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Introduction

The (interior) medial axis is a skeleton that captures many geometric and topological features. Formally, the medial axis of a closed set S consists of all points in the ambient space that do not have a unique closed point on S (which lies on the boundary ∂S).

As we will discuss, significant effort has gone into the study of the stability of the medial axis and its various prunings. In this paper we investigate the stability of two similar prunings of the medial axis: collapses and burnings (defined below) of the medial axis. We show that these prunings do not yield a geometrically or topologically stable core.

The introductions of the medial axis

The term medial axis was introduced by Blum [START_REF] Blum | A Transformation for Extracting New Descriptors of Shape[END_REF], who suggested its use in the context of shape recognition. However, the concept predates Blum's work; to our best knowledge the concept was first probed by Erdös [START_REF] Erdös | Some remarks on the measurability of certain sets[END_REF][START_REF] Erdös | On the Hausdorff dimension of some sets in Euclidean space[END_REF]. In [START_REF] Federer | Curvature measures[END_REF], Federer introduced the reach of a (closed) set S ⊂ R d as the minimum of the distance from S to the medial axis, ax(S), and studied some properties of the (complement of the) medial axis. More recently, it has been reintroduced as the central set [START_REF] Milman | On topological properties of the central set of a bounded domain in rm[END_REF].

Spines and cut-loci. We note that the medial axis is closely related to both the cut-locus and spine. The cut-locus is the generalization of the medial axis to Riemannian manifolds [START_REF] Thom | Sur le cut-locus d'une variété plongée[END_REF]. A spine is a subset (subpolyhedra) to which the (triangulated) manifold with boundary can collapse; these fulfill a similar role in 3-manifold topology [START_REF] Matveev | Complexity theory of three-dimensional manifolds[END_REF][START_REF] Matveev | Algorithmic Topology and Classification of 3-Manifolds[END_REF].

Stability of the medial axis

Unfortunately, the medial axis is limited in its use by its (topological) instability under small perturbations [START_REF] Attali | Stability and Computation of Medial Axes -a State-of-the-Art Report[END_REF]. Here small is understood to be small with respect to the Hausdorff distance, d H (S, S ′ ). See Figure 1 for a standard example of such an instability.

If we restrict ourselves to a smaller class of spaces and perturbations, there are stability results available: Chazal and Soufflet [START_REF] Chazal | Stability and finiteness properties of medial axis and skeleton[END_REF] proved that the medial axis is stable with respect to the Hausdorff distance under ambient diffeomorphisms, under strong conditions. Namely, Chazal and Soufflet assumed that the set of positive reach, S, is a C 2 manifold and the distortion is a C 2 diffeomorphism of R b . Federer [START_REF] Federer | Curvature measures[END_REF] proved that the reach is stable under C 1,1 diffeomorphisms of the ambient space, that is, a diffeomorphism of the ambient space whose derivative and the derivative of the inverse are Lipschitz. The medial axis does capture the homotopy type of S [START_REF] Lieutier | Any open bounded subset of R n has the same homotopy type as its medial axis[END_REF][START_REF] Wolter | Cut locus and medial axis in global shape interrogation and representation[END_REF]. With some extra information and in the smooth setting the medial axis contains much more information than just the homotopy type: if we know the medial axis of a shape and the distance to a smooth manifold (of codimension one) for each point on the cut locus (the radius function), we can recover the manifold, as noted by Wolter [START_REF] Wolter | Cut locus and medial axis in global shape interrogation and representation[END_REF]. Damon [START_REF] Damon | Smoothness and geometry of boundaries associated to skeletal structures I: Sufficient conditions for smoothness[END_REF][START_REF] Damon | Smoothness and geometry of boundaries associated to skeletal structures, II: Geometry in the Blum case[END_REF][START_REF] Damon | Global geometry of regions and boundaries via skeletal and medial integrals[END_REF][START_REF] Damon | Determining the geometry of boundaries of objects from medial data[END_REF] investigated how to recover the differential geometry of the manifold from the geometry of the medial axis and the radius function.

Generic stability and singularities. For generic points on the medial axis of a manifold embedded in low dimensions, the geometry is somewhat stable: generically a point on the medial axis in three dimensions has two closest points, in which case the geometry of a neighbourhood (or more precisely the second fundamental form) can be described in terms of the geometry near the two closest points, see Van Manen [START_REF] Van Manen | The geometry of conflict sets[END_REF], see also [START_REF] Siersma | Properties of conflict sets in the plane[END_REF][START_REF] Sotomayor | Curvatures of conflict surfaces in Euclidean 3-space[END_REF][START_REF] Van Manen | Curvature and torsion formulas for conflict sets[END_REF]. This means that (again generically) the geometry of the medial axis is locally stable. The topology of the singularities of the medial axis can also be classified in a generic setting in low dimensions. This classification is the same as for the cut-locus, which is, roughly speaking, the medial axis for a single point on a manifold, see Figure 2.

This classification was done by Mather [START_REF] Mather | Distance from a submanifold in Euclidean-space[END_REF], Buchner [START_REF] Buchner | The structure of the cut locus in dimension less than or equal to six[END_REF] and Yomdin [START_REF] Yomdin | On the local structure of a generic central set[END_REF] based on work by Arnol'd [START_REF] Arnol'd | Singularities of Caustics and Wave Fronts[END_REF], Thom [START_REF] Thom | Sur le cut-locus d'une variété plongée[END_REF] and Looijenga [START_REF] Looijenga | Structural stability of smooth families of C ∞ -functions[END_REF]; we refer to Van Manen [START_REF] Van Manen | Maxwell strata and Caustics[END_REF] for an overview and history, see also [START_REF] Damon | The global medial structure of regions in R 3[END_REF][START_REF] Damon | Medial/skeletal linking structures for multiregion configurations[END_REF]. The classification of singularities is only explicitly possible in sufficiently low dimensions.

The generic transitions between singularities of the medial axis or perestroikas in a one parameter family isotopy between (generic) surfaces in R 3 have been studied by Giblin and Kimia [START_REF] Giblin | Transitions of the 3D medial axis under a one-parameter family of deformations[END_REF], based on earlier work by Bogaevsky [START_REF] Bogaevsky | Metamorphoses of singularities of minimum functions, and bifurcations of shock waves of the burgers equation with vanishing viscosity[END_REF][START_REF] Bogaevsky | Perestroikas of shocks and singularities of minimum functions[END_REF][START_REF] Bogaevsky | Singularities of viscosity solutions of hamilton-jacobi equation (singularity theory and differential equations)[END_REF][START_REF] Bogaevsky | Perestroikas of fronts in evolutionary families[END_REF]. We represent the transitions given by Giblin and Kimia, 1 transition plays a significant role.

Fig. 3: The generic transitions of singularities (perestroikas) of the medial axis in R 3 . Adapted from figures by Bogaevsky [START_REF] Bogaevsky | Perestroikas of shocks and singularities of minimum functions[END_REF]. We use the same notation as [START_REF] Giblin | Transitions of the 3D medial axis under a one-parameter family of deformations[END_REF], which in turn follows Arnol'd. As we'll see in Figure 8, see also Figure 10, it is the transition of type A 4 1 that causes the (interior) medial axis to become non-collapsible (during the deformation of the cube into a thickened Bing's house).

Prunings

Significant effort has gone into the simplification (pruning) of the medial axis. This was motivated by applications in graphics (where the medial axis is used as a skeleton, see the surveys [START_REF] Saha | A survey on skeletonization algorithms and their applications[END_REF][START_REF] Tagliasacchi | 3D skeletons: A state-of-the-art report[END_REF]), data reduction, shape recognition, and learning (see for example [START_REF] Bal | Skeleton-based recognition of shapes in images via longest path matching[END_REF][START_REF] Chang | Measuring 3d shape similarity by graph-based[END_REF][START_REF] Demir | SkelNetOn 2019: Dataset and challenge on deep learning for geometric shape understanding[END_REF][START_REF] Ho | Shape smoothing using medial axis properties[END_REF][START_REF] Liu | Extended grassfire transform on medial axes of 2d shapes[END_REF][START_REF] Sebastian | Recognition of shapes by editing their shock graphs[END_REF][START_REF] Shaked | Pruning medial axes[END_REF][START_REF] Yan | Erosion thickness on medial axes of 3d shapes[END_REF]). Various prunings of the medial axis have been proposed in many different settings [START_REF] Liu | Extended grassfire transform on medial axes of 2d shapes[END_REF][START_REF] Shaked | Pruning medial axes[END_REF][START_REF] Amenta | The power crust, unions of balls, and the medial axis transform[END_REF][START_REF] Attali | Modeling noise for a better simplification of skeletons[END_REF][START_REF] Blanc-Beyne | A salience measure for 3D shape decomposition and sub-parts classification[END_REF][START_REF] Chazal | The "λ-medial axis[END_REF][START_REF] Dey | Defining and computing curve-skeletons with medial geodesic function[END_REF][START_REF] Dey | Approximating the medial axis from the Voronoi diagram with a convergence guarantee[END_REF][START_REF] Giesen | The scale axis transform[END_REF]. See Figure 4 for an illustration of some commonly used prunings and their pitfalls: the object angle, which is of historic importance in the community but can disconnect the medial axis, the λ-medial axis, which is used to compute a close approximation of the medial axis but which can truncate "thin" regions undesirably, and the burning method, which we consider in this work. Fig. 4: Various pruning methods, from left to right: Object angles [START_REF] Attali | Modeling noise for a better simplification of skeletons[END_REF][START_REF] Dey | Approximating the medial axis from the Voronoi diagram with a convergence guarantee[END_REF], radius of the set of closest points [START_REF] Chazal | The "λ-medial axis[END_REF] (the λ-medial axis, also used in our computation), and a burning method proposed in [START_REF] Yan | Erosion thickness on medial axes of 3d shapes[END_REF], with various undesirable features indicated. The value of the object angle, radius of of the set of closest points, and burning time is indicated in colour on top. Reproduced from [START_REF] Yan | Erosion thickness on medial axes of 3d shapes[END_REF].

Burning Bing's house

The simplification which we focus on for this work is the burning of the medial axis [START_REF] Yan | Erosion thickness on medial axes of 3d shapes[END_REF], which generalizes Blum's original "grassfire" analogy for the medial axis.

Burning and Bing's house. The burning of the medial axis removes the extremities of the medial axis by 'starting a fire' at the boundary of the medial axis which stops if the fire hits an obstacle, as illustrated in Figure 5.

Because of the good experimental results, it was conjectured that the burning method of simplification of the medial axis would be stable [START_REF] Liu | Extended grassfire transform on medial axes of 2d shapes[END_REF], i.e. no Fig. 5: The fire front progression on a the medial axis (grey) of a curve (black). As the fire front (indicated by the red dot) hits an unburned junction, it stops. If the junction is already burned (with the colour indicating the burn time) the fire continues. discontinuous jumps. In this work we show that this is not the case. The counter example is based on the standard deformation retract from the closed ball to Bing's house with two rooms [START_REF] Bing | Some aspects of the topology of 3-manifolds related to the Poincaré conjecture[END_REF], which is a contractible but not collapsible two dimensional simplicial complex, see Figure 7. Bing's house is not collapsible, as there is no boundary from which a collapsing sequence could begin. Deforming a cube into Bing's house. Bing constructed his house as a deformation retract from a solid cube, see Figure 7. The deformation retract goes as follows. During the entire construction, with the exception of the final step, the set will remain three dimensional. As mentioned we start with a solid cube. We then start by digging two corridors. Once we have reached the part of the solid cube that will because a room, we start hollowing out the room by protruding a rectangular cuboid into the room. This can be continued until we come near the corridor that goes to the opposite room. Of course we cannot interfere with the corridor, instead we engulf the corridor from both sides. Once we are past the corridor, we extend the hollowed space until it almost touches itself near the flap. We finally flatten the three dimensional set to two dimensions, creating Bing's house. Deforming Bing's house into a collapsible complex. Before we go into the main statement, we consider a deformation of Bing's house which makes it collapsible. This deformation will be mirrored in the medial axis in our construction and is depicted in Figure 8; see Figure 6 for the nomenclature. In this construction we cut a flap open so that the room no longer completely runs around the corridor. This cutting exposes an edge of one of the walls of the corridor and path that goes from the edge to the bottom room. We can use this edge to collapse along the path into the bottom room, then the bottom room itself, and from this the rest of Bing's house.

Main result

We are now going to use the construction of Bing's house from a solid cube to Bing's house, but stop just before the set becomes two dimensional. This gives an isotopy of the boundary of the cube, namely S 2 , such that the (interior) The precise result is the following:

Theorem 2.1 There exists a smooth ambient isotopy H t : [0, 1]×S 2 → R 3 such that:

• The (interior) medial axis ax(H 0 (S 2 )) is collapsible/burnable to a single point. • The (interior) medial axis ax(H 1 (S 2 )) is Bing's house and is therefore noncollapsible/cannot burn (is fireproof ).

• The burning of ax(H t (S 2 )) is not continuous in t with respect to the Hausdorff distance. • The topology of the burned (interior) medial axis changes from a point to Bing's house with two rooms at a single t 0 ∈ [0, 1]. • The isotopy H t can be chosen to be generic in the sense of singularity theory as developed by Arnol'd and Thom [START_REF] Arnol'd | Singularities of Caustics and Wave Fronts[END_REF], see in particular [START_REF] Giblin | Transitions of the 3D medial axis under a one-parameter family of deformations[END_REF].

Proof Bing constructed his house as a deformation retract from a solid cube, see Figure 7. The isotopy of the sphere we consider is the boundary of this deformation. However instead of reducing to a two dimensional object we forego the final step so that at any point in the deformation the set remains a topological (solid) ball and its boundary a sphere. The end point of this deformation is a thickened version of Bing's house. We will only consider the medial axis in the interior of the sphere and not the exterior. The medial axis of a thickened version of Bing's house is Bing's house itself. The deformation is depicted in Figure 9. The essential topological change only happens near the end of the deformation when the rooms wrap around their respective corridors, see Figure 10. At this moment the bisector between the corridor and the wall disappears and is replaced by the bisector between the two parts of the room that are wrapping around the corridor and the medial axis becomes noncollapsible.

The transition as depicted in Figure 9 is not generic, it is in fact quite symmetrical and at the critical transition, see Figure 10, there is an entire edge in the medial axis for which there are 4 nearest points on the boundary of the thickened Bing's house. For each point on the edge, the closest points are a point on the exterior wall, a point on the corridor and two points on either side that lie on the expanding top room. By perturbing the configuration slightly you can ensure that there are only isolated points of the medial axis that have 4 closest points. By doing so, the transition will look as depicted in Figure 8, which corresponds to a transition between singularities of type A 4 1 . □

We immediately have the following corollary:

Corollary 2.2 Collapsing or pruning the medial axis of a domain such that it becomes one-dimensional, as proposed in e.g. [START_REF] Blanc-Beyne | A salience measure for 3D shape decomposition and sub-parts classification[END_REF], is not always possible, even if the boundary of the domain is a smooth sphere.

Computational method

The frames of the deformation illustrated in Figures 7,9, and 10 are taken from our Symposium on Computational Geometry Media Exposition submission [START_REF] Chambers | A Cautionary Tale: Burning the Medial Axis Is Unstable[END_REF] (available at https://youtu.be/CFmFP6CHVEk). These animations were made using the λ-medial axis (see https://github.com/cdfillmore/lambda medial axis) and the open source software Blender [START_REF] Community | Blender -a 3D Modelling and Rendering Package[END_REF]. Here λ is chosen very small to ensure that the λ-medial axis is a good approximation of the medial axis. The smoothed solid cubes in these five frames coincide with the unsmoothed solid cubes in the first five frames of Figure 7. The exact moment at which the medial axis becomes non-collapsible lies between frames four and five and is depicted explicitly in Figure 10.

Fig. 10: The critical transition of the medial axis. There are points on the medial axis equidistant to the two parts of the room that wrap around the corridor, the corridor itself and the exterior wall, which can be avoided by a small perturbation. This transition occurs between frames 4 and 5 of Figure 7.

Conclusion and open question

In this paper we constructed an isotopy of the sphere such that the interior medial axis transitions from collapsible to non-collapsible. The exterior medial axis throughout this isotopy remains collapsible (by which we mean after compactifying the ambient space to S 3 ). This automatically leads some interesting questions:

Question Does there exist an embedding of S 2 in S 3 where it is not possible to burn/partially collapse either the interior or exterior medial axis of S 2 at all?

We suspect that this question can be answered in the negative. We can also imagine that we can use the burning of the exterior medial axis to guide an isotopy of the sphere. See Figure 11 for an example of an isotopy guided by burning. For the thickened version of Bing's house, an isotopy guided by the burning of the medial axis would yield the inverse of the standard construction of Bing's house (which we described above and is depicted in Figure 7), see Figure 12 for a depiction of how the burning would guide the isotopy.

Fig. 11: The medial cactus: a two dimensional example of an isotopy guided by the burning of the medial axis. In this case the isotopy goes from a cactus shape into the (round) circle. This leads us to the following stronger conjecture: Conjecture 3.1 Given any embedding of S 2 in S 3 , there exists a series of isotopies of S 2 based on successive burnings of both the interior and exterior medial axes, which yields the standard symmetrical embedding of the 2-sphere in S 3 . Fig. 12: In this figure we indicate an isotopy guided by the burning of the medial axis in the top room of a thickened version of Bing's house. We see how the room deforms from enveloping the corridor (to the bottom room) to a circular remnant. After this deformation the shape is a smoothed version of the second frame of Figure 7. The corridor in this frame can again be isotoped away, using the burning of the medial axis as a guide.

We point out that some work on the correspondence between the singularities of the interior and exterior medial axes has already been done [START_REF] Damon | Medial/skeletal linking structures for multiregion configurations[END_REF]. Burning or collapsing the medial axis is unstable matching of the medial scaffolds. Computer Vision and Image Understanding 115(5), 707-720 (2011). https://doi.org/10.1016/j.cviu.2010.10. 013

Fig. 1 :

 1 Fig. 1: Small perturbations (with respect to the Hausdorff distance) can lead to large perturbations of the medial axis.

Fig. 2 :

 2 Fig. 2: The singularities of the medial axis of a generic surface embedded in R 3 . The double lines indicate open ends. The A j i notation for the types of singularities was introduced by Arnol'd.

Fig. 6 :

 6 Fig. 6: The various parts of Bing's house indicated.

Fig. 7 :

 7 Fig. 7: The deformation retract of a solid cube (topological ball) to Bing's house. In the final frame we show the smoothed version of a thickened Bing's house used in the computation.

Fig. 8 :

 8 Fig. 8: This deformation (top six panels), which cuts a flap open, makes Bing's house collapsible. The topology of this transition (in the neighbourhood of the point where the flap disappears) is precisely that of the type A 41 . The transition of type A4 1 is depicted in the bottom three panels; we have coloured the strata to indicate the correspondence with the construction directly above.

Fig. 9 :

 9 Fig. 9: The evolution of the interior medial axis (yellow) as the smoothed solid cube is deformed into a thickened version of Bing's house (blue/purple).The smoothed solid cubes in these five frames coincide with the unsmoothed solid cubes in the first five frames of Figure7. The exact moment at which the medial axis becomes non-collapsible lies between frames four and five and is depicted explicitly in Figure10.
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