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Abstract

The medial axis of a set consists of the points in the ambient space with-
out a unique closest point in the original set. Since its introduction, the
medial axis has been used extensively in many applications as a method
of computing a skeleton topologically equivalent to the original set.
Unfortunately, one limiting factor in the use of the medial
axis of a smooth manifold is that it is not necessarily topo-
logically stable under small perturbations of the manifold. To
counter these instabilities, various prunings of the medial axis
have been proposed in the computational geometry community.
Here, we examine one type of pruning, called burning. Because
of the good experimental results it was hoped that the burning
method of simplifying the medial axis would be stable. In this
work we show a simple example that dashes such hopes. Based
on Bing’s house with two rooms, we demonstrate an isotopy of a
shape where the medial axis goes from collapsible to non-collapsible.
More precisely, we consider the standard deformation retract from the
closed ball to Bing’s house with two rooms, but stop just short of
the point where Bing’s house becomes two dimensional. This way we
obtain an isotopy from the 3-ball to a thickened version of Bing’s
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house. Under this isotopy, the medial axis goes from collapsible to
non-collapsible. We stress that this isotopy can be made generic, in
the sense of singularity theory, as developed by Arnol’d and Thom.

Keywords: Medial axis, Burning, Stability theory, Singularity theory

MSC Classification: 68U05 , 65D18 , 58K40 , 58K60

1 Introduction

The (interior) medial axis is a skeleton that captures many geometric and
topological features. Formally, the medial axis of a closed set S consists of all
points in the ambient space that do not have a unique closed point on S (which
lies on the boundary ∂S).

As we will discuss, significant effort has gone into the study of the stability
of the medial axis and its various prunings. In this paper we investigate the
stability of two similar prunings of the medial axis: collapses and burnings
(defined below) of the medial axis. We show that these prunings do not yield
a geometrically or topologically stable core.

The introductions of the medial axis

The term medial axis was introduced by Blum [1], who suggested its use in
the context of shape recognition. However, the concept predates Blum’s work;
to our best knowledge the concept was first probed by Erdös [2, 3]. In [4],
Federer introduced the reach of a (closed) set S ⊂ Rd as the minimum of the
distance from S to the medial axis, ax(S), and studied some properties of the
(complement of the) medial axis. More recently, it has been reintroduced as
the central set [5].

Spines and cut-loci. We note that the medial axis is closely related to both
the cut-locus and spine. The cut-locus is the generalization of the medial axis
to Riemannian manifolds [6]. A spine is a subset (subpolyhedra) to which the
(triangulated) manifold with boundary can collapse; these fulfill a similar role
in 3-manifold topology [7, 8].

Stability of the medial axis

Unfortunately, the medial axis is limited in its use by its (topological) insta-
bility under small perturbations [9]. Here small is understood to be small
with respect to the Hausdorff distance, dH(S,S ′). See Figure 1 for a standard
example of such an instability.

If we restrict ourselves to a smaller class of spaces and perturbations, there
are stability results available: Chazal and Soufflet [10] proved that the medial
axis is stable with respect to the Hausdorff distance under ambient diffeomor-
phisms, under strong conditions. Namely, Chazal and Soufflet assumed that
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Fig. 1: Small perturbations (with respect to the Hausdorff distance) can lead
to large perturbations of the medial axis.

the set of positive reach, S, is a C2 manifold and the distortion is a C2 dif-
feomorphism of Rb. Federer [4] proved that the reach is stable under C1,1

diffeomorphisms of the ambient space, that is, a diffeomorphism of the ambi-
ent space whose derivative and the derivative of the inverse are Lipschitz. The
medial axis does capture the homotopy type of S [11, 12]. With some extra
information and in the smooth setting the medial axis contains much more
information than just the homotopy type: if we know the medial axis of a
shape and the distance to a smooth manifold (of codimension one) for each
point on the cut locus (the radius function), we can recover the manifold, as
noted by Wolter [12]. Damon [13–16] investigated how to recover the differen-
tial geometry of the manifold from the geometry of the medial axis and the
radius function.

Generic stability and singularities. For generic points on the medial axis of
a manifold embedded in low dimensions, the geometry is somewhat stable:
generically a point on the medial axis in three dimensions has two closest
points, in which case the geometry of a neighbourhood (or more precisely the
second fundamental form) can be described in terms of the geometry near the
two closest points, see Van Manen [17], see also [18–20]. This means that (again
generically) the geometry of the medial axis is locally stable. The topology of
the singularities of the medial axis can also be classified in a generic setting in
low dimensions. This classification is the same as for the cut-locus, which is,
roughly speaking, the medial axis for a single point on a manifold, see Figure
2.

This classification was done by Mather [21], Buchner [22] and Yomdin [23]
based on work by Arnol’d [24], Thom [6] and Looijenga [25]; we refer to Van
Manen [26] for an overview and history, see also [27, 28]. The classification of
singularities is only explicitly possible in sufficiently low dimensions.

The generic transitions between singularities of the medial axis or per-
estroikas in a one parameter family isotopy between (generic) surfaces in
R3 have been studied by Giblin and Kimia [29], based on earlier work by
Bogaevsky [30–33]. We represent the transitions given by Giblin and Kimia,
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Fig. 2: The singularities of the medial axis of a generic surface embedded in
R3. The double lines indicate open ends. The Aj

i notation for the types of
singularities was introduced by Arnol’d.

and Bogaevsky in Figure 3. In this work the A4
1 transition plays a significant

role.

Fig. 3: The generic transitions of singularities (perestroikas) of the medial axis
in R3. Adapted from figures by Bogaevsky [31]. We use the same notation as
[29], which in turn follows Arnol’d. As we’ll see in Figure 8, see also Figure 10,
it is the transition of type A4

1 that causes the (interior) medial axis to become
non-collapsible (during the deformation of the cube into a thickened Bing’s
house).
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Prunings

Significant effort has gone into the simplification (pruning) of the medial axis.
This was motivated by applications in graphics (where the medial axis is used
as a skeleton, see the surveys [34, 35]), data reduction, shape recognition, and
learning (see for example [36–43]). Various prunings of the medial axis have
been proposed in many different settings [40, 42, 44–50]. See Figure 4 for an
illustration of some commonly used prunings and their pitfalls: the object
angle, which is of historic importance in the community but can disconnect the
medial axis, the λ-medial axis, which is used to compute a close approximation
of the medial axis but which can truncate “thin” regions undesirably, and the
burning method, which we consider in this work.

Fig. 4: Various pruning methods, from left to right: Object angles [45, 49],
radius of the set of closest points [47] (the λ-medial axis, also used in our
computation), and a burning method proposed in [43], with various undesirable
features indicated. The value of the object angle, radius of of the set of closest
points, and burning time is indicated in colour on top. Reproduced from [43].

2 Burning Bing’s house

The simplification which we focus on for this work is the burning of the medial
axis [43], which generalizes Blum’s original “grassfire” analogy for the medial
axis.

Burning and Bing’s house. The burning of the medial axis removes the
extremities of the medial axis by ‘starting a fire’ at the boundary of the medial
axis which stops if the fire hits an obstacle, as illustrated in Figure 5.

Because of the good experimental results, it was conjectured that the burn-
ing method of simplification of the medial axis would be stable [40], i.e. no
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Fig. 5: The fire front progression on a the medial axis (grey) of a curve (black).
As the fire front (indicated by the red dot) hits an unburned junction, it stops.
If the junction is already burned (with the colour indicating the burn time)
the fire continues.

discontinuous jumps. In this work we show that this is not the case. The
counter example is based on the standard deformation retract from the closed
ball to Bing’s house with two rooms [51], which is a contractible but not col-
lapsible two dimensional simplicial complex, see Figure 7. Bing’s house is not
collapsible, as there is no boundary from which a collapsing sequence could
begin.

Fig. 6: The various parts of Bing’s house indicated.

Deforming a cube into Bing’s house. Bing constructed his house as a defor-
mation retract from a solid cube, see Figure 7. The deformation retract goes
as follows. During the entire construction, with the exception of the final step,
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the set will remain three dimensional. As mentioned we start with a solid cube.
We then start by digging two corridors. Once we have reached the part of
the solid cube that will because a room, we start hollowing out the room by
protruding a rectangular cuboid into the room. This can be continued until
we come near the corridor that goes to the opposite room. Of course we can-
not interfere with the corridor, instead we engulf the corridor from both sides.
Once we are past the corridor, we extend the hollowed space until it almost
touches itself near the flap. We finally flatten the three dimensional set to two
dimensions, creating Bing’s house.

Fig. 7: The deformation retract of a solid cube (topological ball) to Bing’s
house. In the final frame we show the smoothed version of a thickened Bing’s
house used in the computation.

Deforming Bing’s house into a collapsible complex. Before we go into the
main statement, we consider a deformation of Bing’s house which makes it
collapsible. This deformation will be mirrored in the medial axis in our con-
struction and is depicted in Figure 8; see Figure 6 for the nomenclature. In
this construction we cut a flap open so that the room no longer completely
runs around the corridor. This cutting exposes an edge of one of the walls of
the corridor and path that goes from the edge to the bottom room. We can use
this edge to collapse along the path into the bottom room, then the bottom
room itself, and from this the rest of Bing’s house.

Main result

We are now going to use the construction of Bing’s house from a solid cube to
Bing’s house, but stop just before the set becomes two dimensional. This gives
an isotopy of the boundary of the cube, namely S2, such that the (interior)
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Fig. 8: This deformation (top six panels), which cuts a flap open, makes Bing’s
house collapsible. The topology of this transition (in the neighbourhood of the
point where the flap disappears) is precisely that of the type A4

1. The transition
of type A4

1 is depicted in the bottom three panels; we have coloured the strata
to indicate the correspondence with the construction directly above.

medial axis transitions from being collapsible and burnable to a point into
Bing’s house itself.

The precise result is the following:

Theorem 2.1 There exists a smooth ambient isotopy Ht : [0, 1]×S2 → R3 such that:

• The (interior) medial axis ax(H0(S2)) is collapsible/burnable to a single
point.

• The (interior) medial axis ax(H1(S2)) is Bing’s house and is therefore non-
collapsible/cannot burn (is fireproof).
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• The burning of ax(Ht(S2)) is not continuous in t with respect to the
Hausdorff distance.

• The topology of the burned (interior) medial axis changes from a point to
Bing’s house with two rooms at a single t0 ∈ [0, 1].

• The isotopy Ht can be chosen to be generic in the sense of singularity theory
as developed by Arnol’d and Thom [24], see in particular [29].

Proof Bing constructed his house as a deformation retract from a solid cube, see
Figure 7. The isotopy of the sphere we consider is the boundary of this deformation.
However instead of reducing to a two dimensional object we forego the final step so
that at any point in the deformation the set remains a topological (solid) ball and
its boundary a sphere. The end point of this deformation is a thickened version of
Bing’s house.

We will only consider the medial axis in the interior of the sphere and not the
exterior. The medial axis of a thickened version of Bing’s house is Bing’s house
itself. The deformation is depicted in Figure 9. The essential topological change
only happens near the end of the deformation when the rooms wrap around their
respective corridors, see Figure 10. At this moment the bisector between the corridor
and the wall disappears and is replaced by the bisector between the two parts of
the room that are wrapping around the corridor and the medial axis becomes non-
collapsible.

The transition as depicted in Figure 9 is not generic, it is in fact quite symmetrical
and at the critical transition, see Figure 10, there is an entire edge in the medial axis
for which there are 4 nearest points on the boundary of the thickened Bing’s house.
For each point on the edge, the closest points are a point on the exterior wall, a point
on the corridor and two points on either side that lie on the expanding top room.
By perturbing the configuration slightly you can ensure that there are only isolated
points of the medial axis that have 4 closest points. By doing so, the transition will
look as depicted in Figure 8, which corresponds to a transition between singularities
of type A4

1. □

We immediately have the following corollary:

Corollary 2.2 Collapsing or pruning the medial axis of a domain such that it
becomes one-dimensional, as proposed in e.g. [46], is not always possible, even if the
boundary of the domain is a smooth sphere.

2.1 Computational method

The frames of the deformation illustrated in Figures 7, 9, and 10 are taken from
our Symposium on Computational Geometry Media Exposition submission
[52] (available at https://youtu.be/CFmFP6CHVEk). These animations were
made using the λ-medial axis (see https://github.com/cdfillmore/lambda
medial axis) and the open source software Blender [53]. Here λ is chosen very
small to ensure that the λ-medial axis is a good approximation of the medial
axis.

https://youtu.be/CFmFP6CHVEk
https://github.com/cdfillmore/lambda_medial_axis
https://github.com/cdfillmore/lambda_medial_axis
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Fig. 9: The evolution of the interior medial axis (yellow) as the smoothed
solid cube is deformed into a thickened version of Bing’s house (blue/purple).
The smoothed solid cubes in these five frames coincide with the unsmoothed
solid cubes in the first five frames of Figure 7. The exact moment at which the
medial axis becomes non-collapsible lies between frames four and five and is
depicted explicitly in Figure 10.

Fig. 10: The critical transition of the medial axis. There are points on the
medial axis equidistant to the two parts of the room that wrap around the
corridor, the corridor itself and the exterior wall, which can be avoided by a
small perturbation. This transition occurs between frames 4 and 5 of Figure 7.

3 Conclusion and open question

In this paper we constructed an isotopy of the sphere such that the interior
medial axis transitions from collapsible to non-collapsible. The exterior medial
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axis throughout this isotopy remains collapsible (by which we mean after com-
pactifying the ambient space to S3). This automatically leads some interesting
questions:

Question Does there exist an embedding of S2 in S3 where it is not possible to
burn/partially collapse either the interior or exterior medial axis of S2 at all?

We suspect that this question can be answered in the negative. We can
also imagine that we can use the burning of the exterior medial axis to guide
an isotopy of the sphere. See Figure 11 for an example of an isotopy guided by
burning. For the thickened version of Bing’s house, an isotopy guided by the
burning of the medial axis would yield the inverse of the standard construction
of Bing’s house (which we described above and is depicted in Figure 7), see
Figure 12 for a depiction of how the burning would guide the isotopy.

Fig. 11: The medial cactus: a two dimensional example of an isotopy guided
by the burning of the medial axis. In this case the isotopy goes from a cactus
shape into the (round) circle.

This leads us to the following stronger conjecture:

Conjecture 3.1 Given any embedding of S2 in S3, there exists a series of isotopies
of S2 based on successive burnings of both the interior and exterior medial axes, which
yields the standard symmetrical embedding of the 2-sphere in S3.
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Fig. 12: In this figure we indicate an isotopy guided by the burning of the
medial axis in the top room of a thickened version of Bing’s house. We see
how the room deforms from enveloping the corridor (to the bottom room) to
a circular remnant. After this deformation the shape is a smoothed version of
the second frame of Figure 7. The corridor in this frame can again be isotoped
away, using the burning of the medial axis as a guide.

We point out that some work on the correspondence between the sin-
gularities of the interior and exterior medial axes has already been done
[28].
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B., Russell, R.D. (eds.) Stability and Computation of Medial Axes - a
State-of-the-Art Report, pp. 109–125. Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/b106657 6. https://doi.org/10.1007/b106657 6

[10] Chazal, F., Soufflet, R.: Stability and finiteness properties of medial axis
and skeleton. Journal of Dynamical and Control Systems 10(2), 149–170
(2004). https://doi.org/10.1023/B:JODS.0000024119.38784.ff

[11] Lieutier, A.: Any open bounded subset of Rn has the same homotopy
type as its medial axis. Computer-Aided Design 36(11), 1029–1046 (2004).
https://doi.org/10.1016/j.cad.2004.01.011. Solid Modeling Theory and
Applications

[12] Wolter, F.-E.: Cut locus and medial axis in global shape interrogation and
representation. In: MIT Design Laboratory Memorandum 92-2 and MIT
Sea Grant Report (1992)

https://doi.org/bams/1183507696
https://doi.org/10.1090/S0002-9947-1959-0110078-1
https://doi.org/10.1090/S0002-9947-1959-0110078-1
https://doi.org/10.4310/jdg/1214430644
https://books.google.at/books?id=DajvCAAAQBAJ
https://doi.org/10.1007/b106657_6
https://doi.org/10.1007/b106657_6
https://doi.org/10.1023/B:JODS.0000024119.38784.ff
https://doi.org/10.1016/j.cad.2004.01.011


Springer Nature 2021 LATEX template

14 Burning or collapsing the medial axis is unstable

[13] Damon, J.: Smoothness and geometry of boundaries associated to skeletal
structures I: Sufficient conditions for smoothness. In: Annales de L’institut
Fourier, vol. 53, pp. 1941–1985 (2003). https://doi.org/10.5802/aif.1997

[14] Damon, J.: Smoothness and geometry of boundaries associated to skele-
tal structures, II: Geometry in the Blum case. Compositio Mathematica
140(6), 1657–1674 (2004). https://doi.org/10.1112/S0010437X04000570

[15] Damon, J.: Global geometry of regions and boundaries via skeletal and
medial integrals. Communications in Analysis and Geometry 15(2), 307–
358 (2007). https://doi.org/10.4310/CAG.2007.v15.n2.a5

[16] Damon, J.: Determining the geometry of boundaries of objects from
medial data. International Journal of Computer Vision 63(1), 45–64
(2005)

[17] van Manen, M.: The geometry of conflict sets. PhD thesis, Universiteit
Utrecht, Faculteit der Wiskunde en Informatica (2002)

[18] Siersma, D.: Properties of conflict sets in the plane. Banach Center
Publications 50, 267–276 (1999). https://doi.org/10.4064/-50-1-267-276

[19] Sotomayor, J., Siersma, D., Garcia, R.: Curvatures of conflict surfaces in
Euclidean 3-space. Banach Center Publications 50(1), 277–285 (1999)

[20] van Manen, M.: Curvature and torsion formulas for conflict sets. Banach
Center Publications 62, 209–222 (2003)

[21] Mather, J.N.: Distance from a submanifold in Euclidean-space. In: Pro-
ceedings of Symposia in Pure Mathematics, vol. 40, pp. 199–216 (1983).
American Mathematical Society

[22] Buchner, M.A.: The structure of the cut locus in dimension less than or
equal to six. Compositio Mathematica 37(1), 103–119 (1978)

[23] Yomdin, Y.: On the local structure of a generic central set. Compositio
Mathematica 43(2), 225–238 (1981)

[24] Arnol’d, V.: Singularities of Caustics and Wave Fronts. Mathematics and
its Applications, vol. 62. Springer, Berlin, Heidelberg (2013)

[25] Looijenga, E.: Structural stability of smooth families of C∞-functions.
PhD thesis, Universiteit van Amsterdam (1974)

[26] van Manen, M.: Maxwell strata and Caustics. Singularities in Geom-
etry and Topology, pp. 787–824 (2007). https://doi.org/10.1142/
9789812706812 0028

https://doi.org/10.5802/aif.1997
https://doi.org/10.1112/S0010437X04000570
https://doi.org/10.4310/CAG.2007.v15.n2.a5
https://doi.org/10.4064/-50-1-267-276
https://doi.org/10.1142/9789812706812_0028
https://doi.org/10.1142/9789812706812_0028


Springer Nature 2021 LATEX template

Burning or collapsing the medial axis is unstable 15

[27] Damon, J.: The global medial structure of regions in R3. Geometry &
Topology 10(4), 2385–2429 (2006). https://doi.org/10.2140/gt.2006.10.
2385

[28] Damon, J., Gasparovic, E.: Medial/skeletal linking structures for multi-
region configurations. Memoirs of the American Mathematical Society
250 (2014). https://doi.org/10.1090/memo/1193

[29] Giblin, P.J., Kimia, B.B., Pollitt, A.J.: Transitions of the 3D medial
axis under a one-parameter family of deformations. IEEE Transactions
on Pattern Analysis and Machine Intelligence 31(5), 900–918 (2008).
https://doi.org/10.1109/TPAMI.2008.120

[30] Bogaevsky, I.A.: Metamorphoses of singularities of minimum functions,
and bifurcations of shock waves of the burgers equation with van-
ishing viscosity. Algebra i Analiz 4, 1–16 (1989). English translation
in St.Petersburg (Leningrad) Mathematical Journal, 1 (1990), no.4,
807–823.

[31] Bogaevsky, I.A.: Perestroikas of shocks and singularities of minimum
functions. Physica D: Nonlinear Phenomena 173(1-2), 1–28 (2002)

[32] Bogaevsky, I.A.: Singularities of viscosity solutions of hamilton-jacobi
equation (singularity theory and differential equations). Suri kaiseki
kenkyujo kokyuroku 1111, 138–143 (1999)

[33] Bogaevsky, I.A.: Perestroikas of fronts in evolutionary families. Trudy
Matematicheskogo Instituta imeni V.A. Steklova 209, 65–83 (1995).
English translation in Proceedings of the Steklov Institute of Mathematics
209 (1995), 57–72.

[34] Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization
algorithms and their applications. Pattern recognition letters 76, 3–12
(2016)

[35] Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D
skeletons: A state-of-the-art report. In: Computer Graphics Forum, vol.
35, pp. 573–597 (2016). https://doi.org/10.1111/cgf.12865. Wiley Online
Library

[36] Bal, G., Diebold, J., Chambers, E.W., Gasparovic, E., Hu, R., Leonard,
K., Shaker, M., Wenk, C.: Skeleton-based recognition of shapes in images
via longest path matching. In: Leonard, K., Tari, S. (eds.) Research in
Shape Modeling, pp. 81–99. Springer, Cham (2015)

[37] Chang, M.-C., Kimia, B.B.: Measuring 3d shape similarity by graph-based

https://doi.org/10.2140/gt.2006.10.2385
https://doi.org/10.2140/gt.2006.10.2385
https://doi.org/10.1090/memo/1193
https://doi.org/10.1109/TPAMI.2008.120
https://doi.org/10.1111/cgf.12865


Springer Nature 2021 LATEX template

16 Burning or collapsing the medial axis is unstable

matching of the medial scaffolds. Computer Vision and Image Under-
standing 115(5), 707–720 (2011). https://doi.org/10.1016/j.cviu.2010.10.
013

[38] Demir, I., Hahn, C., Leonard, K., Morin, G., Rahbani, D., Panotopoulou,
A., Fondevilla, A., Balashova, E., Durix, B., Kortylewski, A.: SkelNetOn
2019: Dataset and challenge on deep learning for geometric shape under-
standing. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1143–1151 (2019). https:
//doi.org/10.1109/CVPRW.2019.00149

[39] Ho, S.-B., Dyer, C.R.: Shape smoothing using medial axis properties.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
8(4), 512–520 (1986). https://doi.org/10.1109/TPAMI.1986.4767815

[40] Liu, L., Chambers, E.W., Letscher, D., Ju, T.: Extended grassfire trans-
form on medial axes of 2d shapes. Computer-Aided Design 43(11),
1496–1505 (2011). https://doi.org/10.1016/j.cad.2011.09.002. Solid and
Physical Modeling 2011

[41] Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by
editing their shock graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(5), 550–571 (2004). https://doi.org/10.1109/
TPAMI.2004.1273924

[42] Shaked, D., Bruckstein, A.M.: Pruning medial axes. Computer Vision and
Image Understanding 69(2), 156–169 (1998). https://doi.org/10.1006/
cviu.1997.0598

[43] Yan, Y., Sykes, K., Chambers, E., Letscher, D., Ju, T.: Erosion thickness
on medial axes of 3d shapes. ACM Transactions on Graphics 35(4), 38–
13812 (2016). https://doi.org/10.1145/2897824.2925938

[44] Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and
the medial axis transform. Computational Geometry: Theory and Appli-
cations 19(2-3), 127–153 (2001). https://doi.org/10.1016/S0925-7721(01)
00017-7

[45] Attali, D., Montanvert, A.: Modeling noise for a better simplification of
skeletons. In: Proceedings of 3rd IEEE International Conference on Image
Processing, vol. 3, pp. 13–16 (1996). https://doi.org/10.1109/ICIP.1996.
560357. IEEE

[46] Blanc-Beyne, T., Morin, G., Leonard, K., Hahmann, S., Carlier, A.:
A salience measure for 3D shape decomposition and sub-parts classi-
fication. Graphical Models 99, 22–30 (2018). https://doi.org/10.1016/j.
gmod.2018.07.003

https://doi.org/10.1016/j.cviu.2010.10.013
https://doi.org/10.1016/j.cviu.2010.10.013
https://doi.org/10.1109/CVPRW.2019.00149
https://doi.org/10.1109/CVPRW.2019.00149
https://doi.org/10.1109/TPAMI.1986.4767815
https://doi.org/10.1016/j.cad.2011.09.002
https://doi.org/10.1109/TPAMI.2004.1273924
https://doi.org/10.1109/TPAMI.2004.1273924
https://doi.org/10.1006/cviu.1997.0598
https://doi.org/10.1006/cviu.1997.0598
https://doi.org/10.1145/2897824.2925938
https://doi.org/10.1016/S0925-7721(01)00017-7
https://doi.org/10.1016/S0925-7721(01)00017-7
https://doi.org/10.1109/ICIP.1996.560357
https://doi.org/10.1109/ICIP.1996.560357
https://doi.org/10.1016/j.gmod.2018.07.003
https://doi.org/10.1016/j.gmod.2018.07.003


Springer Nature 2021 LATEX template

Burning or collapsing the medial axis is unstable 17

[47] Chazal, F., Lieutier, A.: The “λ-medial axis”. Graphical Models 67(4),
304–331 (2005). https://doi.org/10.1016/j.gmod.2005.01.002

[48] Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial
geodesic function. In: Proceedings of the Fourth Eurographics Sym-
posium on Geometry Processing. SGP ’06, pp. 143–152. Eurographics
Association, Goslar, DEU (2006)

[49] Dey, T.K., Zhao, W.: Approximating the medial axis from the Voronoi
diagram with a convergence guarantee. Algorithmica 38(1), 179–200
(2004). https://doi.org/10.1007/s00453-003-1049-y

[50] Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The scale axis transform.
In: Proceedings of the Twenty-Fifth Annual Symposium on Computa-
tional Geometry, pp. 106–115. Association for Computing Machinery, New
York, NY, USA (2009). https://doi.org/10.1145/1542362.1542388

[51] Bing, R.: Some aspects of the topology of 3-manifolds related to the
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