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Multi‑agent learning via gradient 
ascent activity‑based credit 
assignment
Oussama Sabri 1,3,4*, Luc Lehéricy 2,3,4 & Alexandre Muzy 1,3,4

We consider the situation in which cooperating agents learn to achieve a common goal based solely 
on a global return that results from all agents’ behavior. The method proposed is based on taking into 
account the agents’ activity, which can be any additional information to help solving multi‑agent 
decentralized learning problems. We propose a gradient ascent algorithm and assess its performance 
on synthetic data.

In multi-agent  systems1, multiple agents aim to optimize their individual objectives, interacting with the others 
through these objective functions. Cooperative multi-agent  systems1,2 aim to maximize a common objective as well.

The simplest example of single-agent reinforcement learning problem is the MAB  problem3, in which a set of 
arms are presented to an agent, each associated with a reward probability distribution, unknown to the  agent4. 
The agent pulls one arm at each round, and observes immediately a reward sampled from the selected arm’s 
probability distribution. The agent’s goal is to maximize the cumulative return over a finite number of plays. 
Iteratively, the agent will move towards choosing the arm with the highest return. Formally, the agent will learn 
an optimal policy that maximizes the expected returns.

In the Multi-Agent Multi-Armed Bandit (MAMAB) problem as defined  by5, agents share a set of arms, and 
each arm provides (a possibly different) reward to each agent. This notion of MAMAB is different from ours, 
where each agent disposes of its own set of arms, similarly to Decentralized Partially Observable Markov Decision 
Processes (Dec-POMDP)6–8. In this paper, we focus on taking into account additional information in the learn-
ing process, in the form of an activity variable, and simplify the Dec-POMDP setting by removing the Markov 
evolution of the states of the agents. In other word, we consider a Dec-POMDP with a single state, with access 
to additional data that can be used to refine or alter the objective function.

In the context of multi-agent systems, the nature of the agents’ objective can lead to two distinct scenarios: 
separable and non-separable objectives. In the first case, the MAMAB can be divided into individual MAB 
problems, with the caveat that instead of observing their own individual reward, the agents of each MAB observe 
a linear combination of all individual rewards. Therefore, optimizing these individual rewards collectively maxi-
mizes the overall expected reward for the entire system. Conversely, a non-separable objective arises when the 
multi-agent problem defies simple decomposition into individual MAB problems. Here, the agents’ objectives 
are intertwined and optimizing the reward agent by agent can lead to a local optimum for the entire system. The 
interactions and dependencies among agents in such scenarios make it challenging for agents to promptly and 
individually assess their contributions to the overall objective. This problem is known as the multi-agent credit 
assignment  problem9.

To solve the multi-agent credit assignment problem, we propose the Activity-based Credit Assignment 
(ACA)10,11, which has been developed to better assign credit to individual actions. In general, the activity can be 
any additional information that can help to modify the reward function to better fit the objective. For instance, 
the activity can be the cost incurred when performing the choices, be it in terms of energy, money, time, etc. It 
can also be an indicator of the importance of certain parts of a complex system in the execution of the action, for 
instance the activity of a given neuron when a subject is accomplishing a given task, or the number of calls of a 
function in the execution of a complex program. In ACA, the return from the environment is then computed as a 
function of the activity of actions and the global reward obtained at the end of an episode (a set of actions). Here, 
we consider the activity as a measure of the cost of the actions, in the sense that the multi-agent system wants 
to optimize its benefit (reward) over cost (activity) ratio. The concept of  activity12 has been used successfully in 
multi-agent learning across several domains such as  economics13,  biology14 or cognitive  sciences15. This work 
opens up a wide range of possible complex system applications for the future. More details on how the activity 
can be taken into account can be found in "Problem formulation"  section.
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We propose a policy gradient  algorithm16 in "Policy gradient optimization" section, which is shown to con-
verge to a zero of the gradient. Although stochastic gradient approaches converge more slowly than dedicated 
MAB algorithms in the framework they are designed for, gradient approaches can be shown to work in a wide 
variety of settings and machine learning  domains6,17,18. This provides a general and formal way to study and 
ensure the convergence of the resulting algorithms, for both separable and non separable agent objectives. We 
evaluate the performance of our method on synthetic data in "Simulation results" section , for different forms 
of reward. Supplementary material contains details of the simulations (Sect. 1), the proof of the convergence 
theorem (Sec.2), and additional illustrations of the algorithm’s behavior (Sec.3).

ionProblem formulation

Notations and definitions. Let N∗ be the set of positive integers {1, 2, . . . } , and for each n ∈ N
∗ , write [n] 

the set {1, . . . , n}.
The multi-agent multi-armed bandit problem, MAMAB in short, is defined as follows.

Definition 1 (MAMAB) Let n ∈ N
∗ be a number of multi-armed bandits (MAB for short). For each i ∈ [n] , let 

ki be the number of arm of agent i (in MAB i). Let A be the set of vectors of arms, that is A = [k1] × · · · × [kn].
A decision is a vector a = (a1, . . . , an) ∈ A where for all i ∈ [n] , ai is the arm pulled by agent i. We write 

A = (Ai)i∈[n] the random variable taking values in A that contains the actual decision of the agents. Its dis-
tribution is called the policy of the agents. Each agent picks an arm independently of the other agents, that is 
P(A = a) =

∏n
i=1 P(Ai = ai) . The marginal P(Ai = ·) is called the individual policy of agent i.

We consider two types of rewards. 

1. Separable reward. When agent i pulls arm a (that is Ai = a ), it gains a reward Ri following a distribution Ri,a . 
It also receives an additional feedback, the activity of the agent, which is a real-valued random variable Ei . 
Conditionally to the decision A, the individual reward-activity pairs (R1,E1), . . . , (Rn,En) are independent, 
and the distributions of the reward Ri and activity Ei of agent i only depend on Ai , the choice made by that 
agent.

  To update their individual policies, the agents observe the activities E1, . . . ,En , but only have access to the 
global reward R =

∑
i∈[n] Ri , not the individual rewards. We call E =

∑
i∈[n] Ei the total activity. In other 

words, n agents from independent MAB problems collaborate together through the shared global reward.
2. General (non-separable) reward. After picking decision A, the agents observe a reward R, and each agents 

observes its own activity Ei , i = 1, . . . , n.

We call this the MAMAB problem with n agents, number of arms (ki)i∈[n] , reward distributions (Ri,a)i,a and 
activities (Ei)i∈[n].

Figure 1 represents the interactions between the agents and the environment in the MAMAB. The optimiza-
tion algorithm used to update the policy parameters is described in "GAtACA-parallel search algorithm" section.

Remark 1 Note the similarity of the MAMAB problem with other bandit problems:

• Adversarial Bandits with Delayed, Aggregated Anonymous Feedback (Aggregated Bandit in short),  see19 
for results on the non-adversarial version,  and20 for results on the adversarial version when the individual 
rewards are observed. In Aggregated Bandits, the rewards resulting from an action can be delayed and 
split over several time steps. While it is possible to write a MAMAB as an Aggregated Bandit, this makes it 
adversarial by necessity because the delay, number of arms of the bandit, and reward distribution, depend 
on the time step: at time 1, the reward is delayed for n− 1 time steps and follows the distributions of MAB 
1, then at time 2, the reward is delayed for n− 2 time steps and follows the distribution of MAB 2, and so 
on. This mimics the fact that the global reward is only observed at the end and makes the Aggregated Bandit 
formulation non-stochastic. As is, this setting also requires the numbers of arms ki , i ∈ [n] , to be equal.

Figure 1.  Interactions between the agents and the environment in the MAMAB, and optimization algorithm.
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• Matroid Bandits,  see21 for a definition and recent results, are a natural framework for MAMAB problems. A 
matroid is a finite set [n] and an independence system, which is a set of subsets of [n] satisfying nice condi-
tions from an optimization perspective. A matroid bandit is a MAB with an additional layer of arms, the 
super-arms, indexed by the maximal elements of the independence system (so, these labels are sets of arms 
from the original MAB). Pulling a super-arm consists in pulling all the arms in the super-arm.

  The independence system I  associated with a MAMAB is such that X ∈ I  if and only if the elements of 
X are of the form (i, a) with i ∈ [n] and a ∈ [ki] , and for all (i, a) ∈ X and (j, b) ∈ X , i = j if and only if a = b . 
In other words, X ∈ I  if it describes a subset of the n bandits and exactly one arm from each bandit in this 
subset. Unfortunately, existing works and algorithms assume that all the rewards R1, . . . ,Rn , are available, 
which is called the semi-bandit feedback. To our knowledge, there exists no result in the bandit setting con-
sidered here.

• A Combinatorial Bandit is a MAB with an additional layer of arms. Arms from this layer, or super-arms, 
are sets of arms from the original MAB, often assumed to share the same  cardinality22. Pulling a super-arm 
consists in pulling all the arms it contains, and observing the sum of the rewards (bandit feedback) or the 
individual rewards of each arm (semi-bandit feedback). MAMABs are not a particular case of Combinatorial 
Bandits, as those do not respect the multi-agent structure, more precisely the fact that one and only one arm 
should be sampled from each MAB during each episode.

Definition 2 (Parameterized Policy) For each θ = (θ1, . . . , θn) ∈ R
k1 × · · · × R

kn , let πθ be the policy under 
which the random variables (A1, . . . ,An) are independent and for each i ∈ [n] and a ∈ [ki],

where for any i ∈ [n] , softmax(θi , ·) is the softmax function applied to θi , which defines a probability vector on 
[ki] . We call θi the credit vector over the actions in [ki].

Therefore, for any decision a = (a1, . . . , an) ∈ A and any parameter θ,

The goal of the agents is to maximise the expected value of a random variable X. We call the function X the 
objective. Two examples are considered in this article: 

1. X =
R

n
 : the objective is to maximize the global reward. In this case, if the reward R is separable, then the 

objective X is also separable, that is, X is, up to a multiplicative constant, a sum of independent random 
variables Ri such that each depends only on one component of the decision. In this case, optimizing the 
global reward is equivalent to optimizing the individual rewards, which are independent optimization prob-
lems, with the difficulty coming from the fact that the individual rewards are not observed.

2. X =
R

E
 : the objective is to maximize the ratio between the global reward and the total activity. For instance, 

if Ei is the time spent while making the choice of the action Ai , then X is the reward per unit of time rather 
than the global reward R. In this case, the objective X is not separable.

The experiment proceeds as follows: a decision A is chosen according to the policy πθ . Then, the environment 
returns two feedbacks, R and (E1, . . . ,En) . We call one step of this procedure an episode, that is, sampling a deci-
sion and collecting the return. Finally, the policy parameter θ is updated based on the decision, the feedbacks, 
and information from past episodes. We write A(e) = (A

(e)
i )i∈[n] ∈ A the decision sampled at episode e, and 

likewise R(e)
i  , E(e)i  , R(e) and E(e) for all i ∈ [n].

Remark 2 Conditionally to (A(e))e�1 , the feedbacks ((E(e),R(e)))e�1 are independent: what happens during an 
episode only depends on the choices made during this episode, not on what happens at other times.

Policy gradient optimization. Write Eθ the expectation under the probability distribution πθ.
The agents’ goal is to maximize the following objective function

where X is the objective and �a = E[X(1) |A(1) = a] . Note that this conditional expectation does not depend on 
θ : it is a function of the environment and the decision, not of the policy.

Theorem 1 Let B(1) be a random variable that is independent of A(1) under the parameter θ , then for all i ∈ [n] 
and a ∈ [ki],

πθ (Ai = a) =
eθi,a∑

b∈Ai

eθi,b
=: softmax(θi , a),

πθ (A = a) =
∏

i∈[n]

πθ (Ai = ai) =
∏

i∈[n]

eθi,ai∑

b∈Ai

eθi,b
=

∏

i∈[n]

softmax(θi , ai).

(1)θ  −→ Eθ [X
(1)] :=

∑

a∈A

πθ (A
(1) = a) �a ,
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This results in a gradient ascent algorithm whose convergence is ensured by the following theorem:

Theorem 2 Let B(1) be a random variable that is independent of A(1) under the parameter θ . Assume that there 
exists r > 0 such that |X(e)| � r and |B(e)| � r , for all e � 1 . Let (αe)e�1 be a sequence of nonnegative real numbers 
such that

Update (θ(e))e�1 according to the rule: for each i ∈ [n] and a ∈ [ki],

For each e � 1 , i ∈ [n] and a ∈ [ki] , let θ̃ (e)i,a = θ
(e)
i,a −maxa′∈[ki]θ

(e)
i,a′ . Then (Eθ(e) [X

(e)])e�1 converges and the limit 
points of (θ̃ (e))e�1 are all in the same connected component of the set of zeroes of the gradient of θ̃ ∈ � �−→ E

θ̃
[X(1)] , 

where � is the (compact) set of credit vectors θ̃  such that θ̃i,a ∈ [−∞, 0] and maxa′∈[ki]θ̃i,a′ = 0 for all i and a.

The two theorems above are proved in the supplementary materials (Sect. 2).

Remark 3 With this algorithm, the update of the policy of agent i, which only depends on θi , relies only on agent 
i’s actions and on the feedback X(e) : both the policy and its update scheme are fully decentralized, each agent 
makes decisions and updates its decision process independently of the others.

GAtACA‑parallel search algorithm. Substituting one sample of the expectation in Equation (2) to esti-
mate the gradient leads to the updating scheme in Equation (4) for some positive sequence (αe)e�1 ⊂ R

+ . We 
choose the baseline as a discounted mean: B(e) =

1− γ

1− γ e−1

∑e−1
k=1γ

e−k−1X(k) , with B(1) = 0 , and γ = 0.99 . This 

algorithm and choice of baseline are similar to the REINFORCE algorithm introduced  in23.
Algorithm 1 describes the general algorithm called GAtACA-Parallel. The parallel property refers to the fact 

that at each time, agents take their decision in parallel.

As illustrated in Fig. 1, each agent i uses its own optimization algorithm, GAtACA-Parallel, independently 
from other agents to update its policy πθi . This is a decentralized policy where each agent relies only on a partial 
knowledge of the other agents’  actions24 through the global reward and total activity.

(2)
∂Eθ [X

(1)]

∂θi,a
= Eθ

[
(1

A
(1)
i =a

− softmax(θi , a))(X
(1) − B(1))

]
.

(3)
+∞∑

e=1

αe = +∞ and

+∞∑

e=1

α2
e < +∞.

(4)θ
(e+1)
i,a = θ

(e)
i,a + αe(1A

(e)
i =a

− softmax(θi , a))(X
(e) − B(e)).
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Simulation results
To guarantee the convergence, with probability one, to a zero of the gradient of the objective function, Theorem 2 
states that the sequence (αe)e�1 must satisfy the Robbins-Monro conditions in Equation (3)25,26. This is a usual 
assumption in policy gradient algorithms. Nevertheless, how to choose this sequence in practice is a delicate issue 
with no universal answer. Instead, we use a small constant learning rate ( α = 10−2 ) that works well in practice. 
Figure 1 of supplementary materials shows learning curves for more values of α . Despite not being covered by 
the above theorem, the simulations in this section show that the algorithm does approach an optimal solution.

The MAMAB parameters are as follows: there are n = 30 agents and the number of actions of each agent ki 
is drawn randomly in [[2; 7]] . We consider a deterministic distribution for Ri and Ei conditionally to the actions, 
that is, for all i ∈ [n] and a ∈ [ki] , Ri =

∑
a∈[ki]

µi,a1Ai=a (so that it is separable) and Ei =
∑

a∈[ki]
νi,a1Ai=a . 

Only a subset of n′ MAB contributes to the global reward: a set I ⊂ [n] of size n′ = 20 is sampled at random, 
and for all i ∈ [n] \ I  and a ∈ [ki] , µi,a = νi,a = 0 . For the other agents i ∈ I  , the values µi,a and νi,a are drawn 
independently from a uniform distribution in [−1, 1] and [0, 1] respectively. Each experiment is run for 105 
episodes. Further details about the implementation are provided in supplementary materials (Sect. 1).

Separable objective. Figure  2 shows the evolution of GAtACA-Parallel algorithm when the objective 
function is X(e) = R(e)/n.

Figure 2 (right), shows the evolution of the individual policy of agent i = 6 (among the 30 agents). This agent 
is one of the agents contributing to the global reward. The probability of the action with the highest contribution 
to X, the action a = 3 , increases to 1: this agent’s policy converges toward the optimal one.

The case where an agent does not contribute to the global reward will see its policy parameters, and a fortiori 
its individual policy, remain stationary (see Fig. 3 for agent i = 30 in supplementary materials). This is due to 
the cancellation of the updates on the parameters of (θi,a)a∈[ki] with the same average reward through episodes, 
on average. When α is sufficiently small, the amount of the gradient added to an action parameter θi,a during the 
update, when this action is selected, will be substituted when a is not selected in the upcoming updates. More 
generally, if several actions from a agent are optimal, then the algorithm will assign a probability that tends to 1 
to the set of optimal actions but will not favour any one of them over the others.

Non‑separable objective. We consider the same setting as in "Separable objective" section  with the objec-
tive function X = R

E . All the agents learn the optimal policy and the objective converges asymptotically toward 
its maximum. An interesting behavior when the objective X is non-separable is that the probability that an agent 
takes a given action is not always monotone. In fact, as the learning proceeds, each agent corrects its behavior 
as the other agents are learning. In Fig. 3, agent i = 6 reinforces action a = 3 (in green) first before it changes 
direction and reinforces action a = 2 (in blue). Since the objective X is a ratio between the global reward R and 
the total activity E, the optimal trajectory is neither the maximum of R nor the minimum of E (See Fig. 2 in sup-
plementary materials).

Conclusion and perspectives
We proposed a general gradient-based policy approach to solve the credit assignment problem in the case of 
cooperative MAMABs. In this model, agents make decisions independently of the other agents’ choices, and get 
a reward that takes all their actions into account. The, they seek to optimize their individual policy to maximize 
the shared reward. In addition to the shared reward, each agent has access to a personal, additional information, 

Figure 2.  Evolution of the objective X(e)
=

R
(e)

n
 (left) and agent i = 6 ’s policy πθ(e) (Ai = ·) (right). The objective 

X is increasing and converges asymptotically to its maximum (solid line), as the agent reinforces the action 
with the highest return. The curves are averaged over 30 realizations, the 95% confidence intervals are shown in 
lighter color.
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its activity. We compare two cases, one where the activity is ignored and one where the agents aim to maximize 
the ratio of the reward and the total activities of all agents.

We proposed a gradient-based policy GAtACA-Parallel algorithm to solve this cooperative MAMAB problem 
for any form of multi-agent objective function X. Its convergence to a zero of the gradient holds for properly 
chosen learning rates.

A possible perspective is to study under which conditions the GAtACA-Parallel algorithm converges towards 
the globally optimal solution, and not merely a zero of the gradient, as well as its algorithmic computational 
complexity, and its rate of convergence.

Another application is to extend the use of activity for more general RL models, starting with Decentralized 
 POMDP6–8.

Code availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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