A Krpenský 
  
M Bednařík 
  
J-P Groby 
  
Willis couplings in continuously varying cross-sectional area duct

   

Willis couplings in continuously varying cross-sectional area duct

I. INTRODUCTION

Since the seminal work of Willis in the 80's [START_REF] Willis | Variational principles for dynamic problems for inhomogeneous elastic media[END_REF] , the eponymous materials have received an increasing attention. This increasing attention has even been exponential since their experimental evidence/demonstration [START_REF] Koo | Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space[END_REF][START_REF] Muhlestein | Experimental evidence of willis coupling in a one-dimensional effective material element[END_REF][START_REF] Liu | Willis metamaterial on a structured beam[END_REF] . The Willis coupling parameters couple the potential and kinetic energy in the acoustic conservation relations, therefore enhancing the ability to control waves in metamaterials compared to other materials that do not exhibit such coupling. These parameters have thus been employed to design and analyze PT symmetric [START_REF] Merkel | Unidirectional zero sonic reflection in passive PT -symmetric willis media[END_REF] , wave front shaping [START_REF] Li | Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts[END_REF] , or non-reciprocal [START_REF] Quan | Nonreciprocal willis coupling in zero-index moving media[END_REF][START_REF] Zhai | Active willis metamaterials for ultracompact nonreciprocal linear acoustic devices[END_REF][START_REF] Olivier | Nonreciprocal and even willis couplings in periodic thermoacoustic amplifiers[END_REF] systems. Most of the works to date have focused on the physical origins [START_REF] Sieck | Origins of willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization[END_REF] , calculation [START_REF] Ponge | Dynamic homogenization theory for nonlocal acoustic metamaterials[END_REF][START_REF] Shuvalov | Effective willis constitutive equations for periodically stratified anisotropic elastic media[END_REF][START_REF] Nemat-Nasser | Homogenization of periodic elastic composites and locally resonant sonic materials[END_REF] , and enhancement [START_REF] Melnikov | Acoustic metaatom with experimentally verified maximum willis coupling[END_REF] of Willis coupling, but only a few have focused on deriving a closed form of these parameters [START_REF] Groby | Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials[END_REF] to ease Willis material engineering use. Effectively, various systems are asymmetric and can thus be modeled as Willis materials. In this article we will focus on a one-dimensional periodic system the properties of which vary continuously in a periodic manner.

This system simply consists of a duct the radius of which varies continuously and periodically leading to an asymmetric profile. The acoustic wave propagation of such system has been extensively studied in the past mostly for two purposes: the acoustic wave propagation in horns [START_REF] Campos | Some general properties of the exact acoustic fields in horns and baffles[END_REF][START_REF] Pagneux | A study of wave propagation in varying cross-section waveguides by modal decomposition. part i. theory and validation[END_REF] and in corrugated ducts in the absence [START_REF] Samuels | On propagation of waves in slightly rough ducts[END_REF] or in the presence [START_REF] Golliard | Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-flow interaction[END_REF] of flow. The propagation of plane acoustic waves in ducts the cross-sectional area of which varies in space is generally based on the Webster equation. This equation is commonly used to analyze and design mufflers, resonators, and other types of acoustic filters for noise control applications [START_REF] Beranek | Acoustics: Sound fields, transducers and vibration[END_REF][START_REF] Červenka | Acoustic bandpass filters employing shaped resonators[END_REF] , but also in the analysis of musical instruments such as flutes and organ pipes, where the geometry of the instrument affects the resonance frequencies and the sound quality [START_REF] Chaigne | Acoustics of musical instruments[END_REF] . An accurate or at least a reasonably close analytical solution for the Webster equation is thus crucial to study the behavior of sound waves in such systems. Several papers have been dedicated to solving this equation [START_REF] Eisner | Complete solutions of the "webster" horn equation[END_REF][START_REF] Rienstra | Webster's horn equation revisited[END_REF][START_REF] Rudenko | Nonlinear and linear wave phenomena in narrow pipes[END_REF][START_REF] Bednařík | A wide class of analytical solutions of the webster equation[END_REF] . Although an approximate analytical solution accounting for viscothermal losses has been proposed [START_REF] Honzík | On the acoustic transfer function of slowly tapered small horns filled with thermo-viscous fluid[END_REF] , these losses that occur at the duct boundaries are often neglected. To our knowledge, any of the former articles was interested in deriving the effective properties in such problems in the presence of viscothermal losses and when the corrugation profile is asymmetric.

Inspired by Refs. 9, 15, and 28, the closed form expressions of the effective properties, including the asymmetric Willis coupling, describing the acoustic wave propagation in a duct the radius of which varies periodically and continuously are derived and analyzed. A related article was conducted in elasticity [START_REF] Shuvalov | Effective willis constitutive equations for periodically stratified anisotropic elastic media[END_REF] , in which the procedure was different and validated on a two-layer laminate under SH polarization.

The article is organized as follows. In Section II, the equations describing the acoustic wave propagation in the duct of continuously varying radius are reminded. The procedure to derive the effective properties, based on the first order Padé's approximation of the matrix exponential and Peano-Baker series expansion of the matricant, is described and applied to our problem in Section III. Results in two limit cases, i.e., one where the profile leads to narrow duct portion of short period and the other where the profile leads to wider duct of longer period, are discussed in Section IV. In particular, the dispersion introduced by the radius profile is analyzed in view of homogenization limit.

II. GENERAL STATEMENT

We consider the one-dimensional acoustic wave propagation in a d-periodic duct of continuously varying circular cross-sectional area S(x) = πr(x) 2 as depicted in Fig. 1. Assuming an implicit time dependence e -iωt , pressure p(x) and flow V (x) = S(x)V (x), where V (x) is the particle velocity, satisfy the following first order equations

             iω ρ(x)V = ∂ p ∂ x , iω C(x)p = ∂ V ∂ x , (1) 
where ρ(x) = ρ(x)/S(x) and C(x) = C(x)S(x) are respectively the reduced density and compressibility (inverse of the bulk modulus, C = 1/ K). This system is usually cast in the matrix form

∂ ∂ x W =       0 iω ρ(x) iω C(x) 0       W = A(x)W, (2) 
where W =< p, V > T is the state vector and A(x) is the propagation matrix. The latter matrix A depends on x and does not commute with itself for different values of x, i.e., A(x)A(x ′ ) -

A(x ′ )A(x) ̸ = 0 when x ′ ̸ = x.
The solution of the system represented by Eq. ( 2), which relates the state vectors at both sides of the unit-cell via W(d) = M d W(0), also involves a matricant M d that takes the form of a Peano-Baker series expansion

M d = Id + d 0 A(x) dx + d 0 A(x) x 0 A(ζ ) dζ dx + • • • . (3) 
which is usually evaluated iteratively. Each iteration corresponds to an increase of the order of the Taylor expansion. Of particular interest is the second order iteration that reads as

M (2) d =       1 -ω 2 d 0 ρ(x) x 0 C(ζ ) dζ dx iω ρd iω Cd 1 -ω 2 d 0 C(x) x 0 ρ(ζ ) dζ dx       + O kd 3 , (4) 
where ρ = 

III. DERIVATION OF THE EFFECTIVE PROPERTIES

We assume a d-periodic one-dimensional reciprocal system of respective propagation matrix A e . The state vectors at both sides of the unit-cell are related via W(d) = exp (A e d) W(0) = TW(0), with T the transfer matrix of respective elements t i j , (i, j) ∈ (1, 2). Following [START_REF] Groby | Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials[END_REF] , the propagation matrix is correctly approximated by the inversion of the first order Padé's approximation of the transfer matrix (i.e., the matrix exponential)

A e ≈ 2 d (T + Id) -1 (T -Id) ≈ 2 d 1 2 + t 11 + t 22       t 11 -t 22 2t 12 2t 21 t 22 -t 11       , (5) 
which directly provides the elements of a reciprocal Willis material

A e = iω       χ a e ρ e C e -χ a e       , (6) 
where ρ e is the effective density, C e is the effective compressibility, and χ a e is the even Willis coupling related to the possible asymmetry of the unit-cell. Note that the reciprocal feature of the system, i.e., det (T) = 1 has been accounted for in Eq.( 5). Verifying this properties can be employed as a validation step, see Appendix A.

Introducing the matricant elements in Eq.( 5) leads to

ρ e = ρ, C e = C, and , χ a e = iω 2d d 0 ρ(x) x 0 C(ζ ) dζ dx - d 0 C(x) x 0 ρ(ζ ) dζ dx . (7) 
The effective density and compressibility are O(ω), while χ a e is exhibited at the next order and is thus O(ω) 2 . The effective density and compressibility are classical results from the first order homogenization. Quantities evaluated according the first order homogenization are hereafter referred to as sub-index H. When the profile is symmetric, i.e., r(x) = r(dx), ∀x ∈ [0, d/2], χ a e vanishes (see Appendix B) and thus the effective density and compressibility become valid at the second order. In other words, the first-order homogenization results become valid at the second order when the profile is symmetric. When the profile is piecewise constant, the effective properties, including the Willis coupling, fall back on the formulas derived in Ref. 28. In addition, the Willis coupling vanishes at low frequency because an asymmetric structure falls back to symmetric at low frequency. The asymmetric Willis coupling is effectively a linear function of the frequency (in the absence of losses) because it appears at the second order. In the absence of losses, χ a e is purely imaginary.

IV. RESULTS AND DISCUSSION

We consider a duct the maximum radius of which is a = 1.5 cm, such that the profile r(x) consists in a reduction of this radius. Only plane waves are also propagating below the cut-on frequency of the first-mode in a duct of radius a, that is frequencies below ≈ 6100 Hz. Viscothermal losses are accounted for via the Stinson's formula [START_REF] Stinson | The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape[END_REF] , which are reminded in Appendix C. The structuration of the duct geometry introduced by the periodic radial profile r(x) induces dispersion of the waves traveling in the duct. To get a grip on it, the dispersion relation of the acoustic waves in a periodic duct composed of two different cross-sectional areas, S max associated to a radius a and S corresponding to a radius r, of the same length, i.e., d/2, is considered. This dispersion relation turns out to be that of a periodic 1D SSH model [START_REF] Su | Solitons in polyacetylene[END_REF] , where the coupling coefficients are simply given by the ratios of the two different cross-sectional areas [START_REF] Coutant | Acoustic su-schrieffer-heeger lattice: Direct mapping of acoustic waveguides to the suschrieffer-heeger model[END_REF] . This relation reads as

cos (kd/2) = ± S max S max + S 2 + S S max + S 2 + 2S max S S max + S 2 cos (k e d) , (8) 
where k e is the effective wavenumber in presence of the periodic structuration and k is the wave number in the straight duct. When k e d = π, the frequency of the lower bound of the first Bragg band gap can be calculated in the absence of losses. This frequency, f B r , is supposed to provide a good approximation of the quantity well below which the effective models are valid. The question that naturally arises becomes: which value of r (or S) should be considered? We thus consider two limit cases: the first one where kd is small but r(x) leads to a narrow duct portion and the second one where kd is larger and r(x) leads to a wider duct cross-sectional area on average.

Figs. 2 (a) and (b) depict the two continuous profiles considered, the equations of which are provided in Appendix D. In the first case, d = 2 cm and the profile has a maximum reduction of the duct radius of 90%. In the second case, d = 6 cm and the profile has a maximum reduction of the duct radius of 50% and much less on average. These two profiles are discretized in 301 segments which are used to evaluate the integrals (Trapezoidal rule) in the effective parameter closed form expressions, Eqs. (7). Instead of iteratively evaluate Eq.( 3) to calculate the matricant, we evaluate the total transfer matrix that links the state vectors at both sides of the unit cell, by multiplying the transfer matrices of each segment T j , i.e., T tot = Π 301 j=1 T j . This solution is then considered as the reference solution, from which the effective properties can be numerically evaluated [START_REF] Shuvalov | Effective willis constitutive equations for periodically stratified anisotropic elastic media[END_REF][START_REF] Groby | Analytical modeling of one-dimensional resonant asymmetric and reciprocal acoustic structures as Willis materials[END_REF] via (c-d) and (e-f). Please note that the range of Re (k e d) over which the dispersion relationships are represented is large and far exceeds the range of validity of the usual homogenization procedures.

A n = log (T tot ) /d (
The two impedances Z ± n are better approximated by Z ± e than they are by Z H and in particular their phases, see Figs. 2 (g-h) and (i-j). Please note that the dynamics of the impedance modulus in the second case Fig. 2 (i) is different from that in the first case Fig. 2 (g). The ratio between the wavelength and the period is thus not the only limit in terms of homogenization, because it only relies on the effective wavenumber and the impedance has also to be accounted for. This is clearly visible on the scattering coefficients by a single unit cell depicted in Fig. 2 (k-l) and

(m-n). In both cases, the scattering coefficients calculated via the second order homogenization, that is when the Willis coupling is accounted for, is accurate over a wider range of frequencies than those calculated via the first order homogenization. Although this is an obvious result, it is worth noting. The asymmetry of the radius profiles are more visible on the phases of the reflection coefficients than on their moduli. These phase differences are clearly exhibited when Willis coupling are accounted for via Z ± e (see Figs. 2 (h) and (j)). The phase of the refection coefficient as calculated with the first order homogenization stands between those as calculated with the Willis coupling. At low frequencies, the phases are equal because an asymmetric structure falls back to symmetric. When the frequency increases, the phases start to differentiate. The results of the first order homogenization results fail when the phase difference between the two reflection coefficients become too large, while the results of the second order homogenization are still satisfactory.

The second order homogenization fails for both transmission and reflection coefficients when the phase of the reflection coefficients are not correctly modeled anymore. Please note that the scattering coefficients of a single unit cell as calculated with the first order Padé's approximation of the function expm (A e d) is in good agreement with the numerically calculated scattering coefficients.

This means that the main source of error in the derivation of the effective properties yields in the truncation of the Peano-Baker series to evaluate the matricant at the second iteration (second order Taylor expansion). Please also note that for longer structures, i.e., more than a single unit cell, the matrix exponential is mandatory to evaluate the scattering coefficients. Finally, the impact of the error on k e and Z ± e can be tempered in the case of longer structures. Indeed, the error on k e can have a greater impact in this case, as the wave propagates over a greater distance in the material. (f)) of the normalized impedances Z ± S/Z 0 . Modulus ((g) and (i)) and phase ((d) and (f)) of the scattering coefficients, i.e., R + , R -, and T . From (c) to (f), results as calculated numerically (continuous curves), with the first order homogenization (dotted curves), and with the second order homogenization (dashed curves)

procedures. From (k) to (n), the markers refer to the scattering coefficients as calculate with the first order Padé's approximation of expm (A e d).

Figures 3 (a-l) depict the normalized effective properties as evaluated numerically (blue continuous curves) and from their closed form expressions (red dashed curves) given in Eqs. (7) for both profiles. Closed form expressions are in excellent agreement with the numerical results, although they deviate when the frequency increases. As pointed out in the previous paragraph, these effective properties are valid over a shorter frequency range in the first case, that is when the profile leads to a narrow duct portion, than in the second case, that is when the period is longer and the duct is wider. Whatever the case, the Willis coupling cannot be neglected in relation to the other effective parameters at high frequency. The Willis coupling is almost purely imaginary which is in accordance with Eqs. (7). Compared to the other normalized effective properties, the Willis coupling clearly cannot be neglected, which emphasizes the need to use a second-order homogenization procedure. eling. Effectively, the asymmetric Willis coupling that is exhibited at the second order, impacts the effective wavenumber but also makes the impedance of the wave propagating in the positive or in the negative directions different as the unit cell is asymmetric. The modeling of these two impedances has also to be accounted for to derive the real and practical validity limit of the scattering coefficients calculated with the effective properties. Wavenumbers, impedances, effective properties, and scattering coefficients as calculated with the second order homogenization procedure are found in good agreement with the numerical results calculated with the standard transfer matrix method, thus validating the proposed method. This article paves the way of the modeling The period d is 6 cm in the second case and the profile is 

G (x) = 1 √ 2π exp - (x/σ -ζ ) 2 2 1 + erf α x/σ -ζ √ 2 , ( 
r(x) = a -0.5a G (x) max (G (x)) -0.2a G † (x) max (G † (x)) , ( 

APPENDIX E: NUMERICAL EVALUATION OF THE EFFECTIVE PROPERTIES

Let us assume that the state vectors at both sides of the unit cell of length d are linked by the total transfer matrix T tot . The effective properties can be numerically evaluated via

A n = logm (T tot ) /d = iω       χ a n ρ n C n -χ a n       = 1 √ 2       Z + n -Z - n 1 1             ik n 0 0 -ik n       1 √ 2       1/Z + n -1 1/Z - n 1       . ( E1 
)
The impedances Z ± n and wavenumber k n can simply be calculated from the diagonalization of A e .

This procedure turns out to be a numerical version of the procedure derived in [START_REF] Shuvalov | Effective willis constitutive equations for periodically stratified anisotropic elastic media[END_REF] .

  dx/d are the mean values of ρ and C, and k = ω ρ C.
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 1 FIG. 1. (color online) Sketch of the configuration and representation of the scattering problem.
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 3 FIG. 3. (color online) Real ((a) and (c)) and imaginary ((b) and (d)) parts of the normalized asymmetric

  D1) with erf(x) the error function and σ , ζ and α constant values.The period d is 2 cm in the first case and the profile isr(x) = a -0.9a G (x) max (G (x)) ,(D2) with α = 40, ζ = 0.1, and σ = 5 × 10 -3 , and max ( f (x)) is the maximum value of f (x), x ∈ [0, d].

  D3) with α = α † = 40, ζ = 0.1, and σ = 5 × 10 -3 , and ζ † = 0.2, and σ † = 5 × 10 -2 .
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APPENDIX A: VERIFYING THAT THE MATRICANT IS UNITARY AT THE SECOND ORDER

The determinant of the matrix Eq.( 4) reads as det M 

(A1)

Note that Eq.(A1) vanishes because both functions ρ(x) and C(x) are zero for x < 0 and integration by part formula.

APPENDIX B: CANCELLATION OF THE WILLIS COUPLING IN THE CASE OF A SYMMETRIC PROFILE

Eq. ( 7) can be further expanded as follows

When the profile is symmetric, i.e., r(x) is symmetric with respect to d/2, the first two terms in Eq. (B1) cancel (since 

where ρ 0 , γ, η, and Pr are respectively the density, specific heat ratio, dynamic density, and Prandtl number of the saturating fluid, and P 0 the atmospheric pressure. The reduced density and bulk modulus can then be evaluated by ρ(x) = ρ(x)/S(x) and C(x) = C(x)S(x), with S(x) = πr(x) 2 for each value of r(x).

APPENDIX D: EQUATIONS OF THE TWO PROFILES

The equations of the two profiles considered are provided below. Both are generated via asymmetric Gaussian functions