with the measurements of u and ut in the observatory O.
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Remark 11. Note that the implementation of the algorithm presented in the
previous theorem can be done sequentially. Indeed, once you have computed
an approximation of the source from measurements of the solution in O ×
[0, T ], as new measurements are available in O×[T, T+∆t] for some ∆T > 0,
we can update the coefficients by adding the corresponding integrals between
T and T + ∆t, without recalculating the SOFIA basis which is independent
of time.

Remark 12. In [10] we have studied cases when σ satisfies that the coeffi-
cients ak do not vanish, they include i) σ constant, ii) σ strictly increasing
or decreasing and iii) σ of type sin(ωt) except for a discrete number of fre-
quencies ω.

Unfortunately, we do not have an explicit class of functions ρτ (possibly
depending on k) such that the coefficients ck of Theorem 9 are well defined,
i.e. such that condition (25) is satisfied. Nevertheless, we have the following
characterization that can help to check this condition in practice.

Lemma 13. For every ρτ ∈ C1([0, τ ]) we have

(31) (eλkt ∗ V (τ)ρτ )(τ) = 〈σ ∗ eλk(τ−·), ρτ 〉H1(0,τ).

Proof. The proof is by duality as in [10]. Let us define h(s) = eλk(τ−s) then

(eλkt ∗ V (τ)ρτ )(τ) =
∫ τ

0 h(s)(V (τ)ρτ )(s)ds

=
∫ τ

0 σ(0)ρ′τ (s)h(s)ds+∫ τ
0

∫ τ
s (σ′(t− s)ρ′τ (t)h(s) + σ(t− s)ρτ (t)h(s)) dtds

=
∫ τ

0

∫ t
0 σ(t− s)h(s)ρτ (t)dsdt+

∫ τ
0 ∂t

[∫ t
0 σ(t− s)h(s)ds

]
ρ′τ (t)dt.

�

Remark 14. The previous lemma suggests to choose ρτ = σ ∗ eλk(τ−·) since
that makes the H1 product positive, but this does not necessarily fulfill the
hypothesis ρτ (τ) = 0 of Theorem 9. The optimal choice of ρτ is an open
problem and we think it out of the scope of the present paper and so it would
be the subject of a forthcoming study.

4. Numerical simulations

We fix Ω = (0, 1)2 and T = 0.1. For the numerical integrations in time
we choose a time step ∆t = ∆τ = 10−3. We use a constant diffusion
γ = 1/5 for all the examples. We consider three different observation sets.
The first one is the rectangle O = (0, 1) × (0.3, 0.7), the second one is the
circle O = B((0.5, 0.5), 0.42) and the third one is the complement of an
circle O = Ω \B((0.5, 0.5), 0.94). We select for all our tests the first K = 45
eigenvalues and eigenfunctions (λk, ϕk)k≥1. We use the SLEPc method from
FeniCs to solve the eigenvalue problem and to compute the SOFIA matrix
with finite elements with a continuous Galerkin space of type Lagrange with
degree 3, mesh size h = 1/64. In order to solve the SOFIA linear system, we
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use the GESV method from SciPy python library. We set ρτ,β(t) = eβt−eβτ ,
t ∈ (0, τ ] (notice that ρτ,β(τ) = 0) with a fixed β > 0 for any τ , where the
value of β is such that condition (25) is verified on each experiment.

Following [10], we consider three different time dependencies of the source
(see Figure 4):

(a) σ0 = 1,

(b) σ1 = 1 + 2t/t0 − (t/t0)2 if t < t0, else 2, with t0 = 3/40,

(c) σ2 = 2 + sin
(

4 πt
T−ε

)
if t < T − ε, else 3/2, with ε = 10−5.

Notioce that all tested σ functions exhibit positivity within the interval
(0, T ].

0.00 0.02 0.04 0.06 0.08 0.10
Time (t)

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

(t)

0.00 0.02 0.04 0.06 0.08 0.10
Time (t)

100

50

0

50

100

t(t)
0
1
2

Figure 4. Three different choices for the time dependency
of the source σ. (Left) Time source. (Right) Derivative of
time source.

We employed the methodology proposed by [10] to evaluate the perfor-
mance of the reconstruction formula. We assessed the feasibility of the re-
construction formula for various unknown functions f(x) by using different
choices of σ(t), as depicted in Figures 5, 6 and 7. The original sources were
displayed in the first column, while their projection onto the first 45 eigen-
values and the corresponding reconstructions for σ0, σ1, and σ2 were shown
in the second and subsequent columns. We used the projected version of
the original source to compare the reconstruction of our method, as it is the
best that can be obtained with a 45-frequency decomposition. We fix β de-
pending on the source, as depicted in Table 2. Our results indicate that our
proposed method achieves better accuracy than the original reconstruction
method proposed by [10].

The null controls did not depend on f(x) and σ(t) and, therefore, did
not require recalculation. Similarly, the coefficients ck(τ ; ρτ,β) only needed
to be recalculated for a fixed β value when changing the σ(t) function, as
they did not depend on f(x). The observations of the solution and its time
derivative in O× (0, T ) were perturbed (each) by a Gaussian multiplicative
noise with a noise level of 100δ%, more precisely, a factor 1+δN(1, 0) where
δ is the noise level (we set δ = 0.05 for a 5% noise level for example) and
N a Gaussian distribution of zero mean and unit standard deviation. We



14 SOFIA BASIS AND HEAT SOURCE INVERSE PROBLEM

observed the same robustness as claimed by [10]. This is mainly due to the
fact that the reconstruction formula is unaffected by the presence of noise.
To measure the accuracy of our method, we calculated the L2 relative errors
of the reconstructed source with respect to the projected source, as presented
in Figures 5, 6 and 7.

Original Projected 𝜎0 𝜎1 𝜎2

1 0% 20.2% 23.3% 27.3%

2 0% 5.1% 13.5% 22.8%

3 0% 2.2% 5.5% 9.4%

Figure 5. The given figure depicts the process of recon-
structing various sources, represented by the function f(x),
where x belongs to a two-dimensional region denoted by
Ω = (0, 1)2. The reconstruction is done based on the lo-
cal measurements taken from the observatory denoted by
O = (0, 1) × (0.3, 0.7), which is bounded by dotted lines.
The measurements are affected by normalized-Gaussian noise
(with 5% of noise level). The accuracy of the reconstructions
is evaluated by computing the L2 relative error relative to the
first 45 eigen-functions of the projected source. Three differ-
ent cases are considered, as represented in the third, fourth,
and fifth columns of the figure, where σ takes the values σ1,
σ2, and σ3, respectively (see Figure 4).

Table 1 shows the time consumed by each stage of our reconstruction
method, displaying the total time consumed to obtain each of the experi-
ments in Figure 5. Our reconstruction method takes on average 3.4 minutes
to run, considerably better than the complexity of the original method de-
veloped by [10]. In the same computer, with the methodology of [10], for
a single frequency ϕk, with T = 0.1 and a time step ∆t = 10−3, it takes
approximately 18 minutes to solve the null controllability problem with re-
laxed minimization and in total, determining each family of controls for 45
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Original Projected 𝜎0 𝜎1 𝜎2

1 0% 4.3% 18.2% 21.9%

2 0% 3.1% 5.3% 20.6%

3 0% 2.2% 4.2% 10.1%

Figure 6. The given figure depicts the process of recon-
structing various sources, represented by the function f(x),
where x belongs to a two-dimensional region denoted by
Ω = (0, 1)2. The reconstruction is done based on the lo-
cal measurements taken from the observatory denoted by
O = B((0.5, 0.5), 0.42), which is bounded by dotted lines.
The measurements are affected by normalized-Gaussian noise
(with 5% of noise level). The accuracy of the reconstructions
is evaluated by computing the L2 relative error relative to the
first 45 eigen-functions of the projected source. Three differ-
ent cases are considered, as represented in the third, fourth,
and fifth columns of the figure, where σ takes the values σ1,
σ2, and σ3, respectively (see Figure 4).

frequencies takes approximately 14 hours. So there is a decrease of two
orders of magnitude (250× times faster) in computational time using the
proposed SOFIA basis algorithm.

Table 1 shows the aggregated dedicated complexity in the reconstruction
of the coefficients as well as the total time considering the computation of
the eigen-functions of the Laplacian and the pseudo-functions. We declare
both times since the computation of eigen-functions is determined indepen-
dently of the data of the inverse problem, and the pseudo-functions are
only determined by knowing a priori the zone of observations. Meanwhile
the computation of the reconstruction time complexity is broken down into
three stages. The loading stage consists of retrieving the observations of
both the temperature and its time derivative. The pre-computation stage
consists of determining the coefficient Uk(τ ;βτ ) for each intermediate time τ
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Original Projected 𝜎0 𝜎1 𝜎2

1 0% 14.5% 33.8% 39.7%

2 0% 15.9% 33.3% 32.5%

3 0% 3.7% 32.1% 39.8%

Figure 7. The given figure depicts the process of recon-
structing various sources, represented by the function f(x),
where x belongs to a two-dimensional region denoted by
Ω = (0, 1)2. The reconstruction is done based on the lo-
cal measurements taken from the observatory denoted by
O = Ω\B((0.5, 0.5), 0.94), which is bounded by dotted lines.
The measurements are affected by normalized-Gaussian noise
(with 5% of noise level). The accuracy of the reconstructions
is evaluated by computing the L2 relative error relative to the
first 45 eigen-functions of the projected source. Three differ-
ent cases are considered, as represented in the third, fourth,
and fifth columns of the figure, where σ takes the values σ1,
σ2, and σ3, respectively (see Figure 4).

at (0, T ) and each frequency k. While in the final stage, only the calculation
of the coefficient ck(τ ; ρτ,β) takes place to finish with the reconstruction of
each fk from factors ak, C

1
k and C2

k .
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Original Projected 2% 5% 10%

1 0% 4.3% 4.3% 4.4%

2 0% 2.6% 3.1% 4.0%

3 0% 1.9% 2.2% 2.9%

Figure 8. The given figure depicts the process of recon-
structing various sources, represented by the function f(x),
where x belongs to a two-dimensional region denoted by
Ω = (0, 1)2. The reconstruction is done based on the lo-
cal measurements taken from the observatory denoted by
O = Ω\B((0.5, 0.5), 0.94), which is bounded by dotted lines.
The measurements are affected by normalized-Gaussian noise
with noise levels of 10%, 5% and 2% . The accuracy of the
reconstructions is evaluated by computing the L2 relative er-
ror relative to the first 45 eigen-functions of the projected
source. In all the cases we fix the time dependency of the
source in σ = σ1.
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