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Strict Lyapunov Functions for Dynamic Consensus in Linear Systems
Interconnected Over Directed Graphs

Maitreyee Dutta Elena Panteley Antonio Lorı́a Srikant Sukumar

Abstract— We study dynamic consensus for general net-
worked (homogeneous) linear autonomous systems, that is, it
is only assumed that they are stabilizable. Dynamic consensus
pertains to a general form of consensus in which, as a result of
the systems’ interactions, they exhibit a rich collective dynamic
behavior. This generalizes the classical consensus paradigm
in which case all systems stabilize to a common equilibrium
point. Our main statements apply to systems interconnected
over generic directed connected graphs and, most significantly,
the proofs are constructive. Indeed, even though our controllers
are reminiscent of others previously used in the literature, to
the best of our knowledge, we provide for the first time in
the literature strict Lyapunov functions for fully distributed
consensus over generic directed graphs.

Index Terms— Multiagent system, directed graphs, Lyapunov
stability, linear systems.

I. INTRODUCTION

In the study of the collective behavior of multiagent
networked systems, a common problem studied in the lit-
erature pertains to the case in which all the systems stabilize
at a common equilibrium point —see [1]. The collective
behavior, however, may be much richer than converging
to an equilibrium. In general, it depends on the nature of
the systems dynamics—they may be, e.g., linear [2]–[4]
or nonlinear [5], [6]—, on whether the networked systems
are homogeneous [2], [4] or heterogeneous [5], [7], [8],
on the nature of the interconnections graph—whether it is
undirected [6] or directed [2], [4]—, etc.

In this letter, we study the collective behavior of multia-
gent linear systems interconnected over directed graphs via a
distributed consensus algorithm. The class of systems that we
consider is fairly general since the only standing assumption
regarding the systems’ model is that it is stabilizable —
cf. [3], [6], and [9]. This class covers stable systems, as in
[2] and [7], neutrally stable systems, as in [4] and [8], but
also unstable systems or oscillators. Therefore, the collective
behavior of such systems is not bound to stabilizing over a
common equilibrium point, but is much richer.

Following [5], we study dynamic consensus. This pertains
to the case in which, due to the systems’ interaction, an
emerging dynamics is generated, which, roughly, corresponds
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to a weighted average dynamics of the interconnected sys-
tems. Then, we say that dynamic consensus is achieved if the
motion of each system in the network matches asymptotically
that of the emergent dynamics. For instance, a network of
oscillators may behave collectively as a weighted averaged
oscillator. Other works in which synchronization is consid-
ered with respect to a dynamical system, as opposed to an
equilibrium point, include [2] and [4]. The systems studied
in [3], [6], [9] and [8], too, lead to reach collective behaviors
since they are assumed to be merely stabilizable in [6], [9]
and [3], and neutrally stable in [8].

We analyze two controllers that are reminiscent of con-
sensus algorithms previously reported, in which the control
gain is defined upon the solution to a linear matrix inequality
—cf. [3], [6], [9], and [8]. The first controller, as the one
proposed in [10], relies on a constant coupling strength,
so dynamic consensus is reached exponentially fast (we
provide an explicit bound), but knowledge of the maximum
eigenvalue of a matrix that solves a Lyapunov equation
involving the Laplacian matrix is required. For the second
controller this requirement is removed, so, as in [6] and
[9], it is fully distributed. We show that by rendering the
coupling strength time-varying and monotonically increas-
ing, the aforementioned information is not required. To some
extent, our control law recalls that proposed in [9], but even
if our controller relies on the same principle, it differs from
that in [9] in that in the latter the coupling gain is computed
dynamically in function of the norm of the network’s state,
akin to high-gain adaptive control.

In regards to the network’s topology, as for instance in [3],
we consider networks interconnected over generic connected
directed graphs, that is, containing a rooted directed spanning
tree. In particular, the graph may consist in a spanning tree,
as in [11], it may consist in a directed graph contain a root
node, as in [2], [10] and [12], or in rooted graphs with a
specific leader, as in [8], [9], [13], and possibly bidirectional
links among the followers, as in [8], to mention a few.
Similar results to those obtained here are presented in [9], but
they are restricted to a leader-follower configuration, so the
directed graph is assumed to have a directed spanning tree
with a root node as a leader. See also [13]. On the other hand,
in [12] the leaderless consensus problem is addressed for
directed-graph networked systems, but under the assumption
that the (static) graph is balanced. Thus, in none of these
references generic directed graphs are considered.

From the viewpoint of analysis, consensus among linear
systems may be assessed by relying on linear algebra and
graph theory. However, these methods fail for nonlinear



systems —cf. [5], [6]. In this case, the consensus analysis
(resp. design) problem may be broached as one of stability
analysis (resp. stabilization), relying on the construction of
a Lyapunov function. There are many articles in which
Lyapunov functions are proposed, for multiagent systems
interconnected over undirected graphs [6] as well as over
directed graphs [8]–[10], [12]–[14]. Actually, our proofs
follow a similar rationale as that in [6], but they certainly
do not constitute a straightforward extension.

Furthermore, we stress that except for [14], which is
restricted to systems of the form ẍi = ui, in none of these
references a strict Lyapunov function (i.e., having a negative
definite derivative) is proposed. The analysis methods used
most commonly in the literature relies on tools such as La
Salle’s invariance principle or Barbalat’s lemma. The former
does not apply to networks with time-varying topology and
the latter does not lead to uniform asymptotic stability. Only
the latter, however, guarantees robustness with respect to
bounded additive disturbances. Disposing of strict Lyapunov
functions is an important step to consider more general
scenario, such as that of linear heterogeneous systems or
with added nonlinearities, but they may also be useful in the
study of perturbed networked systems or of robustness with
respect to neglected dynamics.

Thus, to the best of our knowledge, although several
aspects studied in this letter have been addressed in the
literature, separately, never have they been considered simul-
taneously. Beyond the generality of the network topology as
well as in the class of systems that we consider, our primary
contribution resides in the construction of strict Lyapunov
functions for multiagent systems in such a general scenario.
Indeed, we are unaware of strict Lyapunov functions for
generic linear systems interconnected over arbitrary con-
nected directed graphs. The construction is based on that for
second-order integrators, proposed in [14], and as a byprod-
uct of our main results, we provide explicit exponential
stability bounds on the synchronization error trajectories. We
show explicitly how the speed of convergence depends on the
maximum eigenvalue of the matrix that solves an algebraic
Riccati equation with unity weighting matrix.

The remainder of this Letter is organized as follows.
In the next section we present the problem statement and
its solution. In Section III we present our main results,
in Section IV we provide illustrative numerical examples,
before wrapping up the paper with some concluding remarks
in Section V.

II. PROBLEM FORMULATION AND ITS SOLUTION

We consider N multiagent linear systems with identical
dynamics,

ẋi = Axi +Bui, i ∈ {1, 2, · · · , N}, (1)

where xi ∈ Rn, ui ∈ Rp, and A ∈ Rn×n, B ∈ Rn×p,
and N ∈ N. For the systems (1) we address the consensus
problem, i.e., to guarantee that limt→∞ |xi(t) − xj(t)| =
0 ∀i 6= j, under the following
Standing Assumption:

1) the agents communicate over a directed connected
graph,

2) the pair (A,B) is stabilizable.
That is, it is assumed that the systems communicate through
reliable unidirectional channels of intensity aij ≥ 0. That is,
if there exists an unidirectional edge εji interconnecting the
node j to the node i, we have aij > 0 and if no information
flows from the jth to the ith node aij = 0. In general, for any
pair (i, j), aij 6= aji. As is customary, the graph topology
may be modeled using the Laplacian matrix L = [lij ] ∈
RN×N , where

lii =

N∑
j=1,j 6=i

aij , lij = −aij , i 6= j. (2)

The first part of the Standing assumption is that the
directed-interconnection graph contains a rooted spanning
tree. The latter is a necessary condition for consensus in
such networks [16] and it means that there exists a subgraph
containing a node called root which has no incoming edge
and from which all nodes may be reached. It seems important
to stress that we do not assume that the graph contains a
root node with no incoming edges, as in a leader-follower
configuration [8], [9], [13]. Under the assumption that the
graph is connected we have the following.

Lemma 1: [1], [16] If the directed graph G has a rooted
spanning tree then its associated Laplacian matrix has a
simple zero eigenvalue with 1N :=

[
1, · · · , 1

]>
as its eigen-

vector of dimension N and all of the remaining eigenvalues
lie in the open right half plane.

Another important characteristic of the Laplacian corre-
sponding to a directed graph is that it is not symmetric.
This is significant because it adds considerable difficulty to
the task of constructing strict Lyapunov functions to study
consensus. Yet, the following statement holds.

Lemma 2: [14] Let G be a directed graph of order N
and L ∈ RN×N be the associated non-symmetric Laplacian
matrix. Then, the following statements are equivalent:

1) the graph G has a spanning tree,
2) for any matrix QL ∈ RN×N , QL = Q>L > 0 and for

α > 0, there exists matrix P = P> > 0 such that

PL+ L>P = QL − α[P1Nv>l + vl1
>
NP ], (3)

where vl is the left eigenvector associated to the single
zero eigenvalue of L.

Under the standing assumptions above, we propose two
solutions to the consensus problem. Both involve the use of
a control input of the form

ui = −c(·)F
N∑
j=1

aij(xi − xj), (4)

where c(·) > 0 is a coupling weight that may be constant
or a time-varying function c : R≥0 → R>0 and F ∈ Rp×n
is the feedback matrix defined as F = B>M , where M is
solution to the Riccati equation

MA+A>M −MBB>M = −Q0, (5)



for any given Q0 = Q>0 > 0 —cf. [3], [6], [8]–[10]. The
existence of such matrix M is guaranteed by the assumption
that the pair (A,B) is stabilizable —cf. [17], [18]. Indeed,
in this case, for any symmetric positive definite matrices
Q and R ∈ Rn×n, there exists a positive definite matrix
M =M> ∈ Rn×n that satisfies the matrix algebraic Riccati
equation

MA+A>M −MBR−1B>M = −Q.

Thus, the existence of the control parameters c and F is
guaranteed by Lemmata 1–2 and the standing assumption.

III. CONSENSUS ANALYSIS: MAIN RESULTS

Our main statements, which are presented in this section
farther below, establish consensus of the systems (1) under
the control law (4) and, more significantly, provide a strict
Lyapunov function for the closed-loop system. In the first
statement it is assumed that the coupling strength c is a
constant majorating the largest eigenvalue of P in (3) —cf.
[3], [8], [10], [12]. Hence, the computation of the appropriate
gain c relies on the solution P to Eq. (3) and, indirectly, on
the knowledge of L. The second statement relaxes this de-
pendence by introducing a time-varying, strictly increasing,
gain t 7→ c(t).

A. The Networked System’s Equations

The rest of the paper is devoted to the analysis of the
consensus manifold {xi = xj} for all i, j ≤ N for the
systems (1) under the control law (4). To that end, we write
the closed-loop equations in the compact matrix form

ẋ = (IN ⊗A)x+ (IN ⊗B)u, (6)

where ‘⊗’ denotes the Kronecker product, IN denotes
the identity matrix of dimension RN × RN , and u :=
[u>1 · · · u>N ]> is given by

u = −(L ⊗ cF )x, (7)

so, replacing (7) in (6), we obtain

ẋ = [(IN ⊗A)− (L ⊗ cBF )]x. (8)

We recall that in contrast to systems that have asymp-
totically stable equilibria, for the multiagent system (8)
consensus, if it takes place, is dynamic in general. That is, on
the consensus manifold, on one hand a collective dynamic
behavior arises and, on the other, the synchronization errors
with respect to such behavior, converge to zero. To analyze
the dynamic consensus we follow the framework laid in [5].

To that end, we start by recalling a suitable convertible
transformation that maps the space of the states x into
two orthogonal spaces, one containing the states of the
“averaged” states xm and one containing the synchronization
errors e. More precisely, we have[

xm
e

]
= Tx, T :=

[
v>l ⊗ In

(IN − 1Nv
>
l )⊗ In

]
. (9)

It is important to remark that the matrix T is invertible and
it exists under the mild assumption that the Laplacian has a

simple eigenvalue equal to zero and all others have positive
real parts. That is, after Lemma 2 under the assumption that
the graph is directed and connected.

We remark that the state xm = (v>l ⊗ In)x may be
regarded as a weighted average of the individual systems’
states and the synchronization errors are defined relative to
it, i.e.,

e =


e1
e2
...
eN

 =


x1 −

∑N
j=1 vljxj

x2 −
∑N
j=1 vljxj
...

xN −
∑N
j=1 vljxj

 =


x1 − xm
x2 − xm

...
xN − xm

 . (10)

Therefore the collective behavior of the networked system
is completely described by the dynamics of xm and of
e. These are computed by differentiating on both sides of
the first equality in (9) and using (8). For the mean-field
dynamics we obtain

ẋm =(v>l ⊗ In)[(IN ⊗A)− (L ⊗ cBF )]x
=(v>l ⊗A)x = Axm, (11)

—cf. [2], [4]. This dynamics, which is inherent to the
network, is clearly influenced by the systems dynamics.

On the other hand, the dynamics of the synchronization
errors e, yield

ė = [(IN − 1Nv
>
l )⊗A− (L − 1Nv

>
l L)⊗ cBF )]x. (12)

Then, since vl is a left eigenvector of L, we have L>vl = 0N
and L1N = 0N . Using the latter in (12) we obtain

ė = [(IN ⊗A)− (L ⊗ cBF )][(IN − 1Nv
>
l )⊗ In]x. (13)

Hence, replacing e = [(IN − 1Nv
>
l )⊗ In]x —cf. Eq. (9), in

(13), we obtain

ė = [(IN ⊗A)− (L ⊗ cBF )]e. (14)

In the sequel, we establish exponential stability of {e = 0}
for (14) and provide a strict Lyapunov function for this
system under the condition that c is positive and either
constant or a strictly increasing function of time. Exponential
stability of {e = 0} implies that all the systems synchronize
and their motions tend to that of the emergent dynamics (11);
note that the behavior of this system is purely determined
by that of the original systems and the network topology
(through the eigenvector v`), independently of the coupling
strength.

B. Consensus With Prescribed Convergence Rate

Remark 1 (Notation): We use pm and pM to denote, re-
spectively, the smallest and largest eigenvalues of P ; mutatis
mutandis for Q, M and any other square matrices.

Proposition 1: Let P = P> > 0 be a solution of (3) with
QL = IN and an arbitrary α > 0 and let M be the solution of
(5) for any given Q0 = Q>0 > 0. Consider N identical linear
systems (1), with (A,B) stabilizable, in closed loop with (4)
with c ≥ pM , F := B>M , and let the coefficients aij ≥ 0
be such that they generate, through (2), a non-symmetric



Laplacian matrix L that has a simple zero eigenvalue and all
others have real positive parts.

Then, dynamic consensus is achieved for the multiagent
closed-loop system (8) and the synchronization errors satisfy

|e(t)| ≤ κ|e(0)|e−γt t ≥ 0, (15)

where

κ :=

√
mMpM
mmpm

, γ :=
q0m
2mM

, (16)

and q0m is the smallest eigenvalue of Q0 —cf. Remark 1.
Proof: Consider the Lyapunov function candidate

V (e) = e>[P ⊗M ]e, (17)

which is positive definite in the synchronization errors e, as
defined in (10), but it is not for all e ∈ RnN . Indeed,

mmpm|e|2 ≤ V (e) ≤ pMmM |e|2 (18)

(only) for all e = [ (IN − 1Nv
>
l )⊗ In ]x —cf. Eq. (9).

Use F = B>M to compute the total derivative of V along
the trajectories of (14). We obtain

V̇ (e) = e>
[
P ⊗ [MA+A>M ]

− c[PL+ L>P ]⊗MBB>M
]
e,

so using (3) with QL = IN , it follows that

V̇ (e) = e>
[
P ⊗ [MA+A>M ]

− c
[
IN − α[P1Nv>l + vl1

>
NP ]

]
⊗MBB>M

]
e. (19)

However, we remark that

[αP1Nv
>
l ⊗ In]e = [αP (1Nv

>
l − 1Nv

>
l )⊗ In]x = 0Nn,

so using the latter in (19) we obtain

V̇ (e) = e>
[
P ⊗ [MA+A>M ]− cIN ⊗MBB>M

]
e.

Now, since P is positive definite it admits the decomposition
P = CDCT where C ∈ RN×N is orthonormal and D is the
diagonal matrix having the eigenvalues of P in its diagonal.
Then,

V̇ (e) = e>[C ⊗ In]
[
D ⊗ [MA+A>M ]

− cIN ⊗MBB>M
]
[C>⊗ In]e.

Next, we introduce ẽ := [C>⊗ In]e = [ẽ>1 · · · ẽ>N ]>, so

V̇ (e) =

N∑
i=1

ẽ>i

[
λi(D)[MA+A>M ]− cMBB>M

]
ẽi

V̇ (e) ≤ pM

N∑
i=1

ẽ>i

[
MA+A>M − c

pM
MBB>M

]
ẽi.

(20)

On the other hand, by assumption, c ≥ pM . Therefore, after
(5), we obtain

V̇ (e) ≤ −pM ẽ>[IN ⊗Q0]ẽ = −pMe>[CC>⊗Q0]e.

Hence, since C is orthonormal, CC> = IN and, conse-
quently, V̇ (e) ≤ −pMe>[IN ⊗ Q0]e. Global exponential
stability of the manifold {e = 0} and the bound (15)–(16)
follow from integrating the latter inequality and using (18).

C. Fully Distributed Consensus

We relax the requirement in Proposition 1 to know the
maximum eigenvalue of P , which is implicit in the condition
that c ≥ pM and, consequently, relies on knowledge of the
Laplacian L. To that end, we redefine the coupling strength c
in (7) as a “slowly” strictly increasing time-varying function.

Proposition 2: Consider the linear multiagent system (8),
with (A,B) stabilizable, in closed loop with the consensus
control law (4) with c : R≥0 → R>0 strictly increasing and
F and aij as in Proposition 1. Then, the multiagent system
reaches dynamic consensus exponentially.

Proof: Consider again the Lyapunov function candidate
V in (17). Proceeding as in the proof of Proposition 1 we
obtain that the total time derivative along the trajectories of
(14) satisfies (20). Now, defining,

Q(c) :=
c

pM
MBB>M −MA−A>M

we see that, after (5) and (20),

V̇ (e) ≤ −pM ẽ>
[
IN ⊗ [(Q(c(t))−Q0) +Q0]

]
ẽ,

so, proceeding as in the proof of Proposition 1 we obtain

V̇ (e) ≤ −pMe>[IN⊗Q0]e−pMe>
[
IN⊗[Q(c(t))−Q0]

]
e>.

Now, since t 7→ c(t) is strictly increasing,

T ′ := min{t ≥ 0 : c(t) ≥ pM} ∈ [0,∞)

exists. Therefore,

|Q(c(t))−Q0| ≤ (mMbM )2 := β ∀t ∈ [0, T ′],

while Q(c(t))−Q0 ≥ 0 for all t ≥ T ′. It follows that

V̇ (e(t)) ≤
{

pMβ|e(t)|2 ∀ t ∈ [0, T ′]

−q0mpM |e(t)|2 ∀ t ≥ T ′
(21)

Then, using the inequalities in (18) and integrating both sides
of (21) we obtain

V (e(t)) ≤

{
eγ0tV (e(0)) ∀ t ∈ [0, T ′]

e−γ1(t−T
′)V (e(T ′)), ∀ t ≥ T ′

(22)

where γ0 := pMβ
pmmm

and γ1 := q0m
mM

. In turn, this implies that

V (e(t)) ≤ e(γ0+γ1)te−γ1tV (e(0)) ∀ t ∈ [0, T ′]

≤ e(γ0+γ1)T
′
V (e(0))e−γ1t,

while, using V (e(T ′)) ≤ eγ0T
′
V (e(0)) and the second

inequality in (22), we obtain

V (e(t)) ≤ e(γ0+γ1)T
′
V (e(0))e−γ1t ∀ t ≥ T ′



Putting the last two inequalities together and using (18) with
e = e(t) we obtain that (15) holds with

κ :=

[
e(γ+γ0)T

′mMpM
mmpm

]1/2
, γ :=

q0m
2mM

. (23)

Remark 2 (Convergence of the control input): For the
sake of generality, in the statement of Proposition 2 there
is no particular choice for the function t → c(t) which
is a strictly increasing control gain. It is important to
stress that the monotonicity of c does not necessarily
imply that the control input grows unboundedly along the
trajectories. For example, in [9] a controller of the form (4)
is also proposed and c is defined dynamically and grows
monotonically as a function of the consensus errors. A
simpler choice, state-independent, is the slowly increasing
function c(t) := ln(ε+ t), which also qualifies as a suitable
function for purpose of fully decentralized consensus and
the control input remains bounded. Indeed, c(t) ≥ pM for
all t ≥ T ′ := epM − ε. Hence, T ′ ∈ [0, epM ) exists for
any ε > 0. On the other hand, the control input in (7) is
bounded along trajectories and, as a matter of fact,

lim
t→∞

|u(e(t))| = 0. (24)

This follows from the previous proof and using the explicitly
exponential bounds on the synchronization errors. More
precisely, note that |u| =

∣∣ c(t)[−L⊗B>M ]x
∣∣ = |c(t)[−L⊗

B>M ]e|, so, along the synchronization-error trajectories,

|u(e(t))| ≤ c(t)| − L ⊗B>M ||e(t)|.

Then, using (15) with (23), we see that

|u| ≤ κ
∣∣ − L⊗B>M ∣∣|e(0)|c(t)e−γt, ∀ t ≥ 0.

Therefore, any strictly increasing function that does not grow
faster than exponentially at the rate that the error trajectories
converge γ is suitable. In particular,

lim
t→∞

ln(t+ ε)e−γt = 0

for any ε > 0, so (24) holds.

IV. SIMULATION RESULTS

To illustrate our theoretical findings, we provide some
numerical simulation results done using MatlabTM R2021a.
The simulation tests are done using five harmonic oscillators
modeled by Eq. (1), with

A =

[
0 1
−1 0

]
, B =

[
0
1

]
.

We consider two graphs with different topology. First, as
in [8], [9], and [13], we consider a leader-follower scheme
in which the graph consists in a simple rooted spanning
tree. In the second case the directed graph is connected.
The respective graphs and the corresponding Laplacians are
provided in Figures 1 and 2, below.

For both cases, we use the control law in (4) with the
coupling strength c defined as c(t) := ln(ε+t), with ε = 1.5.

1

2 3

4 5

a21=1 a31=1

a43=1 a53=1
L =


0 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1


Fig. 1. Example 1: spanning-tree graph and corresponding Laplacian

1

2 3

4 5

a21=5 a31=1

a43=3 a53=1

a23=1

a15=2

L =


2 0 0 0 −2
−5 6 −1 0 0
−1 0 1 0 0
0 0 −3 3 0
0 0 −1 0 1



Fig. 2. Example 2: connected graph and corresponding Laplacian

To compute the control gain F , we start by setting Q0 = I2
and we solve the algebraic Riccati equation (5) for M . We
obtain

M =

[
1.912 0.4142
0.4142 1.352

]
,

which is positive definite. Then, we compute the controller
gain, F = BTM , which yields F = [0.4142 1.352].

Now, for the sake of fair comparison, we use the same
initial conditions for both cases:

x1(0) = [ 1 −1 1.5 2 3 ]>,
x2(0) = [ 2 −2 0.5 3 3.5 ]>.

For the case of leader-follower network as shown in Figure
1, the left eigenvector vl associated with zero eigenvalue of
the graph’s Laplacian is given by vl =

[
1 0 0 0 0

]>
.

This corroborates that the first agent is the singular root node
in the network. So, the emergent dynamics corresponds to
that of the first agent—see Figure 3. From the evolution of

-2

0

2

4

-4

-2

0

2

0 1 2 3 4 5 6 7

-2

0

2

Fig. 3. Distributed consensus of x1 and x2 and the control input when
the communication graph is a spanning tree.



individual state variables (represented by dashed lines), it
can be concluded that all the trajectories converge to that
of the mean-field system (represented by a solid blue line).
The control input subplot in Figure 3 shows that the control
input dies down to zero as the multi-agent system reaches
consensus.

For the case of connected directed graph, the left eigen-
vector associated with the zero eigenvalue of the graph’s
Laplacian is given by vl =

[
2
7 0 1

7 0 4
7

]>
, so the

mean-field state xm := (v>l ⊗In)x corresponds to a weighted
linear combination of state variables of the agents that can
transfer information to all other agents, which in this case,
are the first, third, and fifth agents. This is reflected in the
fact that the first, third and fifth elements of vl are non-zero.
The simulation plots for this case are portrayed in Figure 4.

The states x1 and x2 converge to their mean-field values,
showed as solid blue lines in Figure 4, so the corresponding
synchronization errors converge to zero. As expected from
the emergent dynamics (11), the steady state oscillator is a
weighted averaged oscillator influenced by the nodes in the
network that can transfer information to all the remaining
nodes. The control input sub-plot is shown in Figure 4 which
dies down to zero as synchronization dies down to zero.

-5

0

5

-4

-2

0

2

4

0 2 4 6 8 10

Time [s]

-5

0

5

10

15

C
o
n
tr

o
l 

in
p
u
t

Fig. 4. Distributed consensus of x1 and x2 and the control input when
the communication graph is connected.

V. CONCLUSION

The collective behaviour of “general” linear systems in-
terconnected over a directed graph may be complex. Via a
change of coordinates that depends on the network topology
(the eigenvectors of the Laplacian matrix) it is possible to
exhibit the dichotomous character of the resulting motion.
Two variables belonging to orthogonal spaces appear, one
corresponding to the synchronization errors and another to
a “weighted-average” dynamics. The synchronization errors
converging to zero is known as dynamic consensus.

The results presented in this letter are fairly general, as
they establish dynamic consensus for merely stabilizable
linear systems interconnected over arbitrary connected di-
rected graphs. The most important contribution, however, is

to provide strict Lyapunov functions (in the synchronization
errors space). This is significant because it may serve as
basis to extend our results to other interesting scenarios.
For instance, to consider linear systems with certain degree
of heterogeneity or with added nonlinearities. Disposing of
strict Lyapunov functions may also be useful in the study of
perturbed networked systems, of robustness with respect to
neglected dynamics, and networks with time-varying topol-
ogy. Such topics are currently under investigation.
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