
HAL Id: hal-04297634
https://hal.science/hal-04297634

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Dual Dynamic Programming as a modelling
Tool for Power Systems with Demand Response and

intermittent Renewables
Julien Ancel, Olivier Massol

To cite this version:
Julien Ancel, Olivier Massol. Stochastic Dual Dynamic Programming as a modelling Tool for Power
Systems with Demand Response and intermittent Renewables. 17th IAEE European Conference, Sep
2022, Athènes, Greece. �hal-04297634�

https://hal.science/hal-04297634
https://hal.archives-ouvertes.fr


Stochastic Dual Dynamic Programming as a modelling Tool
for Power Systems with Demand Response and intermittent

Renewables

Julien Ancel ∗1 and Olivier Massol †1,2

1Climate Economics Chair, Paris, France
2IFP School, Paris, France

July 12, 2022

Abstract

In modern power systems modelling notions of stochasticity and stock management
have acquired importance outside of the world of hydroelectricity due the emergence of
intermittent renewables, batteries and demand-side management. This paper proposes
a short review and description of Stochastic Dual Dynamic Programming with the
concern of applying it to such large scale power systems. An application of SDDP to
North Western Europe’s power 2023 power system with internal high gas prices, inter-
connections with neighbours having access to cheaper gas and with demand response is
presented. We show that demand-response reduces market prices, outages and drives
out of the market peaking gas plants while improving social welfare in the market.
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1 Introduction

In line with climate change mitigation efforts, future power systems will rely on increased
shares of renewable energy sources (RES). The intermittent, random nature of most RES
will bring more noise and less flexibility on the supply side of power markets. Commonly
evoked paths to manage such issues include increases in storage capacities and flexibili-
ties which may take various forms such as batteries, power-hydro storage, power-to-gas
or demand response. As stocks with limited sizes, recourse to these technologies reflects
intertemporal arbitrages which can only be accurately accounted for by long term repre-
sentations.

Common modeling approaches for power systems operations rely on multistage opti-
mization problem, for example with the objective of minimizing the total cost of operations
until some temporal horizon. Coupling these approaches with the necessary mid- to long-
term study of the dynamics of stocks involves models with numerous time stages. Moreover,
with low-carbon power systems, realizations of random variables should be encompassed at
each time stage. It leads to astronomically big scenario trees, so much that it compromises
these long term studies.

Fortunately, similar issues arise when dealing with hydro-thermal scheduling, which is
key to several water-based power systems such as that of Brazil or Norway. An optimiza-
tion method, Stochastic Dual Dynamic Programming (SDDP), have thus been developed
by Pereira & Pinto (1991) which treats long-term scheduling of hydro-power stations with
stochastic inflows and avoids a scenario based resolution. Long limited to the hydroelec-
tricity field, SDDP may be seen as a more general, efficient way of optimizing multistage
decisions about (many) stocks affected by (many) random variables. In that sense, it adapts
perfectly to whole low-carbon systems problems with different and numerous storage tech-
nologies.

Historically, SDDP was introduced by Pereira & Pinto (1991) as they sought to solve a
mid- to long-term horizon hydro-thermal scheduling problem yielding optimal allocation in
the hydro-dominated Brazilian power system. The method in itself is described in Section
2 and a pseudo algorithm is also given. The crucial feature of SDDP lies in its ability
to compute opportunity costs with lower computational efforts than traditional stochastic
dynamic programming without affecting the quality of the resulting policy. Pereira & Pinto
could therefore assess the evolution of marginal costs of turbining water of the different
hydroelectric reservoirs with random inflows. Since 1991, SDDP has been widely applied to
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hydro-thermal scheduling in other countries. For example, Rebennack et al. (2009) consider
a hydro-thermal power system covered by an emission permits market under randomness
of oil prices and water inflows. Pereira-Bonvallet et al. (2016) take up the classical field
of application of SDDP, long-term hydroelectric scheduling, but add competition between
agricultural and power production uses of the water in the reservoirs. Thus they seek to
obtain multi-usage values of stocks along the years. Guan et al. (2018) don’t extend the
method but applies it to a new territory, British Columbia, and introduce supplementary
constraints on the usage of water stemming from international agreements. A focus on
water values is made. To conclude this overview, Diniz et al. (2020) apply SDDP to a
system with numerous little reservoirs with little place for maneuvers and consider other
risk measures than the expectation.

Building on the previous analysis of SDDP, a few recent studies have implemented SDDP
in other contexts than hydro-thermal scheduling. Among original applications, we can cite
Dowson et al. (2019) applying SDDP to dairy farms management in New Zealand. Note
that the same author has co-developed in Dowson & Kapelevich (2021) a Julia package
extensively used in the actual solving of the model of the present paper.

But, in a more relevant way, SDDP appears in a few studies of RES dominated power
systems. Wu et al. (2016) look at the long term optimal expansion planning of intercon-
nection capacities between productive regions of the power system. A similar work is done
by Lu et al. (2020) for the Chinese system with technical modifications in the stopping rule
of SDDP and a focus on RES curtailment and congestion of interconnections. The setting
is rather similar than Marañón-Ledesma & Tomasgard (2019) with stages of investments
framing years of hourly operations, random demand and random RES production. Even
though no stock are to be found here, the authors rely on SDDP because of the lower
required computational effort. They show that, under uncertainty, the resulting policy of
SDDP fares better than policies determined through deterministic optimizations. Closer
to the classical SDDP framework, Bodal (2016) proposes the study of a Norwegian power
system marked by small hydroelectric stations and a growing share of random RES pro-
duction. Papavasiliou et al. (2017) solve with SDDP the short term (24h - 15min steps)
optimal dispatch in a power system with random RES production and energy storage.
This model accounts for transmissions between regions of production and ramping times
of generation means. As the others seek to affect a value to storage in a large-scale system
and part of the production is random, recourse to SDDP seems natural. They insist on
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the non-anticipativity of their optimization framework as a distinction among the litera-
ture. Finally, Stüber & Odersky (2020) implements SDDP in the energy system model urbs
and apply it to the 2015 German system with hourly resolution, an horizon of two days,
17 regional nodes, a random wind turbining and (hydro) storage capacities. Note that a
demand-side management module focusing on load-shifting exists in urbs but is not used
in Stüber & Odersky (2020).

Thus, SDDP appears as a flexible solving tool with reduced computational effort that
can encompass numerous constraints - as long as they are linear - and state variables.
Through the applications it emerges that SDDP is not only adapted to hydro-thermal
scheduling but to any large-scale stock management problem under uncertainty. Its main
outputs are opportunity costs of using the stock at a certain date which can assess for
multi-usage value of the stock and risk aversion of the user depending on the risk measure
used.

In this study, we efficiently review literature, properties and implementations of SDDP
in a practical point of view seeking applications to whole low-carbon systems. Then an
innovative case study using SDDP is proposed: we model a 2023 power system of North
Western Europe. In 2023, this power system faces several challenges: the loss of a part
of its base production with Germany suppressing its nuclear production in exchange for
intermittent RES, increased carbon prices and high gas prices causing on the one hand coal
power plants – and notably German lignite ones – to be competitive again, and on the
other hand neighbouring countries such as the United Kingdom to export its cheaper gas
through electrical interconnections. In this context we seek to evaluate the multifaceted
impacts of introducing demand response. Demand response refers to an accepted deviation
of a load from its ordinary pattern in response to some incentive (e.g. a direct order) or
some signal (e.g. a price). Demand response is modeled as stocks thanks to an analogy
with hydro-power which accounts for technical and societal constraints. Conclusions are
drawn in terms of economic viability of demand response, modified recourse to traditional
generation units and cost-effectiveness of the system.

The paper is structured as follows. First we present a concise review of SDDP with a
focus on how it may be useful for large scale power systems modeling in Section 2. Then,
we propose a simple model of a modern power system with demand response adapted to
SDDP in Section 3. Finally, a short application of this model to the effect of demand
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response (DR) on a copperplate North Western Europe calibrated on probable conditions
of year 2023 for this system exemplifies the strengths of SDDP in dealing with long-term
system level problems of decarbonized power systems.

2 A concise description of SDDP and one implementation

We describe here succinctly the class of algorithms coined SDDP and a possible implemen-
tation. More technical material may be found in Shapiro (2011), or for a more practical
approach in the documentation Dowson & Kapelevich (2021). This section relies also on
the presentation of the method An Introduction to Stochastic Dual Dynamic Programming
(SDDP) given in 2017 by V. Leclère from CERMICS (ENPC).

2.1 The method

SDDP seeks to solve large scale multistage stochastic optimization problems under specific
hypothesis: state and control variables are continuous (actually SDDP works also with
integer variables but requires some type of convex relaxation which is costly and will be
avoided here), these variables must belong to convex compact sets of finite dimensional
spaces, the stage objective functions must be convex, and dynamics linear. Most of all,
the noise must take values in a finite set and be a white noise i.e. noises of two distinct
stages are independent. The latter hypothesis enables to fit into a dynamic programming
framework. Note that, it can always be obtained at the cost of expanding the dimension of
the state variable (thanks to the so-called state expansion trick, see Shapiro (2011)). Under
these hypothesis, SDDP yields an optimal solution of a dynamic programming problem
with piece-wise linear Bellman functions approximating the Bellman functions of the true
problem. Estimating these linear forms at some stage and some state relies on the compu-
tation of the dual variable associated with a slightly modified subproblem determining the
true Bellman function at this stage (see below).

Let’s consider an archetypal problem solvable with SDDP, with finite horizon T yielding
some decision rule π :

min
π

s. t. Xt+1=ft(Xt,Ut,Wt)
Ut=πt(Xt,Wt)

E

[
T−1∑
t=0

Ct(Xt, Ut,Wt) +K(XT )

]
(2.1)
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where Ct is an instantaneous convex cost, K a convex final cost, Xt ∈ X a state variable at
stage t, ft the linear state transition dynamic from stage t to t+ 1, πt the decision rule at
stage t, Ut ∈ U the decision(s) taken at t and Wt the random variable representing some
noise existing between stage t and stage t + 1 (excluded) with values in the finite set Wt.
Note that, if Wt isn’t finite, it may be possible to reduce it to a finite set by methods such as
sample average approximation. In general, it seems reasonable to enumerate Wt – which is
done in SDDP– but not the whole scenario tree W1×· · ·×WT – which is not done in SDDP
but would if one wanted to discretize the whole state space. The process (Wt)t∈{1,...,T} is
supposed to be a white noise so that there is stage-wise independence. Sets X et U are
compact. Problem 3.25 presented in Section 3.2 is an instance of such problem.

With these hypothesis, Problem 2.1 may be formulated in a dynamic programming
framework by introducing a Bellman function Vt at each time step. This approach enables
to decompose the resolution of the complete problem into that of a backward in time series
of subproblems associated with each stage and the system state at this stage. The Bellman
function, also called the cost-to-go, represents the expected future cost when starting from
a given state. It is defined for x ∈ X, w ∈ W by

VT (x) = K(x) (2.2)

V̂t(x,w) = min
ut∈U

Ct(x, ut, w) + Vt+1 ◦ ft(x, ut, w) if t < T (2.3)

Vt(x) = E
[
V̂t(x,Wt)

]
if t < T. (2.4)

The goal of SDDP is to approximate by inferior values the functions Vt with a supremum
of affine functions relying heavily on the convexity of the Vt. These affine functions for
stage t are obtained from the subproblem defining Vt in the classical dynamic programming
framework where Vt+1 is replaced by its approximation Ṽt+1 computed at the previous step
(we begin with t = T and final cost K is supposedly known). For a realization w of Wt

and a given state xt at stage t, this subproblem writes

β̂t(w) = min
x,u

s. t. x=xt [λ̂t(w)]

Ct(x, u, w) + Ṽt+1 ◦ ft(x, u, w) (2.5)

The dual variable λ̂t(w) is associated to the state constraint of the previous subproblem.
By definition of λ̂t(w), we have the following inequalities for all realizations w and all states
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x

β̂t(w) + ⟨λ̂t(w), x− xt⟩ ≤ β̂t(w) ≤ V̂t(x,w) (2.6)

since Ṽt+1 ≤ V̂t+1(., w). An approximation by inferior values of function Vt in the neigh-
borhood of xt is then given by the affine function, also called cut,

βt + ⟨λt, .− xt⟩ := E
[
β̂t(w)

]
+ ⟨E

[
λ̂t(w)

]
, .− xt⟩. (2.7)

Here, only the backward phase of SDDP yielding new cuts for approximating the true
value functions has been described. This phase relies notably on the drawing of relevant
trajectories (xt)t≤T for the state variables. Indeed, the cuts are only good approximations
of the value functions near these points. The choice of relevant state for computation is also
encountered in traditional stochastic dynamic programming and the selected approach is
to grid all the state space which may be extraordinarily costly in high dimensional systems.
In SDDP, computations are made only at "relevant" states i.e. those taken by the system
when it follows an optimal path according to some drawn trajectory of noises. Actually,
to compute this optimal path, knowledge of true value functions is required. So, these
value functions are replaced by their approximates built in a previous backward phase.
This describes the forward phase of SDDP. Backward and forward phases depend on each
other and mutually strengthen their results. Thus SDDP alternates between forward and
backward phases numerous times, until some stopping condition is met.

Under hypothesis taken here, convergence of the approximate after k iterations of for-
ward and backward phases Ṽ

(k)
t to Vt is guaranteed when k goes to infinity (see Pereira

& Pinto (1991) or Shapiro (2011)). Thus the resulting policy also converges towards the
true optimal policy as the algorithm iterates. At each step (k) (composed of a forward and
a backward phase), an exact inferior bound of the value of the true problem is given by
v(k) = Ṽ0

(k)
(x0) (note that the initial state x0 is supposed to be known and set) and an

exact upper bound by V̄ (k) = E
[∑T−1

t=0 Ct(X
(k)
t , U

(k)
t ,Wt) +K(X

(k)
T )

]
. The latter bound

may not exactly be computed and must be estimated by a Monte-Carlo method: several
samples of realizations of W are drawn which yields as much trajectories for X and U , then
the mean on samples of the total cost v̄(k) is computed. A confidence interval for the value
of the upper bound, [v̄(k)l,α , v̄

(k)
h,α], may be derived. Noting v∗ the true optimal value, we have
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the following inequalities after step (k) with some confidence level 1− α,

v(k) ≤ v∗ ≤ V̄ (k) ∈ [v̄
(k)
l,α , v̄

(k)
h,α]. (2.8)

Several stopping rules exist and are primarily based on inequalities 2.8. As we men-
tioned, the inequality gets tighter as k grows so a simple stopping rule is to set a number
of iterations for the algorithm but this gives no guarantee on the quality of the approxima-
tion. The original criterion proposed by Pereira & Pinto (1991) uses more the inequalities.
Setting a priori some confidence level 1 − α, the algorithm should stop after step (k) if
v(k) ≥ v̄

(k)
l,α /. However, as pointed out by Shapiro (2011), this condition may be met very

early if the confidence interval around the upper bound is very large i.e. the estimation of
the upper bound is of poor quality, and no optimality guarantee may be obtained. He pro-
poses then the following stopping rule, which will be used in the application of Section 3 and
in a companion paper on the impact of demand response on future, more renewable-based
power systems. It states that algorithm should stop after iteration (k) if |1− v̄

(k)
h,α/v

(k)| ≤ ϵ

with a confidence level 1 − α and some precision ϵ > 0 set a priori. This stopping rule
guarantees that the policy yielded by SDDP is ϵ-optimal for the true problem with proba-
bility 1− α/2. Note that these results suppose that the distribution of the upper bound is
normal.

2.2 Employed implementation

The previously described SDDP may be implemented in several ways. For example, during
a forward phase, more than one trajectory of states may be drawn and cuts computed for
each of these trajectories in the backward phase. This short section presents the pseudo-
code for one implementation of SDDP, which is used in the Julia package by Dowson &
Kapelevich (2021) on which the application of Section 3 relies. We however slightly modi-
fied it in order to use Shapiro’s stopping rule described above.

A crucial advantage of SDDP lies in its treatment of the state space and of noise. As
the state space is not entirely discretized but only precisely described on regions the system
actually explores, the number of points where a subproblem is solved and noise has to
be drawn is reduced. If the noise has dimension N at each stage and it costs O(A) to
solve a subproblem of the type of 2.5 (one stage convex deterministic optimization), the
complexity of a forward phase is O(NTA) as one trajectory of T noises of size N is drawn.
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Moreover, if the noise at some stage t takes value in a space of cardinal Kt (i.e. |Wt| = Kt),
the backward stage consists of, for each stage t, the resolution of Kt subproblems and the
drawing of Kt noises for the stage which yields a total complexity of the backward phase of
O
(
(N +A)

∑T
t=1Kt

)
. It is to be compared with a scenario-based approach in which all of

the
∏T

t=1Kt trajectories are considered. To compute the stopping rule, MT draws of noise
are necessary leading to a complexity of O(MTN). Thus, on the whole, the complexity of
SDDP is significantly lower than that of scenario based approaches and enables to consider
large scale problems with long-term horizons, high dimensional noises and an important
number of scenarios as the complexity grows with

∑T
t=1Kt and not

∏T
t=1Kt. In this sense,

SDDP is well-suited to problems related with the long term analysis of systems subject
to many uncertainties and stock management such as power systems with large shares of
intermittent renewables and hydro-power. Stock management affected by noises is indeed
the primary goal of SDDP (see Pereira & Pinto (1991)). In practice, it enables to derive
naturally water values or opportunity costs for these stocks. The opportunity cost for some
stock described by the ith coordinate of the state variable is indeed given at a certain state
xt by the ith coefficient of the gradient of the value function Vt at this state which may be
approximated by the gradient of Ṽ (k)

t at the same point. When yielding Ṽ
(k)
t , SDDP returns

in fact the affine function i.e. a tuple of their slope λ
(k+1)
t and constant term β

(k+1)
t that

reaches at state xt the supremum among all cuts computed for Vt. Thus, the gradient of
Ṽ

(k)
t at xt is simply λ

(k+1)
t , a natural return of SDDP, and the water value its ith coefficient.

This aslo highlights how SDDP is particularly adapted for stock management problems.
Finally, SDDP avoids the complete enumeration of all possible scenarios for the noise

which alleviates a bounding computational constraint in scenario-based method – moving
from complexity growing as

∏T
t=1Kt to

∑T
t=1Kt with our notations. Note that, however,

it doesn’t prevent the curse of dimensionality arising with high dimensional state variables
(which increases when the state space has been expanded in order to fit to the white noise
assumption). In our notations, this source of complexity is hidden behind O(A) and affects
the resolution of all subproblems. In a sense, SDDP handles better stochasticity than its
counterpart but is still bounded by curses inherent to a dynamic programming framework.
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Algorithm 1 SDDP - DOASA Implementation
Initialization.

Provide an initial state x0, a precision parameter ϵ, a confidence level 1−α and a number
M of sample for MC estimations
for t = 0 . . . T − 1 do

Give Ṽ
(0)
t a convex approximate of Vt so that Ṽ

(0)
t ≤ Vt.

Ṽ
(0)
T = K.

Iterations.
while Shapiro’s stopping rule isn’t verified at the end of step (k − 1) do

Forward phase.
Draw a trajectory of noise (w0, . . . , wT−1) ∈ WT .
for t = 0 . . . T − 1 do

Compute u
(k)
t ∈ argminu∈U

(
Ct(x

(k)
t , u, wt) + Ṽ

(k)
t+1 ◦ ft(x

(k)
t , u, wt)

)
.

Define a point x
(k)
t+1 such that x

(k)
t+1 = ft(x

(k)
t , u

(k)
t , wt).

Backward phase.
for t = T − 1, . . . , 0 do

Compute for all w β̂
(k+1)
t (w) and λ̂

(k+1)
t (w) as in 2.5. (Hence the noise must take

value in a finite set)
Compute β

(k+1)
t = E

[
β̂
(k+1)
t (Wt)

]
and λ

(k+1)
t = E

[
λ̂
(k+1)
t (Wt)

]
.

Add the new cut : Ṽ
(k+1)
t = max

(
Ṽ

(k)
t , β

(k+1)
t + ⟨λ(k+1)

t , .− x
(k)
t ⟩

)
.

Stopping rule.
Draw M trajectories of noise (wm

t )t≤T,m≤M .
Compute the M optimal decisions and states (U (k),m

t , X
(k),m
t )t≤T,m≤M associated with

the problem where Vt is replaced by Ṽ
(k)
t and noises (wm

t )t≤T,m≤M .
Compute the upper bound MC estimate

v̄
(k)
M =

1

M

M∑
m=1

T−1∑
t=0

Ct(X
(k),m
t , U

(k),m
t , wm

t ) + K(X
(k),m
T )

Compute the standard deviation of the sample

S̄
(k)
M =

√√√√ 1

M − 1

M∑
m=1

[
T−1∑
t=0

Ct(X
(k),m
t , U

(k),m
t , wm

t ) +K(X
(k),m
T )− v̄

(k)
M

]2

.
Compute the upper bound of the confidence interval of level 1−α for the upper bound

of the problem

v̄
(k)
h,α,M = v̄

(k)
M + tα

S̄
(k)
M√
M

Test the condition

|1−
v̄
(k)
h,α,M

Ṽ0
(k)

(x0)
| ≤ ϵ

.
End of step (k).
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3 SDDP-friendly models of demand response and power sys-
tems

This section proposes an example of a contemporary interesting problem for power systems
for which SDDP is particularly adapted. We seek to evaluate the operational impact of
demand response on power systems in a 2023 North Western Europe (NWE) – Belgium,
France, Germany, Luxembourg and Netherlands– marked by increasing CO2 prices and very
high prices of gas. First, we precise what the term demand response encompasses and how
it is modeled here avoiding integer variables. Then, a multistage stochastic optimization
problem is stated for the hourly dispatch of generation and storage means in a copperplate
NWE during a year facing random demand and random productions of intermittent renew-
able energy sources (RES). Finally, aggregated impacts of demand response of the system
are evaluated and discussed. If the reader is interested in a more detailed calibration and
policy analysis of demand response in future power systems in a SDDP framework, we refer
to a companion paper (Ancel & Massol (2022)).

3.1 Demand Response in a SDDP framework: the hydro-power analogy

Demand response (DR) encompasses all electricity consumption that can voluntarily be dis-
placed in time or curtailed. All demand response deposit presents a form of inertia: thermal
inertia when the cooling of a stock or the heating of a house is curtailed, mechanical inertia
when cement mills are momentarily stopped or behavioural inertia when electric vehicles
are kept parked at night so that they can be charged. Flexible loads can be found in a
large diversity of electricity usage, from the biggest industrial consumers to the simplest
residential water boiler. As we seek to analyze the impact of all of these flexible loads
on the whole electric system, we need a common representation of demand response that
should both reflect the technical features of the modeled flexibility and be compatible with
the description of traditional means of electrical production.

Following an important body of work we model demand response as a negative gen-
eration technology (see Verrier (2018) or Marañón-Ledesma & Tomasgard (2019)). DR is
supposedly aggregated by a new actor, the DR aggregator, and all deposits of DR are seen
as controllable means by the aggregator within technical and societal limits. This approach
is particularly adapted to models of electricity markets where the supply/demand balance
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constraint is written explicitly, as it will be the case in the present study. In such framework,
it is indeed obviously similar to subtract a term on the demand side of the power balance
equation and to add a new power of the same amount on the production side. We keep
this idea as it enables a unified representation of demand response and ordinary generation
means. We model demand response in a similar way as Verrier (2018), each demand re-
sponse technology dr being represented by an installed capacity of negative generation Cdr,
a maximum duration of event ∆dr, a time availability (Adr

t )t≤T and a maximum number
of activation per year Ndr. All of these parameters can be easily deduced from the load
profiles of the consumers. The construction of load profiles and calibration of the demand
response model is not described here for sake of clarity but in a companion paper (Ancel
& Massol (2022)).

Demand response may be divided into two classes depending on the destiny of the
flexible load: load-shedding when the demand is purely erased and load-shifting when it is
only pre- or postponed and still has to be balanced at one point.

Load-shedding is to be found mainly in the industrial sector with its centralized big
consumers. It represents a pure loss for the consumer (e.g. steel that wasn’t produced during
the shedding event) and thus has a very high activation cost. Therefore load-shedding is
a peak mean of negative generation and recourse to it can only be limited in time and
infrequent. These limitations lead naturally to an analogy with conventional hydro-power
stations. A limited quantity of energy can indeed be removed from the demand along the
year during shedding events. The shedded load (turbdrt ) can’t exceed the flexible part of the
power demanded by the consumer in a normal situation as a dam can’t inject more power in
the electric system than its installed turbining capacity. Thus we represent load-shedding
technologies as a reservoir of a size given by the product between the available capacity,
the duration of an event and the maximum number of events per year. The level of this
reservoir represents the quantity of energy that can still be shedded during the remaining
part of the year. It can only decrease as water (i.e. energy) is turbined (i.e. removed from
demand or negatively generated). The turbining is limited by the available capacity.

Load-shifting appears more frequently among temperature related usage (cooling, heat-
ing, air conditioning) and in the tertiary or residential sector. As underlined by H. C. Gils
(2014) or Müller & Möst (2018), it represents a massive potential of flexible loads which
remains currently largely untapped. With limited duration of events, load-shifting implies
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Figure 3.1: Model of a load-shedding technology.

less discomfort than load-shedding and is therefore at a quite low activation cost and may
be activated a greater number of time. The exact same analogy with conventional dam
wouldn’t be satisfactory as it can’t memorize the postponed load that has to be balanced.
Load-shifting behaves indeed more similarly to hydro-power stations equipped with pump-
ing capacity. These stations are situated between two reservoirs of water (upstream and
downstream), inject power (turbdrt ) in the system by turbining water from the upstream
reservoir to the downstream one and stock power out of the system by pumping water
(pumpdrt ) from downstream to upstream. Similarly in load-shifting, a limited quantity of
energy (water) can be postponed (turbined) thus generating negatively this energy from
a system perspective. It is afterward balanced (pumped) thus increasing demand at that
time. Therefore load-shifting may be modeled according to this hydro-power analogy. First,
we consider an upstream reservoir of size equal to the available capacity of shifting times
the duration of a shifting event. Upon activation of the load-shifting technology, some
water is turbined out of this reservoir, the installed turbining capacity being the available
shiftable load. Contrarily to hydro-power stations, the turbine efficiency is 1 meaning that
the power of water going through the turbine is perfectly transmitted to the electric system.
This water ends up in a downstream reservoir of same size as the upstream one reflecting
that only a limited level of consumption can be postponed at the same time. Water may
then be pumped back into the upstream reservoir as the shifted load is balanced. The pump
has the same properties as the turbine except for the sense of flows. In order to easily keep
track of the number of activations we consider a third, contractual and disconnected from
the system reservoir of size the size of the upstream reservoir times the maximal number
of activations. It acts simply as a counter: water is turbined from it at the same time and
of the same amount than from the upstream reservoir. Once the contractual reservoir is
emptied, the technology becomes unavailable for the remaining part of the year.
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Figure 3.2: Model of a load-shifting technology.

The model of demand response technologies presented here treats them as hydro-power
stations. This means that the equations describing them are all linear and that the negative
generation from demand response is naturally integrated in the production side of the power
balance equation as a linear term. Inclusion in the design of reservoirs of integer parameters
such as the maximum number of activations or the memory of a postponed load to balance
in the near future is a crucial feature of our model. It prevents from the recourse to integer
variable in the optimization problem that will be written in the next section while keeping
the constraints and objective linear. Moreover, this model represents explicitly demand
response deposits as stocks of flexibility affected by decisions depending on random variables
– which calls for a recourse to SDDP. Calibration of this model of DR on the 2023 NWE is
given in Appendix A.2.

3.2 A multistage stochastic optimization for an energy-only competitive
power market

Here we formulate the optimization problem of a system operator seeking to minimize the
total cost of operation during a year facing random demand and RES production under load
balance and technical constraints. This problem is a multi-stage stochastic optimization
problem with 364 stages (days) denoted by index t. On each stage, the subproblem is a
perfect foresight mutli-step optimization problem with steps corresponding to hours and
denoted by h. An extensive description of the model is given hereafter.
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Demand. Residual demand encompasses aggregated and non-flexible electricity demand
and the production of solar panels, wind turbines and run-of-water hydroelectric means.
It is a random variable denoted by D, a realization of which at week t and hour h being
written Dωt

h . The exponent ωt corresponds to the draw of a residual demand scenario at
stage t. The construction of these scenarios relies on public historical data for NWE1.

Thermal and nuclear means. Nuclear and thermal productions are aggregated respec-
tively into one representative nuclear power plant, four representative thermal power plants,
a peak gas mean (gas turbine), a base gas mean (CCGT plant), a lignite plant as it’s still
important in Germany and a traditional coal plant. The latter two plants are still com-
petitive due to high gas prices even though the carbon price tends to move them out of
the market. They generate a power gtecht,h at time (t, h). Their capacities sums up to the
installed capacities of the modeled means in the underlying real system. They are denoted
by Ctech. Ramping time is neglected. This means that the modeled system is more respon-
sive than the real one. This would a priori tend to reduce the recourse to demand response
technologies but we will see in our application that this, even in this pessimistic context,
a need for demand flexibility still exists. Thermal means are considered always available
at full capacity whereas the installed nuclear capacity is weighted by an availability factor
Ank

t,h. This is inspired by the French system where a lot of maintenance on nuclear power
plants takes place during the summer rendering up to 40% of the installed capacity un-
available. Note that, in 2023, all German nuclear plants will have been decommissioned.
Finally, generation is made at constant unitary costs V tech. Thermal means are subject
to a 80e/tCO2 carbon price. Their unitary costs takes it into account along with the av-
erage carbon content for this mean, their average efficiency2 and their average fuel price3.
Installed capacities and marginal costs of each technology used in the following simula-
tions are displayed in Appendix A.1. Note that,the merit order of the thermal technologies
is profoundly modified when going from "low" gas prices pre-dating the current surge to
average 2022 gas prices.

1See ENTSO-E Transparency Platform https://transparency.entsoe.eu/load-domain/r2/
totalLoadR2/show

2From DIW (202X) Phasing out of coal in the German energy sector
3From argusmedia, average of ARA prices in 2022 T2 for coal and gas. For lignite see https://www

.argusmedia.com/en/news/2195015-modern-german-lignite-plant-margins-halve-from-2024.
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Interconnections. North Western Europe exchanges electricity with its neighbours. In a
context of high gas prices, some of these neighbours, such as the UK (Figure 3.3 provides a
glimpse of the change of power exchange habits between France and the UK) and to a lesser
extent Spain, have access to cheaper gas, already saturate their internal use of gas and may
use power interconnections with NWE to export this cheaper gas transformed into power
and benefit from this price difference. Scandinavian countries produce also cheap electricity
thanks to massive hydroelectric capacities. They are also quite well interconnected with
NWE. These regions r lead to decision variables of import mr

t,h and export mr
t,h. Exchanges

are supposed to be made at set prices V r which reflect the 2022/2023 situation where the UK
and Spain tend to export gas-based power at a cheaper price than that of internal CCGT
or GT production and Scandinavia relies on hydro-power surplus. After these regions,
Austria, Poland and Switzerland form the next three most connected countries with NWE.
However, exchanges are often one way and no particularity of generation mix or gas prices
would justify a modification of the traditional pattern of exchanges between NWE and
these countries. So exchanges with them are not subject to decisions and only represented
in the balance constraint by a net imports term netMAT+PL+CH .

Figure 3.3: French net power imports from the UK during the last year marked by increased
gas prices in NWE above all since the beginning of the Ukraine war and from June 2017
to June 2018, a more representative year. France was structurally an exporter of power
during spring and since the high gas prices period has become an importer.

Hydroelectric production. Three main types of hydroelectric means exist: run-of-
water which is not controllable and included in the residual demand in our model, con-
ventional hydroelectricity which can turbine water from some reservoir in a controlled way
and hydroelectricity with pumping capacity which can additionally store energy by pump-
ing water. A representative station is modeled for each of the last two types and indexed
hy for conventional and hp for hydroelectricity with pumps. In a similar way as thermal
and nuclear means, these plants draw powers turbhyt,h and turbhpt,h in the system with an
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efficiency factor E from two reservoirs with installed capacities Chy and Chp. Their level
are respectively denoted Xhy

t,h and Xhp
t,h. For the pumping station, a power pumphpt,h may be

consumed within the same technical limits. Generation is done at unitary constant costs
V hy and V hp, pumping is free.

A traditional focus point of hydroelectric means modeling is to account for the random
filling of water reservoirs by the meteorological water cycle. It requires the construction of
representative inflow scenarios, generally obtained from historical data at station level and
the addition of supplementary state variables i.e. a significant increase of computational
effort. In our copperplate model, we could not assess for the diversity of climates faced
by the real hydro-power stations since we only model a representative dam. Moreover,
our objective is to model the operations of demand response deposits and to give them
a value, and not a perfect hydroelectric scheduling. Therefore, the filling of reservoir is
not modeled explicitly and our representative stations are given a fixed and finite reservoir
size (Shy and Shp). We choose to fix these sizes to the energy production of each mean
(conventional or PHS) in 2016-2019. As they are the first two means to be called, this
equates to the reproduction of the last year total consumption. The fact that water in
hydro-power station should not know a period of scarcity means that the marginal cost of
turbining water through these stations does not include an opportunity cost and renders our
model rather optimistic about hydroelectricity production. But, this eventual flaw will be
present in our analysis of systems with and without demand response, thus not impacting
the comparison.

Demand response. Demand response is modeled according to the hydroelectric analogy
developed in the previous section and is associated with a unitary generation cost V dr that
compensates the end-user discomfort.

We may now write the problem of the operation of the previously described system
until a finite horizon T with hourly decisions. It is a multi-stage stochastic optimization
problem. Stages t correspond to beginnings of the days where hazard is realized. Then, an
optimization in perfect foresight is done at the intra-day level.

State variables State variables of the system are the levels X of hydroelectric and de-
mand response reservoirs.
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Decision variables. At each time step h, a decision is made regarding thermal production
(gCCGT

t,h , gGT
t,h , gCoal

t,h and gLGt,h ), nuclear production (gnkt,h), hydroelectric production (turbhyt,h,
turbhpt,h) and negative generation by demand response (turbdrt,h). Decisions on energy storage
in hydro-power stations with pumping capacity (pumphpt,h) and in load-shifting technologies
(pumpdrt,h) are also made. Then, imports (mr

t,h) and exports (xrt,h) from the UK, Scandinavia
and Spain (regions indexed by r) are determined. Finally, in order to make the system
always feasible - that is ensure supply/demand balance at all time - we introduce slack
variables slack+t,h and slack−t,h corresponding to emergency curtailment or activation of
means. This is done at the highest possible cost in the market i.e. its price cap PC.

Objective. At each t (beginning of the day), an immediate cost ICt is calculated by
summing the costs of production over the day,

ICt =
∑
h

[
V CCGT gCCGT

t,h + V GT gGT
t,h + V CoalgCoal

t,h + V LGgLGt,h + V nkgnkt,h (3.1)

+E(V hyturbhyt,h + V hpturbhpt,h) +
∑
dr

V drturbdrt,h

+PC(slack+t,h + slack−t,h) +
∑

region

V inter,r(mr
t,h + xrt,h)


The objective function of the problem is formed by this stage cost and by the expected

cost of the next stages i.e. it is equal to the Bellman value function associated with stage t.

Constraints. Constraints deal with the supply/demand balance in the electricity market,
with state transitions and bound control and state variables.

Supply/demand balance at stage t, hour h for the realization ωt of the random residual
demand:

Dωt
t,h = gCCGT

t,h + gGT
t,h + gCoal

t,h + gLGt,h + gnkt,h + E turbhyt,h + E(turbhpt,h − pumphpt,h) (3.2)

+
∑
dr

(turbdrt,h − pumpdrt,h) +
∑

region

(mr
t,h − xrt,h) + netMAT+PL+CH + slack− − slack+

The dual variable of this constraint yields a (shadow) market price at time (t, h) that is
capped at PC, the activation cost of variables slack+ and slack−.
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Constraints on thermal production for all technologies tech:

0 ≤ gtecht,h ≤ Cth (3.3)

Constraints on interconnections for region r:

0 ≤ mr
t,h ≤ Cinter,r (3.4)

0 ≤ xrt,h ≤ Cinter,r (3.5)

Constraints on nuclear production:

0 ≤ gnkt,h ≤ CnkAnk
t,h (3.6)

Constraints on conventional hydroelectric production:

0 ≤ turbhyt,h ≤ Chy/E (3.7)

0 ≤ Xhy
t,h ≤ Shy (3.8)

Xhy
t,h = Xhy

t,h−1 − turbhyt,h (3.9)

Constraints on hydroelectric with pumping capacity production:

0 ≤ turbhpt,h ≤ Chp/E (3.10)

0 ≤ pumphpt,h ≤ Chp/E (3.11)

0 ≤ Xhp
t,h ≤ Shp (3.12)

Xhp
t,h = Xhp

t,h−1 − turbhpt,h + pumphpt,h (3.13)

Constraints on the load-shedding technology dr:

0 ≤ turbdrt,h ≤ CdrAdr
t,h (3.14)

0 ≤ Xdr
t,h ≤ Cdr∆drNdr (3.15)

Xdr
t,h = Xdr

t,h−1 − turbdrt,h (3.16)

19



Constraints on the load-shifting technology dr:

0 ≤ turbdrt,h ≤ CdrAdr,turb
t,h (3.17)

0 ≤ pumpdrt,h ≤ CdrAdr,pump
t,h (3.18)

0 ≤ Xdr,up
t,h ≤ Cdr∆dr (3.19)

Xdr,up
t,h = Xdr,up

t,h−1 − turbdrt,h + pumpdrt,h (3.20)

0 ≤ Xdr,do
t,h ≤ Cdr∆dr (3.21)

Xdr,do
t,h = Xdr,do

t,h−1 + turbdrt,h − pumpdrt,h (3.22)

0 ≤ Xdr,cont
t,h ≤ Cdr∆drNdr (3.23)

Xdr,cont
t,h = Xdr,cont

t,h−1 − turbdrt,h. (3.24)

Problem. Let’s denote ut the vector of decision variables at stage t, Xt the state variables
one and F the transition function. The admissible space for ut, Ut (Xt, Dt), is given by
equation 3.2 to 3.24. We may then explicitly write the operator problem as a multi-stage
stochastic optimization problem

min
u1∈U1(X1,D1)

IC1 + E

 min
u2∈U2(X2,D2)
X2=F (X1,u1)

IC2 + ...+ E

 min
uT∈UT (XT ,DT )

XT=F (XT−1,uT−1)

ICT




 . (3.25)

4 Application: Impacts and Value of Demand Response in
North Western Europe

With previous parameters calibrated with the values of Appendices A.1 and A.2, Problem
3.25 is solved with SDDP for four scenarios of demand response installed capacity and gas
prices: full integration i.e. 100% of the capacities presented in Table A.2 are available and a
baseline without DR crossed with mean prices of gas respectively pre and post dating their
2022 surge. They are denoted in the following respectively by DR+, DRLP, NoDR and
NoDRLP. A gradation of DR integration is also monitored by looking at scenarios (with
high gas prices) of DR levels corresponding to 10%, 50% and 75% of the potentials of Table
A.2, denoted respectively 01_DR, 05_DR and 075_DR. In order to measure DR impacts,
we may be interested in several aggregated indicators. Once the optimal policy is obtained,
1000 years are simulated in order to measure its efficiency and derive the aggregated in-
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dicators. Resulting indicators are shown in Figure 4.1 for different levels of DR with high
gas prices and in Figure 4.2 for a comparison between scenarios DR+, DRLP, NoDR and
NoDRLP.

First, the mean (over the simulations) amount of emissions of the system during the
year reflects the use of thermal means. As DR should competes with peak means at lower
costs, it should move a part of these means out of the market. We thus expect a reduction
of emissions. In Figure 4.1, it appears that the distribution of emissions remains almost
unchanged with DR, with even a slight growing trend with the integration of more DR. This
might be explained by the fact that lignite, the dirtiest generation mean, has the lowest
marginal cost among thermal means so that it may benefit from DR decreasing market
prices and driving more often out of the market the other emitter means. In that sense, we
conclude that DR, due to its limited capacity, may only push out of the market the last
called means so that DR reduces emissions of the power system only if these peak units are
also the dirtiest. This analysis is confirmed by a robustness check with unrealistically high
DR potentials which triple that of scenario DR+ where emissions are decreased because
that massive load-shifting enables the system to avoid not only recourse to gas turbines but
also to coal plants which are the second most expensive production mean.

In terms of security of supply, we may account for the mean number of hours where the
market price is equal to the market price cap. This situation only happens in our model
when slack variables are positive i.e. when an outage occurs. As a flexibility provider, DR
– and particularly load-shifting – should enable the system to avoid these times of tension.
This prediction is confirmed by Figure 4.1 where a direct trend linking DR integration and
total time at market price cap appears.

In the same idea, as load-shifting is cheaper than many of the other generation capacity,
these deposits should be called whenever its possible and their opportunity costs are not too
high. This should reduce the market prices in traditionally sensitive periods for the system
such as the evening peaks in winter. That’s why our third indicator is the mean (over
the simulations) average (over the days) 7 pm winter weekdays market price. In the same
way as the previous indicator, integration of more demand response in the system seems
to reduce general tension of the system and thus market prices at these times. However,
after 50% of the DR capacities of Table A.2 are introduced, no further significant benefits
in terms of market prices seems created by more DR.

21



Finally, the system interest in DR may be quantified by the difference in total cost of
operating the system with and without DR. This difference is indeed equal to the social wel-
fare variation implied by the introduction of DR as this difference equates to the difference
in producer surplus while consumer surplus is constant since DR deposits encompass for all
flexible demand and count as negative production means so that the remaining demand is
perfectly inelastic. The distribution of welfare variation with the introduction of DR lies
entirely in positive numbers in all scenarios except 01_DR in which negative values may
be reached without this event having a probability greater than 0.5 (see Figure 4.1). A
trend seems to exist where more DR implies an increased welfare. However, similarly to
the previous indicator, this effect stagnates for the highest levels of DR integration as if the
need for short term flexibility of the system was saturated. Note that demand response and
particularly load-shifting may only provide short-term flexibility as shifted load have to be
balanced whereas PHS or flexibility provided by interconnections provide more mid-term
flexibility – battery storage is still not relevant for 2023 but would provide short-, mid-
and long-term flexibility. The conclusion remains that, from the 2023 NWE power system
point of view, demand response yield positive impacts in terms of operational costs, market
prices and outages duration.

Figure 4.1: Distributions of the four aggregated indicators of the system status with different
integration of DR and high gas prices.
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To contrast these positive impacts of demand response on the tensed system of 2023,
we look at scenarios NoDRLP and DRLP reflecting more ordinary gas prices during the
last decade, and therefore a more traditional merit order of the production means. There
is already a difference between the no DR baselines depending on the gas prices: with
cheaper gas, imports from the UK are reduced of around a third and halved from Spain.
More importantly, translating the change in merit order, emissions are around 15% lower
with low gas prices as lignite and coal are less called. This change doesn’t affect the security
of supply nor the volatility of market prices (but, obviously, mean prices are decreased).
These results underlines how the phasing out from coal policies, especially coupled with a
phase out of nuclear as in Germany with the Energiewende, were not conceived for gas prices
so high they modify the merit order of generation technologies and hence lack robustness.

Introduction of DR benefits slightly more to the low gas prices system as displayed in
Figure 4.2. With this low gas price baseline, the effect of DR on increasing the security
of supply and reducing and stabilizing market prices is also a bit higher, but of similar
order than with higher gas prices. The most interesting difference in impact resides in the
variation of emissions of the power system when DR is introduced. With high gas prices,
emissions tend to increase when DR is integrated at the maximum of its envisioned po-
tential (we saw above that they decrease if much more DR is introduced but that’s less
realistic). On the opposite, with lower gas prices, emissions decrease. This result might be
explained in a rather simple way: the carbon intensity of each generation mean is constant
while the merit order changes with the considered increase in gas prices. With high gas
prices, as displayed in Table A.1, gas power plants have higher marginal costs than their
coal counterparts, while the situation is reversed in the low gas prices scenario. But DR,
and here more precisely load-shifting, suppresses calls to the most costly generation plants.
Thus, with low gas prices, DR pushes out of the market the dirty coal power plants while
relatively cleaner gas plants are affected with high gas prices. Depending on the fuel price
context, the introduction of demand response in the NWE power system, up to a realistic
limit, may be environmentally detrimental. A simple way out would be to link the carbon
price and the fuel prices so that it remains always more attractive to use cleaner fuels.

Finally, as mentioned earlier, opportunity costs are natural outputs of SDDP. We illus-
trate this fact in our framework by displaying the evolution of the opportunity cost of the
cement-related demand response in scenario DR+ in Figure 4.3. It has to be compared to
market prices in order to explain the decisions of usage of this deposit. In Figure 4.3, it
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Figure 4.2: Distributions of the four indicators of the system status with different gas prices.

appears that there exists an extended period before spring when market prices are too low
for the use of the cement deposit to generate infra-marginal rent. During this period, almost
no turbining from this deposit is done reflecting how opportunity costs guide decisions in
this model. Water value becomes null at the end of the year because we didn’t give a value
to remaining stocks of flexibility at the end of the year in our model since the number of
possible activations of DR events reboots at the beginning of the year – whereas the water
in a hydro-power station doesn’t which explains positive water values at the end of the year
in this case. Similar results and curves may be obtained, in this SDDP framework, for all
considered reservoirs, DR and water alike.
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(a) (b)

Figure 4.3: (a) Daily water values for the cement mill DR deposit in blue and market prices
in grey. (b) Daily level of the contractual reservoir of this deposit. Grey areas correspond to
times when market prices are lower than the sum of the activation cost and the opportunity
cost (water value) of this deposit.

5 Conclusion

In this paper, a powerful method for solving multistage stochastic (convex-linear) opti-
mization problems, SDDP, has been presented with the concern of applying it to modern or
future power systems with more intermittent renewable energy sources, storage capacities
and demand-side management. SDDP requires a particular framework, notably regarding
random variables: they must have values in a finite space and be stage-wise independent.
Its main features are, on the one hand, an ability to handle large sets of accessible values
for random variables at each stage because the complexity of the method grows only with
the sum on all stages of the size of these sets, while traditional scenario-based approaches
have growing complexity with the product of these sizes. On the other hand, as SDDP
has been historically designed for (water) stock management problems, opportunity costs
of using the considered stocks at a some stage given the state of the system – or to be
more precise, an approximation of these costs – are natural outputs of the method. These
advantages help dramatically the analysis of optimal behaviours of stock-managing agents
(hydro-power producers, but also demand response aggregators or battery managers) in
power systems under multiple stochastic inputs such as demand, water inflows, renewable
production or even unattended needs for maintenance.

Then, a short application of SDDP is proposed. We focus on a simple model of the
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power system of North Western Europe under current particular circumstances of high gas
prices and competitive use of power interconnections by neighbouring countries such as
the UK. In this simple, copperplate model we show the benefits of introducing demand
response for alleviating tension in this power system. Even with relatively small available
capacity, demand response enables to shave demand peaks and partially absorb renewable
overproduction at lower costs than increasing interconnections, PHS capacities or installing
batteries. The power system has thus access to more flexibility which improves social welfare
(as defined in Section 4). Developing demand response, and more generally a demand-side
approach of power markets, proves to be an efficient low-cost mid term way out of the
current power crisis in NWE. It drives indeed out of the market the most marginally costly
generation technologies which are currently gas-related ones thus reducing both electricity
wholesale prices and dependency toward imported gas. However, it may be in our model at
the benefit of coal power plants, which is verified currently with recent decisions postponing
the phasing out of coal in France or Germany.

Finally, SDDP appears as a powerful modelling tool for modern power systems involving
more stocks on both sides of the market. With more complex models such as Empire or urbs
starting to account more precisely for demand-side management in a bottom-up approach
(see Marañón-Ledesma & Tomasgard (2019) or Stüber & Odersky (2020)), SDDP is deemed
to be included in such frameworks. It may also be used as in this paper, in simpler models,
in order to provide not necessarily trustworthy values but valuable insights which may guide
short to mid term responses to a particular crisis.
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A Calibration Data

A.1 Power system

Technology Belgium France Germany &
Luxembourg Netherlands Total Carbon content

(tCO2/MWh)
Cost (LP-HP)

(e/MWh)

Lignite 0 0 6240 0 6240 0.428 95.1
Coal 0 1817 7908.6 4006 13731.6 0.342 165.1
CCGT 3542.23 11506 15618.7 9442.89 40109.8 0.202 91.7 – 171.7
GT 250.236 1061.2 1103.36 667.08 3081.88 0.202 128.3 – 240.4
Nuclear 5943 61370 0 486 67799 0 23
Hydro Conv. 0 7188 1408 0 8596 0 7.53
PHS 1308 4656 9280 0 15244 0 9.54
Interco. UK 750 2014 0 1016 3780 0 95 – 150
Interco. Spain 0 3000 0 0 3000 0 96 – 160
Interco. Scand. 0 0 3209 1400 4609 0 15
Run-of-water 177 10955 3743 38 14913 0 0
Wind 4883 13610 63584 11060 93137 0 0
PV 4788 10213 56567 16074 85617 0 0

Table A.1: Installed capacity by country (MW), carbon content (tCO2/MWh) and Variable
cost (e/MWh) in the modeled NWE power system. For thermal means, we suppose a
carbon price set at 80e/tCO2 in line with the 2023 EU-ETS projections. Their efficiency
is taken into account in installed capacity numbers.

Figure A.1: Ten scenarios of residual demand in NWE for a winter week and a summer week.
Structural cyclicality of demand is affected by intermittent RES production – particularly
in Germany due to higher RES integration.
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A.2 Demand response potentials

Method and Data are based on the works of Verrier (2018) and H. C. Gils (2014); H. Gils
(2015). For greater details, please refer to Ancel & Massol (2022).
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