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Abstract: We demonstrate a fully submerged underwater LiDAR transceiver system based on
single-photon detection technologies. The LiDAR imaging system used a silicon single-photon
avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor
(CMOS) technology to measure photon time-of-flight using picosecond resolution time-correlated
single-photon counting. The SPAD detector array was directly interfaced to a Graphics Processing
Unit (GPU) for real-time image reconstruction capability. Experiments were performed with the
transceiver system and target objects immersed in a water tank at a depth of 1.8 meters, with
the targets placed at a stand-off distance of approximately 3 meters. The transceiver used a
picosecond pulsed laser source with a central wavelength of 532 nm, operating at a repetition
rate of 20 MHz and average optical power of up to 52 mW, dependent on scattering conditions.
Three-dimensional imaging was demonstrated by implementing a joint surface detection and
distance estimation algorithm for real-time processing and visualization, which achieved images
of stationary targets with up to 7.5 attenuation lengths between the transceiver and the target. The
average processing time per frame was approximately 33 ms, allowing real-time three-dimensional
video demonstrations of moving targets at ten frames per second at up to 5.5 attenuation lengths
between transceiver and target.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Light Detection and Ranging (LiDAR) has become the technique of choice to obtain high
resolution three dimensional images in several application areas, including security and defense
[1], automotive [2,3], and offshore engineering [4]. Although several detection approaches can
be used in a LiDAR system, single-photon detection techniques have seen an increasing interest
over the recent years due to their uniquely high optical sensitivity and excellent surface-to-surface
resolution.

Typically, single-photon 3D imaging systems are based on a time-of-flight (ToF) approach
and the Time-Correlated Single-Photon Counting (TCSPC) technique. The TCSPC technique
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is a statistical sampling method that measures the timing of a photon event with respect to the
outgoing laser pulse, typically with picosecond timing resolution [5,6]. The TCSPC approach has
emerged as a good candidate for LiDAR measurements, where the time-of-flight of target return
photons is used to obtain distance measurements. By repeating this ToF measurement multiple
times with high repetition rate laser sources (typically> 1 MHz), the timing (and therefore
distance) estimate can be significantly less than the system timing jitter. This approach has
been successfully demonstrated in several challenging environments where its inherent high
optical sensitivity and surface-to-surface depth resolution are highly advantageous. This includes
applications such as long-range 3D imaging [7–10], 3D profiling of objects behind camouflage
[11] or a scattering material [12], 3D imaging through fog or smoke [13,14], and in presence of
high photon flux [15,16]. In recent years, the TCSPC technique has also been used in preliminary
demonstrations of high-resolution three-dimensional single-photon imaging in highly scattering
underwater environments [17]. The first demonstration was performed by using a scanning
monostatic transceiver unit and an individual single-photon avalanche diode (SPAD) detector
module. This transceiver scanned the area of interest with a narrow optical field of view (0.5
mrad) and measured distance and reflectivity pixel by pixel in a serial manner. The use of a
narrow field of view spatially filtered out much of the forward scattering that is a major cause
of the reduced spatial resolution of the image obtained in a scattering underwater environment
[18]. This transceiver configuration achieved 3D profiling up to 9.2 attenuation lengths (AL)
between transceiver and target using sub-milliwatt average optical powers [17,19], where 1 AL is
equivalent to the distance travelled by the light that corresponds to its intensity being reduced to
1/e of the initial value. However, this result came at the expense of long exposure times needed
to acquire the timing information for a number of pixels, typically several minutes when the
acquisition time per pixel is in the order of 100 ms.

The use of SPAD detector arrays enabled shorter acquisition times for complete images and
simplified optical configurations. For example, the single-photon imaging system described
in [20] was based on a linear array of 16× 1 SPAD detectors manufactured in custom silicon
fabrication technology [21]. This configuration required the scanning of the target area in one
dimension and allowed acquisition times per line as low as 1 µs. Another implementation of
single-photon imaging for underwater applications was based on rectangular SPAD detector
arrays, as described in [22]. Here, the optical system was based on a CMOS SPAD detector planar
array with a large pixel format (192× 128 pixels), with TCSPC timing electronics integrated
into each pixel. The large pixel format allowed the acquisition of timing information for the
full optical field in parallel, greatly reducing the overall exposure time to below 1 second for
stationary targets, while using an average optical power of up to 8 mW. The use of this SPAD
detector array enabled the demonstration of 3D profile videos of moving targets at a visualization
frame rate of 10 Hz, in clear water and in highly scattering environments up to 6.7 AL between
system and target.

The mentioned demonstrations of underwater 3D imaging using SPAD detector arrays have
all been performed in controlled laboratory conditions with the optical setup placed outside the
water tank, and with the data analysis being performed offline, i.e. after the data acquisition.
Several underwater applications require real-time processing and visualization, such as inspection,
intervention (e.g. grasping), or target tracking. Different computational methods have been
developed to obtain the 3D profile of the target area in real-time, i.e. in the range from
microseconds to milliseconds [23]. For example, Risholm et al. [24] developed a real-time
imaging system for underwater applications based on a range-gated sweeping technique. The
system included a pulsed laser with active Q-switch, and the receiver was a high-resolution
CMOS camera. The distance estimation algorithm was based on a peak finder of the sweep curve,
and real-time capabilities were achieved by processing the data on the camera field-programmable
gate array (FPGA), which allowed the authors to achieve a video frame rate of 10 Hz in real-time.
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Another example of real-time three-dimensional underwater imaging is reported in [25,26], where
the authors describe a system based on structured light. The system comprised a CCD camera
and a continuous wave laser used in conjunction with a diffractive optical element used to form
25 laser lines on the target area. This approach enabled the 3D estimation based on triangulation
to be performed for all the laser lines (i.e. the full field of view) simultaneously. In this case, the
video rate was limited by the acquisition frame rate of the camera, which was up to 30 frames per
second depending on the selected acquisition time for each frame.

Advances in silicon CMOS SPAD detector arrays led to timing devices with large pixel number
(>65,000 [27]) and with rapid data acquisition (up to 500,000 frames per second [28]). However,
such rapid data rates greatly affected the data processing, as a higher volume of data means longer
processing times are required to estimate the distance and intensity profiles of targets, limiting
the real-time imaging capabilities. Recently, real-time three-dimensional single-photon imaging
has been achieved by developing bespoke computational models implemented on a graphics
processing unit (GPU). The first example of real-time processing of multi-surface single-photon
data was shown by Tachella et al. [29], who used existing point cloud denoising tools within a
plug-and-play framework to achieve rapid and robust range estimation. With this approach, the
authors demonstrated a video rate of 50 Hz, achieving processing times of 20 ms when using data
from a 32× 32 pixels InGaAs/InP SPAD detector array camera. Another example of real-time
single-photon imaging is reported in [14], where the authors developed an algorithm based on
advanced statistical modelling, non-linear parameter estimation, and spatio-temporal correlation
to demonstrate three-dimensional imaging with processing times of 90 ms when using the same
32× 32 pixels InGaAs/InP SPAD detector array camera as in [29]. Another algorithm that
exploits the data statistics is described in [30], where the authors firstly identify the informative
pixels containing target returns, and reject the pixels containing only noise. This approach aims
to reduce the data volume, enabling real-time 3D reconstruction. The authors demonstrated
the algorithm in underwater scattering environments, achieving processing times in the range
of 10 ms, and 3D reconstruction up to 4.6 AL. However, in these examples, the models were
demonstrated offline due to limitations in the camera output implementations, which meant that
whilst the data were processed on a GPU the SPAD detector arrays were not directly interfaced
with the GPU for live reconstruction.

In this paper, we present the first fully submerged underwater transceiver system based on
single-photon detection, to the best of our knowledge. The system operates at the central
wavelength of 532 nm, and is based on a Si-CMOS SPAD detector array interfaced to a
GPU-equipped workstation for real-time, live imaging capabilities. Moreover, we demonstrated
real-time implementations of two recently developed algorithms, namely the RT3D algorithm
originally proposed in [29] and the ensemble algorithm recently proposed in [31] for robust
distance estimation in highly scattering underwater environments. We demonstrate imaging of
stationary targets up to 7.5 AL between transceiver and target, and three-dimensional videos of
moving targets up to 5.5 AL at a video rate of 10 frames per second, with average processing
times of approximately 33 ms for the RT3D and ensemble algorithms. This computational
processing performance enabled real-time single-photon 3D imaging of moving targets with low
latency.

2. System and experiment description

The SPAD detector array used for these experiments had 192× 128 pixels with individual
(per-pixel) timing electronics capable of measuring the arrival time of the detector events with
histogram timing bins of 33 ps duration. The SPAD detector array was fabricated in 40 nm
CMOS technology, and the details of the architecture of the device are reported in [32]. The
fill-factor was 13% and the photon detection probability (PDP) of the SPADs was approximately
26% at the operational wavelength of 532 nm [33]. Defining the photon detection efficiency
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(PDE) as the product of the fill-factor multiplied by the PDP [34], the PDE was approximately
3.4%. The output data provided by this SPAD detector array is in the form of a binary frame,
which means that each individual pixel outputs in a single binary frame either a null result, or the
timing information for one detected event only. Hence, a maximum of one event per pixel can be
recorded for a given exposure period. For these experiments, the exposure time of each binary
frame was set to 1 ms. However, a delay of approximately 1 ms between two consecutive binary
frames was limited by the sensor firmware used with the SPAD array, which meant an overall
acquisition binary frame rate of 500 Hz was achieved. Future work will include investigation of
multi-event TDC [35], and further development is being made on the firmware of this SPAD
detector array, with the aim of improving the data acquisition rate.

The underwater transceiver system is shown schematically in Fig. 1(a). The illumination
was provided by a master oscillator fiber amplifier pulsed laser with central wavelength of 532
nm (VisUV, PicoQuant, Germany), operating at a repetition rate of 20 MHz. The output light
was fiber-coupled into a 550 µm diameter core optical fiber, which was connected to a fiber
collimation package (FCP) inside the underwater transceiver. The focal length of the collimating
lens was 15 mm. The light was then directed through a N-BK7 ground glass diffuser (D) and a
75 mm focal length lens (L1) to uniformly illuminate the target area. In these demonstrations, the
size of the water tank (4 m long, 3 m wide, 1.8 m deep) limited the maximum target distance
to approximately 3 m. The light scattered back from the target was collected by a 100 mm
focal length lens (L2) operating at f/2.8 (Canon EF 100 mm f/2.8 L Macro IS USM), which
imaged the target return onto the sensor. In addition, two bandpass filters (BP) were used in
front of the SPAD detector array to reduce the detection of ambient light which contribute to the
background level. The SPAD detector array was controlled via a field-programmable gate array
(FPGA) board (Opal Kelly XEM6310-LX150), which was connected to a computer via USB3.0.
The computer used had an Intel Xeon CPU E5-1607 v2 @3.00 GHz processor and an NVIDIA
TITAN Xp GPU processor.

Fig. 1. (a) Schematic of the underwater transceiver. The optical setup included a fiber
collimation package (FCP), an optical diffuser (D), lenses (L1 and L2), band pass filters (BP),
and the SPAD detector array. The optical setup was placed in a watertight enclosure which
was connected to the equipment outside the tank via an umbilical cord. (b) Photograph of
the optical setup based on the SPAD detector array.

The optical setup and the SPAD detector array (photograph shown in Fig. 1(b)) were mounted
in a watertight cylindrical enclosure (300 mm diameter by 500 mm long) made of anodized
aluminum. A clear acrylic endcap acted as a window for the outgoing laser illumination and the
scattered return photons. The watertight cylindrical enclosure was attached to a frame (made
from aluminum extrusions) which enabled the enclosure to be positioned and kept in place
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when submerged in the water tank. A 5 m long flexible hose tubing (38 mm diameter) acted as
a watertight umbilical cord and contained the optical fiber and electrical cables necessary for
connecting the system to the equipment outside the tank, e.g. laser source, computer, power
supply for the FPGA.

Before and after each measurement, the transmittance of the water in the tank was measured
to estimate the level of attenuation of the propagating medium, and consequently the number
of attenuation lengths between system and target. These measurements were performed with a
custom-built transmissometer shown in the schematic in Fig. 2, which measured the transmission
of water at the operational wavelength of 532 nm over a fixed distance (equivalent to the distance
2d1 + d2 shown in Fig. 2).

Fig. 2. Schematic of the custom-built transmissometer. The system included a fiber
collimation package (FCP, focal length= 11 mm), a calibrated power meter detector (silicon
photodiode detector), and two mirrors (M1 and M2).

The transmissometer optical setup was placed in a watertight clear acrylic enclosure connected
to an umbilical cord, which contained a fiber coupled to the laser source and an electrical cable for
the signal to the power meter detector’s control module, both placed outside the water tank. The
laser source used for the transmissometer was the same used for the imaging experiments. The
laser light was fiber-coupled into an optical fiber with a 50 µm diameter core, and collimated using
a fiber collimation package (FCP), to be directed in water through the clear acrylic optical window.
Then, the light followed the path shown in green in Fig. 2, where d1 = 270 mm and d2 = 50 mm.
The average optical power of the light reflected back to the transmissometer was measured with a
silicon photodiode detector connected to the optical power meter control module. The level of
scattering in water was varied by using a commercial medicine, Mucogel, which greatly affects
the level of scatterer concentration in water without significantly affecting the absorption of light
in water [36]. Several concentrations of Mucogel were used in these experiments, and the settling
times for each concentration was measured to be more than 30 minutes, which was much longer
than the acquisition times required for the measurements (up to 40 seconds for the longest scan).
The water was mixed with a small portable boat propeller in order to achieve as homogeneous a
concentration of Mucogel as possible.

First, a transmittance measurement was performed in air to measure the average optical power
in the absence of attenuation in the transmission medium (PA). Then, the transmissometer was
lowered in water to a position as close as possible to the line of sight between the underwater
transceiver and the target to measure the average optical power in the presence of obscurants
(PW). The attenuation coefficient α of the underwater environment was then calculated from the
Lambert-Beer law [37]:

PW = PAe−α(2d1+d2) (1)

where PA and PW have been corrected in order to take into account the estimated Fresnel
reflectivity losses at the interfaces of air, acrylic, and water. The number of attenuation lengths
between the system and target was obtained from the product of the attenuation coefficient and
the distance of the target in water. Each power measurements had an error of 5.5% of the reading,
which meant an overall error on the attenuation length estimation equal to ±0.4 AL.



Research Article Vol. 31, No. 10 / 8 May 2023 / Optics Express 16695

Figure 3 shows the schematic of the overall experiment. The underwater transceiver and the
transmissometer were submerged in the water tank at a depth of 1.8 m. The target was placed at
a distance of approximately 3 m from the clear window of the transceiver. The transmissometer
measurements were taken 1.3 m away from the target and approximately 0.3 m away from the
line of sight. The main parameters of the experiment are summarized in Table 1.

Fig. 3. Schematic of the experiment showing the submerged transceiver, external control
and source modules, target position and transmissometer.

Table 1. Main parameters and components used in the experiments.

Parameter Value/Comment

Laser system VisUV PicoQuant

Illumination wavelength 532 nm

Laser repetition rate 20 MHz

Average optical power up to 52 mW

Detector array CMOS Single-Photon Avalanche-Diode (SPAD)
detector array

Pixel format 192× 128

Single-photon detection probability at
operating wavelength of 532 nm

26%

Pixel fill-factor 13%

Total recorded histogram length 1540 bins

Timing bin duration 33 ps

Binary frame acquisition time 1 ms

Overall system temporal jitter ∼ 290 ps FWHM

Target stand-off distance ∼ 3 m

Angular Field of View 23 mrad× 17 mrad (52× 38 mm at 3 m distance
in water)

Average dark count rate 28 counts per pixel per second

Average background light (system
operating in clear water)

297.5 cps per pixel

During a TCSPC measurement, the bin position of each event detected was stored in a timing
histogram for the corresponding pixel, with a 33 ps timing bin width used in all the experiments
reported in this paper. When using a laser pulse repetition rate of 20 MHz, this meant a histogram
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of 1540 timing bins was recorded. Since each individual pixel can detect at most one photon
event per exposure cycle a number of binary frames were aggregated together to build the timing
histogram for each pixel for further analysis. As is typical with SPAD detector arrays, there
were timing shifts between pixels, meaning relative delays between pixels were observed for
the same time-of-flight measurement conditions. Therefore, individual instrumental responses
were recorded for each pixel and used in the analysis described below. For example, Fig. 4(a)
shows the instrumental response of an individual pixel recorded in unfiltered tap water, equivalent
to a level of attenuation less than 0.5 AL between system and target. The target was a flat
Lambertian reference target, with nominal reflectance of 99% (Spectralon panel, Labsphere,
USA), and orientated at approximately normal incidence to the optical axis of the transmit
channel. The instrumental response was obtained by aggregating together 20000 binary frames,
with an acquisition time per binary frame equal to 1 ms. The temporal instrumental response of
the system was estimated as the average value of the Full-Width at Half-Maximum (FWHM) for
the full array, which meant approximately 290 ps FWHM. Typically, some pixels exhibit a dark
count rate significantly higher than the average of the array [38]. These pixels are known as hot
pixels and were identified by performing a long acquisition time measurement of 20000 binary
frames in full dark conditions. Those pixels that exhibited a dark count level higher than 50% of
the selected number of binary frames were classified as hot pixels and their data were removed
prior to analysis.

Fig. 4. Timing histograms showing the photon return from a flat Lambertian panel in
different scattering conditions. Both timing histograms were obtained by aggregating 20000
binary frames, with 1 ms acquisition time per binary frame. (a) Histogram from an individual
pixel of the SPAD detector array in unfiltered tap water (< 0.5 AL), obtained using an
average optical power of 0.2 mW. (b) Histogram of the same individual pixel recorded in
highly scattering water equivalent to 8.3 AL between system and target, measured by using a
much higher average optical power of 50 mW. Note the different y-axis scales used in this
Figure.

Figure 4(b) illustrates how the timing histogram of the same pixel can change in the presence
of scattering. The measurement was performed by using the same reference target as Fig. 4(a)
but in an attenuation level equivalent to 8.3 AL between system and target, with average optical
power equal to 50 mW. As in Fig. 4(a), 20000 binary frames and 1 ms acquisition time per binary
frame was used. In this case the collected return from the target is highly attenuated and difficult
to detect, while the backscattering dominates in the histogram. Range estimation methods, for
example the methods described below, when applied to the entire histograms are likely to fail due
to the higher peak caused by the backscattered light leading to the wrong distance value. Hence,
only the ToFs corresponding to a short timing interval centered around the expected object range
are processed. By default, this interval is set to 400 bins, although we will also report results
with other settings in Section 4.
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3. Data analysis

3D profiles of the targets were obtained using three algorithms: the classical cross-correlation
method (or maximum likelihood distance estimation); the RT3D algorithm described in [29]; and
the ensemble method introduced in [31]. Two processing approaches were used to implement and
compare these algorithms: offline processing and online, real-time processing. Offline processing
was used to investigate 3D profiles of stationary targets, which allowed us to vary the number
of binary frames used to build the histograms (typically up to 5000 binary frames), and the
admissible target range, to analyze their impact on the reconstruction performance. In contrast,
online real-time processing was used to investigate scenarios with moving targets and consisted
of aggregating at most 50 binary frames (corresponding to 100 ms periods including read-out
time) in order to avoid motion blur. Two-dimensional images of the distance and intensity profiles
(where the color of the image pixels represents the target distance with respect to a reference and
intensity respectively), as well as three-dimensional point clouds of the targets were obtained
by collecting the distance and intensity information for the entire SPAD detector array after
discarding the hot pixels. For fair comparisons, RT3D [29] was constrained to reconstruct at
most one surface per pixel.

The observation model adopted by the three reconstruction methods considered in this paper
is described in the next section.

3.1. Single-photon LiDAR observation model

Let us consider a set of K photon ToFs y = {yk}
K
k=1 where yk ∈ (0, T) and where T is the width of

the temporal window considered. Indices representing pixel dependency are omitted to simplify
notation. The probability density function (PDF) of the photon ToF yk, is given by [39,40]:

f (yk |d,ω) = ωh0

(︃
yk −

2d
c

)︃
+ (1 − ω)U(0,T)(yk) (2)

where d is the range of the target within the admissible range gate and c is the speed of light in
the transmission medium, such that yd =

2d
c is the characteristic ToF associated with the target.

The function h0 represents the normalized impulse response function (IRF) of the pixel and
the second term U(0,T) represents the background distribution. This needs not necessarily be
uniform and can in fact be a non-uniform distribution, however for the purpose of this work, the
distribution is assumed to be a uniform distribution. The variable ω represents the probability
that a recorded ToF value is associated with the photon which has been emitted from the laser
source, reflected off the target and returned to the photon detector. The parameter ω can also
be interpreted as the signal-to-background ratio (SBR) of the pixel, which depends on the target
reflectivity and background level. When K photons are detected, and the dead-times of the SPAD
detector can be neglected, the photon ToFs are mutually independent (given d and ω) and the
joint likelihood can be expressed as

f (y|d,ω) =
∏︂K

k=1
f (yk |d,ω) (3)

3.2. Cross-correlation

This approach consisted of performing a discrete pixel-wise cross-correlation, (g ⋆H)[n] ,
between the recorded histogram H[n] with N temporal bins, and the discrete logarithmic function,
g[m] = log(f (yk |d, ω)[m]), of the discretized probability density function f (yk |d, ω)[m] of the
photon ToF, yk, with M<N temporal bins, as:

(g ⋆H)[τ]
∆
=

∑︂M

t=0
g[t]H[t + τ] (4)

where τ is the displacement value. The target is centered within the histogram, and the
cross-correlation values are calculated using displacement values within the range τr =
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[︁
0 + M

2 , N − M
2
]︁

in order to relieve computational miscalculations which arise when the peak
of the PDF is located at or near the edges of the histogram H[t]. The time-of-flight, yd, of the
photons associated with the relative distance of the target for each pixel was given by the highest
value of the cross-correlation:

yd = arg max
τ∈τr

((g ⋆H)[τ]) (5)

which was used to calculate the target relative distance, d, for the corresponding pixel:

d =
c yd

2
(6)

3.3. Real-time 3D reconstruction using plug-and-play denoisers

This method uses the approach described by Tachella et al. [29], herein referred to as the RT3D
method. This algorithm basically iterates between distance, intensity and background updates,
such that each update applies a gradient step with respect to a likelihood term similar to (3) which
promotes data-consistent estimates, followed by a different denoising method which promotes
regular estimates. The distance update uses a scalable point cloud denoiser [41]. The intensity
update uses the manifold metrics defined by the point cloud to smooth the locally the intensity
and a simple denoiser based on low-pass filtering is used for the background update.

3.4. Joint surface detection and distance estimation algorithm

The third method used is the Bayesian approach as described in Drummond et al. [31] which
performs surface detection and relative distance estimation collectively while rapidly providing
conservative posterior uncertainties. This is achieved by discretizing ω, which can then only take
a finite number of values. This allows the surface detection problem to be recast as a hypothesis
testing problem (based on the marginal posterior distribution of ω) and the distance estimation
problem to be reformulated as an ensemble estimation problem. Hence this method is referred
to as Ensemble Method. Note that this method not only provides detection maps (indicating
where surfaces are present or not) and 3D maps, but also uncertainty maps, providing confidence
indicators about the quality of the estimated distance, intensity and background profiles. Here we
used the algorithm with its basic settings (e.g., with M = 30 values for ω and ω0 = 0.05 for the
probability of presence measurements).

It is important to mention that the cross-correlation and Ensemble methods do not use spatial
information and process all the pixels independently, in contrast to RT3D which enforces spatially
coherent solutions. Cross-correlation is considered as it is a very fast method, RT3D has been
designed for fast reconstruction but does not provide uncertainty estimates about the reconstructed
point clouds and the Ensemble Method has the potential to be fast (real-time compatible although
not demonstrated in [31]) and provides posterior uncertainties.

3.5. Metrics

While the three methods above estimate 3D and intensity profiles, in this work we are primarily
interested in the quality of the estimated 3D profiles, i.e. the quality of the reconstructed
(intensity-free) point clouds, as the level of scattering increases. The metrics used to measure the
quality of the estimated 3D profiles are the root mean square error (RMSE), structure similarity
index measure (SSIM) [42], and multi-scale structure similarity index measure (MS-SSIM)
[43]. These metrics compare the similarity between a distorted measured image, where the
distortion arises due to noise, with a non-distorted base image which in this work was obtained in
unfiltered tap water (i.e. in absence of scattering), and provide a value indicating the perceived
quality of the measured image. Hence, the metrics provide an indication on how much the
measured images have degraded as a result of increasing the level of scattering. The MS-SSIM
criterion was compared with the more classical SSIM criterion, as MS-SSIM has been shown to
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provide equally good or better approximations to perceived image quality than SSIM for images
which are distorted by isolated pixels corrupted by large levels of gaussian noise, known as
salt-and-pepper-noise [43].

The 3D profiles estimated from the 3 algorithms at different attenuation lengths and different
number of binary frames are compared to a reference 3D image obtained in clear water and by
aggregating 5000 binary frames.

The RMSE was calculated using the standard RMSE equation:

RMSE =

⌜⃓⎷∑︁n
i=1

(︂
di − ˆ̇︁di

)︂2

n
(7)

where di is the relative distance recorded in pixel i of the base image and ˆ̇︁di is the relative distance
recorded in pixel i of the measured image, and n is the total number of pixels used in the
RMSE calculation. Similarly, the SSIM and MS-SSIM criteria are also computed using the same
reference 3D image.

4. Results

The objects that were imaged in the experiments are shown in the photographs in Fig. 5, along
with their dimensions. All target surfaces were painted with a primer layer in order to avoid
specular reflections, which can saturate the SPAD detector array. Detailed 3D features were
investigated using a brass wall plate elbow connector for 15 mm diameter pipes (Fig. 5(a)). We
also considered a 3D-printed target (Fig. 5(b)), which had simpler 3D features as it was made
of three pillars with heights of 10, 20 and 30 mm, as shown in Fig. 5(c)). Both these targets
were mounted on a black anodized aluminum breadboard, and were used in experiments with
stationary objects, while the target shown in Fig. 5(d) and (e) was used to investigate imaging of
a moving object. This third target is a steel equal tube T-connector for 7 mm diameter pipes, and
it was mounted in the two orientations shown in Fig. 5(d) and (e) as seen from the system. The
T-connector was attached to a 2 m long rail, which was used to move the target across the field of
view of the system (x and y), and along the z-direction.

Fig. 5. Photographs of the targets used during the experiments and their dimensions.
Measurements with stationary targets were performed by using (a) a brass pipe connector, (b)
a custom 3D printed target with three square pillars providing four flat surfaces at different
heights, shown from the side in (c). The target used for the experiments with moving objects
is shown in (d) and (e). All targets were painted with a primer in order to avoid specular
reflections.

4.1. Static scenes

The brass pipe connector (Fig. 5(a)) was analyzed first as its shape allows us to visualize better
how its fine detail is not observed as the scatter is increased. For this investigation, the histograms
were built by aggregating 5000 binary frames for varying levels of attenuation between the
system and the target. Expressed as one-way attenuation length between transceiver and target,
the attenuation of the underwater environment was varied in the range< 0.5 AL to 7.5 AL. The
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average optical power used to perform the measurements was adjusted based on the level of
scattering in water, in order to maximize the return from the target but without saturating the
SPAD detector array. The optical power measurements were performed at the output of a 550 µm
fiber coupled to the laser source, and the selected values are reported in Table 2 for different
attenuation lengths, along with the concentration of scattering agent used to achieve the estimated
attenuation level.

Table 2. Average optical power used during experiments at different scattering levels
corresponding at different concentrations of scattering agent in water.

Attenuation lengths between transceiver
and target

<0.5 3.6± 0.4 5.5± 0.4 7.1± 0.4 7.5± 0.4

Concentration of scattering agent in
water

0% 0.002% 0.003% 0.004% 0.0046%

Average optical power (mW) 0.96 22 32 47 52

For display and comparison purposes, the final 3D images are shifted and gated between 0 mm
and 50 mm, such that any points below 0 mm are set to 0 mm and points with a relative distance
greater than 50 mm are set to 50 mm. For the Ensemble Method, the 3D images were obtained
by setting the threshold for the probability of presence of a surface detection w0 = 0.05 and we
discarded any points with a posterior probability of presence smaller than 0.5 (see [31]). In order
to display the final 2D image results for all methods, the pixels containing the discarded points
were set to 0 and displayed as black pixels. The results are displayed in Fig. 6, showing that the
cross-correlation method performs well at low attenuation lengths up to 3.6 AL, however the
results contain significantly more noise at higher attenuation lengths (> 3.6 AL) as this method
includes no denoising or automatic surface detection procedures (but no surface is displayed
in empty pixels). RT3D provides smooth images at low attenuation lengths but tends to miss
surfaces at high attenuation lengths probably due to the smoothing arising from the use of the
point cloud denoiser [41]. The Ensemble Method offers a suitable tradeoff here as it does not
seem to remove too many points at lower attenuation lengths (< 7.1 AL) and is able to denoise
the results at higher attenuation lengths (≥ 7.1 AL) without distorting the target 3D image due
to spatial smoothing. Although the Ensemble Method does not necessarily improve the 3D
profile of the target, it offers advanced noise reduction and surface detection with conservative
inference error results [31]. Thus, this method is used as a primary method for the remainder of
the investigation with static scenes.

We now compare the 3D target reconstructions between the brass connector and the pillar target
(shown in Fig. 5(b)). For this investigation, the histograms were built by aggregating different
numbers of binary frames (5000, 1000, 200, 50 binary frames) for each of the attenuation levels
equivalent to <0.5 AL, 3.6 AL, 5.5 AL, 7.1 AL, 7.5 AL. Again, the histograms were time gated
so that the target was centered in a temporal window of 400 bins, and the final images are gated
between 0 mm and 50 mm. The estimated 3D target reconstruction for the brass connector are
displayed in Fig. 7, and for the pillar target are displayed in Fig. 8. The average optical power
used to perform the measurements are the same as in Table 2. We can see that as the attenuation
length increases, or the number of binary frames aggregated decreases, the visual quality of the
3D reconstruction decreases, and it becomes more difficult to discern the features of the target.

In addition to the qualitative results displayed in Figs. 7 and 8, the 3D image reconstruction
was evaluated by using the SSIM, MS-SSIM and RMSE metrics introduced in Section 3.5. Due
to minor target alignment limitations during the experiments, the target position can be slightly
different between the different recordings. Thus, the images are registered to the reference
3D images and cropped (65× 123 pixels, i.e. 28.19 mm× 26.67 mm) prior to computing the
three criteria. The SSIM, MS-SSIM and RMSE results are shown in Fig. 9. The calculations
were performed by aggregating a varying number of binary frames at increasing numbers of
attenuation lengths.
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Fig. 6. Brass pipe connector 3D profiles obtained aggregating 5000 binary frames and
gating the histograms at 400 temporal bins. The figure compares 3D profiles at different
attenuation lengths for cross-correlation method, the RT3D method [29] and Ensemble
method [31]. The color bar represents the distance along the axis from the transceiver, with
an arbitrary origin chosen near the reference target position.

Fig. 7. Brass pipe connector 3D profiles using the ensemble method [31], where the
histograms are gated at 400 temporal bins and built by aggregating different numbers of
binary frames, at different attenuation lengths. The color bar represents the distance along the
axis from the transceiver, with an arbitrary origin chosen near the reference target position.
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Fig. 8. 3D reconstructions of the pillar target using the ensemble method [31], where
the histograms are gated at 400 temporal bins and built by aggregating different numbers
of binary frames for different attenuation lengths. The color bar represents the distance
along the axis from the transceiver, with an arbitrary origin chosen near the reference target
position.

Fig. 9. (a) SSIM, (b) MS-SSIM, and (c) RMSE (in mm) results for the brass connector
target. (d) SSIM, (e) MS-SSIM, (f) RMSE (in mm) results for the pillar target. The analysis
was performed by aggregating different numbers of binary frames.
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As explained previously, the primary motivation for using MS-SSIM in addition to the SSIM is
its robustness in providing better approximations to perceived image quality than SSIM for images
which are degraded by large sparsely pixelated noise. These results show that the MS-SSIM
remains high for longer than the SSIMs results for both targets as the AL increases. Moreover, the
MS-SSIM results are more in line with the visual quality of the 3D profiles in Fig. 7 and Fig. 8
than the SSIM curves. Indeed, it confirms that SSIM is more affected by small random errors.
We observe that the results of both targets follow the same trend for all the metric measurements.
As the attenuation length increases, the sensor detects more scattering events which lead to the
wrong estimation of the distance for an increasing number of pixels, hence the SSIM/MS-SSIM
values decrease and the RMSE values increase. Similarly, as the number of frames used to
construct the histogram data are decreased, the SSIM/MS-SSIM values decrease and the RMSE
values increase. From the results of both targets, we can see that the image quality is degraded to
where the target starts to become unrecognizable at approximately 4-5 AL for data constructed of
50 binary frames. As the number of binary frames used to construct the data is increased, the
target becomes unrecognizable at approximately 6-7 AL for 5000 frames. Due to the similarity
of the results for both targets, the connector target is used for the remainder of this section of the
paper as this is the more complicated of the two targets.

Fig. 10. Brass pipe connector 3D profiles obtained processing different lengths of timing
bin window, at different attenuation lengths. The results were obtained by aggregating 5000
binary frames.

The previous analysis was performed over a timing window of 400 temporal bins centered on
the expected target reflection, and taken from the full recorded 1540 bins shown in the examples
illustrated in Fig. 4. By using a smaller set of bins, the large scattering peak shown in Fig. 4(b)
can be removed from the analysis, removing ambiguity from the estimate of target depth. The
timing window of 400 bins corresponds to a distance of 1.48 m in water. This distance was
chosen in order to have a large timing window which would be of more interest when the target
position is not known. However, when the expected target position can be bounded more precisely
(e.g., if a sonar is used to obtain a coarse range estimate), the data can be processed using fewer
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timing bins in order to exclude more scattering events in the analysis without removing any
signal return. Therefore, the same data were processed by aggregating 5000 binary frames, and
varying the number of bins in the timing window where the processing is performed. When
processing the data over fewer temporal bins with the ensemble method (while correlating over
the full 400 temporal bins to produce the posterior distributions), we only considered the posterior
distribution values over the admissible distance range and renormalized these values to produce
the final distance estimates. This allowed the estimation to be more robust as we can reduce the
effects of noise when considering all the information from the 400 temporal bins. The results
are illustrated in Fig. 10, and show that as the timing window is reduced, more features of the
target can be reconstructed. For example, when the data are processed over 50 bins, imaging
can be performed at up to 7.1 AL and the target can be detected at 7.5 AL. Additionally, Fig. 10
shows the Signal-to-Background (SBR) defined as the ratio between the number of photons in
the highest bin in the peak and the average background per bin. The calculation was performed
by estimating the average SBR in the area corresponding to the most reflective part of the target
connector within the red rectangle shown in the first 3D profile of Fig. 10, equivalent to 16× 35
pixels.

4.2. Dynamic scenes

To illustrate real-time, online processing, we used the aluminum T-connector shown in Fig. 5(d)
and (e). The data for all attenuation lengths were taken with two different T-connector orientations:
one shows the shortest side of the connector where the axis of the connecting hole is parallel to
the line of sight of the system (as in Fig. 5(e), and it will be called parallel orientation); whilst the
second orientation shows the full length of the connector which is perpendicular to the line of sight
of the system (as in Fig. 5(d), and it will be called perpendicular orientation). The histograms
were built by aggregating together 50 binary frames. We compare the results for cross-correlation,
the RT3D method [29], and the Ensemble Method [31] for distance and intensity estimation.
The histograms in the real time processing were gated so that the target would be centered in a
temporal window of 400 bins. To obtain real-time scene reconstruction, GPU processing methods
were used where each pixel was processed in parallel. Specifically for the Ensemble Method,
the construction of the code was built in a modular fashion, where the method was broken into
three different GPU kernels. The first is to obtain the posterior probability distribution values,
the second normalizes these probability distribution values, and the final kernel produces the
results from these normalized posterior probabilities. This layout not only prevents the GPU from
crashing, but also helps with future work where we can combine posterior probabilities obtained
from uniform and multiple different non-uniform distribution estimates and normalize these in
the second kernel. Further improvement would be required to also calculate the results for each w
value for each pixel in parallel to further improve the processing times. The times for processing
each image frame were recorded for all three methods at several attenuation lengths up to 6.6
AL. The average results are presented for the parallel orientation of the connector in Table 3
and for the perpendicular orientation of the connector in Table 4. For the Ensemble Method,
M= 10 for the discrete set of w values, for faster processing speeds. From the results we can see
that as the attenuation length increases the processing times for all methods decrease. As the
attenuation length is increased, the scattering of emitted photons increases and so fewer photons
are returned to the LiDAR detector. Thus, the histograms produced for higher attenuation lengths
are more sparse compared to histograms from measurements taken at lower attenuation lengths,
and so require less time to process. We also observe that the cross-correlation method is much
faster than both the RT3D and the Ensemble Method, which exhibit similar times to process
the data where the Ensemble Method is very slightly the slower of the two methods. However,
it is important to observe that the processing times required by both methods are less than the
time needed to measure the 50 binary frames used to build the histograms, enabling low latency
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three-dimensional reconstruction and visualization of the scene, as shown in the example in
Visualization 1. In addition, it was observed that for the Ensemble Method smaller values of M
resulted in faster processing times. Thus, as the different posterior distributions for different w
values were computed in parallel, the slightly slower processing times of the Ensemble Method
compared with the RT3D method may be a result of overheads and/or libraries used.

Table 3. Mean processing times (in ms) to obtain an individual image frame, along with its
standard deviation (in brackets) for different attenuation lengths. These results were obtained by

processing the data obtained for the parallel orientation of the T-connector target (orientation
shown in Fig. 5(e)).

Attenuation
lengths

<0.5 0.6 1.4 2.5 3.6 4.8 5.5 6.0 6.6

Cross-
Correlation

1.15
(0.11)

1.42
(0.16)

1.27
(0.19)

1.49
(0.24)

1.20
(0.20)

0.97
(0.18)

0.97
(0.13)

0.93
(0.12)

0.92
(0.07)

RT3D Method
[29]

34.53
(1.25)

35.34
(1.20)

32.95
(1.53)

34.53
(1.38)

31.34
(1.39)

28.95
(1.18)

29.53
(1.38)

28.54
(2.28)

28.14
(1.44)

Ensemble
Method [31]

32.76
(1.21)

35.78
(2.37)

33.72
(1.92)

37.08
(2.58)

33.05
(1.77)

29.51
(1.32)

30.92
(0.91)

30.12
(0.88)

29.47
(0.81)

Table 4. Mean processing times (in ms) to obtain an individual image frame, along with its
standard deviation (in brackets) for different attenuation lengths. These results were obtained by

processing the data obtained for the perpendicular orientation of the T-connector target (orientation
shown in Fig. 5(d)).

Attenuation
lengths

<0.5 0.6 1.4 2.5 3.6 4.8 5.5 6.0 6.6

Cross-
Correlation

1.27
(0.19)

1.54
(0.19)

1.35
(0.20)

1.65
(0.27)

1.30
(0.15)

1.02
(0.11)

0.96
(0.09)

0.94
(0.09)

0.91
(0.09)

RT3D Method
[29]

34.67
(1.98)

36.17
(2.80)

34.83
(1.23)

34.86
(1.39)

32.36
(1.74)

30.74
(1.28)

29.55
(1.12)

28.30
(2.77)

29.46
(4.34)

Ensemble
Method [31]

35.23
(2.44)

37.19
(3.11)

34.51
(3.15)

38.56
(2.98)

34.22
(2.28)

30.07
(1.19)

30.7
(0.98)

30.54
(0.9)

29.7
(0.9)

Videos, displaying both relative distance and intensity profiles as well as 3D point-clouds, of
the T-connectors parallel and perpendicular orientations were recorded for several attenuation
lengths. When using the Ensemble Method, the images and point clouds were cleaned for
the lower AL (≤ 4.8), by setting the limiter for probability of presence of a surface detection
w0 = 0.25, as described in [23], and ignored any points with a probability of detection less than
0.5 and intensity value less than 5. For 5.5, 6.0, 6.6 AL, the intensity limit was reduced to 3 as the
intensity was too low at this higher scattering level resulting in too many points being removed.

Visualization 2 and Visualization 3 show the results obtained in clear water and at an attenuation
level equivalent to 4.8 AL between the system and the target, respectively. However, as the
attenuation length increases, the quality of the image reconstruction decreases, and the target
is not recognizable for attenuation lengths greater than 5.5 AL (shown in Visualization 4),
as predicted in the offline processing. However, we do still see clusters of points moving
for the higher attenuation lengths. Thus, while the methods may not be adequate for image
reconstruction at higher attenuation lengths, they could be suitable for target tracking. For
comparison, Visualization 5 show the results obtained at a low level of scattering equivalent to less
than 0.5 AL between the system and the target, by processing the data with the cross-correlation
method. In this case, the target is clearly visible and its details can be discerned in the final video,
although the point cloud shows a higher level of noise with respect to the Ensemble Method.
Visualization 6 shows the results obtained with cross-correlation at a higher level of scattering
equivalent to 5.5 AL, and in this case it is not possible to identify or detect the target.

https://doi.org/10.6084/m9.figshare.22050194
https://doi.org/10.6084/m9.figshare.22050575
https://doi.org/10.6084/m9.figshare.22050782
https://doi.org/10.6084/m9.figshare.22051007
https://doi.org/10.6084/m9.figshare.22051229
https://doi.org/10.6084/m9.figshare.22051448
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5. Conclusions and discussion

This paper presents a fully submerged underwater single-photon LiDAR transceiver system
based on a CMOS SPAD detector array, with real-time three-dimensional target reconstruction
capability. The system was characterized under different levels of turbidity.

We have performed 3D imaging experiments at an underwater depth of approximately 1.8 meters,
using stationary and moving targets. Three-dimensional profiles and intensity reconstructions
of the targets were obtained in several underwater scattering conditions, at a target distance of
approximately 3 meters in water. Relative distance and intensity information were retrieved up to
7.5 AL by using three different target reconstruction methods: cross-correlation, RT3D [29], and
the recently developed algorithm based on joint surface detection and distance estimation [31].
The CMOS SPAD detector array used had 192× 128 pixels, with TCSPC electronics integrated
in each pixel [32]. This allowed us to measure the timing information simultaneously for the
full field of view. Therefore, we directly interfaced the CMOS SPAD detector array to a GPU
and implemented the three chosen reconstruction algorithms for single-photon LiDAR imaging
with low latency. We demonstrated processing times below the data acquisition time needed to
acquire histograms for an individual frame (i.e. in the order of 100 ms), and achieved low latency
of< 40 ms. The investigations reported in this paper show that three-dimensional single-photon
videos of moving targets can achieve a rate of 10 frames per second for moving targets in turbid
conditions.
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