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Abstract
In 1942 Freudenthal showed that a simplex in Euclidean space can be
subdivided such that the quality (well-shapedness of the simplex, quan-
tified in terms of e.g. fatness) of the simplices in the subdivision is
lower bounded. This answered a question of Brouwer. Recently, Brunck
discussed the same problem for simplices in two dimensional spaces
of constant curvature and provided a closely related construction. In
this note we exhibit the close relation between the two constructions
and observe that, using radial projection, Freudenthal’s construction
and result immediately generalize to simplices in spaces of constant
non-zero curvature of arbitrary dimension. This note focuses on dis-
playing classical results that may be unfamiliar to people in the
field that do not speak German, rather than building new theory.
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2 Simplicial subdivision in constant curvature spaces

1 The Coxeter-Freudenthal-Kuhn triangulation
Because of historical reasons, Freudenthal’s triangulation [1] of the Euclidean
space is referred to as the Coxeter-Freudenthal-Kuhn triangulation. One of the
equivalent definitions is as a hyperplane arrangement1. More precisely:

Definition 1.1 The Coxeter-Freudenthal-Kuhn triangulation is the hyperplane
arrangement HEF K

= {x ∈ Rd | ⟨x, u⟩ = ℓ, u ∈ EF K , ℓ ∈ Z} associated to the set of
vectors EF K = {e1, . . . , ed} ∪ {ui,j = ej − ei | 1 ≤ i < j ≤ d}.

As implied by the name, the cells of this hyperplane arrangement are
simplices.

One can also define the triangulation by subdividing Rd into unit cubes,
and in turn subdivide each of these by looking at the coordinates of each point
inside it modulo 1 (the parts of the coordinates after the decimal point) and
sorting them. This yields a permutation of {1, . . . , d}; points with the same
permutation are assigned to the same simplex (as illustrated in Figure 1).

Fig. 1: Simplices in R2 and R3 that correspond to the identity permutation
— the coordinates are sorted in descending order.

One can rescale the Coxeter-Freudenthal-Kuhn triangulation by an integer
factor k, which subdivides each simplex in the triangulation. We call this
subdivision by a factor k. This subdivision was also used in [5].

The Coxeter-Freudenthal-Kuhn triangulation can be used to induce a sub-
division of any simplex, since any such simplex can be mapped to a simplex
in the Coxeter-Freudenthal-Kuhn triangulation using barycentric coordinates.
The fatness2 of simplices in the subdivision is independent of k. We refer to
for example [6, 7] for a more general discussion on the quality of simplices in
such arrangements.

1This result has a long history, see the bibliography and some historical remarks in [2]. We
further note that Freudenthal’s construction is closely related to Coxeter triangulations [2–4].

2The fatness is the volume divided by the longest edge to the power d. It is a common quality
measure.
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2 Models for simply connected spaces of
constant curvature

We use the following two models for simply connected spaces of constant
non-zero curvature: For spaces of positive constant curvature we use the sym-
metrically embedded sphere in Rd+1, and for spaces of negative constant
curvature we use the hyperboloid model in the Minkowski space Rd,1. In both
models geodesics are the intersections of two-dimensional planes through the
origin in the ambient space and the model itself. This implies that the radial
projection of an edge in Rd+1 (resp. Rd,1) yields a geodesic edge in the space.

Given a set S in a d-dimensional affine plane not containing the origin, the
radial projection of the convex hull (in the affine space) of S is the convex hull
(in the space of constant curvature) of the radial projection of S. Hence, the
radial projection of a Euclidean simplex in the ambient space (whose affine
hull does not contain the origin) yields a simplex on the space of constant
curvature.

3 Subdividing simplices of constant curvature
We now consider a simplex ∆ of constant non-zero curvature, whose circumra-
dius is either finite (if the curvature is negative) or is less than the circumradius
of the model sphere (in the curvature is positive). The convex hull of the ver-
tices in Rd+1 (resp. Rd,1) yields a Euclidean simplex, which can be subdivided
by a factor k according to Freudenthal’s scheme. Radial projection of this
subdivision on the space of constant curvature yields a subdivision of ∆. The
scheme is illustrated in Figure 2.

Fig. 2: Radial projection of Freudenthal’s scheme for d = 2 and k = 3. The
simplex ∆ is in green, the corresponding Euclidean simplex in red.

As long as there are lower and upper bounds on the distance between the
plane containing ∆ and the origin, one can bound the quality of the simplices
in the subdivision, as well as their dihedral angles.
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4 Comparison of subdivision methods
In [8], Brunck suggested the below construction in two dimensions. We refor-
mulate his construction, elucidating that it generalizes to arbitrary dimensions.
Instead of subdividing the Euclidean simplex using Freudenthal’s scheme,
Brunck iterates as follows (see also Figure 3):

Step 1. Consider the convex hull of the vertices in the ambient space, which
yields a Euclidean simplex (as in the construction above).
Step 2. Subdivide the Euclidean simplex using Freudenthal’s scheme of factor
2.
Step 3. Project the Euclidean subsimplices radially to obtain subsimplices in
the space of constant curvature.
Step 4. Apply the steps of the construction on each of the subsimplices.

Fig. 3: Left: Steps 1-3 of Brunck’s subdivision scheme. Centre: The Euclidean
convex hulls of subsimplices, on which the scheme is to be iterated. Right:
Steps 1-3 are performed on one of the subsimplices.

After m iterations, this scheme yields a subdivision which is close (for
small simplices) to, but different3 from, the subdivision one would obtain using
Freudenthal’s scheme of factor k = 2m.
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