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We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with
non-reciprocal interactions. Numerical simulations reveal that, for a broad class of interaction
potentials, non-reciprocity can significantly increase the long-time diffusion coefficient of tracer
particles, and that this diffusion enhancement is associated with a breakdown of the Einstein relation.
These observations are quantified and confirmed via two different and complementary analytical
approaches: (i) a linearized stochastic density field theory, which is particularly accurate in the
limit of soft interactions; (ii) a reduced two-body description, which is exact at leading order in
the density of particles. The latter reveals that diffusion enhancement can be attributed to the
formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by
the non-reciprocal interactions.

I. INTRODUCTION

Intracellular functions are governed by the transport of
ions, proteins, vesicles, or organelles, which are subject
to strong thermal fluctuations, and which interact with
each other through crowding, electrostatics and hydro-
dynamics. In theoretical approaches, such systems are
typically represented by a suspension of interacting par-
ticles, embedded in a solvent that causes their stochastic
motion. These particles generally evolve very far from
equilibrium, and are ‘active’ in the sense that they lo-
cally convert the chemical energy available in their en-
vironment into mechanical work. Even though a wealth
of knowledge has been gathered on suspensions of single-
species ‘polar’ or self-propelled active particles [1–4], the
reality is much more complex: suspensions of biological
interest are generally strongly heterogeneous, and made
of particles without any established polarity on the con-
sidered timescales.

Very recently, ‘scalar’ models for active matter, where
agents are apolar but whose nonequilibrium dynamics
results in spontaneous symmetry breaking, have been
developed. For instance, one can consider catalytic
molecules, such as proteins or enzymes, that are in-
volved in the production or consumption of smaller solute
molecules. Each of them can be seen as a local source
or sink responding to the chemical gradients created by
the other particles. When coarse-graining the degrees of
freedom associated with solute molecules, the effective
interactions between particles appear to break action-
reaction symmetry [5–8], and should be modeled as non-
reciprocal. This line of research has recently gained a
lot of importance, and now goes well beyond the interest
for active colloids, with applications ranging from the de-
sign of new field theories [9–11] and advanced sampling

techniques [12], to the interpretation of active matter ex-
periments [13–16], and more generally phase transitions
in nonequilibrium systems [17]. Interestingly, mixtures of
particles with non-reciprocal interactions can be mapped
onto multi-temperature suspensions – another class of
scalar active matter that have received a lot of interest in
the soft matter and biophysics communities [18–23]. This
mapping was formally established for Newtonian dynam-
ics [24], and can be extended to stochastic overdamped
dynamics (see Appendix A).
The collective and structural properties of non-

reciprocal mixtures have been studied rather extensively,
revealing in particular their tendency to phase separate
[7, 25, 26]. However, the properties of their fluctua-
tions, as characterized by the dynamics of tracer parti-
cles (i.e. individually-tracked, tagged particles) have been
left aside so far, in spite of their importance. Indeed, the
properties of tagged particles generally contain key infor-
mation about the microstructure of the suspension and
its small-scale dynamics [27]. They are also of impor-
tance to quantify experiments that rely on single-particle
tracking and allow accurate characterization of many in-
tracellular processes [28].
In this article, we study the diffusivity of a tagged par-

ticle in a binary mixture of particles with non-reciprocal
interactions obeying overdamped Langevin dynamics.
Brownian dynamics simulations, together with two dif-
ferent analytical treatments of the stochastic dynamics,
reveal that non-reciprocity can significantly increase the
effective long-time diffusion coefficient of tracer particles.
We measure the non-reciprocal contribution to its diffu-
sivity:

Deff = Drecip +∆Dnon-recip, (1)

and, we show that, strikingly, this diffusion enhance-
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ment is associated with a breakdown of the Einstein re-
lation, which does not hold in this nonequilibrium case.
More precisely, the effective long-time mobility can be
written as µeff = Drecip/kBT + ∆µnon-recip, with the
non-reciprocal correction being generally different from
∆Dnon-recip/kBT . We finally show that diffusion en-
hancement can be attributed to the formation of tran-
siently propelled dimers of particles, whose cohesion and
speed are controlled by the non-reciprocal interactions.

II. MODEL

We consider a three-dimensional binary suspension of
N + 1 interacting particles, made of NA (resp. NB) par-
ticles of species A (resp. B), and one tracer particle
(labeled 0), that can either be of type A or of type B.
We denote by ρα = Nα/V (α = A or B) the number
density of each species (excluding the tracer), where V
is the volume of the system. The overall density of bath
particles is ρ = N/V , and Xα = ρα/ρ is the fraction
of α particles [29]. We assume that each particle obeys
an overdamped Langevin dynamics, in such a way that
the evolution of the system is given by the set of coupled
equations:

drn
dt

= µS(n)

∑
m ̸=n

F S(m)→S(n)(rn − rm)+
√
2DS(n)ζn(t),

(2)
where S(n) ∈ {A,B} denotes the species of particle n,
and F β→α(r) denotes the force exerted by a particle of
species β on a particle of species α when the latter is lo-
cated at r relative to the former. The bare diffusion coef-
ficient of a particle of species α is related to the mobility
µα through the Einstein relation Dα = kBTµα, where T
is the temperature of the thermal bath in which the par-
ticles are embedded. For simplicity, we will assume that
all the particles have the same mobility µ0. The noise
terms ζn(t) have zero average and are delta-correlated:
⟨ζn,i(t)ζm,j(t

′)⟩ = δnmδijδ(t− t′).

Importantly, we assume that the interactions be-
tween particles of different species can be non-reciprocal,
namely that FA→B(r) ̸= −FB→A(−r). In order
to probe the existence of enhanced diffusion in such
a suspension, we compute the long-time diffusion co-
efficient of the tracer particle, defined as Deff =
limt→∞ ⟨[r0(t)− r0(0)]

2⟩/6t.
For simplicity, we write the forces as deriving from

potentials (or ‘pseudo-potentials’): F α→β(rβ − rα) =
−∇rβ

ϕα→β(|rα − rβ |). Note that we thus focus on
divergence-free force fields. With this definition, the
pseudo-potentials correspond to regular pair potentials
when α = β, but not otherwise. The interactions be-
tween species can be defined through a matrix with ele-
ments Φαβ = ϕα→β which is split between a symmetric

(reciprocal) and antisymmetric (nonreciprocal) part:

Φ =

(
ϕrep ϕrep

ϕrep + ϕatt ϕrep

)
(3)

=

(
ϕA→A ϕRAB

ϕRAB ϕB→B

)
+

(
0 −ϕNR

AB

ϕNR
AB 0

)
. (4)

For concreteness, we assume that all the (α, β) pairs
interact via a purely repulsive potential ϕrep(r), and
that non-reciprocity is incorporated by assuming that the
pseudo-potential ϕA→B contains an additional attractive
part ϕatt(r) (in the notations of Eq. (4), this means that
ϕRAB = ϕrep + ϕatt/2 and ϕNR

AB = ϕatt/2).

III. NUMERICAL EVIDENCE FOR
ENHANCED DIFFUSION

A. Main results

We first present results from Brownian dynamics sim-
ulations, which consist in integrating the set of coupled
overdamped Langevin equations [Eq. (2)], using a for-
ward Euler-Maruyama scheme (see Appendix B). We
consider different types of binary mixtures and the cor-
responding pair potentials, that represent a broad range
of physical situations (for each system, the expressions of
ϕrep and ϕatt are given in Table I): (i) suspensions of hard
particles with short-range repulsion given by the Weeks-
Chandler-Andersen potential and long-range Lennard-
Jones attraction [25, 26]; (ii) particles with softcore in-
teractions, modeled by a ‘Gaussian’ potential, which are
relevant to describe the interactions between polymer
coils [30–32]; and (iii) Yukawa interactions, that repre-
sent screened Coulomb interactions or may arise from
‘chemical interactions’ between diffusiophoretic colloids
[5–7, 16] (the ranges λ and λ′ of the Yukawa-like ϕrep
and ϕatt are chosen such that ϕA→B has an attractive
part). For all these systems, the energy parameters ε and
δ represent respectively the strength of the repulsive and
attractive parts of the potentials. When non-reciprocity
is very strong, the suspension may be unstable and phase
separate – this effect was for instance evidenced in sus-
pensions of colloids with chemically-mediated [7] or LJ-
WCA [25, 26] interactions. However, we emphasize that
all our simulations are performed in the homogeneous
regime, where the non-reciprocal mixture does not dis-
play any phase separation.

In each of these systems, we measure numerically the
diffusion coefficient of tagged B particles, as summarized
in Fig. 1. For all three sets of simulations, diffusion is
enhanced as non-reciprocity increases (a similar effect is
observed for tagged A particles, see Appendix C). In the
particular case of the softcore potentials, the relative en-
hancement can reach values as high as 20% [33]. The
radial distribution functions reveal a strong pairing be-
tween A and B particles (Appendix C), which is inter-
preted as a consequence of the ‘predator-prey’ dynamics
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FIG. 1. Long-time diffusion coefficients of B particles (rescaled by their value in the reciprocal case, δ = 0) as a function of the
parameter δ, which quantifies the intensity of non-reciprocity. Throughout the paper, energies are measured in units of kBT
and distances in units of σ, the diameter of the particles. In all simulations, and unless otherwise specified, ρA = ρB = ρ/2.
(a) solid lines are analytical predictions in the low-density limit (Appendix F); (b) solid lines are analytical predictions in the
limit of soft interactions [Eq. (6)]; (c) dashed lines are guides to the eye. See Table I for the expressions of the pair potentials
(parameters: ε = 1, σ = 1, λ = 1, λ′ = 1.7).

ϕrep(r) ϕatt(r)

LJ-WCA 4ε
[(

σ
r

)12 − (
σ
r

)6]
θ(21/6σ − r) 4δ

[(
σ
r

)12 − (
σ
r

)6]
softcore εe−(r/σ)2 −δe−(r/σ)2

Yukawa εσ
r
e−r/λ −δ σ

r
e−r/λ′

TABLE I. Expressions of the repulsive and attractive part of
the interaction potentials considered in the simulations.

that emerges from non-reciprocal interactions: B parti-
cles chase A particles while A tend to run away from
B, resulting in enhanced dynamics at the scale of tagged
particles – this effect will be described in Section VI.

B. Additional comments

We emphasize that choosing another decomposition of
the matrix Φ [Eq. (4)] is not expected to affect the main
results. Non-reciprocity is controlled by the intensity
of the pseudo-potential ϕatt (through the parameter δ),
which is independent of the decomposition into a recipro-
cal and a non-reciprocal part. There are possibly other
choices of the decomposition that would surely modify
the ‘enhancement’, if we change the reference with re-
spect to which diffusion coefficient is measured, but we
argue that, in the present situation, the best choice to
rationalize our simulation results is to take Deff(δ = 0)
as a reference.

Finally, it is interesting to think about the relevant
observables that should be used to discriminate between
reciprocal or non-reciprocal interactions in experimental
measurements. As the diffusion coefficient of a tagged
particle can be larger or smaller depending on the sign of

δ, we believe that the diffusion coefficient would proba-
bly not be a sufficient observable to identify the reciprocal
case. The measurement of diffusion coefficients could be
completed by observables that characterize the structure
and spatial organization of the system, in which the sig-
nature of the pairing mechanism can be observed (see for
instance the radial distribution functions shown on Fig.
4).

IV. BREAKDOWN OF THE EINSTEIN
RELATION

In order to probe the validity of the Einstein relation in
such mixtures, we measured the mobility of tagged par-
ticles, aiming at comparing it to the effective diffusion
coefficient defined earlier. To this end, in the numerical
simulations, we add a constant external force f = fex
to the tagged particle, and measure its mobility defined
as µeff = limf→0⟨vx⟩/f , where ⟨vx⟩ is the average ve-
locity attained by the tagged particle along direction x,
in the stationary limit. For an equilibrium system, the
effective mobility of the tracer is expected to be related
to its effective diffusion coefficient through the Einstein
relation Deff = kBTµeff. We compare in Fig. 2 the effec-
tive diffusion coefficients and mobilities as measured from
simulations: the increasing mismatch between their val-
ues as δ increases is a clear indication of the breakdown
of the Einstein relation in this nonequilibrium situation.

V. ANALYTICAL DESCRIPTION IN THE
LIMIT OF SOFT INTERACTIONS

In order to quantify these phenomena and to offer an-
alytical insight, we coarse-grain the dynamics and define
the density of bath particles of species α as ρ̂α(r, t) =
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FIG. 2. Long-time diffusion coefficients and mobilities of
tagged B particles in non-reciprocal mixtures as a function of
the parameter δ. Densities are (a) ρ = 0.10; (b) ρ = 0.40 (see
caption of Fig. 1 for the other parameters). In both panels,
symbols are results from Brownian dynamics simulations. (a)
Solid lines are analytical predictions in the low-density limit
(Appendix F). (b) Solid and dashed lines are analytical pre-
dictions in the limit of soft interactions [see Eq. (6) for DB

eff

and Eq. (D50) for µB
eff].

∑
n ̸=0,S(n)=α δ(rn(t) − r), where the sum runs over all

the particles of species α except the tracer (if of species
α), so that the tracer is ‘taken out’ of the definition of
the densities [34]. Using Itô calculus [35], and relying
on the usual derivation proposed by Dean for a single-
component fluid [36] and later extended to binary mix-
tures [37], we obtain the coupled equations for the fields
ρ̂α:

∂tρ̂α =
√
2D0∇ · [ηα

√
ρ̂α] +D0∇2ρ̂α (5)

− µ0∇ ·
[
ρ̂α

∑
β∈{A,B}

F β→α ∗ ρ̂β + ρ̂αF S(0)→α ∗ δr0

]

with the space-dependent noise ηα,i(r, t) of average zero,
and with correlations ⟨ηα,i(r, t)ηβ,j(r′, t′)⟩ = δαβδijδ(r−
r′)δ(t − t′). In Eq. (5), the symbol ∗ represents spatial
convolution: (f ∗ g)(r) =

∫
dr′ f(r′)g(r − r′), and we

use the shorthand notation δr0
(r) = δ(r− r0). The evo-

lution of the tracer position is given by the overdamped
Langevin equation, Eq. (2), written for n = 0.

Although explicit, this joint description of the tracer-
bath dynamics is quite complicated, as it involves non-
linear couplings and multiplicative noise. The dynamics
of the fields can be solved perturbatively by linearizing
around the homogeneous state of density ρα, and assum-
ing |ρ̂α − ρα| ≪ ρα [34, 37] . To treat the nonlinear
coupling between the fields and the position of the tracer
r0(t), we rely on a path-integral formulation [38] that we
recently extended to the case of a binary mixture [39].
We finally reach an expression for the long-time diffusion

coefficient of the tracer particle as a Fourier integral:

Deff

D0
= 1−

∑
α,β,γ

∈{A,B}

√
XαXγ

∫ ∞

0

dq

6π2
ρq2ϕ̃α→S(0)(q)

×
[
Cαβγ

S(0)→γ ϕ̃S(0)→γ(q) + Cαβγ
γ→S(0)ϕ̃γ→S(0)(q)

]
(6)

where the tildes represent Fourier transforms, and where

the functions Cαβγ
S(0)→γ(q) and C

αβγ
γ→S(0)(q) are given in Ap-

pendix D in terms of the densities of each species, their
interaction potentials, and their mobilities (note that, in
that Appendix, we actually consider the more general sit-
uation where the tracer can be a different species than
A or B). Additionally, the long-time effective mobility of
the tracer particle can be computed with similar tools:
technically, this is done by applying a small external force
f to the tracer and computing the correction to the av-
erage tracer velocity (Appendix D3) [34].
Eq. (6) is one of the main analytical results of this ar-

ticle, and several comments follow: (i) Up to a numerical
integration, the effective long-time diffusion coefficient is
obtained as an explicit expression in terms of all the pa-
rameters of the problem; (ii) In our formalism, one can
actually find a more general expression of the effective
long-time diffusion coefficient, for cases in which A and
B particles have different mobilities and are connected to
different thermostats (Appendix D); and (iii) This result
should be understood as a perturbative expansion in the
limit of weak interactions between the particles. There-
fore, when compared to our numerical results for the dif-
ferent interaction potentials considered in Table I, it is
only valid for the softcore interactions: the agreement
between our analytical theory and numerical simulations
is very good [Fig. 1(b)]. Strikingly, it shows that this
linearization procedure remains true even very far from
equilibrium.
In order to discuss some consequences of Eq. (6), we

consider a simpler situation, where the tagged particle is
coupled in a non-reciprocal way to a single bath (we will
assume that the probe is of species B and the bath parti-
cles of species A). We take ϕA→A(r) = ϕB→A(r) = v(r)
and ϕA→B(r) = (1−δ)v(r), in such a way that δ measures
non-reciprocity, just like in our numerical simulations. In
this case, the effective long-time diffusion coefficient of
the tagged particle has the simple expression:

Deff = Drecip +D0

∫
dq

(2π)3
ρδ(2 + δρṽ)ṽ2

3(1 + ρṽ)(2 + ρṽ)2
, (7)

where
Drecip

D0
= 1 − ρ

3

∫
dq

(2π)3
ṽ2

(1+ρṽ)(2+ρṽ) . The effective

mobility of the tracer can be computed by assuming that
it is driven by a harmonic trap with vanishing stiffness,
and by adapting earlier calculations [40]. We find that
the effective mobility is given by

µeff =
Drecip

kBT
+ µ0

∫
dq

(2π)3
ρδ(3− δ + δρṽ)ṽ2

3(1 + ρṽ)(2 + ρṽ)2
, (8)
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which we compare to numerical data in Fig. 2(b). There-
fore, this confirms the breakdown of the Einstein relation,
which is only retrieved in the reciprocal case δ = 0 and
the trivial case δ = 1, where the bath has no effect on
the tracer.

VI. LOW-DENSITY LIMIT

We finally consider the low-density limit of the prob-
lem, where it actually reduces to a two-particle situation:
one of them is the tagged particle, the other one is a bath
particle. To ease the notation, we will assume that the
tracer, at position r0, is of species α, and the consid-
ered bath particle, at position rb, is of species β. The
pair correlation of the tracer with the bath particle is
obtained by solving the Smoluchovski equation for the
two-body probability density Pαβ(r0, rb, t). Using the
variables r = rb − r0 and R = (r0 + rb)/2, it reads

∂tPαβ = 2D0∇2
rPαβ + µ0∇r · [Pαβ∇r(ϕα→β + ϕβ→α)]

+
D0

2
∇2

RPαβ +
µ0

2
∇RPαβ · ∇r(ϕβ→α − ϕα→β). (9)

Integrating over the position of the center of mass
R, and defining uαβ(r) = [ϕα→β(r) + ϕβ→α(r)]/2kBT ,
we find the stationary solution of Eq. (9): g0αβ(r) =

exp[−uαβ(r)]. Interestingly, this is analogous to the sim-
ple equilibrium pair distribution in the low-density limit,
but with the interaction potential taken as the average
between the two non-reciprocal pseudo-potentials. The
long-time diffusion coefficient of the tracer, as well as its
effective mobility, can be computed using standard meth-
ods [41, 42], and the comparison between these two ob-
servables shows that the Einstein relation does not hold
in this limit either (see Appendix F). Although the po-
tentials used in this study do not allow the derivation of
explicit expressions for the long-time diffusion coefficient
and mobility in this limit, we can evaluate through the
numerical resolution of ordinary differential equations.
For LJ/WCA potentials, the results are shown on Fig.
1(a), Fig. 2(a) and Fig. 3(a).

This low-density approach also reveals that, if the ef-
fective potential uαβ(r) has a deep enough minimum, an
αβ pair may form a ‘transient dimer’ that remains bound
for some time. Indeed, the dynamics of their center of
mass R can be read from the effective equation of mo-
tion Ṙ(t) = µ0

2 ∇(ϕα→β − ϕβ→α) +
√
D0ξ(t), where ξ(t)

is a Gaussian white noise with unit variance. If the in-
teraction is non-reciprocal, the first term on the r.h.s. is
non-zero and represents a self-propulsion term, which de-
pends solely on the inner variable r(t). The characteris-
tics of self-propulsion depend on the shape of the poten-
tials: (i) If the minimum of uαβ(r) is at r = 0 and the
potentials behave as ϕαβ(r) ∼ kαβr

2/2 around r = 0,
then the dynamics of r(t) is linear, r(t) is an Ornstein-
Uhlenbeck process, and the coordinate R(t) therefore be-
haves as an Active Ornstein-Uhlenbeck particle [43]; (ii)

On the contrary, if the minimum of uαβ(r) is at r
∗ > 0,

then the modulus of interparticle vector remains confined
close to r∗, and one can define a self-propulsion velocity
V0 ≃ D0

2 [ϕ′αβ(r
∗)−ϕ′βα(r∗)]: the coordinateR(t) behaves

as an Active Brownian Particle [44], with a rotational dif-
fusion coefficient Dr ≃ 2D0/r

∗2.

In our numerical simulations, when the overall density
ρ is small enough, we observe that DA

eff ≃ DB
eff , even

for strong non-reciprocity (Appendix C). In contrast, at
higher densities, these two values differ more clearly. This
supports the idea that, at low density, diffusion enchance-
ment can be related to the pairing between A and B
particles. This effect is reminiscent of the self-propelled
dimers observed in very dilute suspensions of chemotac-
tic colloids [5, 13, 15, 16]. This relationship between the
nonreciprocal mixture and suspensions of active particles
(Brownian or Ornstein-Uhlenbeck) could be used to de-
fine an ‘active temperature’ and a generalized Einstein
relation [45].

VII. DISCUSSION

In this article, we showed that non-reciprocal interac-
tions between Brownian particles could significantly en-
hance their diffusivity. Non-reciprocity, which plays a
predominant role in the interaction between chemically
active particles, is thus expected to have a significant
impact on the efficiency of molecular transport, and on
the kinetics of diffusion-limited reactions. These observa-
tions, together with the mapping between non-reciprocal
and two-temperature mixtures, open the way to the in-
terpretation of the rich phenomenology of non-reciprocal
and multi-temperature mixtures, and to the local struc-
tures that emerge from the local energy transfers at the
microscopic scale [46]. In the biological context, we be-
lieve that these concepts could find their applications in
elucidating the role played by ATP-fueled activity in the
fluidization of the intracellular medium, and of its rheo-
logical properties [47].
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Appendix A: Mapping from multi-temperature
suspensions to non-reciprocal mixtures

The mapping from multi-temperature suspensions to
non-reciprocal mixtures was demonstrated for a binary,
underdamped suspension in Ref. [24]. We extend here
these arguments for an arbitrary number of species, in the
overdamped limit. We write the generic Smoluchowski
equation for a suspension of N particles connected to N
different thermostats:

∂tP(rN ; t) =

N∑
n=1

{
kBTnµn∇2

rn
P(rN ; t)

−µn∇rn

P(rN ; t)
∑
m ̸=n

F (rn − rm)

 , (A1)

where µn is the mobility of particle n, Tn its temperature,
F is a reciprocal force field (reciprocal in the sense that
it depends only on the distance between the particles,
and not on their species), and P(rN ; t) is the N -body
probability distribution (we use the shorthand notation:
rN = (r1, . . . , rN )). It is straightforward to show that
this equation also describes the dynamics of a suspension
of N particles connected to a single thermostat T , but
with mobilities µ′

n = (Tn/T )µn, and interacting via ‘non-
reciprocal forces’ Fm→n(rn − rm) = (T/Tn)F (rn − rm)
(here Fm→n denotes the force exterted by particle m on
particle n). Therefore, a mixture of overdamped parti-
cles with multiple temperatures can be mapped onto a
mixture with non-reciprocal forces, but we underline that
the converse is not always true. This gives additional jus-
tification for the study of non-reciprocal mixtures, that
appears to be more general, and that they can give in-
sight into the physics of multi-temperature systems.

Appendix B: Numerical methods

To perform Brownian dynamics simulations we have
used the LAMMPS computational package [48–50]. We
used the command ‘fix brownian’ that allows one to in-
tegrate overdamped Langevin equations for the positions
of particles thanks to a forward Euler-Maruyama scheme.
To allow the forces between A and B particles to be non-
reciprocal, we have used Pylammps, the wrapper python
class for LAMMPS. More precisely, we have added in the
simulation box a number of ‘ghost’ particles (named C
in what follows) equal to that of A particles. The in-
teraction potential between A and B is the interaction
potential ϕrep(r), and C and B particles undergo the
attractive interaction potential ϕatt(r) (see Table I). At
each time step of the simulation, ghost particles C are
put at the exact same positions as particles A, so that
they exert an additional attractive force on particles B
as if they were A particles. This additional force does not
influence particles A: as a result, the total force between

A and B particles are non-reciprocal. To compute inter-
action forces, cutoff distances equal to 2.5σ, 2.5σ, and
5σ are used for the Lennard-Jones, softcore and Yukawa
interaction potentials, respectively. The input mobility
of particles is the same for A and B particles.
In every case, a total number of NA = 2000, NB =

2000, NC = 2000 particles are placed in a cubic simula-
tion box with periodic boundary conditions. The length
of the box Lbox is varied to change the total density
ρ = (NA + NB)/L

3
box of the system. The time step

varies between ∆t = 0.0002t⋆ and ∆t = 0.002t⋆, de-
pending on the interaction potential and of the density
of the system, with t⋆ = σ2/(kBTµ0) = σ2/D0 the time
needed for a particle to diffuse over a length equal to its
size. In each case, we begin by one long trajectory of 107

time steps to equilibrate the system at δ = 0 (reciprocal
case). For each value of δ, starting from a configuration
representative of the equilibrium situation (δ = 0), one
long trajectory of about 107 time steps is run to reach
a stationary state, characterized by constant radial dis-
tribution functions. Then, mean squared displacements
of tracers are averaged over three to nine independent
trajectories of about 107 time steps (depending on the
time step and density), and over particles and time. The
mean-squared displacements were found to be linear at
all times for every system investigated here. The un-
certainty of the computed self-diffusion coefficients was
evaluated from the standard deviation of values obtained
from different trajectories. The uncertainty on Deff/D0

was in each case smaller than 0.005. Note that the size of
the symbols used in the figures is larger than these error
bars.

Finally, to compute the mobility, we have added a force
on 50 tracer B particles chosen at random. The ampli-
tude of the force is chosen to ensure that we stay in the
linear regime, i.e. the displacement with time is propor-
tional to the force. Starting from equilibrated configu-
rations obtained at each δ, we have run simulations of
about 2× 106 time steps with the added force. The mo-
bility is computed from ⟨[r(t) − r(t = 0)]/t⟩, averaging
over the last 20% steps of three independent trajectories,
and over the 50 tracer particles.

Appendix C: Additional results from Brownian
dynamics simulations

In this Section, we present additional numerical re-
sults.

• We show in Fig. 3 the effective diffusion coefficient
of A particles. This is the counterpart of Fig. 1,
which showed the effective diffusion coefficient of
B particles.

• We show in Fig. 4 the radial distribution functions
for the different pairs of species in the binary mix-
tures (AA, BB, AB), and for the different interac-
tion potentials used in the Brownian dynamics sim-
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ρ = 0.1
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ρ = 0.3

ρ = 0.4
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δ
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1.01
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(c) Yukawa
ρ = 0.05

ρ = 0.1

ρ = 0.15

ρ = 0.2

ρ = 0.25

ρ = 0.3

ρ = 0.4

FIG. 3. Long-time diffusion coefficients of tagged A particles
in non-reciprocal mixtures (rescaled by their value in the re-
ciprocal case, δ = 0) as a function of the parameter δ, which
quantifies the intensity of non-reciprocity. Throughout the
paper, energies are measured in units of kBT and distances in
units of σ, the diameter of the particles. In all simulations,
ρA = ρB = ρ/2. (a) solid lines are analytical predictions in
the low-density limit (Appendix F 3); (b) solid lines are an-
alytical predictions in the limit of soft interactions [Eq. (6)];
(c) dashed lines are guides to the eye. See Table I for the
expressions of the pair potentials (parameters: ε = 1, σ = 1,
λ = 1, λ′ = 1.7).

ulations (WCA-LJ, softcore, Yukawa). The strong
pairing between A and B particles is visible on the
functions gAB(r), which are much larger than 1
when non-reciprocity is strong.

• We show in Fig. 5 the relative difference be-
tween the diffusion coefficients of A and B parti-
cles. More precisely, we define the diffusion coef-
ficients rescaled by their reciprocal value: D̄α

eff =
Dα

eff/D
α
recip, and we define the relative difference

between D̄A
eff and D̄B

eff as: (D̄B
eff − D̄A

eff)/
1
2 (D̄

A
eff +

D̄B
eff). This quantity is plotted for the three

sets of numerical simulations (LJ-WCA, softcore,
Yukawa).

Appendix D: Limit of soft interactions

In the main text, for simplicity, we considered the situ-
ation where all the particles have the same mobilities, the
same diffusion coefficients, and are connected to the same
thermostat. We also assumed that the tracer was either
a particle of species A, or a particle of species B. In this
supplementary calculation, we consider the more general
situation where the tracer, denoted by the index 0, can
be a different species than A or B. There are a priori
three different thermostats (T0, TA and TB), three differ-
ent mobilities (µ0, µA and µB). The bare diffusion coeffi-
cients are related to temperatures and mobilities through
the fluctuation-dissipation relation, which is assumed to
hold in the limit of infinite dilution: Dα = kBTαµα. To
ease the notation, we will denote by “0” the species of the

0 1 2 3
r

0

1

2

3

g α
β
(r

)

(a) WCA-LJ

0 1 2 3 4
r

0.5

1.0

1.5

2.0

(b) softcore

0 2 4 6
r

0.0

0.2

0.4

0.6

0.8

1.0

(c) Yukawa

gAA(r)

gBB(r)

gAB(r)

grecip(r)

FIG. 4. Radial distribution functions for the different pairs
of species in the binary mixtures (AA, BB, AB), and for the
different interaction potentials used in the Brownian dynam-
ics simulations (WCA-LJ: ρ = 0.1, δ = 3, softcore: ρ = 0.3,
δ = 5, Yukawa: ρ = 0.3, δ = 0.9). The curves for grecip(r)
correspond to the AA radial distribution functions in the re-
ciprocal case (the BB and AB radial distribution functions
are identical within statistical noise, as expected in this situ-
ation).

0.05 0.10
ρ
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0.005
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0.015
(D̄

B eff
−
D̄
A eff
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1 2
(D̄

A eff
+
D̄
B eff

)
(a) WCA-LJ

δ = 0.1

δ = 0.5

δ = 1.0

δ = 2.0

δ = 3.0

0.2 0.4
ρ

0.000

0.025
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0.075
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0.125

(b) softcore
δ = 1.0

δ = 2.0

δ = 3.0

δ = 4.0

δ = 5.0

0.2 0.4
ρ

−0.012

−0.010

−0.008

−0.006
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−0.002

0.000
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δ = 0.5

δ = 0.7

δ = 0.9

FIG. 5. Relative difference between the effective diffusion co-
efficient of A and B particles, for the different set of numerical
simulations we performed. We show this relative difference as
a function of ρ, for different values of the non-reciprocity pa-
rameter δ.

tracer (which is different from A and B in the most gen-
eral situation). Finally, although the results presented
in the main text applied to a three-dimensional systems,
we provide here a derivation that holds in any spatial
dimension d.

1. Linearized Dean equation

We start from Eq. (5). We linearize the density
fields ρ̂α around the homogeneous value ρα, by writing
ρ̂α = ρα +

√
ραψα and assuming ψα ≪ √

ρα. We find, at
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leading order in ψi:

∂tψA =
√

2DA∇ · ηA +DA∇2ψA

− ρµA[∇ · (XFA→A ∗ ψA)

+∇ · (
√
X(1−X)FB→A ∗ ψB)

+

√
ρA

ρ
∇ · (F 0→A ∗ δr0)], (D1)

and the counterpart for ψB . For simplicity, we denoted
XA = X and XB = 1−X. In Fourier space, the coupled
equations for ψ̃A(q, t) and ψ̃B(q, t) then read

∂t

(
ψ̃A(q, t)

ψ̃B(q, t)

)
= −m

(
ψ̃A(q, t)

ψ̃B(q, t)

)
+

(√
2DAiq · η̃A√
2DB iq · η̃B

)

− ρ

 √
X
ρ e

−iq·r0(t)µAiq · F̃ 0→A√
1−X
ρ e−iq·r0(t)µB iq · F̃ 0→B

 , (D2)

with

m =

(
q2kBTAµA + ρµAXiq · F̃A→A

ρµB

√
X(1−X)iq · F̃A→B

ρµA

√
X(1−X)iq · F̃B→A

q2kBTBµB + ρµB(1−X)iq · F̃B→B

)
(D3)

We apply the same procedure to the equation for the
position of the tracer, which reads

d

dt
r0(t) = ρµ0

√
X

ρ
(FA→0 ∗ ψA)(r0(t), t)

+ ρµ0

√
1−X

ρ
(FB→0 ∗ ψB)(r0(t), t) +

√
2D0ξ(t)

(D4)

In order to treat the coupling between the dynamics of
the fields and that of the position of the tracer, we rely on
a path-integral formulation, that was initially proposed
in the situation where the tracer is coupled to a single
fluctuating field [38], and later extended to the situa-
tion where the tracer is coupled to multiple fields [39].
In Section D2, we present a general formalism, that ap-
plies to a tracer particle coupled in a non-reciprocal way
to two fluctuating fields, which themselves interact non-
reciprocally. In Section D4, we show how the formalism
can be applied to the case where the fluctuating fields
represent the stochastic density fields of A and B parti-
cles.

2. General formalism

a. Dynamics of the tracer and of the fields

We consider a tracer, whose position at time t is de-
noted by r0(t), and which diffuses while being coupled to

two fluctuating fields ψA(x, t) and ψB(x, t) (Fig. 6). We
assume that the interactions between the two fields can
be non-reciprocal and also that the tracer-field interac-
tions can be non-reciprocal. The position of tracer r0(t)
obeys the following evolution equation:

d

dt
r0(t) = µ0

∑
α=A,B

∇Kαψα[r0(t)] +
√

2D0η(t), (D5)

where µ0 is the mobility of the tracer, hα is the coupling
constant between the tracer and the field α, and Kα is a
linear operator. Throughout the calculation we use the
following shorthand notations for convolutions between
operators and fields:

AV (x) =

∫
dx′ A(x− x′)V (x), (D6)

ABV (x) =

∫
dx′

∫
dx′′ A(x− x′)B(x′ − x′′)V (x′′).

(D7)

The noise term η(t) has average zero and unit variance:
⟨ηi(t)ηj(s)⟩ = δijδ(t− s).
Dynamics of the fields.— We then assume that the

fields ψA and ψB obey the following dynamics:

∂tψA(x, t) = −RA [∆AAψA +∆ABψB ]

+RAK
′
A[x− r0(t)] +

√
2DAξA(x, t) (D8)

∂tψB(r, t) = −RB [∆BAψA +∆BBψB ]

+RBK
′
B [x− r0(t)] +

√
2DBξB(x, t) (D9)

where µα is the mobility of the field α, Rα is an operator
used to specify if the dynamics is conservative or not (in

Fourier space, R̃α(q) = 1 corresponds to a non-conserved

‘model A’ dynamics, whereas R̃α(q) = q2 corresponds to
a conserved ‘model B’ dynamics [51]). Note that, for
non-reciprocal interactions, Kα ̸= K ′

α. The noise terms
are such that ⟨ξα(x, t)ξβ(x′, s)⟩ = δαβRα(x−x′)δ(t−s).
The first term in the rhs of Eqs. (D8) and (D9), de-

scribes the interactions between the fields, whereas the

r0(t)

non-reciprocal
interactions

fA(x,t) fB(x,t)

non-reciprocal
interactions

FIG. 6. A diffusing tracer is coupled to two fluctuating
fields, whose interactions may be non-reciprocal. The tracer-
field interactions may also be non-reciprocal.
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second term describes the effect of the probe on the evolu-
tion of the fields. Note that, as opposed to the calculation
proposed in [38], we do not assume that the dynamics of
the system can be written as deriving from a Hamilto-
nian H[r0(t), ψA, ψB ]. Indeed, this choice of dynamics
would yield reciprocal interactions between fields A and
B, by construction.
We then follow the lines of the calculation presented

in Ref. [39], and we recall all the steps for completeness.
The main difference is that the tracer-bath coupling are
represented differently in Eq. (D5) and in Eqs. (D8)-
(D9): the reciprocal case would be recovered in the par-
ticular case K ′

A = KA and K ′
B = KB .

b. Generalized Langevin equation for the tracer

The next step of the calculation consists in deriving a
generalized Langevin equation obeyed by the position of
the tracer. To this end, we first solve for the dynamics
of the fields ψα(r, t). We start from Eq. (D8) and (D9).
The equations for ψA and ψB read, in Fourier space:

d

dt

(
ψ̃A(q, t)

ψ̃B(q, t)

)
= −m

(
ψ̃A

ψ̃B

)
+

(
e−iq·r0(t)R̃AK̃

′
A +

√
2DAξ̃A

e−iq·r0(t)R̃BK̃
′
B +

√
2DB ξ̃B

)
, (D10)

where the dependences over q are not written explicitly
for clarity, and where we define the matrix m as

m =

(
R̃A∆̃AA R̃A∆̃BA

R̃B∆̃AB R̃B∆̃BB

)
. (D11)

Eq. (D10) is a simple set of coupled linear first order dif-
ferential equations, whose resolution requires the matrix

exponential M̃ ≡ exp[−(t−s)m], which is written under
the form

Mαβ = c
(+)
αβ e−(t−s)λ+ + c

(−)
αβ e−(t−s)λ− , (D12)

where we defined the matrices

c(±) =
1

2s

(
±mAA ∓mBB + s ±2mAB

±2mBA ∓mAA ±mBB + s

)
,

(D13)
the eigenvalues

λ± =
mAA +mBB

2
± 1

2

√
(mAA −mBB)2 + 4mABmBA,

(D14)
and the quantity

s =
√

(mAA −mBB)2 + 4mABmBA. (D15)

After Fourier inversion, one finds the solution of Eq. (D8)
in real space under the form

ψα(x, t) =

∫ t

−∞
ds
∑
β

{
Mαβ(t− s)RβK

′
β [x− r0(s)]

+
√

2DβMαβ(t− s)ξα(x, s)
}
, (D16)

where Mαβ are the elements of the inverse Fourier trans-

form of M̃.
Starting from Eq. (D5) and using the expression for

the field derived previously [Eq. (D16)], the equation for
the dynamics of the tracer can be rewritten as

d

dt
r0(t) =

√
2D0η(t)

+

∫ t

−∞
ds F [r0(t)− r0(s), t− s] +Ξ[x0(t), t], (D17)

with

F (r, t) = µ0

∑
α,β

∇KαMαβ(t)RβK
′
β(r), (D18)

and

Ξ[r, t] = µ0

∑
α,β

√
2Dβ∇Kα

∫ t

−∞
dsMαβ(t− s)ξβ(r, s)

(D19)
Therefore, the dynamics of the tracer [Eq. (D17)] is for-
mally written as a generalized Langevin equation.

c. Path-integral representation

Starting from Eq. (D17), we now aim at calculating the
mean-square displacement of the tracer at a given time
tf , defined as ⟨[r0(tf ) − r0(0)]

2⟩, and the self-diffusion
coefficient, defined as

Deff = lim
tf→∞

⟨[r0(tf )− r0(0)]
2⟩

2dtf
(D20)

To this end, we follow the lines of Ref. [38], in which a
perturbative path-integral study was outlined. Introduc-
ing a variable p conjugated to the position of the tracer,
the partition function associated to Eq. (D17) can be
written under the form Z =

∫
DxDp e−S[x,p], where the

action S[x,p] = S0[x,p] + Sint[x,p] has the following
contributions:

S0[x,p] = −i

∫
dt pi(t)ẋi(t) +D0

∫
dt pi(t)pi(t),

(D21)

Sint[x,p] = i

∫
dtds pi(t)Fi[r0(t)− r0(s), t− s]θ(t− s)

+

∫
dtds pi(t)Gij [r0(t)− r0(s), t− s]pj(t)θ(t− s).

(D22)

We used the Einstein summation convention and where
θ denotes the Heaviside function. The matrix elements
Gij are defined as Gij(x−x′, t−t′) ≡ ⟨Ξi(x, t)Ξj(x

′, t′)⟩,
and read, in Fourier space:

G̃ij(q, t) =2µ2
0qiqj

∑
α,β,γ

K̃αK̃γkBTβR̃β

×
∑

ν,ϵ=±1

c
(ν)
αβ c

(ϵ)
γβ

e−λν |t|

λν + λϵ
, (D23)
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where the sums over α, β and γ run over all the con-
stituents of the mixture, and where we use the expres-
sion of the matrix exponential Mαβ given in Eq. (D12).
Similarly, the Fourier transform of the components of F ,
defined in Eq. (D18), read

F̃i(q, t) = iµ0q
∑
αβ

K̃αM̃αβ(t)R̃βK̃
′
β . (D24)

At equilibrium, when K̃α = K ′
α, Tα = T and ∆αβ =

∆βα, one can check that the functions F and G satisfy
the relation ∇iFj(x, t) = ∂tGij(x, t) for t > 0 [52].

Expanding in the limit where the tracer-bath interac-
tions are small (i.e. when the interaction action Sint is
small compared to S0) and at first nontrivial order, one
gets the following expression for the mean-square dis-
placement of the tracer:

⟨[r0(tf )−r0(0)]
2⟩ ≃ ⟨[r0(tf )−r0(0)]

2⟩0−IF−IG, (D25)

where the average ⟨. . . ⟩0 is taken over the bare action S0,
and where we defined

IF =

〈
ir0(tf )

2

∫
dt

∫
ds θ(t− s)pi(t)

× Fi[r0(t)− r0(s), t− s]

〉
0

(D26)

≃
tf→∞

4D0

∫
ddq

(2π)d
q2µ0

∑
α,β

K̃α(q)K̃
′
β(q)R̃β(q)

×
∑
ν=±1

c
(ν)
αβ

(D0q2 + λν)2
tf , (D27)

and

IG =

〈
r0(tf )

2

∫
dt

∫
ds θ(t− s)pi(t)

×Gij [r0(t)− r0(s), t− s]pj(s)

〉
0

(D28)

≃
tf→∞

4

∫
ddq

(2π)d
q2µ2

0

∑
α,β,γ

K̃α(q)K̃γ(q)R̃β(q)kBTβ

×
∑

ν,ϵ=±1

c
(ν)
α,βc

(ϵ)
γ,β

λν + λϵ
· D0q

2 − λν
(D0q2 + λν)2

tf . (D29)

Then, using the definition of the effective diffusion
coefficient and integrating over all Fourier modes, we
write the effective diffusion coefficient under the form

Deff = D0 −
∑

α,β D̄αβ with

D̄αβ =
µ0

d

∫
ddq

(2π)d
q2K̃α(q)R̃β(q)

×
∑
γ

∑
ν=±1

c
(ν)
αβ

(D0q2 + λν)2

[
2D0δγβK̃

′
γ(q)

+D0

(
c
(ν)
γβ

λν
+

2c
(−ν)
γβ

λ+ + λ−

)
(D0q

2 − λν)K̃γ(q)

]
. (D30)

3. Correction to the mobility

Here we adapt the calculation above to the correction
to the mobility, following Ref. [34]. We apply a small ex-
ternal force f and compute the correction to the average
tracer position, ⟨r0(tf )− r0(0)⟩. The bare action is now
given by

S0[x,p] =− i

∫
dt pi(t) [ṙ0,i(t)− µ0f ]

+D0

∫
dt pi(t)pi(t), (D31)

The average displacement of the tracer is

⟨r0(tf )− r0(0)⟩ = µ0f tf − I ′F − I ′G, (D32)

where the following averages are computed with Ref. [34]
(Eqs. (72, 73)):

I ′F =

〈
ir0(tf )

∫
dt

∫
ds θ(t− s)pi(t)

× Fi[r0(t)− r0(s), t− s]

〉
0

(D33)

= −iµ0tf

∫
ddq

(2π)d

∑
α,β

∑
ν=±1

qK̃αK̃
′
βR̃βc

(ν)
αβ

λν +D0q2 − iµ0q · f .

(D34)

and

I ′G =

〈
r0(tf )

∫
dt

∫
ds θ(t− s)pi(t)

×Gij [r0(t)− r0(s), t− s]pj(s)

〉
0

(D35)

= −2iµ2
0tf

∫
ddq

(2π)d

∑
α,β,γ

∑
ν,ϵ=±1

q q2K̃αK̃γkBTβR̃β

×
c
(ν)
αβ c

(ϵ)
γβ

(λν + λϵ)(λν +D0q2 − iµ0q · f) . (D36)

To obtain the effective mobility, we take the limit f →
0 and consider the velocity in the direction of the force,
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leading to

µeff = µ0 −
µ2
0

d

∫
ddq

(2π)d

∑
α,β

∑
ν=±1

q2K̃αK̃
′
βR̃βc

(ν)
αβ

(λν +D0q2)2

− 2µ3
0

d

∫
ddq

(2π)d

∑
α,β,γ

∑
ν,ϵ=±1

q4K̃αK̃γkBTβR̃βc
(ν)
αβ c

(ϵ)
γβ

(λν + λϵ)(λν +D0q2)2

(D37)

= µ0 −
µ2
0

d

∫
ddq

(2π)d

∑
α,β

∑
ν=±1

q2K̃αR̃βc
(ν)
αβ

(λν +D0q2)2

×
[
K̃ ′

β + 2µ0kBTβq
2
∑
γ

∑
ϵ=±1

K̃γc
(ϵ)
γβ

λν + λϵ

]
. (D38)

4. Mapping with the situation considered in the
main text

The equations of the main text, which were derived in
the specific situations where the fields ψA and ψB de-
scribe the perturbation around homogeneous densities of
of interacting Brownian particles, are mapped onto the
general equations [Eqs. (D5) and (D10)] using the fol-
lowing expressions for the operators Rα, ∆αβ , Kα and
K ′

α:

R̃α(q) = µαq
2 (D39)

∆̃AA = kBTAq
2 + ρXiq · F̃A→A

∆̃BB = kBTBq
2 + ρ(1−X)iq · F̃B→B

∆̃AB = ρ
√
X(1−X)iq · F̃B→A

∆̃BA = ρ
√
X(1−X)iq · F̃A→B

(D40)

K̃A = −
√
ρX
q2 iq · F̃A→0

K̃B = −
√

ρ(1−X)

q2 iq · F̃B→0

(D41)

̸=

K̃
′
A = −

√
ρX
q2 iq · F̃ 0→A

K̃ ′
B = −

√
ρ(1−X)

q2 iq · F̃ 0→B

. (D42)

5. Expression of the long-time diffusion coefficient
and mobility

Using the mapping from Eqs. (D39)-(D42), we get the
following expression of the effective diffusion coefficient
of the tracer particle:

Deff

D0
= 1−

∑
α,β,γ

µ0µβ

∫ ∞

0

dq

6π2
q2ρ
√
XαXγ iq · F̃ α→0

×
∑
ν=±1

2c
(ν)
αβ

(D0q2 + λν)2

[
δγβ iq · F̃ 0→γ

+
Tβ
T0

(D0q
2 − λν)

∑
ϵ=±1

c
(ϵ)
γβ

λν + λϵ
iq · F̃ γ→0

]
, (D43)

where λ±1 denote the eigenvalues of m , and where the

coefficients c
(±1)
αβ are the elements of the matrices

c(±) =
1

2s

(
±mAA ∓mBB + s ±2mAB

±2mBA ∓mAA ±mBB + s

)
,

(D44)
with

s ≡ {[(q2kBTAµA + ρµAXiq · FA→A)

− (q2kBTBµB + ρµB(1−X)iq · FB→B)]
2

+ 4ρ2µAµBX(1−X)(iq · FA→B)(iq · FB→A)}1/2.
(D45)

The expression given of Deff/D0 in the main text
[Eq. (6)] is obtained by considering the simple case where
all the particles have the same mobilities, the same dif-
fusion coefficients, and are connected to the same ther-
mostat. We also consider the particular case where
the forces derive from pseudo-potentials, i.e. in Fourier
space:

F α→β(q) = −iqϕ̃α→β(q). (D46)

This yields the expression from the main text:

Deff

D0
= 1−

∑
α,β,γ

∈{A,B}

∫
dq

6π2
ρq2ϕ̃α→0(q)

×
∑
γ

√
XαXγ

[
Cαβγ

0→γ ϕ̃α→0(q) + Cαβγ
γ→0ϕ̃γ→0(q)

]
,

(D47)

with

Cαβγ
0→γ = δγβ

∑
ν=±1

2c
(ν)
αβ

(1 + λ̄ν)2
, (D48)

Cαβγ
γ→0 =

∑
ν,ϵ=±1

2c
(ν)
αβ c

(ϵ)
γβ

(1 + λ̄ν)2(λ̄ν + λ̄ϵ)
(1− λ̄ν), (D49)

where we defined λ̄ν = λν/(D0q
2).

Similary, using the mapping and the expression of the
mobility [Eq. (D38)], we get

µeff

D0
= 1−

∑
α,β,γ

µ0

∫ ∞

0

dq

6π2
q2ρ
√
XαXγ iq · F̃ α→0

×
∑
ν=±1

c
(ν)
αβ

(D0q2 + λν)2

[
δγβ iq · F̃ 0→γ

+ 2µ0kBTβq
2
∑
ϵ=±1

c
(ϵ)
γβ

λν + λϵ
iq · F̃ γ→0

]
. (D50)

Appendix E: Effective mobility of a probe coupled
non-reciprocally to a single bath

In this section, we explain the derivation of the ef-
fective mobility of a probe coupled non-reciprocally to a
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single bath (see Eq. (8) in the main text). We rely on the
derivation presented in [40], in which the mean displace-
ment of a probe linearly coupled to a generic fluctuating
field, and submitted to a driven harmonic confinement,
is computed. In Eq. (A.3) from this reference, the terms
in brackets in the integrand has two contributions: the
first one originates from memory effects, and should be
proportional to the effect of the bath on the tracer times
that of the tracer on the bath; the second one originates
from the noise of the bath, and should be proportional
to the square of the effect of the bath on the tracer.

Denoting by (1−δ) the effect of the bath on the tracer,
as in the main text, and taking the limit of a harmonic
trap of vanishing stiffness and vanishing velocity, we find
from Eq. (A.3) in [40]:

µeff = µ0 −
1

3

∫
dq

(2π)3
q2K̃2

Ã

(1− δ)((1− δ)D0q
2 + R̃Ã)

(D0q2 + R̃Ã)2
,

(E1)
Using the following mapping between the notations of
[40] and our notations: K̃2 = ρṽ2, Ã = 1+ρṽ, R̃ = µ0q

2,
we find the result given in the main text. This expression
can also be obtained as a consequence of the more general
expression of the long-time mobility [Eq. (D38)].

Appendix F: Low-density limit

1. Friction

In order to measure the friction of the tracer particle in
the low-density limit, we assume that it is submitted to
a small external force, along the lines of [41]. Applying
a force F on the probe disturbs the pair distribution
function gαβ(r), which is now a solution of

0 = 2D0∇ ·
[
e−uαβ∇ (euαβgαβ)

]
+ µ0F · ∇gαβ , (F1)

where we recall the definition of uαβ given in the main
text: uαβ(r) = [ϕα→β(r) + ϕβ→α(r)]/2kBT . We use the
ansatz

gαβ(r) = g0αβ(r) [1 + q(r)F · r̂] , (F2)

where g0αβ(r) is the pair distribution function in the ab-
sence of external force. In the limit of small force, the
first order in F = F F̂ reads

0 = 2D0∇ ·
[
e−uαβ(r)∇

(
q(r)F̂ · r̂

)]
+ µ0F̂ · ∇e−uαβ(r).

(F3)
Writing explicitly the derivative and using D0 = kBTµ0,
we get

2∇·
[
e−uαβ(r)∇

(
q(r)F̂ · r̂

)]
=

1

kBT
F̂ · r̂u′αβ(r)e−uαβ(r).

(F4)
The friction created by the bath particles is

F b =
∑
β

ρβ

∫
gαβ(r)∇ϕβ→α(r)dr. (F5)

Using the ansatz (F2) leads to

F b =
∑
β

ρβ

∫
e−uαβ(r)q(r)(F · r̂)r̂ϕ′β→α(r)dr (F6)

=
∑
β

ρβ
3
F

∫
e−uαβ(r)q(r)ϕ′β→α(r)dr (F7)

The relative change in mobility is thus

µeff − µ0

µ0
=
∑
β

ρβ
3

∫
e−uαβ(r)q(r)ϕ′β→α(r)dr. (F8)

2. Long-time diffusion coefficient

From Eq. (S21) in Ref. [42], the correction to the long
time diffusion coefficient of the probe is given by

∆D = − lim
s→0

lim
k→0

〈
e−iq·r1LN (s− LN )−1LNe

iq·r1
〉
ss
.

(F9)
The average is defined by ⟨f⟩ss =

∫
f(X)PN (X)dX

where X is the vector containing the coordinates of all
the particles and PN (X) is the steady state probability
density: LNPN = 0. The Liouville operator is given by

LNf(X) =D0

N∑
n=1

∇rn
·
[
∇rn

f

+ f
∑
m̸=n

∇rnϕS(m)→S(n)(rn − rm)

]
. (F10)

We now compute LNe
iq·r1PN (X). First, as LNPN = 0,

at least one derivative should act on eiq·r1 . Second, as
the limit k → 0 will be taken, at most one derivative
should act on eiq·r1 . We are left with

LNe
iq·r1PN (X) = D0e

iq·r1iq ·
[
2∇r1

PN (X)

+ PN (X)∇r1

∑
m ̸=1

ϕS(m)→S(1)(r1 − rm)

]
. (F11)

To simplify, we consider only two particles; we will mul-
tiply by the density afterwards. We also take PN (X) =
g0αβ(r1 − r2) = exp(−uαβ(r1 − r2)), leading to

LNe
iq·r1PN (X)

= −D0e
iq·r1−uαβ(r1−r2)iq · [2∇r1uαβ(r1 − r2)

−∇r1ϕβα(r1 − rj)] (F12)

= −D0e
iq·r1−uαβ(r)iq · ∇r [2uαβ(r)− ϕβα(r)] (F13)

= −D0e
iq·r1−uαβ(r)iq · r̂ϕ′αβ(r), (F14)

where r = r1 − r2. Integrating by parts on the left in
Eq. (F9) and taking the limit k → 0 leads to

∆D = −
∑
β

µ2
0ρβIαβ (F15)
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with

Iαβ = lim
s→0

∫
(q̂ · r̂)ϕ′β→α(r)(s− Lαβ)

−1

× g0αβ(r)ϕ
′
α→β(r)(q̂ · r̂)dr. (F16)

We introduce

χαβ(r, t = 0) = g0αβ(r)ϕ
′
α→β(r)(q̂ · r̂), (F17)

so that

lim
s→0

(s− Lαβ)
−1χαβ(r, t = 0) = χ̃αβ(r, s = 0). (F18)

The Laplace transform is solution of

Lrχ̃αβ(r, s = 0) = −χαβ(r, t = 0)

= −e−uαβ(r)ϕ′α→β(r)(q̂ · r̂). (F19)

Taking the ansatz

χ̃αβ(r, s = 0) = g0αβ(r)Xαβ(r)q̂ · r̂, (F20)

Xαβ(r) is the solution of

2∇ ·
[
e−uαβ(r)∇r (Xαβ(r)q̂ · r̂)

]
= −D−1

0 e−uαβ(r)ϕ′α→β(r)(q̂ · r̂). (F21)

Plugging the ansatz (F20) in the correction, we get

Iαβ =
1

3

∫
ϕ′β→α(r)e

−uαβ(r)Xαβ(r)dr, (F22)

so that finally

Deff −D0

D0
= −

∑
β

µ0ρβ
3kBT

∫
ϕ′β→α(r)e

−uαβ(r)Xαβ(r)dr.

(F23)
Finally, defining Yαβ = −µ0Xαβ/kBT , the correction and
the definition of Yαβ(r) read

Deff −D0

D0
=
∑
β

ρβ
3

∫
ϕ′β→α(r)e

−uαβ(r)Yαβ(r)dr,

(F24)
and

2∇·
[
e−uαβ(r)∇r (Yαβ(r)q̂ · r̂)

]
=

1

kBT
q̂·r̂ϕ′αβ(r)e−uαβ(r).

(F25)
We note that Eqs. (F25, F24) are analogous to Eqs. (F4,
F8) for the effective mobility, the only change being that
u′αβ(r) in the r.h.s of Eq. (F4) is replaced by ϕ′αβ(r) in

Eq. (F25). At equilibrium, ϕβα = uαβ and the Einstein
relation is recovered.

3. Numerical evaluation of the correction

Equations (F4) and (F25) defining q(r) and Yαβ(r)
cannot be integrated analytically in general. We rewrite
the equations here in a dimensionless form. The correc-
tion to the correlation satisfies

∇ ·
[
e−u(r)∇ (q(r)n · r̂)

]
= n · r̂v′(r)e−u(r), (F26)

where u(r) = uαβ(r) and v(r) = uαβ(r) for the mobility
and v(r) = ϕαβ(r) for the diffusion coefficient; the vector
n is arbitrary. In arbitrary dimension d, expanding this
equation leads to

q′′ +

(
d− 1

r
− u′

)
q′ − d− 1

r2
q = v′. (F27)

The correction to the quantity A (A = µ or A = D,
depending on the function v(r) used to compute q(r)) is
then given by

∆A

A
=
Sd−1ρ̄β

2d

∫ ∞

0

e−u(r)w′(r)q(r)rd−1dr, (F28)

where w(r) = ϕβα(r), and Sd denotes the surface of the
d-dimensional unit sphere.

Instead of solving for q(r), we introduce p = qe−u,
which is the solution of

p′′+

(
d− 1

r
+ u′

)
p′+

(
u′′ +

d− 1

r
u′ − d− 1

r2

)
p = v′e−u.

(F29)
With p, the correction reads

∆A

A
=
Sd−1ρ̄β

2d

∫ ∞

0

w′(r)p(r)rd−1dr. (F30)

For the correction to the pair correlation to be con-
tinuous at zero (Eq. (F2)), the solution should satisfy
p(0) = 0. If the potentials diverge strongly at the ori-
gin, this condition can be replaced by p(ϵ) = 0, with
small enough ϵ > 0. If the potentials vanish beyond rc,
solving Eq. (F29) for u = v = 0 leads to p(r) ∝ r1−d

for r > rc. This relation can be turned into the relation
p′(r) = 1−d

r p(r), which may be used as the second bound-
ary condition at r = rc. In the case where the potentials
do not vanish beyond a given distance, such as LJ po-
tentials, this boundary condition can still be used with
a large enough rc. These two boundary conditions with
the ODE (F29) form a boundary value problem, which
may be solved numerically.
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[27] Felix Höfling and Thomas Franosch, “Anomalous trans-
port in the crowded world of biological cells,” Rep. Prog.
Phys. 76, 046602 (2013).

[28] Carlo Manzo and Maria F Garcia-Parajo, “A review of
progress in single particle tracking: from methods to bio-
physical insights,” Reports on Progress in Physics 78,
124601 (2015).

[29] Note that taking the limit XA → 0 or XB → 0 corre-
sponds to the situation of a single tracer coupled non-
reciprocally to a bath of particles, which is covered by
our approach.

[30] A A Louis, P G Bolhuis, and J P Hansen, “Mean-field
fluid behavior of the Gaussian core model,” Phys. Rev.
E 62, 7961 (2000).

[31] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen,
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[52] Urna Basu, Vincent Démery, and Andrea Gambassi,
“Dynamics of a colloidal particle coupled to a Gaus-
sian field: from a confinement-dependent to a non-linear
memory,” SciPost Phys. 13, 078 (2022).

http://dx.doi.org/ 10.1103/PhysRevLett.118.118002
http://dx.doi.org/ 10.1103/PhysRevLett.118.118002
http://dx.doi.org/10.1103/PhysRevE.84.011148
http://dx.doi.org/10.1103/PhysRevE.106.064608
http://dx.doi.org/10.1103/PhysRevE.106.064608
http://dx.doi.org/10.1088/1742-5468/ab02e9
http://dx.doi.org/10.1088/1742-5468/ab02e9
http://dx.doi.org/10.1063/1.446602
http://dx.doi.org/10.1063/1.446602
http://arxiv.org/abs/2103.06659
http://arxiv.org/abs/2103.06659
http://dx.doi.org/10.1103/PhysRevE.90.012111
http://dx.doi.org/10.1103/PhysRevE.90.012111
http://dx.doi.org/ 10.1140/epjst/e2012-01529-y
http://dx.doi.org/ 10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1088/1751-8121/ac5d82
http://dx.doi.org/10.1088/1751-8121/ac5d82
http://arxiv.org/abs/2304.12724
http://dx.doi.org/ 10.1016/j.cell.2013.11.028
https://www.lammps.org
http://dx.doi.org/ https://doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/ https://doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/ 10.1016/j.cpc.2021.108171
http://dx.doi.org/10.21468/SciPostPhys.13.4.078

	Enhanced diffusion of tracer particles in nonreciprocal mixtures
	Abstract
	Introduction
	Model
	Numerical evidence for enhanced diffusion
	Main results
	Additional comments

	Breakdown of the Einstein relation
	Analytical description in the limit of soft interactions
	Low-density limit
	Discussion
	Acknowledgments
	Data availability
	Mapping from multi-temperature suspensions to non-reciprocal mixtures
	Numerical methods
	Additional results from Brownian dynamics simulations
	Limit of soft interactions
	Linearized Dean equation
	General formalism
	Dynamics of the tracer and of the fields
	Generalized Langevin equation for the tracer
	Path-integral representation

	Correction to the mobility
	Mapping with the situation considered in the main text
	Expression of the long-time diffusion coefficient and mobility

	Effective mobility of a probe coupled non-reciprocally to a single bath
	Low-density limit
	Friction
	Long-time diffusion coefficient
	Numerical evaluation of the correction

	References


