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We explore the scattering of waves in designed asymmetric one-dimensional waveguide networks.
We show that the reflection between two ports of an asymmetric network can be identical over a
broad frequency range, as if the network was mirror-symmetric, under the condition of so-called
latent symmetry between the ports. This broadband equireflectionality is validated numerically
for acoustic waveguides and experimentally through measurements on microwave transmission-line
networks. In addition, introducing a generalization of latent symmetry, we study the properties of
an N -port scattering matrix S. When the powers of S fulfill certain relations, which we coin scaled
cospectrality, the setup is guaranteed to possess at least one zero eigenvalue of S, so that the setup
features coherent perfect absorption. More importantly, scaled cospectrality introduces a scaling
factor which controls the asymmetry of the incoming wave to be absorbed. Our findings introduce a
novel approach for designing tunable wave manipulation devices in asymmetric setups. As evidenced
by our acoustic simulations and microwave experiments, the generality of our approach extends its
potential applications to a wide range of physical systems.

I. INTRODUCTION

Scattering of waves is unambiguously of fundamental
importance in physics, finding applications in fields as
diverse as high-energy physics [1], X-ray diffraction [2],
wave localization [3] or wave filtering [4–6]. In any scat-
tering problem, the system’s symmetries have a strong
influence. For a reflection symmetry—the simplest ge-
ometric symmetry—, for instance, waves sent into the
system from the two opposite sides of the symmetry axis
(or plane) act identically, thus the two reflection coeffi-
cents are strictly equal.

Here, on the other hand, we are interested in explor-
ing the scattering properties of geometrically asymmetric
systems. In particular, we focus on systems featuring the
recently introduced latent symmetry [7–9]. Such a sym-
metry is usually not visible in the original setup, but it
becomes apparent after a suitable dimensional reduction,
the so-called isospectral reduction [10]. What is interest-
ing about a latent symmetry is its strong impact on the
eigenmodes of the underlying system [11]. A latent reflec-
tion symmetry, for instance, induces local parity on the
eigenvectors of the underlying matrix M describing the
system (for instance, the Hamiltonian or the scattering
matrix) [8, 12, 13].

Interestingly, the impact of a latent symmetry goes
beyond the system’s eigenvectors and manifests itself also
in certain relations of the powers of the matrix M [14].
For a latent reflection symmetry with respect to two sites
u, v, the corresponding diagonal elements

(
Mk
)
u,u

and

(
Mk
)
v,v

of the matrix powers of M are the same for all

positive integers k [8]. On a fundamental level, this result
is interesting, as it shows a deep connection between the
powers of M and its eigenvectors [12].

In the first part of this work, we carry the concepts
of latent symmetry and of matrix powers to the realm
of wave scattering. We start by applying the concept of
latent symmetry to design geometrically asymmetric sys-
tems whose scattering properties carry the same traits as
a reflection symmetric system, that is, broadband equire-
flectionality. We validate this intriguing property numer-
ically in acoustic waveguide networks and experimentally
in microwave transmission-line networks.

Then, in the second part of this work, we explore the
impact of relations in the matrix powers of a general scat-
tering matrix. Specifically, we show that an N -port sys-
tem can be designed to feature coherent perfect absorp-
tion (CPA) using scaled matrix power relations. CPA
implies the complete and irreversible transduction of the
incident wave energy into other degrees of freedom such
as heat, which is possible whenever the scattering matrix
has a zero eigenvalue and the corresponding eigenvector
is used as incident wavefront [15]. This condition is valid
irrespective of the complexity of the wave system, apply-
ing to simple [16] or disordered [17] systems excited by a
single channel as well as simple [18] or disordered [19]
systems excited by multiple channels. In asymmetric
disordered systems, the necessary wavefront is generally
very complex unless the system is optimized to impose
CPA with a specific wavefront [20]. Here, we show that
a 3-port system designed to feature scaled cospectral-
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ity will enable CPA with a prescribed imbalance of the
corresponding wavefront that is controlled by tuning the
associated scaling factor.

This paper is organized is follows. Section II is ded-
icated to the concept of equireflectional scattering, in-
cluding theoretical and experimental verifications of the
theory. Section III focuses on the powers of the scattering
matrix of a generic N -port setup. In particular, we intro-
duce scaled matrix power relations which can be directly
related to CPA. We then focus on a simple three-port
system, which we optimize to feature scaled cospectral-
ity and hence CPA with custom imbalance of the CPA
wavefront. Finally, we conclude our work in Section IV.

II. SCATTERING OFF LATENTLY
SYMMETRIC NETWORKS

In the following, we will discuss how a latent reflec-
tion symmetry leads to equireflectional scattering. After
introducing this phenomenon by means of a simple exam-
ple in Section IIA, we show in Section II B how this phe-
nomenon can be explained and designed; in Section IIC
and Section IID we numerically and experimentally vali-
date our findings with acoustic waveguide and microwave
transmission-line networks, respectively.

A. Setup and a first example

Consider a general reciprocal two port system, with
only a single mode traveling within each lead/port as
depicted in Fig. 1(a). This problem is characterized by
the following scattering matrix equation(

ψ−
1

ψ−
2

)
=

(
r1 t
t r2

) (
ψ+
1

ψ+
2

)
= S

(
ψ+
1

ψ+
2

)
, (1)

where (ψ−
1 , ψ

−
2 )

T and (ψ+
1 , ψ

+
2 )

T describe, respectively,
the output and input waves. The off-diagonal elements
of S correspond to the transmission coefficients from
left and right which, here, are equal due to reciprocity
(S = ST is symmetric with respect to the diagonal).
The reflection coefficients from ports 1 and 2 are noted
respectively r1 and r2.
In this section, we consider networks of identical one-

dimensional waveguide segments with the same length
L, such as the ones shown in Fig. 1(b-d). We note that
networks of one-dimensional waveguides are known as
“quantum graphs” and have been studied extensively in
the last decades; an excellent introduction to the field is
given in [22]. Experimentally, they could be realized, for
instance, in the form of microwave networks [23, 24] or
networks of thin acoustic waveguides [13, 25, 26]; in this
paper, we will focus on the former for our experimental
validation, while we focus on the latter for our numerical
results.

Let us now investigate the scattering off such a waveg-
uide network, and focus on the behavior of the reflection

Figure 1. (a) A generic two-port scattering setup. (b-d): Dif-
ferent waveguide networks (upper panel) with their respec-
tive frequency-dependent reflection coefficients r1(f) (solid
line), r2(f) (dashed line) in the complex plane shown in the
lower subpanel. These reflection coefficients have been com-
puted using the method from [21] for acoustic waves with
visco-thermal losses (Eqs. (E1) and (E2) with loss-coefficient
α = 3·10−5), with a frequency f between 0 and 1000 Hz. Each
waveguide has a length L = 0.1m and a diameter R = 2mm.

coefficients r1 (from left) and r2 (from right). To do so,
here, we consider 1D acoustic waves of frequency ω = c0k
where c0 is the sound speed and k the wavenumber. The
reflection of the two-port system is given by the scat-
tering matrix calculated using the 1D Helmholtz equa-
tion in each waveguide and the conservation of acoustic
flux at the connections [21, 27]; an explicit expression for
the scattering matrix is given in Appendix A. Note that
this 1D approximation is valid for acoustic propagation
through the waveguides, assuming that L≫ w, where L
(w) is the length (width) of each waveguide.

For a mirror-symmetric network, we expect equireflec-
tionality, that is, r1 = r2, simply due to the total symme-
try of the scattering problem. For illustration purposes,
we show the two reflection coefficients of the network
of Fig. 1(b) in the complex plane in the bottom panel,
verifying equireflectionality. Notice that here we have
considered the effect of homogeneously distributed losses
since the reflection coefficients are inside the unit circle
(see below for details). Evidently, such losses maintain
the mirror symmetry.

Breaking this mirror symmetry, as is the case in
Fig. 1(c), is expected to destroy equireflectionality. That
is, r1 ̸= r2 except for some special frequencies where the
two reflection coefficients coincide. This is clearly seen
in the bottom panel in Fig. 1(c). On the other hand, for
a special asymmetric setup as the one in Fig. 1(d) we



3

find that the system is equireflectional, i.e., r1 = r2, as
shown in the bottom panel, even in the presence of losses.
This surprising result is not obtained by chance or coin-
cidence. In fact, below, we show how such asymmetric
equireflectional networks can be designed, and how their
equireflectionality can be explained through the recently
introduced concept of latent symmetry.

1

-1

Cavity modes(a)

(b)
Scattering problem

Figure 2. The network of Fig. 1 (d), realized with thin,
square-shaped acoustic waveguides of length L = 0.1m and
side length w = 10mm (see Section II C for details). (a) The
10th mode of the acoustic network with closed ends. The
inset shows the corresponding discrete model (graph). (b)
Schematic of the scattering process by the 2-port network.
The acoustic pressure field here corresponds to a symmet-
ric input (same amplitude and phase) from both ports at
f = 625Hz.

B. Review of latent symmetry in waveguide
networks

To understand the highly symmetric scattering prop-
erties of the setup depicted in Fig. 1(d), we first need to
study the eigenmodes of the corresponding cavity that
is obtained by closing the connections to the leads, as
shown in Fig. 2.

Before we start our theoretical treatment, let us briefly
inspect Fig. 2 (a) in more detail. There, we show the
wavefield of one of the cavity’s eigenmodes. As can be
seen, this mode is, to a good approximation, a plane-
wave mode: While the wave field changes along a given

waveguide (longitudinal direction), it is constant along
its transverse direction. This is, of course, expected from
the fact that our narrow waveguides are effectively one-
dimensional only.
What is interesting about the eigenmode ϕ depicted

in Fig. 2 (a) is that its amplitudes at the two points a
and b are the same. This is no coincidence. Indeed, as
we shall show below, all eigenmodes of the cavity fulfill
either ϕ(a) = ϕ(b) or ϕ(a) = −ϕ(b). In other words, the
eigenmodes show point-wise parity at the two points a, b.
We note that this property for acoustic waveguides has
been studied in detail in Ref. [13] and here we review the
basic results.
The basic idea for finding the eigenmodes of the waveg-

uide network is then as follows: Since our waveguides are
effectively one-dimensional, knowledge of the wave field
only at at the junctions and at end point (like a, b) of the
network is sufficient to reconstruct the wavefield in the
entire network. Thus, we can simplify the problem by
discretizing the network, as shown in the inset of Fig. 2
(a). The discrete model is nothing but a graph: A collec-
tion of points (vertices)—each of them corresponding to
a junction or to a waveguide endpoint—interconnected
by lines (edges), each of which representing a waveguide.
Following the above idea of discretizing the problem,

as sketched above, it can be shown that the problem of
finding the eigenmodes ϕ of the network is equivalent to
the following generalized eigenvalue problem

Aϕ = cos(kL)B ϕ (2)

with cos(kL) being the eigenvalue, the N -dimensional
eigenvector ϕ denoting the values of the eigenmode ϕ
at the N vertices. The matrix A describes the topol-
ogy of the setup, with Ai,j = 1 if the vertices i, j are
connected by a waveguide, and Ai,j = 0 otherwise. The
matrix B is diagonal, with Bi,i =

∑
j Ai,j . We then in-

troduce the “Hamiltonian” H =
√
B

−1
A
√
B

−1
, which

arises naturally from Eq. (2) through the transformation

y =
√
Bϕ.

We are then left with the eigenvalue problem

Hy = cos(kL)y . (3)

Solving Eq. (3) gives us the natural frequencies of the
eigenmodes for the network cavity, as well as the values
of the field at the nodes.
The claim is that, there are two different ways [13]

to obtain point-wise parity at some points a, b for all
eigenmodes. The first is through geometrical symmetry,
that is, when the system is invariant under a symmetry
operation—usually a reflection, as is the case for Fig. 1
(a)—which maps the junctions a and b onto each other.
The second and non-obvious case occurs when the setup
is not invariant under a geometrical operation that maps
a and b onto each other. This is the case for the network
of Fig. 2 (a) and Fig. 1 (d). In fact, the correspond-
ing discrete network, as shown in the inset of Fig. 2 (a),
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has been designed such that the following relation of the
matrix powers of H is fulfilled

(Hm)a,a = (Hm)b,b (4)

for m = 1, . . . , N . This has been found to ensure the
pointwise parity of a and b for all the modes [13]. Note
that Eq. (4) is automatically satisfied for a mirror sym-
metric setup. As we demonstrate in Appendix D, the
relations Eq. (4) can also be translated into a set of geo-
metric rules that can be visually checked. The simplest
of these rules says that the number of neighbors of points
a and b—that is, the number of waveguide that are di-
rectly connected to these points—have to be the same.
For the network of Fig. 2 (a), both a and b have only one
neighbor.

Interestingly, the relations Eq. (4) have also a conse-
quence on eigenvalues: If a matrix H satifies these, then
the two matrices H \ a and H \ b—obtained from H by
removing the ath (or bth) row and column—have the
same eigenvalue spectra. We thus say that a and b are
cospectral.
Before continuing, let us mention that the relations

Eq. (4) lead to another very interesting consequence. By
performing a certain dimensional reduction onto the two
sites {a, b}—the so-called isospectral reduction [10], the
resulting reduced system can be described by an effective
Hamiltonian with a reflection symmetry. This explains
the point-wise parity of eigenvectors on a, b. Since this
symmetry becomes in general only apparent after the di-
mensional reduction, we call the Hamiltonian H latently
reflection symmetric [7, 11, 13].

C. Equireflectionality in Acoustic Waveguide
Networks

Let us now investigate the scattering properties of the
system by connecting the points a and b to two waveg-
uides with the same cross-section, as shown in Fig. 2(b).
For this setup, the two incoming plane waves can be re-
lated to the outgoing waves through Eq. (1). To find
the corresponding scattering coefficients we first relate
the acoustic pressure and its derivative between points a
and b through a matrix involving the eigenmodes of the
closed cavity. To do so, we use the integral formalism
with an expression of the Green function of the closed
cavity. Then, as explained in detail in section IV of the
supplemental material of [13], it can be shown that the
former matrix is mirror symmetric due to the point-wise
parity of the eigenmodes. This leads to equireflerection-
ality r1 = r2 of the corresponding scattering problem and
thus the surprising result of Fig. 1 (d).

So far, we have focussed on the case of thin waveg-
uides. When deviating from this limiting case of w ≪ L,
3D-effects at the junctions of the waveguides will play
a role due to evanescent waves; their severity is, clearly,
system-dependent (number of junctions, geometry of the
connection etc). We calculated the reflection coefficients

for various values of w/L and show some characteris-
tic results in Fig. 3. In particular we show the reflec-
tions r1(f), r2(f) for the latently-symmetric scattering
network of Fig. 1 (d). As can be seen, for this setup,
r1 = r2 holds quite well even when w/L is far from the
limiting value zero, although some deviations are seen
in Fig. 3 (b). In Fig. 3(c) we show a more quantitative
comparison of the behavior of these two reflections by
showing the absolute value of the frequency-dependent
difference r1(f)− r2(f) for different sidelengths w. In all
of the calculations for Fig. 3, we have used viscothermal
losses, which, as can be seen, do not alter equireflection-
ality. Indeed, it turns out that this kind of losses does
not at all impact the latent symmetry of the cavity or the
equireflectionality of the (open) system (see Appendix C
for details).
We stress that the network depicted in Fig. 1 (d) is,

by far, not the only one with latent symmetry-induced
equireflectionality. Indeed, as we show in the following,
one can easily generate a plethora of such networks.
Perhaps the easiest approach is to generate a large

number of different networks and test each of them for
latent symmetry. Opening the network at two latently
symmetric points will then lead to equireflectional scat-
tering.
Crucially, both of these tasks—generating networks

and testing for latent symmetry—can be efficiently done.
For the first task, it is important to remember the follow-
ing: Since we work with strictly one-dimensional (single-
mode) waveguides, the actual geometry of the network
is not of importance. Instead, what matters is only how
the waveguides are interconnected; that is, the network’s
topology. Mathematically speaking, our waveguide net-
works are nothing but so-called simple graphs, which are
extensively treated in graph theory [28]. This concep-
tual overlap allows us to lend tools from graph theory;
in particular, we can rely on the powerful nauty suite
[29]. With nauty, generating a large number of networks
is rather efficient; for instance, generating all 11,716,571
distinct waveguide networks with N = 10 sites takes less
than 10 seconds on a modern laptop [30]. For the second
step, we need to check each of the obtained networks for
latent symmetries. To this end, one needs to build the
matrices A,B,H. Checking whether the network has a
latent symmetry then boils down to computing the first
N−1 matrix powers and checking whether there are sites
a, b that fulfill Eq. (4). In this manner, a plethora of pos-
sible networks can be found. Some examples are shown
in Fig. 4.

D. Experimental Observation in Microwave
Transmission-Line Networks

As mentioned earlier, besides acoustic waveguide net-
works, microwave transmission-line networks lend them-
selves well to experimentally observe the discussed scat-
tering signature of latent symmetry, namely equireflec-
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Figure 3. Results from 3D finite-element simulations of scat-
tering off the structure of Fig. 1(d) using COMSOL, with
visco-thermal losses modelled through the “narrow region
acoustics” function. The waveguides are identical with a
length of L = 0.1m, and with a quadratic cross-section with
side length w. (a) and (b) show a comparison of r1 (solid line)
and r2 (dashed line) for waveguide side lengths w = 5mm and
w = 15mm, respectively. The frequency range is between
0 and 2000Hz, which comprises a little more than the first
12 eigenmodes of the underlying cavity. (c) Comparison of
|r1 − r2| for three values of w.

tion. Indeed, as can be easily shown [23, 24, 31], the
mathematical considerations in Section II B can be di-
rectly applied to transmission-line networks, if only we
replace the pressure field p with the voltage U . The only
difference between the two platforms is that, in acous-
tics, a waveguide with a closed end (acoustic hard wall)
features Neumann boundary conditions on that end; to
achieve the same in transmission line networks, we need
to make the corresponding cable open-ended. In sum-
mary, and taking into account this correspondence, the
structures with latent symmetry from Fig. 1(d) and Fig. 4
are directly applicable to a microwave realization.

We have hence built the networks from Fig. 1(d) and
Fig. 4(a) using 50 cm-long coaxial cables and measured
their scattering parameters with a vector network ana-
lyzer (VNA, Rhode & Schwarz ZVA 67, 10 MHz – 67
GHz). The finite propagation delay in the junctions is
equivalent to the case of point-like junctions with slightly
longer waveguides. The latter is in line with our theoret-
ical model. We also make sure that the effective length
of each waveguide is identical.

We observe in Fig. 5 excellent agreement of the
complex-valued reflection coefficients (i.e., in terms of
both magnitude and phase) with the expected equire-
flection condition at all frequencies. Moreover, a clear
periodicity of the reflection spectrum is visible. Fur-
thermore, it is apparent that the absorption strength in-

Figure 4. Different waveguide networks whose scattering ma-
trix is equireflectional. Just as in Fig. 1, the reflection co-
efficents are computed for each network and plotted (in the
complex plane) below each network. Since the networks are
equireflectional, the two curves r1(f) (solid line) and r2(f)
(dashed line) are identical. The reflection coefficents have
been computed with the same parameters as in Fig. 1, though
now up to f = 2000Hz.

creases monotonously with frequency, as expected.

III. POWERS OF THE SCATTERING MATRIX
AND PERFECT ABSORPTION

Although two-port systems provide an intuitive and
simple setup to study wave scattering, many applications
are actually based on N -port configurations (circulators,
splitters, multiplexers etc.). In view of these implemen-
tations, in this Section, we study latent symmetry and
generalisations of it directly on the scattering matrix it-
self and not on the underlying structure. In such a way
the results obtained here do not depend on the specific
physical system and are rather general for any N-port
scattering matrix S.
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Figure 5. Experimental scattering measurements on mi-
crowave transmission-line networks with latent symmetry. (a)
Photography of the experimental setup for the network from
Fig. 1(d). (b) and (c) Magnitude and phase of the mea-
sured reflection coefficients for the networks from Fig. 1(d)
and Fig. 4(a), respectively.

We first note that any reciprocal scattering matrix is
symmetric S = ST . Let us then consider a case where
this matrix is also latently symmetry; that is, it fulfills

(Sm)a,a = (Sm)b,b , ∀ m = 1, . . . , N (5)

for some a and b. Note that this relation for m = 1 im-
plies that ports a and b have the same reflection coeffi-
cient. We emphasize that the connection between matrix
powers, cospectrality and eigenvectors (presented in the
last section) is valid for the scattering matrix as well.
Thus, if Eq. (5) is valid, the eigenvectors of the S matrix
will have parity between the elements a and b. However,
the eigenvectors of the scattering matrix, except for par-
ticular cases (as we show below) are not so useful. We
remind the reader that Eq. (5) also implies cospectrality
between S \ a and S \ b but gives no information about
the eigenvalues of S itself. To bypass this, let us go one
step further and generalise Eq. (5) by introducing the

following relation

(Sm)a,a = c · (Sm)b,b ∀ m = 1, . . . , N . (6)

We call this relation, Eq. (6), scaled cospectrality of a ma-
trix S with a scaling factor c. Interestingly, this rather
simple generalisation has direct impact on the eigenval-
ues of the matrix S: whenever c ̸= 1, scaled cospectrality
enforces the existence of one zero eigenvalue (more zeros
might appear accidentally). To show why this is the case,
let us start by realizing that, from the Cayley-Hamilton
theorem, we know that SN can be written as a polyno-
mial in the first N − 1 powers of S, that is,

SN = −
N−1∑
m=0

amS
m , (7)

where S0 ≡ I is the identity matrix and where the coeffi-
cients am are taken from the characteristic polynomial of

S, given by P (x) = det (x I − S) =
∑N

m=0 amx
m. Now,

since the matrix S fulfills
(
SN
)
a,a

= c
(
SN
)
b,b
, it follows

from Eq. (7) that

−a0Ia,a−
N−1∑
m=1

am (Sm)a,a = c

(
−a0Ib,b −

N−1∑
m=1

am (Sm)b,b

)
(8)

from which we get

a0 (I)a,a = c a0 (I)b,b . (9)

It follows that a0 = 0 whenever c ̸= 1 and since a0
is proportional to the determinant of S, we see that S
has to have a vanishing eigenvalue. The existence of a
zero eigenvalue of S directly implies that there must be a
monochromatic adapted wavefront that can be injected
at the real frequency at which S has the zero eigenvalue
such that it is perfectly absorbed within the system [32].
This CPA requires the system to have a finite amount of
absorption loss and hence a sub-unitary S matrix. In-
deed, in the absence of any absorption loss, the S matrix
would be unitary and the magnitude of its determinant
would be unity, implying that a0 cannot be zero because
a0 is proportional to det(S).

Let us remark for the interested reader that in the liter-
ature there is also another generalization of cospectrality,
the so-called fractional cospectrality [33], which, however,
does not enforce the presence of a zero eigenvalue.

In this section, we have so far not explicitly stated the
frequency dependence of S. However, a scattering sys-
tem can in general only fulfill the conditions for scaled
cospectrality at discrete frequencies, which is hence in
line with the fact that the zeros of S only occur at dis-
crete (potentially complex) frequencies. In other words,
if one optimizes the scattering system such that it has
scaled cospectrality (and thus CPA) at some frequency
f0, there is no reason to expect scaled cospectrality at
any frequency other than f0.
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In the remainder of this section, we will show that
systems with scaled cospectrality allow us to achieve
CPA with wavefronts that have a customized imbalance
in terms of the weights of different channels. Before
explaining the origin of this feature in detail, let us
briefly contextualize this feature within the recent lit-
erature on achieving CPA. The S matrix of a generic
(arbitrarily complex) scattering system does not neces-
sarily have a zero eigenvalue, but can be tuned to have
one [19, 32, 34, 35]. With sufficient tunable degrees
of freedom, the real frequency at which the zero eigen-
value occurs can be controlled, too [17, 36, 37]. How-
ever, in structures without symmetry the required CPA
wavefront is in general highly asymmetrical and diffi-
cult to generate [38]. This makes it more challenging
to realize the envisaged use of CPA to interferometri-
cally control light with light, and hence without any
non-linearity [39, 40]. A generic way to impose CPA
at a desired frequency and with an arbitary CPA wave-
front was demonstrated in Ref. [20] by tuning a massively
parametrized chaotic cavity. Here, we provide an alter-
native route through scaled cospectrality to obtain struc-
tures featuring CPA whose wavefront has a prescribed
imbalance. Thereby, only a weak control wave can mod-
ulate a strong signal, provided that the necessary phase
and amplitude relation between the two is respected.

We now illustrate the above results with an implemen-
tation of the scaled cospectrality using a particular ex-
ample of a 3-port acoustic network with lossy acoustic
waveguides (see Appendix C for details). For simplicity
we choose to work with an extension of the 2-port sys-
tem of the previous section by symmetrically coupling
an arbitrary structure to a and b as shown in Fig. 6 (a).
The symmetric connection and the added structure are
highlighted by light gray and dark gray respectively.

The two latently symmetric points are symmetrically
connected to ports 1 and 2, and thus the scattering ma-
trix of the 3-port network reads

S =

r t t′

t r t′

t′ t′ r′

 . (10)

with r, r′ denoting reflection coefficients, and with t, t′

transmission coefficients. Evidently the proposed design
ensures the equireflectionality (r) of the two symmetric
ports 1 and 2 while an additional reflection (r′) from port
3 is introduced. Due to reciprocity and symmetry we are
thus left with only two different transmission coefficients
t and t′. For this particular matrix we impose scaled
cospectrality between ports 1 (or equivalently 2) and 3
by demanding that it satisfies Eq. (6). Note that for m =
1 we simply get a scaling between the reflections, r =
cr′. Then, solving for the higher powers we obtain two
possible solutions which are discussed in the following.

CPA without any zero-input channel: One solution
requires

t = −r′/2, and t′ = r′
√
2c− 1/2 . (11)

0

0.2

0.4

0.6

0.8

1

1 2
0
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1

Figure 6. (a) A symmetric extension of the 2-port setup shown
in Fig. 1 (d). For (b) and (c), we finetune the lengths of
the acoustic waveguides of the network (a) to fulfill scaled
cospectrality between ports 1 and 3 with the scattering matrix
fulfilling either Eq. (11) [for (b)] or Eq. (15) [for (c)]. For
each (b) and (c), we show the frequency-dependent absorption
A of the network for the two different choices c = 100 and
c = 1/100.

To illustrate the effects of the zero eigenvalue of S and
its relation to CPA, we define the following eigenvalue
problem

Sx = λx. (12)

When S satisfies Eq. (11), the corresponding eigenval-
ues of the scattering matrix are λ1 = (0, (c+1/2)r′, (c+
1/2)r′). As expected by our definition of the generalised
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cospectrality, the scattering matrix acquires a zero eigen-
value. This zero eigenvalue implies that if one uses as an
input the corresponding eigenvector, the output is zero
and the input wavefront is perfectly absorbed. In fact,
here the corresponding eigenvector is

x1 = (−1/
√
2c− 1,−1/

√
2c− 1, 1)T . (13)

Importantly, the imbalance of the input wavefront is
solely controlled by the scaling factor c which we can
prescribe.

In order to validate our results, we once again consider
the case of airborne acoustic waveguides including vis-
cothermal losses. The elements of the S matrix in such
a case can be calculated using different techniques such
as the star product (see Appendix E for details). We op-
timize the lengths of several parts of the network (while
maintaining the symmetry between ports 1 and 2) such
that Eq. (11) is satisfied for a predefined value of c and
a suitable frequency f1. To illustrate our result, we as-
sume an input to the 3-port network in the form of a
vector pin = x1 and thus the output vector is naturally
given by pout = S pin. Using the output we can calculate
absorption from such networks as

A ≡ 1− |pout|2

|pin|2
. (14)

The absorption for two different networks is shown in
Fig. 6(b). The black thick (orange thin) line corresponds
to a network satisfying Eq. (11) with c = 100 (c = 0.01).
The details of the geometry of the obtained networks
are given in Appendix E. According to our design, at
the prescribed frequency f1, CPA of the input wave is
achieved, indicated by A = 1. We additionally observe
that with relatively small variations of the lengths of the
waveguides (see Appendix E), we achieve CPA for a very
different input vector of an amplitude 10 times larger
(smaller) for port 1/2 compared to port 3.
CPA with one zero-input channel: The other possible

solution for S to acquire scaled cospectrality is when

t = r = cr′ and t′ =
√
cr′ , (15)

with the eigenvalues of S then being λ2 = (0, 0, (2c+1)r′).
The corresponding eigenvectors of the two zero eigenval-

ues are x
(1)
2 = (1,−1, 0)T and x

(2)
2 = (1, 1,−2

√
c)T . This

case is even more interesting since it features a two-fold
degenerate zero eigenvalue [41]. Consequently, for any

choice of α, β, inputs of the form αx
(1)
2 + βx

(2)
2 will be

perfectly absorbed. Among all possible inputs, one can
find the following highly asymmetric one:

x2 = (−1, 0,
√
c)T . (16)

Thus, the 3-port network is able to completely absorb
waves with non-zero inputs on only two of its ports and
with a relative input between the two active ports pre-
scribed by the scale factor c. We have constructed two

such networks using c = 100 and c = 0.01, satisfying
Eq. (15) at a prescribed frequency f2 and the corre-
sponding absorption is shown in Fig. 6(c) using the input
pin = x2. The networks feature CPA (A = 1) at the de-
sired frequency f2 with non-zero inputs in only two of
the three channels. On top of that, the imbalance of the
CPA wavefront introduced by the scale factor c results
in an almost single sided (or one port) CPA.

IV. CONCLUSIONS

We have studied the scattering properties of various
asymmetric waveguide networks and demonstrated that
a certain family of networks possesses the same scatter-
ing properties as mirror-symmetric ones, i.e. they show
equireflectionality. This counterintuitive property of the
asymmetric networks stems from a hidden mirror sym-
metry called latent symmetry. We have validated this
finding numerically for acoustic waveguide networks and
experimentally for microwave transmission-line networks.
While latent symmetry is mathematically equivalent to

certain relations obeyed by the matrix powers, here we
generalized these relations and applied them to a generic
scattering matrix of an N -port system. The new rela-
tions, named scaled cospectrality, were then used to con-
struct networks featuring CPA. Specifically, a scaling fac-
tor was used to design systems able to completely absorb
wavefronts with prescribed imbalance, a capability that
can enable the control of light with a very weak coher-
ent control signal. Overall, our work demonstrates that
scattering problems may greatly profit from the notion of
latent symmetry—which has very recently been experi-
mentally tested also in non-reciprocal networks [42]—and
of matrix power relations in general.

ACKNOWLEDGMENTS

The authors are thankful to M. Pyzh and V. Pagneux
for valuable discussions. V.A. acknowledges financial
support from the NoHeNA project funded under the pro-
gram Etoiles Montantes of the Region Pays de la Loire.
V. A. is supported by the EU H2020 ERC StG “NASA”
Grant Agreement No. 101077954.



9

[1] M. E. Peskin, An Introduction to Quantum Field Theory ,
1st ed. (CRC Press, Boca Raton, 2018).

[2] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffrac-
tion, 3rd ed. (Pearson, 2001).

[3] Introduction to Wave Scattering, Localization and Meso-
scopic Phenomena, 2nd ed. (Springer-Verlag Berlin Hei-
delberg, 2006).

[4] H. A. Macleod, Thin-Film Optical Filters, 4th ed., Se-
ries in Optics and Optoelectronics (CRC Press/Taylor &
Francis, Boca Raton, FL, 2010).

[5] E. Dokumacı, Duct Acoustics: Fundamentals and Appli-
cations to Mufflers and Silencers (Cambridge University
Press, Cambridge, 2021).

[6] Thomas D. Rossing, ed., Springer Handbook of Acoustics,
2nd ed., Springer Handbooks (Springer New York, NY,
2015).

[7] D. Smith and B. Webb, Hidden symmetries in real and
theoretical networks, Physica A 514, 855 (2019).

[8] M. Kempton, J. Sinkovic, D. Smith, and B. Webb, Char-
acterizing cospectral vertices via isospectral reduction,
Linear Algebra Its Appl. 594, 226 (2020).
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[14] M. Röntgen, M. Pyzh, C. V. Morfonios, and
P. Schmelcher, On symmetries of a matrix and its isospec-
tral reduction, arXiv:2105.12579 (2021).

[15] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Coherent
perfect absorbers: Time-reversed lasers, Phys. Rev. Lett.
105, 053901 (2010).

[16] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and
W. J. Padilla, Perfect metamaterial absorber, Phys. Rev.
Lett. 100, 207402 (2008).

[17] M. F. Imani, D. R. Smith, and P. del Hougne, Perfect
absorption in a disordered medium with programmable
meta-atom inclusions, Adv. Funct. Mater. 30, 2005310
(2020).

[18] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and
H. Cao, Time-reversed lasing and interferometric control
of absorption, Science 331, 889 (2011).
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Appendix A: Formula for the scattering matrix

In the following, we describe how the scattering matrix of the waveguide networks (assuming one-dimensional
waveguides) can be computed. The expressions are taken from [21]. Technically, they rely on describing the network
in terms of a so-called quantum graph with Neumann vertex conditions.

Given the topology matrix A describing the waveguide network (see main text), and the diagonal matrix B with
entries Bi,i =

∑
j Ai,j , we define the two matrices

h(k) =
A

sin(kL)
− B

tan(kL)
(A1)

and the 2×N coupling matrix W whose elements are all zero, except W1,a = W2,b = 1. L denotes the length of the
individual waveguides, and k is the (complex) wavenumber.

The scattering matrix can be shown to be given by [21]

S(k) = 2iW
(
h(k) + iWTW

)−1
WT − I (A2)

where I is the 2× 2 identity matrix.

Appendix B: Eigenvectors of symmetric scaled cospectral matrices

Let S = ST ∈ CN×N be a complex-symmetric matrix, and let us assume that (Sm)a,a = c · (Sm)b,b for all m > 0.
It follows that (

eiSt − 1
)
a,a

= c ·
(
eiSt − 1

)
b,b
. (B1)

We assume that S has no degenerate eigenvalues, which in particular implies that S is diagonalizable. Then, since
S = ST , one can normalize its eigenvectors |ϕi⟩ such that ⟨ϕ∗j |ϕi⟩ = δi,j with the star denoting the complex conjugate.
As a consequence, we have 1 =

∑
i |ϕi⟩ ⟨ϕ∗i |. Equipped with this identity, we get(
eiSt − 1

)
a,a

=
∑
i,j

⟨a|ϕi⟩ ⟨ϕ∗i |eiSt|ϕj⟩ ⟨ϕ∗j |a⟩ − 1 (B2)

=
∑
i

⟨a|ϕi⟩ eiλit ⟨ϕ∗i |a⟩ − 1 (B3)

=c ·

(∑
i

⟨b|ϕi⟩ eiλit ⟨ϕ∗i |b⟩ − 1

)
(B4)

with λi being the eigenvalue of |ϕi⟩. Since the complex exponentials are linearly independent, one can evaluate the
above equation independently for each distinct λi, so that it automatically follows that

⟨a|ϕi⟩ ⟨ϕ∗i |a⟩ = c · ⟨b|ϕi⟩ ⟨ϕ∗i |b⟩ , λi ̸= 0 (B5)

⟨a|ϕ0⟩ ⟨ϕ∗0|a⟩ = c · ⟨b|ϕ0⟩ ⟨ϕ∗0|b⟩ − c+ 1, λ0 = 0. (B6)

Since ⟨ϕ∗j |a⟩ = ⟨a|ϕj⟩ for all eigenvectors, we obtain

⟨a|ϕi⟩ = ±
√
c · ⟨b|ϕi⟩ , λi ̸= 0 (B7)

(⟨a|ϕ0⟩)2 = c · (⟨b|ϕ0⟩)2 − c+ 1, λ0 = 0. (B8)
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Appendix C: Equireflectionality in a lossy system

In the main text of this work, we considered the case of latent reflection symmetry in a system without losses, and
we mentioned that the point-wise parity of eigenmodes remains valid for the case of losses in the one-dimensional
waveguides described by a complex velocity c = cr + ici. In the following, we give the justification for this statement.

To this end, let us assume that we have a network which, in the absence of losses, has a latent reflection symmetry
between two junctions a, b. As stated in the main text, for low-enough frequencies, the eigenmodes of this network
can be found from the generalized eigenvalue problem

Aϕ = cos(kL)B ϕ (C1)

where ϕ contains the pressure of the eigenmode ϕ at the N junctions of the network, and with k = ω/c = ω/cr ≡ kr.
The eigenvalues cos(kL) of this problem are completely real and due to latent symmetry, all eigenmodes fulfill pa =
±pb.

Let us then take the usual route for introducing losses: That is, we start from the lossless case—as described through
Eq. (C1)—and then let the velocity c = cr + ici (due to, in particular, thermo-viscous boundary at the surface of the
one-dimensional waveguides [44]). Obviously, this changes the relation between k and ω, but it does not change the
eigenvalues cos(kL) or the eigenvectors ϕ. In other words, each eigenvector ϕ with eigenvalue cos(kL) of the lossless
system will still be an eigenvector of the lossy system, with unchanged eigenvalue cos(kL). In particular, point-wise
parity of eigenmodes is preserved. What changes is the frequency ω corresponding to cos(kL): Since c is complex
while k is real (as imposed from the fact that cos(kL) is real), ω is in general complex as well, with the imaginary
part being related to the lifetime of this lossy eigenmode.

Appendix D: Using the matrix power relations for deriving a better understanding of latently symmetric
waveguide networks

The aim of this section is to showcase a set of intuitive and easily interpretable equivalent conditions that the
relations Eq. (4)—latent symmetry, that is—impose on a waveguide network. These conditions can be derived by
analyzing Eq. (4) order by order and subsequently using the relation H = B−1/2AB−1/2 to derive conditions on the
matrices A,B which are directly describing the underlying waveguide network. We restrict ourselves to the first few
orders of Eq. (4), for which the corresponding equivalent conditions have been derived in [13]; we repeat them here
for self-containedness of the present manuscript.

The conditions are then as follows. Firstly, a and b have to have the same number of neighbors. Moreover, in the
special case where the number of next-neighbors of a, b is equal to unity, (i) Eq. (4) holds for m = 2 if and only if a, b
have the same number of next-neighbors, and (ii) Eq. (4) holds for m = 3 if and only if∑

i∈N 2(a)

1

|N (i)|
=

∑
i∈N 2(b)

1

|N (i)|
. (D1)

In this relation, N 2(i) denotes the set of next-neighbors of i, and |N (i)| denotes the degree of site i, that is, the
number of neighbors of i.
Equipped with the above, we can now analyse the difference between the setups shown in Fig. 1 (c) and Fig. 1 (d)

in more detail. To this end, let us close these two systems on the entry-points of the two ports, and call these points
a (on the left-hand side of the setup) and b (on the right-hand ride of the setup); compare Fig. 2.

For the asymmetric network of Fig. 1 (c), the two next-neighbors of a have degrees 3 and 2, while the two next-
neighbors of b both have degree 3. Thus, the equation Eq. (D1) is not fulfilled and, as a consequence, the relations
Eq. (4) are not fulfilled for m = 3. On the other hand, the setup of Fig. 1 (d) features an additional waveguide on
the left, which equalized the two sides of Eq. (D1).

Appendix E: Optimization procedure and lengths of the optimized structures

In order to design a system whose scattering matrix has the form of Eq. (10) and which fulfills either Eq. (15) or
Eq. (11), we proceed as follows: We started with the system depicted in Fig. 6 (a), whose scattering matrix has the
structure of Eq. (10). We then optimized the lengths L1, . . . , L5 (see Fig. 7) and the frequency f in the range between
1000 and 2000 Hz such that Eqs. (11) and (15) are fulfilled, respectively, at a frequency f . Technically, we modeled
the system as a network of ideal waveguides of length Lm, each with a transmission coefficient

tm = exp(−ikLm) (E1)
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with

k =
2πf

cs
+ (1 + i)α

√
f

R
; (E2)

where α is the loss coefficient (see below) [44], R = 1 cm the waveguide diameter, with cs = 343m/s the velocity
of sound and f being the frequency. Using the continuity of the pressure and the conservation of the flux at each
junction, we then obtain the scattering matrix S, depending only on the frequency f and the lengths Lm.

Port 1 Port 2

Port 3

L1

L2

L3

L5

L1

L4

Original
network

Symmetric
connection

Arbitrary
part

Figure 7. Reference figure showing the assignment of the waveguide lengths L1, . . . , L5.

The optimized lengths (in meters, rounded to 4 digits after the decimal point) are shown in the table below. The
cases a and b correspond to the scattering matrix fulfilling Eq. (11) and Eq. (15) of the main text, respectively.

case a, c = 1/100 case a, c = 100 case b, c = 1/100 case b, c = 100

L1 0.7976 0.1021 0.7792 0.1326

L2 0.6398 0.6003 0.3944 0.7917

L3 0.1070 0.3201 0.4018 0.6452

L4 0.7497 0.8000 0.3357 0.7232

L5 0.7837 0.7045 0.3289 0.5720
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Appendix F: Confirming the reciprocity of the transmission line networks

In the main text, we have already shown the reflection coefficients for the transmission line measurements of the
networks shown in Fig. 1(d) and Fig. 4(a). In Fig. 8, we also show the transmission coefficients, that is, the matrix
elements S1,2 and S2,1 of the scattering matrix S. As can be seen, the networks are reciprocal in their scattering
properties, that is, they fulfill S1,2 = S2,1.

Figure 8. Experimentally measured transmission coefficients tij from port i to port j for the microwave transmission-line
networks from Fig. 1(d) (left) and Fig. 4(a) (right).


	Equireflectionality and customized unbalanced coherent perfect absorption in asymmetric waveguide networks 
	Abstract
	Introduction
	Scattering off latently symmetric networks
	Setup and a first example
	Review of latent symmetry in waveguide networks
	Equireflectionality in Acoustic Waveguide Networks
	Experimental Observation in Microwave Transmission-Line Networks

	Powers of the scattering matrix and perfect absorption
	Conclusions
	Acknowledgments
	References
	Formula for the scattering matrix
	Eigenvectors of symmetric scaled cospectral matrices
	Equireflectionality in a lossy system
	Using the matrix power relations for deriving a better understanding of latently symmetric waveguide networks
	Optimization procedure and lengths of the optimized structures
	Confirming the reciprocity of the transmission line networks


